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ABSTRACT

Large language models have demonstrated an impressive ability to perform fac-
tual recall. Prior work has found that transformers trained on factual recall tasks
can store information at a rate proportional to their parameter count. In our work,
we show that shallow transformers can use a combination of associative memories
to obtain such near optimal storage capacity. We begin by proving that the stor-
age capacities of both linear and MLP associative memories scale linearly with
parameter count. We next introduce a synthetic factual recall task, and prove that
a transformer with a single layer of self-attention followed by an MLP can obtain
100% accuracy on the task whenever either the total number of self-attention pa-
rameters or MLP parameters scales (up to log factors) linearly with the number of
facts. In particular, the transformer can trade off between using the value matrices
or the MLP as an associative memory to store the dataset of facts. We comple-
ment these expressivity results with an analysis of the gradient flow trajectory of a
simplified linear attention model trained on our factual recall task, where we show
that the model exhibits sequential learning behavior.

1 INTRODUCTION

One hallmark capability of transformer-based large language models (LLMs) is factual re-
call (Petroni et al., 2019; Jiang et al., 2020; Roberts et al., 2020). Given a prompt of the form
“In what year was George Washington born?” an LLM will correctly respond with “1732.” Lan-
guage models thus act as databases, storing somewhere in their parameters mappings of the form
(George Washington, birth year) 7→ (1732) which can be easily accessed during inference time.

Prior work (Allen-Zhu & Li, 2024) has observed that transformers trained on factual recall tasks
can store information at a rate proportional to their parameter count. Other studies (e.g., Meng
et al., 2022; Geva et al., 2023; Nanda et al., 2023; Lv et al., 2024) have sought to understand the
specific mechanism by which transformers implement factual recall, probing models to understand
specifically which transformer blocks “contain” certain facts. However, these studies do not consider
the memorization capacity of such constructions, and it is thus an open question to understand how
transformers optimally encode such factual information within their weights.

In this work, we show that shallow transformers can use a combination of associative memories
to obtain near-optimal storage capacity for factual recall tasks. Associative memories store pairs
of input-output embeddings through their outer products, and are thus well-suited for modeling the
weight matrices of a transformer. Prior work (Bietti et al., 2023) has shown that this associative
memory model is a key primitive towards understanding both the representational capacity and
optimization dynamics of transformers on synthetic tasks.

Our specific contributions are as follows. In Section 3 we begin by studying the ability of linear
and MLP associative memory models to store associations between discrete vocabularies. We prove
that when the embeddings are sampled randomly over the sphere, these models can store a number
of associations proportional to their parameter count, significantly improving over the case where
the embeddings are orthogonal. In Section 4, we introduce a synthetic next-token prediction task
which models factual recall. The data distribution consists of prompts containing a subject token s
and relation token r hidden amongst a set of noise tokens, which the learner must map to a ground
truth answer a∗(s, r). Our main theorem is that a transformer consisting of a single multi-head
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self-attention layer followed by an MLP can obtain 100% accuracy when either the number of self-
attention parameters or MLP parameters scales (up to logs) proportionally with the dataset size. In
Section 5, we study the gradient descent dynamics of a single linear self-attention head trained on
the synthetic task. We prove that the model undergoes a sequential learning dynamics, consisting
of a “hallucination” stage where the model outputs the conditional distribution for the answer based
on only the relation. Finally, in Section 6 we complement our constructions with lower bounds,
showing that they are optimal up to logarithmic factors. Overall, our work makes progress towards
understanding the mechanism by which transformers learn and store factual information.

2 RELATED WORK

Associative memories. Associative memories have a long history in the neural computation litera-
ture (Hopfield, 1982; Kohonen, 1972; Willshaw et al., 1969). More recently there has been renewed
interest in extensions of such models with larger capacity (Krotov & Hopfield, 2016; Demircigil
et al., 2017; Lucibello & Mézard, 2024). These have been linked to the attention blocks in Trans-
formers (Ramsauer et al., 2020; Schlag et al., 2021), with (Le et al., 2020; Hoover et al., 2023)
in particular using the connection between self-attention and associative memories to design new
variants of the attention module. (Radhakrishnan et al., 2020) show that overparameterized autoen-
coders can also behave as associative memories. However, these connections differs from our work,
where we consider instead the role of both self-attention and MLP weights as associative memories,
in a similar vein to (Bietti et al., 2023; Cabannes et al., 2024).

Memorization and factual recall. Large language models are known to store vast amounts of
factual knowledge in their weights (Jiang et al., 2020; Roberts et al., 2020; Geva et al., 2021). Sev-
eral recent works in the mechanistic interpretability literature have attempted to understand how
transformers store facts (Meng et al., 2022; Geva et al., 2023; Nanda et al., 2023; Lv et al., 2024).
Allen-Zhu & Li (2024) empirically studied the memorization capacity for Transformer language
models of different sizes trained on synthetic factual recall tasks, and observed near-linear scaling
with the number of parameters. Jiang et al. (2024) demonstrate how shallow transformers can solve
a related latent concept association task by viewing the weight matrices as associative memories.
At a more basic level, several works have studied the memorization capacity of neural networks,
using constructions that differ from our associative memory approach, both in the context of re-
gression (Bubeck et al., 2020; Vardi et al., 2021; Madden & Thrampoulidis, 2024) and (next) token
prediction (Mahdavi et al., 2023; Kajitsuka & Sato, 2023; 2024; Madden et al., 2024).

Gradient dynamics. Training dynamics of transformer models on various tasks has been a pop-
ular recent line of research (Jelassi et al., 2022; Snell et al., 2021; Li et al., 2023; Bietti et al.,
2023; Tian et al., 2023; Nichani et al., 2024). Zhang et al. (2024); Mahankali et al. (2024) studied
training dynamics of transformers with linear attention on in-context learning tasks. Ghosal et al.
(2024) studied the fine-tuning dynamics on a similar factual recall task, showing how training on
lesser-known facts may hurt performance. Our emphasis differs in that we consider non-orthogonal
embeddings, and require the model to additionally filter out the relevant subject and relation tokens
from the noise tokens, which requires learning of the key and query matrices.

3 ASSOCIATIVE MEMORIES

In this section, we show that associative memories have a storage capacity on the order of the number
of parameters (up to logarithmic factors), which is near-optimal (as we show in Section 6).

Setup. Our setting follows that of Cabannes et al. (2024). Let [N ] be the set of input tokens, and
[M ] be the set of output tokens. Our goal is to store a set of associations given by the function
f∗ : [N ] → [M ]. For each input token x ∈ [N ] we assign a corresponding embedding vector
ex ∈ Rd, and likewise for each output token y ∈ [M ] we associate an unembedding vector uy ∈
Rd. We primarily focus on the setting where the embeddings {ex}x∈[N ] and {uy}y∈[M ] are drawn
i.i.d uniformly from the sphere of radius 1. Let F : Rd → Rd be our model which “stores” the
associations f∗. Given such an F , the prediction f̂(x) for f∗(x) is given by the arg-max decoding
f̂(x) := argmaxy∈[M ] u

⊤
y F (ex).
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Linear Associative Memories. We first consider the case where F is a linear map F (ex) = Wex.

Theorem 1. Assume that f∗ is injective. If d2 ≳ N poly logN , then with high probability over the
draw of the embeddings, there exists a W such that

arg max
y∈[M ]

u⊤
y Wex = f∗(x) for all x ∈ [N ]. (1)

This capacity is obtained by the construction W =
∑

x∈[N ] uf∗(x)e
⊤
x . Furthermore, if W is

restricted to be a rank m matrix, then such a W exists when md ≳ N poly logN ; this construction
is W =

∑
x∈[N ] uf∗(x)e

⊤
x

∑m
i=1 viv

⊤
i , where vi ∈ Rd are drawn i.i.d from the standard Gaussian.

Since W has d2 parameters, Theorem 1 shows that the number of associations that can be stored
scales (up to log factors) linearly in the number of parameters. We note that in this linear case,
the injectivity assumption on f∗ is important, as otherwise the capacity may be as low as d, as
in (Cabannes et al., 2024). Additionally, we remark that these constructions are easily obtained
by gradient descent; the general W construction corresponds to one-step of GD on the correlation
loss L(W ) = −

∑
x u

⊤
f∗(x)Wex, while the low-rank construction corresponds to parameterizing

W = UV ⊤ for U ,V ∈ Rd×m, and taking one step of GD on U while V is fixed to random
Gaussian initialization. The proof of Theorem 1 is deferred to Appendix B.

Remarks. Our setting bears similarity to associative Hopfield networks (Hopfield, 1982), yet dif-
fers in that we decode to a fixed discrete set of output tokens [M ] rather than exactly matching
the target output. This more closely resembles the language modeling framework, and allows us
to improve the memorization capacity from d to d2 (McEliece et al., 1987). Next, we note that
non-orthogonality of the embeddings is necessary for Theorem 1, as the optimal storage capacity
for one-hot embeddings is only N = d. Since our constructions are in the regime N ≫ d, the
associative memory W is a superposition (Elhage et al., 2022) of the outer products uf∗(x)e

⊤
x .

Finally, we remark that the random, rather than trainable, embeddings setting was also studied in
Cabannes et al. (2024). The embeddings can be viewed as global quantities in a larger network, of
which the associative memory is implementing some subtask, and is thus not able to optimize these
embeddings in order to solve its specific task.

MLP Associative Memories. Next, we consider the case where F is a two-layer neural network
with hidden width m; that is F (ex) = V ⊤σ(Wex) for V ,W ∈ Rm×d.

Theorem 2 (Informal). If md ≳ N poly logN , then with high probability over the draw of the
embeddings, there exists V ,W such that

arg max
y∈[M ]

u⊤
y V

⊤σ(Wex) = f∗(x) for all x ∈ [N ]. (2)

Since the MLP has 2md parameters, Theorem 2 shows that the MLP associative memory scheme
has storage capacity which is (nearly) linear in the parameter count.

Proof Sketch. The construction for Theorem 2 mimics that of Theorem 1, after an appropriate ran-
dom feature transformation. First, sample the rows of W from the standard Gaussian. Then, set each
vi = m−1

∑
x uf∗(x)hk(⟨wi, ex⟩), where hk is the kth Hermite polynomial (see Appendix F.1).

We then see that

F (ex) =
1

m

m∑
i=1

∑
x′∈[N ]

uf∗(x′)hk(⟨wi, ex′⟩)σ(⟨wi, ex⟩) →
∑

x′∈[N ]

uf∗(x′)⟨ex, ex′⟩k. (3)

for sufficiently large m. Such polynomial associative memory is reminiscent of that in Krotov &
Hopfield (2016), and can store many more associations for large k. By choosing k ≈ logd m and
appropriately dealing with concentration, one can obtain the Õ(md) storage capacity (for technical
reasons, we must also use the Neural Tangent Kernel (Jacot et al., 2018) rather the random feature
model). The full proof of Theorem 2 is deferred to Appendix B.
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Figure 1: (Left) A linear associative memory can store N ∝ d2 associations. (Right) Empirically,
the MLP associative memories can store N ∝ (md)0.9 associations, approaching the N ∝ md
bound in Theorem 2. We attribute this discrepancy to challenges with the optimization dynamics.

On Optimal Storage Capacity. Prior works (Bubeck et al., 2020; Madden & Thrampoulidis,
2024; Madden et al., 2024) studying the memorization capacity of neural networks focus on the
regression setting, and thus do not directly apply to our setup with multiple outputs and a discrete
set of output tokens. Other works (Vardi et al., 2021; Kajitsuka & Sato, 2023; 2024) show that one
can memorize N arbitrary labels with Õ(

√
N) parameters, at the expense of using a bit complexity

of Ω̃(
√
N). Such networks still require Ω(N) bits, which matches our lower bounds in Section 6.

These constructions, however, are unwieldy, and are not learnable if we restrict the precision to be
poly logN . Instead, our constructions are learnable – the linear construction results from one step
of GD, while the ReLU construction uses the NTK and can thus be learned via GD on a convex
loss. In Corollary 2, we show that a quantized version of the construction from Theorem 1 indeed
succeeds with bit precision Õ(1), and thus more accurately captures realistic training regimes where
models do seem to succeed with low precision (Dettmers et al., 2022; Allen-Zhu & Li, 2024).

Empirical Validation. In Figure 1, we train both linear and MLP associative memories to store
the association f∗(x) = x. Given a fixed model size (d,m), we fit datasets with increasing values
of N using the cross entropy loss, and plot the largest value of N for which we can obtain at least
99% accuracy. We observe that the linear associative memory can store d2 associations, while the
MLP associative memory can store nearly md associations.

4 A SYNTHETIC TASK FOR FACTUAL RECALL

In this section we introduce a synthetic factual recall task, and show that one-layer transformers
constructed via associative memories can store a number of facts proportional to parameter count.

4.1 THE TASK

We first define a global dictionary of facts. Let S be a set of subject tokens and R be a set of relation
tokens, where S = |S|, R = |R|. Let A be the set of answer tokens. We let a∗ : S ×R → A be the
ground truth association function, which maps subject-relation tuples (s, r) to their corresponding
answer a∗(s, r)1. A similar such task was considered in Petroni et al. (2019); Ghosal et al. (2024).

