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Abstract

Diffusion models have achieved significant progress in image generation and the
pre-trained Stable Diffusion (SD) models are helpful for image deblurring by pro-
viding clear image priors. However, directly using a blurry image or pre-deblurred
one as a conditional control for SD will either hinder accurate structure extraction
or make the results overly dependent on the deblurring network. In this work,
we propose a Latent Kernel Prediction Network (LKPN) to achieve robust real-
world image deblurring. Specifically, we co-train the LKPN in latent space with
conditional diffusion. The LKPN learns a spatially variant kernel to guide the
restoration of sharp images in the latent space. By applying element-wise adaptive
convolution (EAC), the learned kernel is utilized to adaptively process the blurry
feature, effectively preserving the information of the blurry input. This process
thereby more effectively guides the generative process of SD, enhancing both the
deblurring efficacy and the quality of detail reconstruction. Moreover, the results at
each diffusion step are utilized to iteratively estimate the kernels in LKPN to better
restore the sharp latent by EAC in the subsequent step. This iterative refinement
enhances the accuracy and robustness of the deblurring process. Extensive experi-
mental results demonstrate that the proposed method outperforms state-of-the-art
image deblurring methods on both benchmark and real-world images.

1 Introduction

Image deblurring aims to recover a sharp image from a blurry observation. Blurring can be caused
by various factors, such as camera shake and high-speed movement of the photographed objects.
This task is challenging as only the blurry images are available and the blur might be non-uniform.
Traditional deblurring methods [17, 16] have made significant progress by utilizing hand-crafted
features and priors. However, these methods often struggle to handle complex blur patterns and may
produce unsatisfactory results.
Numerous learning-based approaches [25, 3, 31, 1] have been inclined to employ a variety of
convolutional neural network (CNN) architectures. Compared with traditional algorithms, CNNs
have demonstrated remarkable success. However, the convolution operation is a spatially invariant
local operation, which cannot effectively model the spatially variant characteristics of image content
and the global contexts for image deblurring. To address the limitations of CNNs, Transformers [32,
27, 12, 10] have been increasingly applied to image deblurring and have achieved commendable
performance.
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(a) Blurred patch (b) DBGAN (c) FFTformer (d) HI-Diff

Blurred image from DVD dataset (e) ControlNet (f) PASD (g) DiffBIR (h) Ours
Figure 1: Visual comparison with state-of-the-art image deblurring methods. The results of GAN-
based method (b) and diffusion-based method without pretraining (d) still contain significant blur
effects. Directly using the blurry image as the conditional input (e) presents significant challenges in
effectively extracting structural information. (f) is a method based on pre-trained SD that performs pre-
deblurring on the input features, which alters the original information, leading to erratic generation.
For (g), it uses the result of the pre-trained FFTformer (c) as the condition. (g) is influenced by the
erroneous structures in (c), resulting in generated outputs that retain erroneous artifacts and erroneous
structures. In contrast, our approach, guided by the clear structural information provided by LKPN,
generates a more distinct and artifact-free image.
Recently, diffusion models have demonstrated outstanding performance in image generation [7, 5].
Some researchers have attempted to utilize Denoising Diffusion Probabilistic Models (DDPMs) for
image restoration [18, 30], aiming to leverage their ability to capture complex data distributions and
generate detailed images. However, due to the lack of large-scale pre-training, these methods have
not demonstrated satisfactory results, particularly when applied to out-of-distribution data, often
leading to inferior performance and visually unpleasant artifacts. With the surprising performance of
large-scale pre-trained models like Stable Diffusion (SD) in image generation, it has been developed
for image restoration [13, 29]. SD models have strong priors on the structure and details of high-
quality (HQ) images. However, directly utilizing blurry images as conditional inputs can hinder the
extraction of effective structural information, especially in cases of severe blur, ultimately resulting
in inaccurately generated structures (Figure 1(e)). While recent methods attempt to mitigate these
limitations, their technical trajectories introduce new issues. These methods [13, 29] require training
an additional Degradation Removal Model (DRM) to first restore the clear images, and then enhance
the details using a ControlNet [36]. This suggests that the restoration results of the entire method are
notably influenced by the results of the degradation removal model. When the DRM (implemented
via FFTformer [10]) yields inaccurate results (Figure 1(c)), it may adversely affect the diffusion
process, potentially resulting in suboptimal performance (Figure 1(g)). Moreover, due to the poor
generalization of existing degradation removal models across different datasets, these methods also
tend to perform poorly in real-world scenarios.