Define Ar to be the set of answers corresponding to a relation r, i.e Ar := {a∗(s, r) : s ∈ S}.
Define As := {a∗(s, r) : r ∈ R} analogously. We assume that each relation corresponds to a
disjoint set of answers:

Assumption 1. Ar ∩ Ar′ = ∅ for r, r′ ∈ R with r ̸= r′. Furthermore, define D := maxr∈R |Ar|.

For example, S could be the set of all countries, while R could be {president, capital}; in this case,
the set of all presidents and set of all capitals are disjoint.

1We focus on one-to-one relations, where each (s, r) pair corresponds to a unique a∗. This is in contrast
to the one-to-many setting, where each (s, r) maps to many possible answers (for example, s = “France,” r =
“city,” a∗ ∈ {“Paris”, “Toulouse”, · · · })

4
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EOS⋯ ⋯ ⋯ →s r a*z1 zi−1 zi+1 zj−1 zj+1 zT−1

Figure 2: A diagram of the synthetic factual recall task.

We next define our data distribution D over sequences. Let T > 0 be the context length. Let N
be a set of noise tokens, and define the vocabulary to be V := S ∪ R ∪ A ∪ N ∪ {EOS}, where
EOS is a special “end-of-sequence” token. The data distribution is over length T + 1 sequences
z1:T+1 := (z1, z2, . . . , zT , zT+1) ∈ VT+1, generated via the following procedure:

1. First, sample a subject and relation tuple (s, r) from some distribution p over S ×R.
2. Next, sample two distinct indices i, j ∈ [T − 1]. Set zi = s and zj = r.
3. For the remainder of tokens zk where k ∈ [T − 1] \ {i, j}, draw zk uniformly at random

from the noise tokens N .
4. Set zT = EOS.
5. Finally, set zT+1 = a∗(s, r).

The goal of this task is to predict zT+1 from (z1, . . . , zT ). A model which can successfully do so
must (1) be able to isolate the relevant subject and relation tokens from the noise tokens and (2) store
all of the associations (s, r) 7→ a∗(s, r). See Figure 2 for a diagram of the task.

4.2 THE MODEL: ONE-LAYER TRANSFORMER

Our learner for the task is a single layer of multi-head self attention followed by an MLP. Define
d to be the embedding dimension. The input to the transformer is a sequence of vectors X :=
(x1, . . . ,xT )

⊤ ∈ RT×d. Each self attention head is parameterized by the key, query, and value
matrices WK ,WQ,WV ∈ Rdh×d, where dh is the head dimension. The self attention head is then
a map attn( · ;WK ,WQ,WV ) : RT×d → Rdh , which operates as

attn(X;WK ,WQ,WV ) = WV X
⊤S
(
XW⊤

KWQxT

)
, (4)

where S(z)i = exp(zi)∑
j exp(zj)

is the softmax operator.

A multi-head self-attention layer with H heads is parameterized by H different key, query, and
value matrices, along with H output matrices. Let θ := {(W (h)

K ,W
(h)
Q ,W

(h)
V ,W

(h)
O )}h∈[H],

where W
(h)
K ,W

(h)
Q ,W

(h)
V ,W

(h)
O ∈ Rdh×d. A multi-head self-attention layer is then a map

FMHSA( · ;θ) : RT×d → Rd given by

FMHSA(X;θ) =
∑

h∈[H]

W
(h)
O

⊤
attn(X;W

(h)
K ,W

(h)
Q ,W

(h)
V ). (5)

Finally, a single-layer transformer combines a multi-head self-attention layer with an MLP. Let m
be the MLP width. Let V ,W ∈ Rm×d be the MLP parameters, and define θTF := θ ∪ {V ,W }.
Then, a single-layer transformer is the map FTF( · ;θTF) : RT×d → Rd given by

FTF(X;θTF) = FMHSA(X;θ) + V ⊤σ(WFMHSA(X;θ)). (6)

A single-layer transformer is parameterized by the tuple of hyperparameters (d,H, dh,m). The
model has 4Hddh self-attention parameters, and 2md MLP parameters.

4.3 ONE-LAYER TRANSFORMERS HAVE (ALMOST) LINEAR STORAGE CAPACITY

We next characterize how large a single-layer transformer must be in order to obtain 100% ac-
curacy on the synthetic task. For each token z ∈ V , sample its embedding vectors φ(z) ∈ Rd

i.i.d uniformly over the sphere of radius 1. An input sequence (z1, . . . , zT ) gets embedded as
X = (φ(z1), . . . ,φ(zT ))

⊤. We use argmax decoding to predict the next token; that is,

f̂(z1:T ) = argmax
z∈V

φ(z)⊤FTF(X;θTF). (7)

5
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Our first result is that there exists an attention-only single-layer transformer that obtain 100% accu-
racy on the factual recall task, as long as the total number of self-attention parameters 4Hddh scales
(up to logarithmic factors) linearly with the dataset size SR.

Theorem 3 (Attention-only, informal). Assume that d ≥ Ω̃(max(R,D)) and Hdh ≥ Ω̃(S + R).
With high probability over the embeddings, there exists a single-layer attention-only transformer
FTF( · ;θTF) with embedding dimension d, number of heads H and head dimension dh such that

Pz1:T+1∼D

[
argmax

z∈V
φ(z)⊤FTF(X;θTF) = zT+1

]
= 1. (8)

We next show that a single-layer transformer with an MLP can obtain 100% accuracy on the factual
recall task, if the number of MLP parameters md scales linearly with the dataset size:

Theorem 4 (Attention + MLP, informal). Assume that σ is a polynomial of sufficiently large degree.
Define C(a) = |{(s, r) : a∗(s, r) = a}|. Let (d,H, dh,m) satisfy

d ≥ Ω̃(1) Hdh ≥ Ω̃(S +R) m ≥ Ω̃(max
a

C(a)) md ≥ Ω̃(SR). (9)

Then with high probability over the embeddings there exists a single-layer transformer FTF( · ;θTF)
with embedding dimension d, number of heads H , head dimension dh, and MLP width m such that

Pz1:T+1∼D

[
argmax

z∈V
φ(z)⊤FTF(X;θTF) = zT+1

]
= 1. (10)

The proofs of Theorem 3 and Theorem 4 are deferred to Appendix C.

Remarks. Theorems 3 and 4 each have two main constraints on the size of the architecture needed
to obtain 100% accuracy. First, the quantity Hdh must be larger than S + R. This corresponds to
self-attention having sufficient capacity to filter out the tokens in S ∪ R from the noise tokens N .
For the attention-only architecture, we additionally require d = Ω̃(max(R,D)). When R ≥ D,
the total number of parameters Hddh is (up to logs) at least the total number of facts SR. For
the MLP construction, the second condition is that the number of MLP parameters, md, scales
nearly linearly with the number of facts SR. As such, as long as either the total number of self-
attention parameters or the total number of MLP parameters is large enough, 100% accuracy can be
obtained. The single-layer transformer can thus trade off MLP and self-attention parameters while
still maintaining perfect recall. This phenomenon is reflected in the experiments in Section 4.4. We
remark that it is straightforward to extend our construction to the case where we only need to store
a size M subset of S ×R, where the constraints now become Hddh,md = Ω̃(M).

Proof Sketch. Theorems 3 and 4 both utilize the associative memory framework of Section 3.
First, the key and query matrices of each self-attention head act as a denoiser, selecting the relevant
subject and relation tokens in z1:T while ignoring the noise tokens. To the hth attention head, we
associate a subset S(h) ⊂ S ∪R of subject and relation tokens. Then, setting

W
(h)
K

⊤
W

(h)
Q ≈ β

∑
z∈S(h)

φ(z)φ(EOS)⊤ (11)

for a large constant β, we see that the hth head will only attend to the tokens in the subset S(h). We
remark that since the embeddings are d-dimensional, at most d/ poly log(d) embeddings can be in
superposition, and thus we must have

∣∣S(h)
∣∣ ≤ d/ poly log(d).

For the attention-only construction, the output-value matrix W
(h)
O

⊤
W

(h)
V acts as a linear associative

memory, mapping each z in S(h) to a superposition of all possible answers associated with the
subject/relation z. Letting Ph be a projection onto a random dh-dimensional subspace of Rd, we set

W
(h)
O

⊤
W

(h)
V ∝

∑
z∈S(h)

∑
a∈Az

φ(a)φ(z)⊤Ph. (12)
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Figure 3: Both the Attention-only and Attention+MLP constructions for the factual recall task.

In Lemma 2, we show that this construction stores at most dh tokens per head (i.e
∣∣S(h)

∣∣ ≲ dh), and
requires the dimension to scale with the number of elements in superposition (i.e |Az| ≲ d). Since
|Az| ≤ R+D, and the S(h) partition S ∪R, it suffices to take d ≳ R+D and Hdh ≳ S +R.

For the MLP construction, we instead associate the subset S(h) with ⌈d/dh⌉ attention heads. This is
equivalent to having a single full-rank attention head per subset. We set the aggregate output-value
matrix to the identity, so that the output of the self-attention layer is FMHSA(X;θ) = φ(s) +φ(r).
Finally, the MLP layer acts as an MLP associative memory, mapping φ(s) + φ(r) to φ(a∗(s, r))
for each (s, r) pair. Via a similar computation to Theorem 2, it suffices to make the total number of
parameters md be md = Ω̃(SR). Since the S(h) partition S ∪ R, it suffices to take Hdh ≳ S + R
as well. See Figure 3 for a diagram describing both constructions.

4.4 EMPIRICAL VALIDATION

We next empirically validate the claims of Theorems 3 and 4 that 100% accuracy can be obtained
as long as either the total number of self-attention or MLP parameters scales with SR. We further
observe that 100% accuracy can be achieved as long as the total number of parameters scales with
SR, providing evidence that the model can simultaneously use attention and the MLP to store facts.

In Figure 4, we train a wide range of models of various “shapes” on datasets of varying sizes. A
model shape is defined by the tuple (α, β,H), and corresponds to the family of models satisfying
Hdh = αd and m = βd. The total number of model parameters is 4Hdhd+ 2md = (4α+ 2β)d2,
which can thus be varied by increasing d. For a fixed model size (d,H, dh,m), we binary search on
the largest dataset size that can be memorized. Specifically, we fix D = 8 and vary S,R jointly as
S = R. Experiments with different scalings are considered in Appendix A. For each (S,R,D), the
fact dataset is generated at random by selecting |A| = RD, |N | = S + R, and for each s sampling
a∗(s, r) uniformly at random from {(r − 1)D + 1, . . . , rD}. We say the dataset was successfully
memorized, and as such SR facts were stored, if the model can obtain an accuracy of at least 99%.

On the left panel of Figure 4 we observe that, across different model shapes, the maximum number
of facts stored scales linearly with the total number of parameters. On the right panel, we consider
a specific dataset with S = 32, R = 32, D = 8, and plot the accuracy as the number of parameters
vary. We observe that the model can trade off MLP parameters for self-attention parameters, while
still maintaining an accuracy of near 1. However, we do still require the total number of attention
parameters to be large enough; this corresponds to the Hdh = Ω̃(S +R) constraint.
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Figure 4: (Left) The number of facts stored scales linearly with the total number of parameters, for a
wide range of model sizes. (Right) For a fixed dataset, the model can trade off MLP parameters for
attention parameters to obtain 100% accuracy. The heatmap color corresponds to model accuracy.

5 OPTIMIZATION DYNAMICS

We next study the optimization dynamics of the factual recall task. To simplify the model, we
consider a linear attention transformer (i.e., the softmax is replaced with the identity map) with
orthogonal embeddings. We set d = |V|, and let the embedding vectors {φ(z)}z∈V satisfy
⟨φ(z),φ(z′)⟩ = δz=z′ . Such linear attention or orthogonal embeddings assumptions are common
in prior works studying the gradient descent dynamics of transformers (Li et al., 2023; Von Oswald
et al., 2023; Ahn et al., 2024; Mahankali et al., 2024; Zhang et al., 2024; Nichani et al., 2024).

The linear attention model is given by

Flin(X;θ) := WOV X
⊤XWKQxT , (13)

where we set dh = d and let WOV := W⊤
O WV , WKQ := W⊤

KWQ denote the non-factorized
output-value and key-query matrices. Let p̂(· | z1:T ) ∈ ∆A be the predicted next token distribution
on an input sequence z1:T , i.e

p̂(a | z1:T ) :=
exp (⟨φ(a), Flin(X;θ)⟩)∑

a′∈A exp (⟨φ(a′), Flin(X;θ)⟩)
. (14)

One can then rewrite the cross entropy loss as

L(θ) = Ez1:T+1
[− log p̂(zT+1 | z1:T )]. (15)

We would like to characterize the output of running gradient flow, (i.e θ̇ = −∇L(θ)) with respect to
the non-factorized parameters θ := {WOV ,WKQ} on the cross-entropy loss (15). For notational
convenience, we denote WOV (a, z) := φ(a)⊤WOV φ(z),WKQ(z) := φ(z)⊤WKQφ(EOS), and
note that by isometry gradient flow on θ is equivalent to gradient flow on these quantities.