In this paper, we investigate in-depth the problem of how to leverage pre-trained SD models to assist
in real-world image deblurring while reconstructing realistic details and textures. This approach
circumvents the direct use of blurry images as conditions, as severe blur can hinder the extraction
of accurate structural information, leading to suboptimal final generated structures. Unlike pre-
training an additional degradation removal model, which uses restored images as conditions and
can be problematic due to poor restoration quality introducing incorrect structures and resulting in
erroneous generation, we jointly train a Latent Kernel Prediction Network (LKPN) with the diffusion
model. The LKPN, together with Element-wise Adaptive Convolution(EAC), is designed to guide
the conditional generation at each step of the diffusion process.

The effectiveness of the LKPN lies in its ability to predict dedicated convolution kernels for each latent
pixel, dynamically adjusting the kernel weights based on local content (e.g., edges, textures, and flat
regions). These pixel-specific kernels are then applied to the latent blurry image by the EAC, enabling
better restoration of clear structures by adaptively addressing distinct blur characteristics at each
latent pixel location. This adaptive mechanism not only preserves the necessary information in the
input image but also avoids the destruction of structural details, making it particularly advantageous
for recovering fine structures and textures. By integrating the LKPN, the diffusion model uses the
clear structures from the LKPN as conditional inputs to guide its generation process at each step. This
produces more accurate results and enhances both deblurring and detail reconstruction. Furthermore,
the intermediate results obtained at each step of the diffusion process are utilized to refine the output
of the LKPN, progressively improving the accuracy of the deblurred results by EAC. This iterative
refinement generates increasingly clearer conditional inputs, which in turn guide the generation
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(a) Input (c) ControlNet (e) Deblurred image by LKPN and EAC

(b) FFTformer (d) DiffBIR (f) DeblurDiff

Figure 2: Iterative results of the diffusion model. The arrow represents the iterative diffusion process.
To visualize this process, we decode the results of each step of the diffusion model through the VAE
decoder to the image space. Using the blurry image directly as a conditional input (c) makes the
diffusion model struggle to recover clear structures and fine details in (a). For (d), it uses the result
of the pre-trained FFTformer (b) as the condition. However, when the results in (b) fail to remove
the blur, the generated results will also contain blur (as indicated by the blue box). In contrast, the
proposed LKPN can preserve the input information and restore the structure (e) by EAC, thereby
guiding the diffusion model to generate better results (f), where the leaves are generated more clearly.

process of the Stable Diffusion (SD) model to achieve iterative improvements. Additionally, the
LKPN continuously benefits from the strong prior information provided by SD, enabling it to estimate
better kernels to remove blur in the latent space.

The main contributions are summarized as follows: First, we design an architecture based on pre-
trained SD models to achieve effective deblurring while reconstructing realistic details and textures.
Second, we propose an LKPN architecture that estimates a spatially variant kernel, which is then
utilized by the EAC to progressively generate clear structures and preserve the necessary information
in the input image throughout the diffusion process. This guides SD to produce more accurate details
and structures, thereby enhancing the overall deblurring performance. Finally, we quantitatively and
qualitatively evaluate the proposed method on benchmark datasets and real-world images and show
that our method outperforms state-of-the-art methods.

2 Related Work

Image deblurring. Due to the fact that image deblurring is an ill-posed problem, traditional
methods [11, 17, 16] often develop various effective priors to constrain the solution space. These
manually designed priors can help remove blur. However, they do not fully utilize the characteristics
of clear image data, which leads to a struggle in handling complex blur patterns and may produce
unsatisfactory results

With the development of deep learning, many learning-based methods have tended to use various CNN
architectures for image deblurring. SRN [25] proposes a multi-scale structure that performs image
deblurring from coarse to fine. MIMOUnet [3] redesigns the coarse-to-fine structure, significantly
reducing the computational cost. NAFNet [1] analyzes the baseline module and simplifies it by
removing the activation function, which better facilitates image restoration.