Let us assume that we start from the following “balanced” initialization.
Assumption 2. Given an initialization scale α > 0, set WOV (a, z) = α and WKQ(z) =

α
√

|A|+ 1 for each a ∈ A, z ∈ V .

Our first result is that the gradient flow indeed converges to zero loss. As a consequence, the pre-
dicted next token probabilities p̂(zT+1 | z1:T ) converge to 1(zT+1 = a∗(s, r)), where s, r are the
subject and relation contained in the sequnece z1:T .
Theorem 5 (Global Convergence). For t ≥ 0, let θ(t) be the output of running gradient flow for t
time. For any δ > 0, there exists a time tδ such that for t ≥ tδ , L(θ(t)) ≤ δ.

We next show that the model undergoes a sequential learning dynamics. Let us assume that the
number of subjects S is much greater than the number of facts R. We show that during the first
stage of training only the WOV (a, r) and WKQ(r) components grow for relations r ∈ R, while the
remainder of the parameters stay close to zero. As such, the model gets close to outputting the best
predictor based on just the relation token r. Define p∗(· | r) to be the conditional distribution of the
answer, given the relation r, i.e p∗(a | r) :=

∑
s∈S p(s | r)1(a = a∗(s, r)).

8
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Figure 5: (Left) Loss of the linear attention model with orthogonal embeddings. There is an interme-
diate hallucination stage where the loss plateaus and the model predicts based on only the relation.
(Right) Loss of the softmax attention model with random embeddings. We again observe an inter-
mediate hallucination stage, where the relation-only loss is zero but the total loss is still large.

Theorem 6 (Sequential Learning). Assume that S ≥ 8R
√
2D, and |N | ≥ 4R

√
2DT . Let p(s, r) =

1
SR . Pick ϵ > 0. There exists runtime T ∗ and initialization scale α (both depending on ϵ) such that:

1. For all t ≤ T ∗ and z ∈ S ∪ N , a ∈ A, we have |WOV (a, z)|, |WKQ(z)| ≤ α1/2

2. There exists t ≤ T ∗ such that, for any input sequence z1:T containing a relation r,∑
a∈A (p∗(a | r)− p̂(a | z1:T ))2 ≤ ϵ2.

Proofs of Theorems 5 and 6 are deferred to Appendix D.

Remarks. Theorem 6 tells us that at some intermediate time, the prediction of the model p̂(· |
z1:T ) is approximately equal to p∗(· | r), the conditional distribution of the answer given the relation
r. At this stage, the model ignores all other tokens in the sequence z1:T – including the useful subject
token s – and predicts based only on the relation r. For example, if S is the set of all countries and
r is the relation “capital,” then on the prompt “What is the capital of France?” the model will output
a random countries’ capital. We view this as an instance of hallucination: the model is outputting
a plausible, yet ultimately incorrect, answer to the prompt. We remark that without the assumption
that S ≫ R, it is possible for this intermediate hallucination stage to exhibit different behavior.

Empirical Validation. We next empirically verify Theorems 5 and 6. We first train the linear
attention model with orthogonal embeddings (15) with S = 16, R = 4 and D = 8, and plot the
loss over time. In the left pane of Figure 5, we observe three distinct stages. At the start of training,
the prediction is close to uniform over all possible answers, and the model obtains a loss of log |A|.
Next, the loss plateaus at logD, and the model outputs the conditional distribution of a given the
relation r. Finally, as training continues, the model escapes the plateau and converges to zero loss.
We include the “relation-only loss” in the plot, defined as Ez1:T+1

[
− log

(∑
a∈Ar

p(a | z1:T )
)]

,
where any probability mass assigned to an answer which is valid for the relation r is considered to
be correct; the subject-only loss is defined analogously.

In the right pane of Figure 5, we plot the loss of a single softmax attention head with random
embeddings trained on the same factual recall task. We observe similar phenomenology as for linear
attention, and identify an intermediate “hallucination” stage where the relation-only loss drops to
zero, but the subject-only loss is still far from zero.

6 LOWER BOUNDS

In this section, we argue via information-theoretic arguments that the results from Sections 3 and 4
are optimal up to log factors. Proofs are deferred to Appendix E.

Associative Memories. Let [N ] and [M ] be the input and output vocabularies, respectively. We
now consider a distribution over associations functions f∗. For each x ∈ [N ], assume that the output
f∗(x) is sampled independently from the uniform distribution over [M ]. We model the learning
protocol as follows. At train time, the learner observes the randomly sampled ground truth f∗, and

9
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writes down a B bit model F . At test time, the learner generates a set of predictions f̂ ∈ RN×M

from F , where f̂(x) ∈ ∆M is the prediction for f∗(x). Both the mappings f∗ → F and F → f̂
can be randomized. Let p be a probability distribution over the input space [N ]; assume WLOG
that p(1) ≥ p(2) ≥ · · · ≥ p(N). The goal of the learner is to minimize the cross entropy loss
L(f̂) = −

∑
x∈[N ] p(x) log f̂(x)f∗(x).

Theorem 7. The expected loss of the learner can be lower bounded by

Ef∗,f̂

[
L(f̂)

]
≥ logM ·

∑
x≥⌈ B

log M ⌉

p(x). (16)

We thus see that in order to obtain zero loss, the learner must use B ≥ N logM bits; this matches
the construction from Theorem 2 up to log factors. As a corollary of Theorem 7, we can obtain
scaling law lower bounds with respect to model size.

Corollary 1. Assume that p is a power law, i.e p(x) ∝ x−α for α > 1. Then Ef∗,f̂

[
L(f̂)

]
≳ B1−α.

This lower bound is obtained by the MLP associative memory by storing the most probable Õ(B)
associations. This matches the scaling law with respect to model size considered in Michaud et al.
(2023); Cabannes et al. (2024), which also considered storing the Õ(B) most frequent associations.

Remark. The constructions in Section 3 require storing Õ(N) network parameters, along with
input and output embeddings. We view F in Theorem 7 as containing only the network parameters,
while the embeddings are “global” quantities, independent of the ground truth f∗, used to compute
the predictions f̂ . This matches our interpretation of the embeddings as fixed global quantities which
cannot be modified by the associative memory. We remark that the associative memory constructions
from Section 3 match the lower bound, since they hold for Õ(1)-bit precision (Corollary 2).

Factual Recall. We next prove a lower bound for the factual recall task; a similar bound was
proven in Allen-Zhu & Li (2024). Let S and R be the fixed set of subjects and relations and V be
the full vocabulary, where |V| ≫ |S|, |R|. The association function a∗ : S × R → V is sampled
randomly as follows. First, for each relation r ∈ R, the answer set Ar is chosen to be a uniformly
random size D subset of V , conditional on all subsets Ar being disjoint. For each s ∈ S, the answer
a∗(s, r) is sampled uniformly at random from Ar. The learner sees the association a∗, writes down
a B bit model F , and from F generates a set of predictions f̂ ∈ RS×R×|V|, where f̂(s, r) ∈ ∆V
is the prediction for a∗(s, r). We lower bound the expected cross entropy loss with respect to a
distribution p(s, r) over S ×R:

L := Ea∗,f̂

[
L(f̂)

]
= Ea∗,f̂

[
−
∑
s,r

p(s, r) log f̂(s, r)a∗(s,r)

]
. (17)

Theorem 8. Assume that |V| ≥ 2RD and S ≥ CD log
(
2D2 log |V |

)
for sufficiently large constant

C. There exists a constant c ∈ (0, 1) such that, if L = 0, the number of bits B must satisfy
B ≥ SR logD + (1− c)RD log (|V|/D) (18)

We thus see that Õ(SR) parameters are needed to achieve a loss of zero. For this lower bound, the
learner knows the sets S and R and does not have to distinguish them from the noise tokens N ,
making it a strictly easier problem than the factual recall task in Section 4.

7 DISCUSSION

In this work, we showed that shallow transformers can use associative memories to obtain near opti-
mal storage capacity for factual recall tasks. Furthermore, by studying the optimization dynamics of
a simplified model, we also showed that transformers undergo an intermediate hallucination stage.
One interesting direction of future work is to understand the role of the embeddings, and whether
there exists an optimal choice of embeddings leading to more efficient constructions. Additionally, it
would be interesting to understand the extent to which larger models utilize similar associative mem-
ory constructions, and if one can probe whether specific “facts” are stored in either the self-attention
matrices or the MLP.

10
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Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, and Dan Mikulincer. Network size and size of the
weights in memorization with two-layers neural networks. In Advances in Neural Information
Processing Systems, 2020.

Vivien Cabannes, Elvis Dohmatob, and Alberto Bietti. Scaling laws for associative memories. In
International Conference on Learning Representations (ICLR), 2024.
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Carlo Lucibello and Marc Mézard. Exponential capacity of dense associative memories. Physical
Review Letters, 132(7):077301, 2024.

Ang Lv, Kaiyi Zhang, Yuhan Chen, Yulong Wang, Lifeng Liu, Ji-Rong Wen, Jian Xie, and Rui
Yan. Interpreting key mechanisms of factual recall in transformer-based language models. arXiv
preprint arXiv:2403.19521, 2024.

Liam Madden and Christos Thrampoulidis. Memory capacity of two layer neural networks with
smooth activations. SIAM Journal on Mathematics of Data Science, 6(3):679–702, 2024.

Liam Madden, Curtis Fox, and Christos Thrampoulidis. Upper and lower memory capacity bounds
of transformers for next-token prediction. arXiv preprint arXiv:2405.13718, 2024.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is prov-
ably the optimal in-context learner with one layer of linear self-attention. In Proceedings of the
International Conference on Learning Representations (ICLR), 2024.

Sadegh Mahdavi, Renjie Liao, and Christos Thrampoulidis. Memorization capacity of multi-head
attention in transformers. arXiv preprint arXiv:2306.02010, 2023.

R. McEliece, E. Posner, E. Rodemich, and S. Venkatesh. The capacity of the hopfield associative
memory. IEEE Transactions on Information Theory, 33(4):461–482, 1987. doi: 10.1109/TIT.
1987.1057328.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural scaling.
Advances in Neural Information Processing Systems, 36, 2023.

Ashley Montanaro. Some applications of hypercontractive inequalities in quantum information the-
ory. Journal of Mathematical Physics, 53(12), 2012.

Neel Nanda, S Rajamanoharan, J Kramár, and R Shah. Fact finding: Attempt-
ing to reverse-engineer factual recall on the neuron level. AI Alignment Forum,
2023. URL https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/
fact-finding-attempting-to-reverse-engineer-factual-recall.

12

https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. In Proceedings of the International Conference on Machine Learning (ICML),
2024.
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A ADDITIONAL EXPERIMENTS

In Figures 6 to 8, we repeat the experiment in the left pane of Figure 4, for different choices of H
and scalings of (S,R,D). In all plots, we observe the general trend that the number of facts stored
scales proportionally to the number of model parameters.
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Figure 6: We repeat the experiment in Figure 4, varying the number of head to be 4 (Left) or 16
(Right). In both cases, we observe that the number of facts stored scales linear with the parameter
count.
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Figure 7: We repeat Figure 4 on factual recall tasks where each subject and relation map to a distinct
answer (i.e D = S).
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Figure 8: We repeat Figure 4 on factual recall tasks where the number of subjects is much larger
than the number of relations; specifically, we take S = R2.
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A.1 EXPERIMENTAL DETAILS

Figure 1: For the MLP associative memory experiments, for each choice of m, d,N , we first sam-
ple random embeddings {ex}x∈[N ], {uy}y∈[M ] i.i.d uniformly over the sphere. We train a two-layer
neural network on the cross entropy loss to predict the association f∗(x) = x. We use standard pa-
rameterization and initialization, and the activation σ = ReLU. The network is trained using ADAM
with a learning rate of 10−2 for 214 steps. We compute the maximum accuracy the network achieves
over the training run, and say that the network has “stored” the dataset if the highest accuracy is at
least 99%. We repeat this procedure to binary search over N , to find the largest value of N such that
the network achieves an accuracy of at least 99%.

Figures 4, 6, 7, 8: We consider a fixed prompt length of T = 32, and train the models via online
batch gradient descent with batch size 1024 on the population loss (i.e we sample an independent
batch at each timestep). We use standard parameterization and initialization for both self-attention
and the MLP. For a fixed model size, we binary search over the maximum value of SR such that the
model achieves an accuracy of at least 99%. All models were trained using ADAM for 214 steps,
with a sweep over learning rates in {.001, .003, .01} (where we consider the best performing model
over all learning rates).

Figure 5: In the left pane we train a linear attention head with orthogonal embeddings. The
weights are all initialized to be equal to 10−5. In the right plot, we train a softmax attention head
with random embeddings, which are fixed throughout training.

B PROOFS FOR SECTION 3

Proof of Theorem 1. Let us set W =
∑

z∈[N ] uf∗(z)e
⊤
z . For y ̸= f∗(x), define the quantity γxy by

γxy = (uf∗(x) − uy)
⊤Wex.

We first see that (where the expectation is taking over the randomness of the embedding vectors)

E[γxy] =
∑
z∈[N ]

E
[
(uf∗(x) − uy)

⊤uf∗(z)

]
E
[
e⊤z ex

]
= E

[
(uf∗(x) − uy)

⊤uf∗(x)

]
= 1.

We can next compute the second moment of γxy . Since the ez are drawn uniformly on the sphere,
the e⊤z ex terms for z ̸= x are independent and mean zero. Therefore

E[γ2
xy] =

∑
z∈[N ]

E
[(
(uf∗(x) − uy)

⊤uf∗(z)

)2]E[(e⊤z ex)2]
= E

[(
1− u⊤

f∗(x)uy

)2]
+

1

d

∑
z ̸=x

E
[(
(uf∗(x) − uy)

⊤uf∗(z)

)2]
= 1 +

1

d
+

1

d

∑
z ̸=x

(
2

d
· 1(f∗(z) ̸= y) +

(
1 +

1

d

)
· 1(f∗(z) = y)

)

=

(
1 +

1

d

)2

+
2(N − 2)

d2
.

Therefore

Var(γxy) =
2

d
+

1

d2
+

2(N − 2)

d2
≲

1

d
+

N

d2
.

Let δ be a fixed failure probability, and let δ′ = δ
NM . Observe that γxy is a degree 4 polynomial. By

Lemma 14, by choosing d ≥ C log4(1/δ′) and d2 ≥ CN log4(1/δ′) for a sufficiently large constant
C, we have that 16e−1 log4(1/δ)Var(γxy)

(Eγxy)2
≤ 1, and thus P(γxy ≤ 0) ≤ δ′.
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Therefore union bounding over all (x, y) pairs with y ̸= f∗(x), we have that

P(∃ γxy ≤ 0) ≤ N(M − 1)δ′ ≤ δ.

Thus with probability 1 − δ, γxy > 0 for all x and y ̸= f∗(x), and on this event
argmaxy∈[M ] u

⊤
y Wex = f∗(x) for all x ∈ [N ].

For Theorem 2, we need the following assumption on the activation σ.

Assumption 3. σ is a polynomial of degree q. Furthermore, if σ(z) =
∑q

k=0 ckhk(z) is the Hermite
decomposition of σ, then ck ̸= 0 for all 0 ≤ k ≤ q.

We prove the following formal version of Theorem 2.

Theorem 9. Let ϵ ∈ (0, 1) be a fixed constant. Assume that d ≥ N ϵ and N ≥ C1(ϵ), where C1(ϵ)
is a constant depending only on ϵ. Assume that q in Assumption 3 satisfies q = C2

ϵ for some C2 > 2.
Then, if md ≳ N(C3 log(MN/δ))

C4/ϵ, with probability 1 − δ over the draw of the embeddings,
there exists V ,W such that

arg max
y∈[M ]

u⊤
y V

⊤σ(Wex) = f∗(x) (19)

for all x ∈ [N ].

Proof of Theorem 2. Let us consider the linearization, or Neural Tangent Kernel, of F :

FNTK(z) = V ⊤(σ′(W 0z)⊙ (W −W 0)z
)
=
∑
i∈[m]

viσ
′(⟨w0

i , z⟩)⟨wi −w0
i , z⟩.

F (z) =
∑
i∈[m]

viσ
′(⟨wi, z⟩)⟨qi, z⟩

Let k be a even integer, to be chosen later. Assume without loss of generality that ck > 0
(if it is negative, we can simply negate all the qi in the construction below). Set qi =
1
m

∑
z∈[N ] hk(⟨ez,wi⟩)⟨vi,uf∗(z)⟩ez , where hk is the kth Hermite polynomial. Then

F (ex) =
1

m

∑
i∈[m],z∈[N ]

vi⟨vi,uf∗(z)⟩σ′(⟨wi, ex⟩)hk(⟨ez,wi⟩)⟨ex, ez⟩

As in the proof of Theorem 1, define the margin between x and some y ̸= f∗(x) as

γxy = (uf∗(x) − uy)
⊤F (ex)

=
1

m

∑
i∈[m],z∈[N ]

⟨vi,uf∗(x) − uy⟩⟨vi,uf∗(z)⟩σ′(⟨wi, ex⟩)hk(⟨ez,wi⟩)⟨ex, ez⟩.

We will show that, with high probability over the draw of the embeddings over the sphere, and the
vi,wi independently from the standard Gaussian, that γxy > 0 for all y ̸= f∗(x).

The expectation of the margin is

E[γxy] =
∑
z

E
[
⟨vi,uf∗(x) − uy⟩⟨vi,uf∗(z)⟩σ′(⟨wi, ex⟩)hk(⟨ez,wi⟩)⟨ex, ez⟩

]
= ck+1

∑
z

E
[
⟨uf∗(x) − uy,uf∗(z)⟩⟨ez, ex⟩k+1

]
= ck+1.

We next compute the variance. Define ωxy
iz as

ωxy
iz = ⟨vi,uf∗(x) − uy⟩⟨vi,uf∗(z)⟩σ′(⟨wi, ex⟩)hk(⟨ez,wi⟩)⟨ex, ez⟩,
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so that γxy = 1
m

∑
i,z ω

xy
iz . First, observe that when z ̸= z′, we have E

[
ωxy
iz ω

xy
jz′

]
= 0, since k is

even. For i ̸= j, we have that

E
[
ωxy
iz ω

xy
jz

]
= c2k+1E

[
⟨uf∗(x) − uy,uf∗(z)⟩2

]
E[⟨ez, ex⟩2(k+1)]

First, by Lemma 12 we have that

E[⟨ez, ex⟩2(k+1)] ≤
{
1 x = z

(2k + 2)k+1d−(k+1) x ̸= z
.

Next, we see that

E
[
⟨uf∗(x) − uy,uf∗(z)⟩2

]
=

{
1 + 1

d f∗(x) = f∗(z) or y = f∗(z)
2
d otherwise

.

Finally, we have that

E[ωxy
iz ω

xy
iz ] = E

[
⟨vi,uf∗(x) − uy⟩2⟨vi,uf∗(z)⟩2σ′(⟨wi, ex⟩)2hk(⟨ez,wi⟩)2⟨ex, ez⟩2

]
= E

[
⟨vi,uf∗(x) − uy⟩2⟨vi,uf∗(z)⟩2

]
E
[
σ′(⟨wi, ex⟩)2hk(⟨ez,wi⟩)2⟨ex, ez⟩2

]
.

The first quantity can be bounded as

E
[
⟨vi,uf∗(x) − uy⟩2⟨vi,uf∗(z)⟩2

]
≤ E

[
⟨vi,uf∗(x) − uy⟩4

]1/2E[⟨vi,uf∗(z)⟩4
]1/2

≤ 2 ·
√
3 ·

√
3 = 6.

The second term is bounded as

E
[
σ′(⟨wi, ex⟩)2hk(⟨ez,wi⟩)2⟨ex, ez⟩2

]
≤ E

[
σ′(⟨wi, ex⟩)8

]1/4E[hk(⟨ez,wi⟩)8
]1/4E[⟨ex, ez⟩4]1/2

By Gaussian hypercontractivity (Lemma 13),

E
[
σ′(⟨wi, ex⟩)8

]1/4
= ∥σ′∥2L8 ≤ 8q∥σ′∥2L2 ≲ 8q,

and likewise

E
[
hk(⟨ez,wi⟩)8

]1/4 ≤ 8k.

Finally, E
[
⟨ex, ez⟩4

]1/2 ≤ 4d−1 if x ̸= z, and 1 otherwise. Altogether,

E[ωxy
iz ω

xy
iz ] ≲ 23q+3k

(
d−1 + 1(x = z)

)
.

Altogether, we get that

E
[
γ2
xy

]
=

m− 1

m

∑
z

E
[
ωxy
iz ω

xy
jz

]
+

1

m

∑
z

E[ωxy
iz ω

xy
iz ].

The first quantity is∑
z

E
[
ωxy
iz ω

xy
jz

]
≤
(
1 +

1

d

)
c2k+1 + c2k+1(2k + 2)k+1d−(k+1) · 2N.

The second quantity is ∑
z

E[ωxy
iz ω

xy
iz ] ≤ 23q+3k

(
1 +

N

d

)
.

Therefore

Var(γxy) ≲
1

d
+

(2k)k+1N

dk+1
+

23q+3kN

md
.
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Choose k = 2⌈ 1
ϵ ⌉; then

dk

(2k)k+1N
≥ N

(4/ϵ)1+2/ϵ
≥ 1

for N ≥ C1(ϵ), and so

Var(γxy) ≲
1

d
+

23q+3kN

md
.

Observe that γxy is a degree 2q + 2k + 4 ≤ 4q + 4 polynomial. If md ≳ N · Cq
3 log

4q+4(1/δ′) for

unspecified constant C3, then 24q+4e−1 log4q+4(1/δ′)Var(γxy)
(Eγxy)2

≤ 1, and thus by Lemma 14, we have

that P(γxy ≤ 0) ≤ δ′. Choosing δ′ = δ
MN and union bounding over all (x, y) pairs with y ̸= f∗(x)

yields the desired result.

B.1 BOUNDED BIT COMPLEXITY

Corollary 2. Under the setting of Theorem 1, if d2 ≳ N poly logN , then with high probability
there exists a quantized weight matrix W̃ , where each weight requires O(log d) bits to store, such
that

arg max
y∈[M ]

u⊤
y W̃ex = f∗(x) for all x ∈ [N ]. (20)

Proof. One sees from the proof of Theorem 1 that, with high probability over the embeddings, the
weight matrix W =

∑
z∈[N ] uf∗(z)e

⊤
z has a margin γxy satisfies γxy ≥ 1

2 for all y ̸= f∗(x). Each
entry of W lies in the interval [−N,N ]. For some ϵ > 0, define W̃ be rounding each entry to the
nearest multiple of ϵ. By definition,

∥∥∥W − W̃
∥∥∥
∞

≤ ϵ. We also see that∣∣∣u⊤
y (W − W̃ )ex

∣∣∣ ≤ ∥∥∥W − W̃
∥∥∥
∞

∥∥uye
⊤
x

∥∥
1
≤ dϵ.

Thus choosing ϵ < 1
8d , the margin of the quantized network satisfies

γ̃xy := (uf∗(x) − uy)
⊤W̃ex

≥ (uf∗(x) − uy)
⊤Wex −

∣∣∣(uf∗(x) − uy)
⊤(W − W̃ )ex

∣∣∣
≥ 1

2
− 2dϵ

> 0.

Finally, the number of bits required to store each weight is log(2N/ϵ) = log(16Nd) = O(log d).

We remark that a similar quantization argument was proven in Jelassi et al. (2024).

C PROOFS FOR SECTION 4

Lemma 1. Let V(h) ⊂ S ∪ R. Assume that d ≳
∣∣V(h)

∣∣ log(|V|/δ). Define v :=
∑

z∈V(h) φ(z) +
1
2φ(EOS). Then, with probability 1− δ over the draw of the embeddings,

⟨v,φ(z)⟩ > ⟨v,φ(EOS)⟩+ 1

4
> ⟨v,φ(z′)⟩+ 1

2

for any z ∈ V(h) and z′ ̸∈ V(h).
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Proof. Define γz as

γz :=


⟨v,φ(z)⟩ − 1 z ∈ V(h)

⟨v,φ(EOS)⟩ − 1
2 z = EOS

⟨v,φ(z)⟩ z ̸∈ V(h)

We first see that E[γz] = 0.

Next, observe that

γz =

{∑
z′∈V(h)⟨φ(z),φ(z′)⟩ z ̸∈ V(h)∑
z′∈V(h)\{z}⟨φ(z),φ(z′)⟩ z ∈ V(h)

Since each of the ⟨φ(z),φ(z′)⟩ are independent subGaussian variables with variance proxy 1/d, by
Hoeffding’s inequality we have that, with probability 1− δ′,

|γz| ≲

√∣∣V(h)
∣∣ · log(1/δ′)

d
.

Setting δ′ = δ/|V| and union bounding over all z ∈ V yields the desired result.

C.1 CONSTRUCTION VIA SELF-ATTENTION

Lemma 2. Let V(h) ⊂ V , and for each z ∈ V(h), let Az ⊂ V . Assume that d ≳
maxz∈V(h) |Az| log6(|V|/δ) and dh ≳

∣∣V(h)
∣∣ log6(|V|/δ) Define

W :=
d

dh

∑
z∈V(h)

∑
a∈Az

dh∑
i=1

φ(a)φ(z)⊤wiw
⊤
i ,

where wi are chosen uniformly on the sphere of radius 1, conditioned on being orthogonal to
φ(EOS). Then, with probability 1− δ over the draw of the embeddings and the wi,∣∣φ(a)⊤Wφ(z)− 1(a ∈ Az)

∣∣ ≤ 1

5

for all z ∈ V(h), a ∈ V .

Proof. Define

γaz := φ(a)⊤Wφ(z).