Due to the excellent performance of Transformers in global context exploration and their great
potential in many visual tasks, some methods have applied it to image deblurring. Restormer [32]
simplifies the baseline module by estimating self-attention in the channel dimension, reducing the
computational cost of self-attention Uformer [27] proposes a general U-shaped Transformer model,
computing self-attention within local windows to address the image deblurring. FFTformer [10]
proposes a frequency-domain based Transformer model and achieves state-of-the-art results.

Although these methods have achieved good deblurring effects, these regression-based methods tend
to predict smooth results, with limited ability to depict details.

Diffusion model. Denoising Diffusion Probabilistic Models (DDPM) [7] have shown remarkable
capabilities in generating high-quality natural images. Some methods [30, 18, 2] have attempted to
directly train a diffusion model for image restoration. Rombach et al. [21] extended the DDPM struc-
ture to the latent space and conducted large-scale pre-training, demonstrating impressive generative
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capabilities. Recently, some researchers have utilized powerful pre-trained generative models, such
as SD [21], to address image restoration problems. DiffBIR [13] proposes a two-stage approach,
first restoring the degraded image and then using SD to generate details. PASD [29] restores clear
images through a Degradation Removal module to provide clear conditional inputs for SD. However,
these methods require training an additional image restoration model and then enhance the details
through SD. This means that the final results of the SD largely depend on the outcomes of the
restoration model. When the degradation removal model produces erroneous results, it may lead to
poor performance in the diffusion process.

3 Method

Our goal is to leverage the powerful priors of pre-trained Stable Diffusion models to achieve robust
image deblurring while simultaneously reconstructing realistic details and textures. Our method
iteratively provides clearer guidance to the diffusion model during the diffusion process, thereby
progressively restoring clear structures and enhancing details. Figure 3 shows the overview of the
proposed method.

3.1 Motivation and Preliminaries

Motivation. Directly using the blurry image as the condition for SD often results in suboptimal
deblurring, as it lacks sufficient structural information to effectively guide the generation process.
This makes it difficult for diffusion models to recover clear structures and details, as shown in
Figure 2(c). Therefore, providing SD with clear guidance images is necessary. However, directly
predicting clear structures from the blurry image is not an easy task and often leads to inaccurate
results (Figure 2(b)), which can lead to erroneous structures in the final output of the diffusion model
(Figure 2(d)). However, directly predicting a sharp structure from a blurry image is a highly ill-posed
problem and often results in inaccurate estimations (Figure 2(b)), which can further lead to erroneous
structures in the final output of the diffusion model (Figure 2(d)).

Our work is inspired by existing methods [24, 22, 16], which iteratively estimate the blur kernel
and restore the blurred image. Since directly estimating an accurate blur kernel from the blurred
image often leads to suboptimal results with residual blur, they first utilize the blurred image
along with various priors (e.g., patch priors [24] and dark channel priors [16]) to first estimate
an intermediate deblurring result with clear structures. Based on this intermediate result, they
then estimate the corresponding blur kernel, which is subsequently used to refine the intermediate
deblurring result. This iterative process alternates between kernel estimation and refinement of the
intermediate deblurred result, progressively improving the overall deblurring performance. Building
upon these ideas, we propose a method that integrates deblur kernel estimation with the clear priors
inherent in SD. Specifically, our method uses the priors provided by SD and the blurry input image to
first estimate a deblur kernel in the latent space. This kernel is then applied to the blurry image in the
latent space to produce a clearer intermediate result, which guides the diffusion model for conditional
generation (Figure 2(e)). During the diffusion process, the results generated by the diffusion model
are combined with the original blurry image to iteratively estimate a more accurate deblur kernel
and progressively refine a clearer guidance image. As the iterations proceed, the enhanced guidance
enables SD to progressively recover finer details while preserving the structural integrity of the input.
As a result, the diffusion model can generate outputs that are not only sharper and more detailed but
also better preserve the original content (Figure 2(f)).

Denoising Diffusion Probabilistic Models (DDPM) learn data distributions by progressively de-
noising a normally distributed variable. The training process involves a forward noise-adding process
and a reverse denoising process. At the t-th step of the forward diffusion process, a noisy image xt is
generated from the clear image x0 by:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, , (1)

where ϵ denotes the noise sampled from the standard normal distribution N (0, I), and ᾱt controls the
amount of noise added at each step t, which is typically a predefined value. In the reverse denoising
process, a denoising neural network ϵθ(xt, t) is used to predict the noise in xt. After training, the
denoising network can iteratively run for T steps starting from noise sampled from a standard normal
distribution to generate a clear image. To enhance efficiency, the diffusion process is often moved to
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Figure 3: Overall architecture of the proposed DeblurDiff. It integrates a Latent Kernel Prediction
Network (LKPN) with a generative diffusion model to address the challenges of real-world image
deblurring. The LKPN leverages the priors from SD and the blurred image to estimate pixel-specific
deblurring kernels during the diffusion process. These kernels are applied via Element-wise Adaptive
Convolution (EAC) to progressively recover clear structures from blurred images. The refined clear
zs is used as a condition to guide the diffusion process, enabling the model to effectively preserve the
input information and structural integrity.

a latent space via a pre-trained Variational Autoencoder (VAE). This latent space is more suitable
for likelihood-based generative models as it focuses on the important and semantic parts of the data,
operating in a lower-dimensional and computationally efficient space [21]. Specifically, a pre-trained
VAE is utilized to transform the clear image x0 into a latent representation z0 by z0 = E(x0), and the
forward noising and reverse denoising processes of DDPM are performed in this latent space. The
corresponding optimization objective can be simplified to minimizing the denoising loss:

Ldenoise = Ezt,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t)∥22

]
. (2)

where zt is the noisy latent representation at step t.

3.2 LKPN for clear structure guidance.

In the context of blind deblurring, directly using blurry images as conditions can impede the extraction
of effective structural information, especially when dealing with significant blur, which can lead to
inaccurate final generated structures. To address this challenge, we propose a method that incorporates
an LKPN trained simultaneously with the diffusion model. The LKPN dynamically estimates pixel-
specific deblurring kernels at each step of the diffusion pipeline, by jointly leveraging the blurred
input and intermediate image priors generated during the diffusion process. These estimated kernels
are fed into the element-wise adaptive convolution (EAC), which applies content-aware convolutions
based on local image structures, allowing the model to effectively address spatially varying blur
patterns in the latent space.

Inspired by STFAN [38] and DWNet [6], which predict pixel-wise kernels from single or adjacent
frames, we adopt a similar philosophy of spatially adaptive convolution. However, while these
methods perform a single, static estimation in the input space, we adapt this idea to the latent space
of a pre-trained diffusion model. Our LKPN re-estimates the blur kernel at every denoising step by
conditioning on the current, progressively cleaner latent produced by the diffusion backbone, and
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Table 1: Quantitative evaluations of the proposed method against state-of-the-art ones on both
synthetic and real-world benchmarks. The models marked with an asterisk ∗ indicate that we retrain
them on our own training set. The best and second performances are marked in red and blue,
respectively. For the RWBI and Real Blurry Images datasets, which lack ground truth (GT) data, we
evaluate the performance using only no-reference metrics. We provide comparison results with more
methods in the supplementary material.

Dataset Metrics FFTformer∗ DBGAN ResShift HI-Diff ControlNet∗ PASD∗ DiffBIR∗ Ours

GoPro

PSNR ↑ 26.86 31.18 29.03 33.33 22.31 22.82 23.86 24.32
SSIM ↑ 0.8357 0.9182 0.8781 0.9462 0.6547 0.6559 0.7173 0.7375
LPIPS ↓ 0.1538 0.1120 0.0780 0.0820 0.3292 0.2984 0.2772 0.2191

FID ↓ 13.8896 10.7629 8.8820 8.1553 37.2749 39.0057 27.0576 17.6948
NIQE ↓ 4.1200 5.1988 4.8367 4.6119 3.5305 2.6567 3.4193 3.1769

MUSIQ ↑ 52.2993 42.0985 44.2820 47.7791 59.4246 61.5345 56.3249 61.6369
MANIQA ↑ 0.5454 0.4976 0.5419 0.5119 0.5746 0.5904 0.5464 0.6134
CLIP-IQA ↑ 0.4360 0.3788 0.4229 0.4841 0.5869 0.5758 0.5260 0.5966

DVD

PSNR ↑ 27.07 27.78 27.78 30.31 22.03 22.23 23.49 23.74
SSIM ↑ 0.8534 0.8356 0.8420 0.8972 0.6409 0.6440 0.7114 0.7055
LPIPS ↓ 0.1628 0.2126 0.1249 0.1363 0.3330 0.2968 0.2795 0.2501