We first see that

E[γaz] = E

 ∑
z′∈V(h)

∑
a′∈Az

⟨φ(a),φ(a′)⟩⟨φ(z), P⊥
φ(EOS)φ(z

′)⟩

 =
d− 1

d
· 1(a ∈ Az).

We next compute the variance. For a ̸∈ Az ,

E
[
γ2
az

]
=

d2

d2h
E


 ∑

z′∈V(h)

∑
a′∈Az′

dh∑
i=1

⟨φ(a),φ(a′)⟩⟨φ(z),wi⟩⟨wi,φ(z
′)⟩

2


Define ωa′z′i = ⟨φ(a),φ(a′)⟩⟨φ(z),wi⟩⟨wi,φ(z
′)⟩. We see that E[ωa1z1iωa2z2j ] is nonzero only

if a1 = a2 and z1 = z2. For i ̸= j, we have that

E[ωa′z′iωa′z′j ] = E
[
⟨φ(a),φ(a′)⟩2⟨φ(z),wi⟩⟨wi,φ(z

′)⟩⟨φ(z),wj⟩⟨wj ,φ(z
′)⟩
]

= d−2E
[
⟨φ(a),φ(a′)⟩2

]
E
[
⟨φ(z), P⊥

φ(EOS)φ(z
′)⟩2
]

≤ d−2ρaa′ρzz′ ,
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where ρij =

{
1 i = j

d−1 i ̸= j
. Also,

E
[
ω2
a′z′i

]
= E

[
⟨φ(a),φ(a′)⟩2⟨φ(z),wi⟩2⟨wi,φ(z

′)⟩2
]
.

Since E
[
w⊗4

i

]
= 3

(d−1)(d+1)Sym
(
(P⊥

φ(EOS))
⊗2
)

,

E
[
ω2
a′z′i

]
≤ (d2 − 1)−1E

[
⟨φ(a),φ(a′)⟩2

](
E
[∥∥∥P⊥

φ(EOS)φ(z)
∥∥∥2]2 + 2E

[
⟨φ(z), P⊥

φ(EOS)φ(z
′)⟩2
])

≤ d−2ρaa′(1 + 2ρzz′).

Altogether,

E
[
γ2
az

]
=

d2

d2h

∑
z′∈V(h)

∑
a′∈Az′

dh∑
i,j=1

E[ωa′z′iωa′z′j ]

≤
∑

z′∈V(h)

∑
a′∈Az′

(
dh − 1

dh
ρaa′ρzz′ +

1

dh
ρaa′(1 + 2ρzz′)

)

=
dh + 2

dh

∑
a′∈Az

ρaa′ +
d+ dh + 1

ddh

∑
z′∈V(h)\{z}

∑
a′∈Az′

ρaa′

≤
(
dh + 2

dh

)(
1(a ∈ Az) +

|Az|
d

)
+

d+ dh + 1

ddh
·

∑
z′∈V(h)\{z}

1(a ∈ Az′
) +

∣∣∣Az′
∣∣∣

d

,

and thus

Var(γaz) = E
[
γ2
az

]
− d− 1

d
· 1(a ∈ Az)

≲
|Az|
d

+
1

dh

∑
z′∈V(h)

1(a ∈ Az′
) +

∣∣∣Az′
∣∣∣

d


≲

maxz∈V(h) |Az|
d

+

∣∣V(h)
∣∣

dh
,

since d ≥ |Az|, dh ≥
∣∣V(h)

∣∣ Next, since γaz is a degree 6 polynomial, with probability 1− δ

|V||V(h)|
we have that

|γaz − 1(a ∈ Az)| ≲
√
Var(γaz) log

6(|V|/δ)

≲

√
maxz∈V(h) |Az| log6(|V|/δ)

d
+

∣∣V(h)
∣∣ log6(|V|/δ)

dh

≤ 1

5
.

Union bounding over all z ∈ V(h), a ∈ V yields the desired result.

Let us state the formal version of Theorem 3 which we aim to prove:

Theorem 10. Assume that d ≳ max(R,D) · log6(|V|SR/δ) and Hdh ≳ S log6(|V|SR/δ). Then,
with probability 1 − δ, there exists a single-layer attention-only transformer FTF( · ;θTF) with
embedding dimension d, number of heads H and head dimension dhsuch that

Pz1:T+1∼D

[
argmax

z∈V
φ(z)⊤FTF(X;θTF) = zT+1

]
= 1.
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Remark. When R ≥ D, one can obtain an accuracy of 100% whenever the total parameter count
is

Hddh ≳ SR poly log(|V|SR/δ).

Proof of Theorem 10. Partition S into the sets S(1), . . . ,S(NS) and R into the sets R(1), . . . ,R(NR),
such that

∣∣S(i)
∣∣, ∣∣R(j)

∣∣ ≤ M and NS = ⌈ S
M ⌉, NR = ⌈ R

M ⌉.

Let us choose M so that d ≥ dh ≳ M log6(|V|/δ). The total number of attention heads is then

H = NS +NR ≳
S log6(|V|/δ)

dh
.

For each i ∈ [NS ], we construct the attention head i as follows. First, let

W
(i)
K

⊤
W

(i)
Q = β

∑
z∈S(i)

φ(z)φ(EOS)⊤ +
β

2
φ(EOS)φ(EOS)⊤

for a large constant β. Next, set

W
(i)
O

⊤
W

(i)
V =

d

dh

∑
z∈S(i)

∑
a∈Az

dh∑
i=1

φ(a)φ(z)⊤wiw
⊤
i ,

for wi sampled uniformly on the sphere, orthogonal to φ(EOS).

Consider an input sequence (z1, . . . , zT ), and let s be the subject token in this sequence. On the
event that Lemma 1 holds, if s ̸∈ S(i), then zt ̸∈ S(i), and thus

φ(zt)
⊤W

(i)
K

⊤
W

(i)
Q φ(EOS) < φ(EOS)⊤W

(i)
K

⊤
W

(i)
Q φ(EOS)− β

2

for all t < T . As β → ∞, the self-attention module fully attends to the EOS token. On the other
hand, if s ∈ S(i), then if zt∗ = s we have

φ(zt)
⊤W

(i)
K

⊤
W

(i)
Q φ(EOS) < φ(zt∗)

⊤W
(i)
K

⊤
W

(i)
Q φ(EOS)− β

2

for all t ̸= t∗. Likewise, as β → ∞, the softmax converges to a hardmax on the zt∗ token. Alto-
gether, we get that

X⊤S
(
XW

(i)
K

⊤
W

(i)
Q xT

)
=

{
φ(EOS) s ̸∈ S(i)

φ(s) s ∈ S(i) .

Next, on the event that Lemma 2 holds, since d ≳ R log6(|V|/δ) ≥ |As| log6(|V|/δ), we have that∣∣∣∣φ(a)⊤W (i)
O

⊤
W

(i)
V φ(s)− 1(a ∈ As)

∣∣∣∣ ≤ 1

6

for s ∈ S(i). Defining attni := W
(i)
O

⊤
W

(i)
V S

(
XW

(i)
K

⊤
W

(i)
Q xT

)
, we have that

φ(a)⊤ attni ∈


{0} s ̸∈ S(i)

[− 1
5 ,

1
5 ] s ∈ S(i), a ̸∈ As

[ 45 ,
6
5 ] s ∈ S(i), a ∈ As

.

By an identical construction, for each j ∈ [NR], with probability 1 − 2δ we can construct the
attention head NS + j such that

φ(a)⊤ attnNS+j ∈


{0} r ̸∈ R(i)

[− 1
5 ,

1
5 ] r ∈ R(i), a ̸∈ Ar

[ 45 ,
6
5 ] r ∈ R(i), a ∈ Ar

,
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as long as d ≳ D log6(|V|/δ) ≥ |Ar| log6(|V|/δ). Therefore by a union bound, with probability
1− 2SRδ we have that (where s ∈ S(i) and r ∈ S(j)

φ(a)⊤FMHSA(X;θ) =

NS+NR∑
h=1

φ(a)⊤ attnh

= φ(a)⊤ attni +φ(a)⊤ attnNS+j

If a = a∗(s, r), then a ∈ As ∩ Ar, and thus

φ(a)⊤FMHSA(X;θ) ≥ 4

5
+

4

5
=

8

5
.

Otherwise, either φ(a)⊤ attni or φ(a)⊤ attnNS+j is ≤ 1
5 and thus

φ(a)⊤FMHSA(X;θ) ≥ 6

5
+

1

5
=

7

5
.

Therefore argmaxa∈V φ(a)⊤FMHSA(X;θ) = a∗(s, r). Replacing 2SRδ with δ yields the desired
result.

C.2 CONSTRUCTION VIA MLP

Lemma 3. Let ϵ be a fixed constant. Assume that q in Assumption 3 satisfies q = C2

ϵ for some
C2 > 2. Assume that d ≥ Sϵ, Rϵ. Define C(a) = |{(s, r) : a∗(s, r) = a}|.
Let d be odd, and let P,Q be orthogonal ⌊d/2⌋ dimensional subspaces of Rd. Define φ̃(s) =
ΠPφ(s), φ̃(r) = ΠQφ(r).

There exists universal constants C3, C4 such that if

d ≳ (C3 log(|V|/δ)/ϵ)C4/ϵ

m ≳ (C3 log(|V|/δ))C4/ϵ ·max
a

C(a)

md ≳ (C3 log(|V|/δ))C4/ϵ · SR,

then with probability 1− δ over the draw of the embeddings there exists a two-layer neural network
F (z) =

∑
i∈[m] viσ(w

⊤
i z) of width m satisfying

argmax
a∈V

φ(a)⊤F (φ̃(s) + φ̃(r)) = a∗(s, r)

for all s ∈ S, r ∈ R.

Proof. For odd integers p, k to be determined later, let us set

vi =
1

m

∑
s,r

⟨Hep+k(wi), φ̃(s)
⊗p ⊗ φ̃(r)⊗k⟩ ·φ(a∗(s, r)),

where Hep+k : Rd → (Rd)⊗(p+k) is the Hermite tensor of degree p + k (see Appendix F.1).
Assume without loss of generality that cp+k := E

[
σ(p+k)(z)

]
, the (p+ k)th Hermite coefficient of

σ is positive (the negative case can be handled by negating all the vi in the construction)

For some (s, r), the margin for some a ̸= a∗(s, r) is

γsra = ⟨φ(a∗(s, r))−φ(a), F (φ̃(s) + φ̃(r))

=
1

m

∑
i∈[m]

∑
s′,r′

σ(⟨wi, φ̃(s) + φ̃(r)⟩)⟨Hep+k(wi),φ(s
′)⊗p ⊗ φ̃(r′)⊗k⟩

· ⟨φ(a∗(s′, r′)),φ(a∗(s, r))−φ(a)⟩.
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We first see that

E[γsra]

=
∑
s′r′

E
[
σ(⟨wi, φ̃(s) + φ̃(r)⟩)⟨Hep+k(wi),φ(s

′)⊗p ⊗ φ̃(r′)⊗k⟩
]

· (1(a∗(s, r) = a∗(s′, r′))− 1(a = a∗(s′, r′)))

=
∑
s′r′

E
[
σ(p+k)(⟨wi, φ̃(s) + φ̃(r)⟩)⟨(φ̃(s) + φ̃(r))⊗(p+k),φ(s′)⊗p ⊗ φ̃(r′)⊗k⟩

]
· (1(a∗(s, r) = a∗(s′, r′))− 1(a = a∗(s′, r′)))

If either s′ ̸= s or r ̸= r′, we see that conditioned on φ̃(s), φ̃(r), the quantity φ(s′)⊗p ⊗ φ̃(r′)⊗k

is mean zero. Therefore the only nonzero term in the sum is when (s, r) = (s′, r′), and so

E[γsra] = EZ∼N (0,1)

[
σ(p+k)

(
Z

√
∥φ̃(s)∥2 + ∥φ̃(r)∥2

)
· ∥φ̃(s)∥2p∥φ̃(r)∥2k

]
The quantities ∥φ̃(s)∥2 − 1

2 , ∥φ̃(r)∥
2 − 1

2 are subexponential random variables with Orlicz norm
1/d, and therefore we can bound ∣∣E[γsra]− cp+k2

−p−k
∣∣ ≲ 1

d

We next compute the variance. Define ωis′r′ by

ωis′r′ = σ(⟨wi, φ̃(s) + φ̃(r)⟩)⟨Hep+k(wi),φ(s
′)⊗p ⊗ φ̃(r′)⊗k⟩ · ⟨φ(a∗(s′, r′)),φ(a∗(s, r))−φ(a)⟩

We first observe that E[ωis1r1ωjs2r2 ] is zero, unless s1 = s2 and r1 = r2. Next, we compute the
expectation of ωis′r′ , conditioned on the embeddings (i.e with respect to the randomness wi):

E[ωis′r′ | φ]

= Ewi

[
σ(p+k)(⟨wi, φ̃(s) + φ̃(r)⟩)

]
· ⟨(φ̃(s) + φ̃(r))⊗(p+k), φ̃(s′)⊗p ⊗ φ̃(r′)⊗k⟩

· ⟨φ(a∗(s′, r′)),φ(a∗(s, r))−φ(a)⟩

= EZ∼N (0,1)

[
σ(p+k)

(
Z

√
∥φ̃(s)∥2 + ∥φ̃(r)∥2

)]
· ⟨φ̃(s), φ̃(s′)⟩p · ⟨φ̃(r), φ̃(r′)⟩k · ⟨φ(a∗(s′, r′)),φ(a∗(s, r))−φ(a)⟩.