FID ↓ 6.7968 14.9420 7.1787 5.7370 24.1213 22.3637 20.2467 12.5545
NIQE ↓ 3.8562 4.8188 4.6422 5.1858 3.4037 3.2504 3.1357 2.7822

MUSIQ ↑ 60.1091 40.4781 52.7551 45.5395 65.3657 68.3299 61.6415 67.2447
MANIQA ↑ 0.6257 0.5548 0.5744 0.5360 0.6155 0.6409 0.5773 0.6480
CLIP-IQA ↑ 0.5271 0.4346 0.4831 0.4065 0.6606 0.6528 0.5829 0.6686

Realblur

PSNR ↑ 26.94 23.91 26.30 30.18 23.77 25.02 25.50 25.71
SSIM ↑ 0.8580 0.7434 0.8140 0.9049 0.6787 0.7642 0.7724 0.7705
LPIPS ↓ 0.1411 0.2945 0.1249 0.0868 0.2565 0.2075 0.1951 0.1693

FID ↓ 19.8415 99.5935 21.6440 11.4180 40.4691 38.7507 30.4657 22.7713
NIQE ↓ 4.3473 5.3228 5.2628 5.1437 4.6525 3.9192 4.3053 4.2666

MUSIQ ↑ 61.5808 38.4866 49.3209 57.1640 66.5174 61.1498 58.7450 65.0557
MANIQA ↑ 0.6374 0.43222 0.5373 0.6218 0.6452 0.5994 0.5869 0.6538
CLIP-IQA ↑ 0.5336 0.3469 0.4521 0.5101 0.6041 0.5457 0.5261 0.6087

RWBI

NIQE ↓ 4.4631 5.2905 5.4446 5.3373 5.0331 4.1973 4.2742 4.5171
MUSIQ ↑ 59.6223 42.7631 51.0359 47.1820 62.5079 62.1680 61.8865 66.7505

MANIQA ↑ 0.5425 0.4852 0.4953 0.5082 0.5758 0.5645 0.5618 0.6260
CLIP-IQA ↑ 0.5413 0.3645 0.5032 0.3907 0.6199 0.5820 0.6042 0.6849

Real Images

NIQE ↓ 3.8520 4.9338 5.4704 4.7018 4.0978 4.4460 3.7964 3.6628
MUSIQ ↑ 52.9290 32.0568 48.8154 43.8702 51.5191 61.6320 53.6088 52.9263

MANIQA ↑ 0.5170 0.4488 0.5345 0.5722 0.5544 0.5937 0.5564 0.5963
CLIP-IQA ↑ 0.5026 0.3501 0.4767 0.4545 0.5254 0.5919 0.5384 0.5496

immediately applies it via EAC. This forms a closed “prior–estimate–restore” loop that turns the
conventional static kernel prediction into a dynamic, iterative refinement process, requiring no extra
frames yet fully exploiting the generative priors of the diffusion model.

Specifically, we first employ a pre-trained and frozen VAE encoder initialized from SD to encode the
blurry image and the clear one into the latent space, obtaining their corresponding latent representa-
tions zlq and z0. We follow the Eq.(1) to add noise to z0, obtaining zt. Then the LKPN, which is a
U-Net architecture, predicts a spatially variant kernel in latent space at step t :

kt = LKPN(zt, zlq, t), (3)

where kt is the predicted kernel at time step t. Then kt is used to refine the blurry image in the latent
space by :

zst = EAC(zlq, kt), (4)
where EAC is the element-wise adaptive convolution in Figure 3 (b) and zst is the deblurred latent
result. In the supplementary material, we provide a detailed explanation of the LKPN and EAC
architecture.

During training, the LKPN is trained simultaneously with the diffusion model. The LKPN follows
the framework of DDPM, imposing constraints simultaneously in both the latent space and the pixel
space to progressively optimize the kernel estimation. Specifically, our objective is to minimize the
following objective:

LLKPN = Llatent + Lpixel,

Llatent = Ez0,zlq,kt

[
∥z0 − EAC(zlq, kt)∥22

]
,

Lpixel = Ez0,zlq,kt

[
∥D(z0)−D(EAC(zlq, kt))∥22

]
,

(5)
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(a) Blurred patch (b) DBGAN (c) FFTformer∗ (d) HI-Diff

Blurred image from DVD dataset (e) ResShift (f) PASD∗ (g) DiffBIR∗ (h) Ours

Figure 4: Deblurred results on the DVD dataset [23]. Existing methods struggle to effectively restore
clear images. In contrast, our approach not only removes blur but also recovers sharp structures and
fine details.

(a) Blurred patch (b) DBGAN (c) FFTformer∗ (d) HI-Diff

Blurred image from RWBI dataset (e) Resshift (f) PASD∗ (g) DiffBIR∗ (h) Ours

Figure 5: Deblurred results on the RWBI dataset [33]. The structures are not recovered well in (b)-(g).
The proposed method generates an image with much clearer structures.

where EAC denotes the element-wise adaptive convolution (EAC) in Figure 3 (b), and D denotes the
pre-trained VAE decoder of SD.

3.3 Conditional diffusion for image deblurring.

For the conditional generation network, we follow the training methodology of ControlNet [36],
given its demonstrated effectiveness in conditional image generation. Specifically, we adopt the
encoder of the UNet in SD as a trainable conditional control branch and initialize the control network
by copying weights from the pre-trained SD model. We concatenate zs recovered by the EAC and
zlq as the input to the ControlNet, which is initialized with the weights of SD. During training, the
LKPN and ControlNet are jointly trained following the framework of DDPM [7], we minimize the
following loss function:

L = Ldenoise (2) + LLKPN (5). (6)

3.4 Sampling process of the DeblurDiff.

During the inference stage, the LKPN first estimates the initial spatially variant kernel from random
Gaussian noise and the blurred image, which is used to obtain an initial conditional zsT . The controlled
diffusion model uses zsT and zlq as conditions to generate an initial clear result zT−1. Subsequently,
zT−1 is fed back into the LKPN to help estimate a more accurate kernel:

kT−1 = LKPN(zT−1, zlq, T − 1), (7)

thereby iteratively optimizing the generated results in subsequent steps. We provide more details in
the supplementary material.

This synergy between the LKPN and the diffusion model creates a mutually reinforcing cycle, where
clear structural guidance from the LKPN improves the diffusion process, and intermediate results
from the diffusion model further refine the deblurred results.
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(a) Blurred patch (b) DBGAN (c) FFTformer∗ (d) HI-Diff

Blurred image from Real Images (e) Resshift (f) PASD∗ (g) DiffBIR∗ (h) Ours

Figure 6: Deblurred results on real blurry images dataset [4]. The deblurred results in (b)-(g) still
contain significant blur effects. The proposed method generates a clear image.

4 Experimental Results

4.1 Experimental Settings

Training Datasets. Current deblurring datasets are generally small in scale and low in resolution,
which is insufficient for effectively training diffusion models. Therefore, we do not use common
deblurring datasets such as GoPro [14] as our training set. Instead, we have collected and created a
large-scale dataset containing approximately 500,000 data pairs. Our training dataset consists of three
parts: (1) Existing deblurring datasets (including MC-Blur [34] and RSBlur [20]). (2) We capture
some high-definition video clips, generating blurred and clear data pairs using the same strategy as
REDS [15]. (3) We collect a large number of high-definition images and generate various motion
blur kernels to synthesize corresponding blurred images. We provide more details about the training
dataset in the supplementary material.

Test Datasets. We evaluate the proposed DeblurDiff on commonly used image deblurring datasets,
including synthetic datasets (GoPro [14], DVD [23]) and Real Blurry Images [4], RealBlur [19],
RWBI [33].

Implementation Details. We use SD2.1 as the base model. We employ the Adam optimizer [9] to
train DeblurDiff with a batch size of 128. The learning rate is set to a fixed value of 5× 10−5. The
model is trained for 100,000 iterations using 8 NVIDIA 80G-A100 GPUs.

Evaluation Metrics. We employ a range of reference-based and no-reference metrics to provide
a comprehensive evaluation of the deblurring performance. For fidelity and perceptual quality
assessment, we employ reference-based metrics, including PSNR, SSIM, and LPIPS [37]. For
no-reference evaluation, we include NIQE [35], MANIQA [28], MUSIQ [8], and CLIPIQA [26],
which assess image quality based on statistical and learning-based approaches. This diverse set of
metrics ensures a thorough analysis of both fidelity and perceptual quality.