Therefore for i ̸= j,

E[ωis′r′ωjs′r′ ] = E
[
E[ωis′r′ | φ]2

]
≲ c2p+kE

[
⟨φ̃(s),φ(s′)⟩2p

]
E
[
⟨φ̃(r), φ̃(r′)⟩2k

]
E
[
⟨φ(a∗(s′, r′)),φ(a∗(s, r))−φ(a)⟩2

]
.

When (s, r) = (s′, r′), then

E[ωisrωjsr] = E

[
EZ∼N (0,1)

[
σ(p+k)

(
Z

√
∥φ̃(s)∥2 + ∥φ̃(r)∥2

)]2
∥φ̃(s)∥4p∥φ̃(r)∥4k

]
·
(
1 + d−1

)
= c2p+k2

−2p−2k +O(1/d)

Next, define the quantities

ρss′ = E
[
⟨φ̃(s), φ̃(s′)⟩2p

]
ρrr′ = E

[
⟨φ̃(r), φ̃(r′)⟩2k

]
ρaa′ = E

[
⟨φ(a),φ(a′)⟩2

]
,

so that

E[ωis′r′ωjs′r′ ] ≲ c2p+kρss′ρrr′
(
ρaa∗(s′,r′) + ρa∗(s,r)a∗(s′r′)

)
.
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We see that for s ̸= s′, r ̸= r′, a ̸= a′,

ρss′ ≤ (2p)p(d/2)−p = (4p)pd−p

ρrr′ ≤ (2k)k(d/2)−k = (4k)kd−k

ρaa′ ≤ d−1

Next, see that

E
[
ω2
is′r′

]
= E

[
σ(⟨wi, φ̃(s) + φ̃(r)⟩)2⟨Hep+k(wi), φ̃(s

′)⊗p ⊗ φ̃(r′)⊗k⟩2
]
E
[
⟨φ(a∗(s′, r′)),φ(a∗(s, r))−φ(a)⟩2

]
≤ E

[
σ(⟨wi, φ̃(s) + φ̃(r)⟩)4

]1/2E[⟨Hep+k(wi), φ̃(s
′)⊗p ⊗ φ̃(r′)⊗k⟩4

]1/2(
ρaa∗(s′,r′) + ρa∗(s,r)a∗(s′r′)

)
≤ 24q

(
ρaa∗(s′,r′) + ρa∗(s,r)a∗(s′r′)

)
,

where we have applied Lemma 13 to the first two expectations. Altogether, we have that

E
[
γ2
sra

]
=
∑
s′,r′

(
m− 1

m
E[ωis′r′ωjs′r′ ] +

1

m
E
[
ω2
is′r′

])
=

m− 1

m
E[ωisrωjsr] +

m− 1

m

∑
(s′,r′ )̸=(s,r)

E[ωis′r′ωjs′r′ ] +
1

m

∑
s′,r′

E
[
ω2
is′r′

]
,

and thus

Var(γsra) = E
[
γ2
sra

]
− c2p+k

≲ c2p+k

∑
(s′,r′ )̸=(s,r)

ρss′ρrr′
(
ρaa∗(s′,r′) + ρa∗(s,r)a∗(s′r′)

)
+

24q

m

∑
s′,r′

(
ρaa∗(s′,r′) + ρa∗(s,r)a∗(s′r′)

)
For the first sum, we can bound∑
(s′,r′ )̸=(s,r)

ρss′ρrr′
(
ρaa∗(s′,r′) + ρa∗(s,r)a∗(s′r′)

)
≤

∑
(s′,r′ )̸=(s,r)

ρss′ρrr′

≤ SR · (4p)p(4k)kd−p−k + S(4p)pd−p +R(4k)kd−k

For the second sum, we get that∑
s′,r′

(
ρaa∗(s′,r′) + ρa∗(s,r)a∗(s′r′)

)
≤ C(a) + C(a∗(s, r)) +

2SR

d

Altogether,

Var(γsra)

E[γsra]2
≲

S(4p)p

dp
+

R(4k)k

dk
+

S(4p)p

dp
· R(4k)k

dk
+

24q(C(a) + C(a∗(s, r)))

mc2p+k

+
24qSR

mdc2p+k

.

Let δ′ be a fixed failure probability. We see that, for p = 2⌈ 1
ϵ ⌉+ 1

24q log4q+2(1/δ′)S(4p)p

dp
≲

2
4C2
ϵ log

4C2
ϵ +2(1/δ′)( 8ϵ )

2/ϵ

d
1
ϵ

≲ 1,

whenever d ≳ (C3 log(1/δ
′)/ϵ)C4/ϵ for appropriately chosen constants C3, C4. Likewise, setting

k = 2⌈ 1
ϵ ⌉+ 1, we get that

24q log4q+2(1/δ′)R(4k)k

dk
≲ 1.

Next, setting m ≳ 28q+2 log4q+2(1/δ′)c−2
p+k ·maxa C(a) and md ≳ 28q+2 log4q+2(1/δ′)c−2

p+kSR
yields

24q+2 log4q+2(1/δ′) · 2
4q(C(a) + C(a∗(s, r)))

mc2p+k

≲ 1

24q+2 log4q+2(1/δ′) · 24qSR

mdc2p+k

≲ 1.
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Altogether, by choosing constants appropriately, we get that

24q+2 log4q+2(1/δ′)e−1 · Var(γsra)
E[γsra]2

≤ 1.

Therefore by Lemma 14, with probability 1 − δ′ we have that γsra > 0. Union bounding over all
s, r, a and setting δ′ = δ

SR|V| yields the desired result.

We next state the formal version of Theorem 4, which we wish to prove:
Theorem 11. Let ϵ be a fixed constant. Assume that σ is a degree q polynomial, where q = C1/ϵ
for some C1 > 2. Assume that d ≥ Sϵ, Rϵ. Define C(a) = |{(s, r) : a∗(s, r) = a}|.
Let (d,H, dh,m) satisfy

d ≳ (C2 log(|V|/δ)/ϵ)C3/ϵ

Hdh ≳ (S +R) log (|V|/δ)
m ≳ (C2 log(|V|/δ))C3/ϵ ·max

a
C(a)

md ≳ (C2 log(|V|/δ))C3/ϵ · SR,

Then, with probability 1− δ, there exists a single-layer transformer FTF( · ;θTF) with embedding
dimension d, number of heads H , head dimension dh, and MLP width m such that

Pz1:T+1∼D

[
argmax

z∈V
φ(z)⊤FTF(X;θTF) = zT+1

]
= 1.

Remark. Ignoring polylog factors, and treating ϵ as a constant, the constraints on the architecture
size become

Hdh ≳ S +R and m ≳ C(a) and md ≳ SR.

We first note that C(a) ≤ S, and so m ≳ S is sufficient. It is possible for C(a) to be much smaller;
on average we expect C(a) ≈ S/D, and we also note that it is possible for C(a) = 1. The main
constraint is that md ≳ SR, i.e that the number of MLP parameters scales linearly with the number
of facts that need to be stored.

Proof of Theorem 11. Partition S into the sets S(1), . . . ,S(NS) and R into the sets R(1), . . . ,R(NR),
such that

∣∣S(i)
∣∣, ∣∣R(j)

∣∣ ≤ M and NS = ⌈ S
M ⌉, NR = ⌈ R

M ⌉. Assume that d = Θ(M log(|V|/δ′))

Let H = ⌈d/dh⌉. For each i ∈ [NS ], we construct the H ′ attention heads corresponding to h ∈
{(i− 1)H ′ + 1, . . . , iH ′} as follows. First, for all such h, let

W
(h)
K

⊤
W

(h)
Q = β

∑
z∈S(i)

φ(z)φ(EOS)⊤ +
β

2
φ(EOS)φ(EOS)⊤

for a large constant β. By an identical argument to as in Theorem 3, on the event that Lemma 1
holds we have that

X⊤S
(
XW

(h)
K

⊤
W

(h)
Q xT

)
=

{
φ(EOS) s ̸∈ S(i)

φ(s) s ∈ S(i) .

The total contribution from these attention heads is then
iH′∑

h=(i−1)H′+1

W
(h)
O

⊤
attn(X;W

(h)
K ,W

(h)
Q ,W

(h)
V ) =

 iH′∑
h=(i−1)H′+1

W
(h)
O

⊤
W

(h)
V

 ·
{
φ(EOS) s ̸∈ S(i)

φ(s) s ∈ S(i)

Since H ′dh ≥ d, we can let
∑iH′

h=(i−1)H′+1 W
(h)
O

⊤
W

(h)
V be a projection onto a ⌈d/2⌉ dimensional

subspace P , orthogonal to φ(EOS), and thus

iH′∑
h=(i−1)H′+1

W
(h)
O

⊤
attn(X;W

(h)
K ,W

(h)
Q ,W

(h)
V ) =

{
0 s ̸∈ S(i)

ΠPφ(s) s ∈ S(i)
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Altogether, if the sequence (z1, . . . , zT ) contains the subject s, then

H′NS∑
h=1

W
(h)
O

⊤
attn(X;W

(h)
K ,W

(h)
Q ,W

(h)
V ) = ΠPφ(s)

Similarly, if we let Q be a ⌈d/2⌉ dimensional subspace orthogonal to P and φ(EOS), then we can
construct the attention heads h ∈ {H ′NS + 1, . . . ,H ′NS +H ′NR} such that

H′NS+H′NR∑
h=H′NS+1

W
(h)
O

⊤
attn(X;W

(h)
K ,W

(h)
Q ,W

(h)
V ) = ΠQφ(r),

where r is the relation in the sequence (z1, . . . , zT ). Such a construction exists with probability
1− (NS +NR)δ

′. The total number of heads is

H = H ′NS +H ′NR ∝ d(S +R)

dhM
∝ (S +R) log(|V|/δ′)

dh
.

The output of the self-attention component is then

FMHSA(X;θ) = ΠPφ(s) + ΠQφ(r) = φ̃(s) + φ̃(r).

On the event that Lemma 3 holds, we have that there exists a two-layer neural network F (z) =∑
i∈[m] viσ(w

⊤
i z) of width m such that

argmax
a

φ(a)⊤F (φ(s) + φ̃(r)) = a∗(s, r).

Scaling V by a large enough constant ensures that

argmax
z∈V

φ(z)⊤FTF(X;θTF) = a∗(s, r).

Union bounding over all the high probability events and setting δ = δ′/(NS +NR + 1) yields the
desired result.

D PROOFS FOR SECTION 5

D.1 PRELIMINARIES

Recall that the parameters are θ := {WOV (a, z)}a∈A,z∈V ∪ {WKQ(z)}z∈V , and that the cross
entropy loss is

L(θ) := Ez1:T+1

[
−⟨φ(zT+1), Flin(X;θ)⟩+ log

(∑
a∈A

exp (⟨φ(a), Flin(X;θ)⟩)

)]
where

φ(a)⊤Flin(X;θ) =

T∑
t=1

WOV (a, zt)WKQ(zt).

We consider running gradient flow:

θ̇ = −∇L(θ)

from the initialization WOV (a, z) = α, WKQ(z) = α
√
|A|+ 1 for some α > 0.

We also define Θ by

Θ(a, z) = WKQ(z)WOV (a, z),

and remark that the loss L is convex in Θ.
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Lemma 4 (Balancedness). Let C(z1:T , z) denote the number of tokens in z1:T equal to z. The loss
gradients are given by

∂WV O(a,z)L(θ) = −WKQ(z) · Ez1:T [C(z1:T , z) · (1(a = a∗(z1:T ))− p̂(a | z1:T ))]

∂WKQ(z)L(θ) = −
∑
a

WOV (a, z) · Ez1:T [C(z1:T , z) · (1(a = a∗(z1:T ))− p̂(a | z1:T ))]

As such, the quantity

WKQ(z)
2 −

∑
a∈A

WV O(a, z)
2

is constant throughout the gradient flow trajectory.

Proof. We first see that

∂WV O(a,z)

(
φ(a′)⊤Flin(X;θ)

)
= 1(a = a′) · C(z1:T , z) ·WKQ(z),

Similarly,

∂WKQ(z)

(
φ(a′)⊤Flin(X;θ)

)
= C(z1:T , z) ·WOV (a

′, z).

Therefore

∂WV O(a,z)L(θ)

= WKQ(z) · E
[
−1(zT+1 = a) · C(z1:T , z) +

∑
a′∈A exp (⟨φ(a′), Flin(X;θ)⟩) · 1(a = a′) · C(z1:T , z)∑

a′∈A exp (⟨φ(a′), Flin(X;θ)⟩)

]
= −WKQ(z) · Ez1:T [C(z1:T , z) · (1(a = a∗(z1:T ))− p̂(a | z1:T ))].