Compared Methods. We compare our DeblurDiff with several state-of-the-art image deblurring
methods, which are categorized into two groups: (1) non-diffusion-based methods, including FFT-
former [10] and DBGAN [33], and (2) diffusion-based methods, including HiDiff [2], ResShift [30],
ControlNet [36], PASD [29], and DiffBIR [13]. We employ the pre-trained FFTformer as the Degra-
dation Removal Module (DRM) in DiffBIR and retrain DiffBIR, as the original DiffBIR framework
is not designed for deblurring tasks. We also train a ControlNet and PASD for image deblurring tasks.
All the aforementioned retrained methods are trained and tested using the publicly released codes and
models of the competing methods, ensuring a fair and consistent comparison under the same dataset
and training settings as our proposed method.

4.2 Comparisons with the state of the arts

We evaluate our approach on the synthetic and real-world datasets. Table 1 shows the quantitative
results. Our method shows strong performance in no-reference metrics, achieving higher scores
compared to existing approaches. This indicates that our method excels in perceptual quality and
realism, which are critical for real-world applications where ground truth images are often unavailable.
Our method achieves lower scores in reference-based metrics compared to HI-DIff. However, HI-Diff
does not utilize a pre-trained SD model, thus focusing more on reference-based metrics while lacking
generative capabilities, which results in relatively worse performance in no-reference metrics.
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Table 2: Effectiveness of each component in the proposed method on the GoPro dataset [14].

LKPN EAC SD prior for LKPN PSNR SSIM NIQE MUSIQ MANIQA CLIP-IQA

ControlNet % % % 22.31 0.6547 3.5305 59.4246 0.5746 0.5869
w/o EAC " % " 22.57 0.6553 3.4872 58.5845 0.5834 0.5701
w/o SD for LKPN " " % 23.14 0.6614 3.3391 59.7763 0.5917 0.5914
DeblurDiff " " " 24.32 0.7375 3.1769 61.6369 0.6134 0.5966

Figure 4 shows visual comparisons on the synthetic dataset of DVD [23]. The GAN-based
method [33] exhibits significantly inferior deblurring performance, failing to restore clear structures
and fine details effectively. Existing diffusion-based methods, such as HiDiff [2] and ResShift [30],
fail to achieve satisfactory results in Figure 4(d) and (e) due to their lack of SD priors, which leads
to suboptimal generation quality in terms of both structural clarity and detail fidelity. Leveraging
the pre-trained FFTformer [10] to preprocess blurred images Figure 4(c) and subsequently applying
diffusion-based restoration can partially remove blur. However, since FFTformer sometimes cannot
eliminate blur and tends to introduce undesirable artifacts during preprocessing, the final results
generated by DiffBIR often exhibit unnatural structures and are inconsistent with the input. In
contrast, our method, guided by the LKPN that progressively generates clear structures, produces
better results with sharper and more accurate structures.

Figure 5 and Figure 6 present the visual comparison results on the real-world dataset. DBGAN [33]
and FFTformer [10] struggle to recover clear structures from severe blur, while Hi-Diff [2] and
ResShift [30] fail to reconstruct fine details due to the lack of pre-trained image priors. PASD [29]
and DiffBIR [13], which rely on degradation removal models for pre-deblurring, often produce
suboptimal results with noticeable artifacts, as these models cannot effectively handle complex blur
patterns. In contrast, our method demonstrates better performance in both structural recovery and
detail reconstruction. The LKPN progressively generates clear structures and adaptively refines the
deblurring process, enabling our approach to achieve high-quality results with minimal artifacts.

(a) Input (b) ControlNet (c) w/o EAC (d)w/o SD for LKPN (e)DeblurDiff
Figure 7: Effectiveness of the proposed DeblurDiff on image deblurring. ControlNet struggles to
recover clear structures due to the lack of explicit structural guidance, resulting in blurred outputs.
Without the Stable Diffusion (SD) priors (referred to as w/o SD for LKPN), the LKPN fails to leverage
intermediate clear priors for deblurring, leading to artifacts and inconsistencies in the generated
results. When the LKPN directly predicts the deblurred result without using EAC (referred to as w/o
EAC), the outputs tend to be overly smooth, losing important details and structural information. In
contrast, our method effectively recovers sharp structures and fine details while preserving the input
information.

4.3 Analysis experiments.

The proposed LKPN is used to leverage intermediate clear priors generated during the diffusion
process, providing clear structural guidance as conditional inputs to the diffusion model. When the
blurry image is directly used as the conditional input (ControlNet for short), the diffusion model
struggles to recover clear structures and fine details (Figure 7(b)), particularly in cases of severe
blur. This is because the blurry image lacks sufficient structural information to guide the generation
process effectively, leading to suboptimal deblurring performance. Table 2 shows the quantitative
evaluation results on the real blurry images dataset.

To validate the effectiveness of leveraging clear priors from the diffusion process in the LKPN, we
compare our method with the baseline that directly estimates the kernel from the blurry image without
utilizing the intermediate results from the diffusion process (w/o SD for LKPN for short). In this
baseline, the estimated kernel is applied to the blurry image to generate a deblurred result, which
is then used as a conditional input to the diffusion model. Since the LKPN lacks the guidance of
intermediate clear priors, its predictions remain static and do not improve over time (Figure 8(a)). As
a result, the LKPN struggles to provide accurate structural guidance, leading to structural errors and
inconsistencies in the generated results, as shown in Figure 7(d).
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(a) Visualization of the LKPN results during the diffusion process in the baseline "w/o SD for LKPN".

(b) Visualization of the LKPN results during the diffusion process in the baseline "w/o EAC".

(c) Visualization of the LKPN results during the diffusion process in the DeblurDiff.

Figure 8: Iterative results of LKPN. The arrow represents the iterative diffusion process. To visualize
this process, we decode the features deblurred by the LKPN to the image space using the VAE
decoder in each time step.

We further investigate an alternative design in which the LKPN directly predicts the deblurred latent
image—rather than estimating element-wise adaptive kernels—to serve as the conditional input
for diffusion. This variant, denoted w/o EAC, performs worse than our full method that predicts
kernels and applies EAC to produce clear guidance. This approach fails to adaptively address distinct
blur characteristics at each pixel location, resulting in artifacts and inconsistencies in the generated
images. Additionally, the generated results of LKPN tend to be overly smooth (Figure 8(b)), and as
a consequence, the deblurred images lack sharpness and fine details, leading to suboptimal visual
quality and only moderate fidelity. Furthermore, it cannot effectively preserve the input information
and structural integrity, resulting in a loss of important details and coherence in the deblurred results
(Figure 7(c)).

In contrast, our method leverages intermediate clear priors from the diffusion process to iteratively
refine the spatially variant kernels estimated by the LKPN. This iterative refinement enables the
LKPN to progressively improve its predictions, generating increasingly accurate deblurring results
(Figure 8(c)). The refined kernels are then applied through the Element-wise Adaptive Convolution
(EAC), which adaptively addresses distinct blur characteristics at each pixel location, effectively
preserving the input information and recovering sharp structures and fine details (Figure 8(e)).

Limitations. We develop an effective method that explores the properties of the pre-trained SD
for image deblurring. However, we have currently only experimented with the SD2.1 model. In
the future, we will extend our method to the SD3.5 model based on DiT and attempt to optimize
multi-step diffusion into a single-step diffusion to accelerate model inference.

5 Conclusion

In this paper, we propose DeblurDiff, a framework for real-world image deblurring that integrates a
Latent Kernel Prediction Network (LKPN) with a generative diffusion model. Our approach addresses
the limitations of existing methods by leveraging the priors of pre-trained SD models and introducing
an adaptive mechanism to estimate pixel-specific kernels. These kernels are applied through Element-
wise Adaptive Convolution (EAC), which adaptively adjusts to local content, enabling the model
to preserve input information and structural integrity effectively. Through extensive experiments
on both synthetic and real-world benchmarks, we demonstrated that DeblurDiff performs favorably
against state-of-the-art methods in terms of structural fidelity and visual quality.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions made in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discuss the limitations of the work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides sufficient information to enable replication of the key
experimental results reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: If the paper is accepted, we will make all training and testing code, as well as
the datasets used, publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper report error bars suitably and correctly.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: answerYes

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential societal impacts in the supplemental material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of the assets (code, data, models) used in the
paper have been given proper recognition.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented, and we have
provided detailed descriptions.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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