By a similar computation,

∂WKQ(z)L(θ)

= Ez1:T

[
−WOV (zT+1, z) · C(z1:T , z) +

∑
a

p̂(a | z1:T )WOV (a, z) · C(z1:T , z)

]

= Ez1:T

[
C(z1:T , z) ·

(
−WOV (a

∗(z1:T ), z) +
∑
a

p̂(a | z1:T )WOV (a, z)

)]
= −

∑
a

WOV (a, z) · Ez1:T [C(z1:T , z) · (1(a = a∗(z1:T ))− p̂(a | z1:T ))].

Under gradient flow, we see that

1

2

d

dt

(
WKQ(z)

2 −
∑
a∈A

WV O(a, z)
2

)

= WKQ(z) ·
d

dt
WKQ(z)−

∑
a∈A

WV O(a, z) ·
d

dt
WV O(a, z)

= −WKQ(z) · ∂WKQ(z)L(θ) +
∑
a∈A

WV O(a, z) · ∂WV O(a,z)L(θ)

= WKQ(z)
∑
a

WOV (a, z) · Ez1:T [C(z1:T , z) · (1(a = a∗(z1:T ))− p̂(a | z1:T ))]

−
∑
a∈A

WOV (a, z)WKQ(z) · Ez1:T [C(z1:T , z) · (1(a = a∗(z1:T ))− p̂(a | z1:T ))]

= 0.

Corollary 3. Throughout the gradient flow trajectory, WKQ(z) ≥ α.
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Proof. At initialization, WKQ(z)
2 −

∑
a∈A WV O(a, z)

2 = α2. Since this quantity is an invariant
of gradient flow, it is impossible for WKQ(z) = 0, and thus WKQ(z) > 0 throughout the entire
trajectory. Furthermore,

WKQ(z)
2 =

∑
a∈A

WV O(a, z)
2 + α2 ≥ α2,

and thus WKQ(z) ≥ α.

D.2 PROOF OF THEOREM 5

Proof of Theorem 5. Let us select

ϵ ≤ min

(
1

2
αp(s, r)|A|−1

T−2|N |−(T−3)
,
1

2
α|A|−1

S−1R−1δ

)
.

There exists a time Tϵ such that for all t ≥ Tϵ, ∥∇θL(θ(t))∥ ≤ ϵ. Let us set tδ = Tϵ. Now, consider
some iterate θ := θ(t) for t ≥ tδ .

First, see that for s ∈ S,

∂WOV (a,s)L(θ) = −WKQ(s) · Ez1:T [C(z1:T , z) · (1(a = a∗(z1:T ))− p̂(a | z1:T ))]
= −WKQ(s) · p(s) · Ez1:T [1(a = a∗(z1:T ))− p̂(a | z1:T ) | s ∈ z1:T ].

Consider some a ̸∈ As. Then Ez1:T [1(a = a∗(z1:T )) | s ∈ z1:T ] = 0, and thus

∂WOV (a,s)L(θ) = WKQ(s) · p(s) · Ez1:T [p̂(a | z1:T ) | s ∈ z1:T ]

= WKQ(s)
∑
r∈R

p(s, r) · Ez1:T [p̂(a | z1:T ) | s, r ∈ z1:T ]

As such, since
∣∣∂WOV (a,s)L(θ)

∣∣ ≤ ϵ,

Ez1:T [p̂(a | z1:T ) | s, r ∈ z1:T ] ≤ ϵα−1p(s, r)−1.

By an identical argument, since
∣∣∂WOV (a,r)L(θ)

∣∣ ≤ ϵ, then for a ̸∈ Ar

Ez1:T [p̂(a | z1:T ) | s, r ∈ z1:T ] ≤ ϵα−1p(s, r)−1.

For any a ̸= a∗(s, r), either a ̸∈ As or a ̸∈ Ar. Therefore Ez1:T [p̂(a | z1:T ) | s, r ∈ z1:T ] ≤
ϵα−1p(s, r)−1 for all a ̸= a∗(s, r), and thus

Ez1:T [p̂(a
∗(s, r) | z1:T ) | s, r ∈ z1:T ] ≥ 1− ϵα−1p(s, r)−1|A|.

There are at most T 2|N |T−3 sequences z1:T containing (s, r), each of which occurs with equal
probability. Therefore

p̂(a∗(s, r) | z1:T ) ≥ 1− T 2|N |T−3 · ϵα−1p(s, r)−1|A|

for all such z1:T . Then, bounding − log(1− z) ≤ 2z for z ∈ [0, 1
2 ],

E[− log p̂(a∗(s, r) | z1:T ) | s, r ∈ z1:T ] ≤ 2E[1− p̂(a∗(s, r) | z1:T )) | s, r ∈ z1:T ]

≤ 2ϵα−1p(s, r)−1|A|.

Altogether, the loss is

E[− log p̂(zT+1 | z1:T )] =
∑
s,r

p(s, r) · E[− log p̂(a∗(s, r) | z1:T ) | s, r ∈ z1:T ]

≤ 2ϵα−1|A|SR
≤ δ,

as desired.
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D.3 SEQUENTIAL LEARNING

The goal of this section is to show that the model learns sequentially; first, the relation components
grow, then the subject components grow. This is given formally by Theorem 6

We first prove that the subject and noise tokens stay bounded.
Lemma 5. For s ∈ S,

WKQ(z) ≤ exp(2p(s)t) · α
√
|A|+ 1.

Likewise, for z ∈ N ,

WKQ(z) ≤ exp(2Tt/|N |) · α
√
|A|+ 1.

Proof. Recall that the update for WKQ(s) is

ẆKQ(s) = p(s)⟨WOV (·, s), p∗(· | s)− Ez1:T [p̂(· | z1:T ) | s ∈ z1:T ]⟩
≤ p(s)∥WOV (·, s)∥∥p∗(· | s)− Ez1:T [p̂(· | z1:T ) | s ∈ z1:T ]∥
≤ 2p(s)∥WOV (·, s)∥
≤ 2p(s)WKQ(s)

Therefore by Gronwall’s inequality,

WKQ(s) ≤ exp(2p(s)t) · α
√

|A|+ 1.

Similarly, the update for WKQ(z) for z ∈ N is

ẆKQ(z) = ⟨WOV (·, z),Ez1:T [C(z1:T , z) · (1(· = a∗(z1:T ))− p̂(· | z1:T ))]⟩
≤ ∥WOV (·, z)∥ · E[C(z1:T , z)∥1(· = a∗(z1:T ))− p̂(· | z1:T )∥]
≤ 2WOV (·, z)E[C(z1:T , z)]

≤ 2T

|N |
WKQ(z).

Again by Gronwall’s inequality,

WKQ(z) ≤ exp(2Tt/|N |) · α
√

|A|+ 1.

The following lemma is our key result, and shows that, assuming that the subject and noise weights
stay bounded, the relation weights grow until the output of the model approximates the best relation-
only prediction.
Lemma 6. Let αsm satisfy

α2
smT ≤ 1

150
log

(
ϵ2

α2(|A|+ 1)

)−1

·min
r

∥p∗(· | r)− p0∥.

Let ϵ > 0 satisfy

ϵ2 ≤ 1

50(|A|+ 1)
·min

r
∥p∗(· | r)− p0∥

Define T ∗ by

T ∗ = max
r

p(r)−1∥p∗(· | r)− p0∥−1
log

(
ϵ

α
√
|A|+ 1

)
+ 100(|A|+ 1) log |A|ϵ−2ϵ−2

min

Assume that for z ∈ S ∪ N that WKQ(z) ≤ αsm. Then, there exists t ≤ T ∗ such that∑
r

p(r)2∥p∗(· | r)− Ez1:T [p̂(· | z1:T ) | r ∈ z1:T ]∥2 ≤ ϵ2min.

Proof. The proof proceeds in three stages. First, we bound the time required for the relation weights
to escape the origin. Next, we prove that the relation weights stay large. Finally, we show conver-
gence.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Stage 1: Escaping the origin. The gradient flow update on WOV (a, r) is

ẆOV (a, r) = WKQ(r) · p(r)(p∗(a | r)− Ez1:T [p̂(a | z1:T ) | r ∈ z1:T ])

We thus have∥∥∥ẆOV (·, r)−WKQ(r) · p(r)(p∗(· | r)− p0(a))
∥∥∥ ≤ WKQ(r) · p(r)∥Ez1:T [p̂(· | z1:T ) | r ∈ z1:T ]− p0∥

Define p0 = 1
|A|1A. Observe that

∥Ez1:T [p̂(· | z1:T ) | r ∈ z1:T ]− p0∥ ≤ Ez1:T [∥[p̂(a | z1:T )− p0∥ | r ∈ z1:T ]

≤ Ez1:T

[∑
t

WKQ(zt)∥WOV (·, zt)∥ | r ∈ z1:T

]
≤ WKQ(r)∥WOV (·, r)∥+ Tα2

sm

≤ WKQ(r)
2 + Tα2

sm.

Thus∥∥∥ẆOV (·, r)−WKQ(r) · p(r)(p∗(· | r)− p0(a))
∥∥∥ ≤ p(r)WKQ(r)

(
WKQ(r)

2 + Tα2
sm

)
Likewise,

ẆKQ(r) = p(r)⟨WOV (·, r), (p∗(· | r)− Ez1:T [p̂(a | z1:T ) | r ∈ z1:T ])⟩,

and thus∣∣∣ẆKQ(r)− p(r)⟨WOV (·, r), (p∗(· | r)− p0)⟩
∣∣∣ ≤ p(r)∥WOV (·, r)∥∥Ez1:T [p̂(· | z1:T ) | r ∈ z1:T ]− p0∥

≤ p(r)WKQ(r)
(
WKQ(r)

2 + Tα2
sm

)
Define the vector u ∈ R2 by

u =

[
WKQ(r)

⟨WOV (·, r), p∗(·|r)−p0

∥p∗(·|r)−p0∥ ⟩

]
We see that∥∥∥∥u̇− p(r)∥p∗(· | r)− p0∥ ·

[
0 1
1 0

]
u

∥∥∥∥ ≤ 2p(r)WKQ(r)
(
WKQ(r)

2 + Tα2
sm

)
Therefore

d

dt
(∥u∥2) ≤ 2⟨u̇,u⟩

≤ 2p(r)∥p∗(· | r)− p0∥∥u∥2 + 4p(r)∥u∥WKQ(r)
(
WKQ(r)

2 + Tα2
sm

)
≤ 2p(r)∥p∗(· | r)− p0∥∥u∥2 + 4p(r)∥u∥2

(
∥u∥2 + Tα2

sm

)
≤ 2p(r)

(
∥p∗(· | r)− p0∥+ 2Tα2

sm

)
∥u∥2 + 4p(r)∥u∥4.

where the last inequality bounds W 2
KQ(r) ≤ ∥u∥2.

Define γr := 2p(r)
(
∥p∗(· | r)− p0∥+ 2Tα2

sm

)
. By Lemma 7 we have that for

t < γ−1
r log

(
γr

4p(r)∥u0∥2
+ 1

)
,

∥u∥2 ≤ γr∥u0∥2 exp(γrt)
γr + 4p(r)2(1− exp(γrt))
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Let Tϵ be the first time that ∥u∥ ≥ ϵ. If Tϵ < γ−1
r log

(
γr

4p(r)∥u0∥2 + 1
)

, then

ϵ2 ≤ ∥u∥2 ≤ γr∥u0∥2 exp(γrTϵ)

γr + 4p(r)2(1− exp(γrTϵ))
≤ γrα

2(|A|+ 1) exp(γrTϵ)

γr + 4p(r)2(1− exp(γrTϵ))
.

Therefore

Tϵ ≥ γ−1
r log

(
ϵ2γr + 4p(r)ϵ2α2(|A|+ 1)

α2(|A|+ 1)γr + 4p(r)ϵ2α2(|A|+ 1)

)
≥ γ−1

r log

(
ϵ2

2α2(|A|+ 1)

)
for ϵ2 ≤ γr

4p(r) On this assumption, ϵ2

2α2(|A|+1) ≤ γr

4p(r)∥u0∥2 , and thus we always have Tϵ ≥

γ−1
r log

(
ϵ2

2α2(|A|+1)

)
.

Define Lr by

Lr(θ) := p(r)Ez1:T+1

[
−⟨φ(zT+1), Flin(X;θ)⟩+ log

(∑
a∈A

exp (⟨φ(a), Flin(X;θ)⟩)

)
| r ∈ z1:T

]
Let us define the relation-only model as

φ(a)⊤Frel(X;θ) = WOV (a, r)WKQ(r)

where r ∈ z1:T . We see that∣∣φ(a)⊤Frel(X;θ)−φ(a)⊤Flin(X;θ)
∣∣ ≤ (T − 1)α2

sm.

Define g : R|A| → R by g(z) = log (
∑

a exp(za)). We see that ∇zg(z) = S(z), where S is the
softmax, and thus

|g(z1)− g(z2)| ≤ sup
z

∥∇zg(z)∥1 · ∥g(z1)− g(z2)∥∞ ≤ ∥g(z1)− g(z2)∥∞.

Therefore defining the relation-only loss L̄r as

L̄r(θ) := p(r)Es

[
−⟨φ(a∗(s, r), Frel(r;θ)⟩+ log

(∑
a∈A

exp (⟨φ(a), Flin(r;θ)⟩)

)]

= −p(r)
∑
a

p(a | r)WOV (a
∗(s, r), r)WKQ(r) + p(r) log

(∑
a∈A

exp (WOV (a, r)WKQ(r))

)
,

we see that ∣∣Lr(θ)− L̄r(θ)
∣∣ ≤ 2(T − 1)α2

sm.

Since log-sum-exp is 1-strongly-convex, recalling that Θ(a, r) := WOV (a, r)WKQ(r),

log

(∑
a

exp(Θ(a, r))

)
≤ log(|A|) +

∑
a

1

|A|
Θ(a, r) +

1

2
∥Θ(·, r)∥2.

Therefore

L̄r ≤ p(r) log |A| − p(r)⟨Θ(·, r), p∗(· | r)− p0⟩+
1

2
p(r)∥Θ(·, r)∥2

= Lr,0 − p(r)∥p∗(· | r)− p0∥ · u1u2 +
1

2
p(r)∥Θ(·, r)∥2.

We next track the evolution of u1u2:
d

dt
(u1u2) = u̇1u2 + u1u̇2

≥ p(r)∥p∗(· | r)− p0∥∥u∥2 − 4p(r)∥u∥2
(
∥u∥2 + (T − 1)α2

sm

)
≥ p(r)

(
∥p∗(· | r)− p0∥ − 4∥u∥2 − 4(T − 1)α2

sm

)
∥u∥2

≥ p(r)
(
∥p∗(· | r)− p0∥ − 4Tα2

sm

)
∥u∥2 − 4p(r)∥u∥4.
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for t ≤ Tϵ. Since ∥u∥ ≤ ϵ, this is increasing in ∥u∥.

We first have the bound ∥u∥2 ≥ WKQ(r)
2 ≥ α2. Next, we have the bound ∥u∥2 ≥ 2u1u2. Pick

some time τ ≤ Tϵ. Define γ−
r := 2p(r)

(
∥p∗(· | r)− p0∥ − 4Tα2

sm

)
. We see that

(u1u2)(τ) ≥
(
1

2
γ−
r α2 − 4p(r)α4

)
τ ≥ 1

4
γ−
r α2τ

Next, by Lemma 7, for t ≤ Tϵ we have

(u1u2)(t) ≥
γ−
r (u1u2)(τ) exp(γ

−
r (t− τ))

γ−
r + 8p(r)(u1u2)(τ) exp

(
γ−
r (t− τ)

) .
Plugging in t = γ−1

r log
(

ϵ2

2α2(|A|+1)

)
,

(u1u2)(τ) exp
(
γ−
r (t− τ)

)
≥ 1

4
γ−
r α2τ exp

(
−γ−

r τ
)
· exp

(
γ−
r

γr
log

(
ϵ2

2α2(|A|+ 1)

))
Selecting τ = 1/γ−

r , we get

(u1u2)(τ) exp
(
γ−
r (t− τ)

)
≥ α2

4e
· exp

(
∥p∗(· | r)− p0∥ − 4Tα2

sm

∥p∗(· | r)− p0∥+ 2Tα2
sm

log

(
ϵ2

2α2(|A|+ 1)

))
≥ α2

4e
· ϵ2

2α2(|A|+ 1)
· exp

(
−6Tα2

sm

∥p∗(· | r)− p0∥+ 2Tα2
sm

log

(
ϵ2

2α2(|A|+ 1)

))
≥ α2

4e
· ϵ2

2α2(|A|+ 1)
·
(
1− 6Tα2

sm

∥p∗(· | r)− p0∥+ 2Tα2
sm

log

(
ϵ2

2α2(|A|+ 1)

))
≥ ϵ2

50(|A|+ 1)
.

whenever Tα2
sm

∥p∗(·|r)−p0∥+2Tα2
sm

log
(

ϵ2

α2(|A|+1)

)
≤ 1

150 .

Therefore

(u1u2)(t) ≥
ϵ2

50(|A|+ 1)
· 1

1 + 8p(r)

γ−
r

ϵ2

50(|A|+1)

≥ ϵ2

50(|A|+ 1)
· 1

1 + 4ϵ2

∥p∗(·|r)−p0∥50(|A|+1)

≥ ϵ2

100(|A|+ 1)
,

Altogether, we get that the loss is

L̄r ≤ Lr,0 − p(r)∥p∗(· | r)− p0∥ ·
ϵ2

100(|A|+ 1)
+

1

2
p(r)ϵ4

≤ Lr,0 − p(r)∥p∗(· | r)− p0∥ ·
ϵ2

200(|A|+ 1)

whenever ϵ2 ≤ ∥p∗(·|r)−p0∥
100(|A|+1) .

Stage 2: Norm stays large Next, we want to show that WKQ(r) stays large. We first show that
the relation-only loss L̄ is decreasing. We can compute that

d

dt
L̄r(θ) = ⟨∇θL̄r,∇θLr⟩
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Define p̂(· | r) by

p̂(a | r) = exp(WKQ(r)WOV (a, r))∑
a′ exp(WKQ(r)WOV (a′, r))

.

We observe that

∂WOV (·,r)L̄r = WKQ(r)p(r)(p
∗(· | r)− p̂(· | r))

∂WOV (·,r)Lr = WKQ(r)p(r)(p
∗(· | r)− Ez1:T [p̂(· | z1:T ) | r ∈ z1:T ])

and thus∥∥∂WOV (·,r)L̄r − ∂WOV (·,r)Lr

∥∥ ≤ WKQ(r)p(r)∥Ez1:T [p̂(· | z1:T ) | r ∈ z1:T ]− p̂(· | r)∥
≤ WKQ(r)p(r)Tα

2
sm.

Likewise,∣∣∂WKQ(r)L̄r − ∂WKQ(r)Lr

∣∣ = p(r)|⟨WOV (·, r),Ez1:T [p̂(· | z1:T ) | r ∈ z1:T ]− p̂(· | r)⟩|
≤ p(r)∥WOV (·, r)∥∥Ez1:T [p̂(· | z1:T ) | r ∈ z1:T ]− p̂(· | r)∥
≤ WKQ(r)p(r)Tα

2
sm.

Therefore

d

dt
Lr(θ) ≥

∥∥∇θL̄r

∥∥2 − ∥∥∇θL̄r

∥∥∥∥∇θL̄r −∇θLr

∥∥
≥
∥∥∇θL̄r

∥∥2 − ∥∥∇θL̄r

∥∥√2WKQ(r)p(r)Tα
2
sm.

Assume that d
dtLr(θ) < 0. Then

√
2WKQ(r)p(r)Tα

2
sm ≥

∥∥∇θL̄r

∥∥ ≥ WKQ(r)p(r)∥p∗(· | r)− p̂(· | r)∥,

i.e

∥p∗(· | r)− p̂(· | r)∥ ≤
√
2Tα2

sm.

Assuming that
√
2Tα2

sm < 1
2S , since p∗(a | r) > 1

S for p ∗ (a | r) > 0 we have that∣∣∣∣p∗(a | r) log p∗(a | r)
p̂(a | r)

∣∣∣∣ = p∗(a | r)
∣∣∣∣log(1 + p̂(a | r)− p∗(a | r)

p∗(a | r)

)∣∣∣∣ ≤ 2|p̂(a | r)− p∗(a | r)|

Therefore L̄r − p(r)H(p∗(· | r)) ≤ 2p(r)∥p̂(· | r)− p∗(· | r)∥1 ≤
√
2Tα2

smD. As such, we have
that L̄r stays below Lr,0 − p(r)∥p∗(· | r)− p0∥ · ϵ2

200(|A|+1) for the remainder of the gradient flow
trajectory.

By convexity in Θ space,

Lr,0 − L̄r(Θ) ≤ −⟨∇Θ(·,r)L̄(0),Θ(·, r)⟩
≤
∥∥∇Θ(·,r)L̄(0)

∥∥∥Θ(·, r)∥
≤ p(r) · ∥p∗(· | r)− p0∥ · ∥Θ(·, r)∥.

Therefore

∥Θ(·, r)∥ ≥ ϵ2

100(|A|+ 1)
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Stage 3: Convergence. Next, we can bound the loss decrease by

d

dt
L(θ) = −∥∇θL∥2

≤ −
∑
r

∥∥∂WOV (·,r)L
∥∥2

= −
∑
r

∥∥∂WOV (·,r)Lr

∥∥2
= −

∑
r

WKQ(r)
2p(r)2∥p∗(· | r)− Ez1:T [p̂(· | z1:T ) | r ∈ z1:T ]∥

≤ −
∑
r

∥Θ(·, r)∥p(r)2∥p∗(· | r)− Ez1:T [p̂(· | z1:T ) | r ∈ z1:T ]∥2

≤ − ϵ2

200(|A|+ 1)

∑
r

p(r)2∥p∗(· | r)− Ez1:T [p̂(· | z1:T ) | r ∈ z1:T ]∥2

Since L(Θ) ≤ L(Θ0) = log |A|, and L(Θ) ≥ 0, there exists some t ≤ maxr t
∗ + 100(|A| +

1) log |A|ϵ−2ϵ−2
min such that∑

r

p(r)2∥p∗(· | r)− Ez1:T [p̂(· | z1:T ) | r ∈ z1:T ]∥2 ≤ ϵ2min,

as desired.

To conclude, we must set α, αsm, T ∗ appropriately in terms of ϵ in order to apply Lemma 6.

Proof of Theorem 6. Let ϵ ≤ 1
100(|A|+1) ·minr ∥p∗(· | r)− p0∥ be the target accuracy. Let us choose

the initialization α so that log
(

ϵ

α
√

|A|+1

)
= ι, where ι is chosen so that

ι ≥ 100(|A|+ 1) log |A|ϵ−4p(r)∥p∗(· | r)− p0∥.

In this case, we see that

T ∗ ≤ 2ιmax
r

(
p(r)−1∥p∗(· | r)− p0∥−1

)
.

Since p∗(· | r) is supported on at most D elements, and |A| ≥ 2D, we have ∥p∗(· | r)− p0∥−1 ≤√
2D. Therefore T ∗ ≤ 2R

√
D · ι. Let us compute αsm. We see that, since S ≥ 8R

√
2D,

WKQ(s) ≤ exp

(
4R

√
D

S
ι

)
· α
√
|A|+ 1

≤ exp

(
1

2
ι

)
α
√
|A|+ 1

=
√
ϵα · (|A|+ 1)1/4

≤
√
α

Similarly, since N ≥ 4R
√
2DT ,

WKQ(s) ≤ exp

(
4R

√
DT

|N |
ι

)
· α
√
|A|+ 1

≤ exp

(
1

2
ι

)
α
√
|A|+ 1

≤
√
α
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Therefore the assumption holds for αsm =
√
α. To conclude, we must verify that

Tα ≤ 1

300
ι−1 ·min

r
∥p∗(· | r)− p0∥.

But since α = ϵ√
|A|+1

e−ι, the RHS scales with e−ι and the RHS scales with ι, and thus the

condition can be obtained for choosing ι sufficiently large.

Under the setting of paramters the conditions of Lemma 6 are satisfied, and thus the claim holds.

D.4 HELPER LEMMA

Lemma 7. Let z(t) ≥ 0 satisfy

ż ≤ Az +Bz2.

for positive constants A,B. Then

z(t) ≤ Az(0)eAt

A+Bz(0)(1− eAt)
.

Furthermore, if

ż ≥ Az −Bz2,

and z ∈ [0, A
2B ] on the interval [0, T ], then

z(t) ≥ Az(0)eAt

A+Bz(0)(eAt − 1)
.

for all t ∈ [0, T ].

Both claims follow from the Bihari-LaSalle inequality.

E PROOFS FROM SECTION 6

E.1 ASSOCIATIVE MEMORIES

Proof of Theorem 7. f∗ → F → f̂ is a Markov chain, so by the data processing inequality,

I(f∗; f̂) ≤ I(f∗;F ).

Also, by definition of mutual information

I(f∗;F ) ≤ H(F ) ≤ B,

where the last inequality follows since F is an B-bit message. Thus I(f∗; f̂) ≤ B.

Let qx(· | f̂) be the conditional distribution of f∗(x) given f̂ . Consider some fixed f̂ . f̂(x) is also a
probability distribution over [M ], and thus by Gibbs’ inequality

Ey∼qx(·|f̂)

[
− log f̂(x)y

]
≥ Ey∼qx(·|f̂)

[
− log qx(y | f̂)

]
.

Therefore, letting q be the marginal distribution over f̂ and qx the marginal over f∗(x),

Ef∗,f̂

[
− log f̂(x)f∗(x)

]
= Ef̂

[
Ey∼qx(·|f̂)

[
− log f̂(x)y

]]
≥ Ef̂

[
Ey∼qx(·|f̂)

[
− log qx(y | f̂)

]]
= Ef∗,f̂

[
− log qx(f

∗(x) | f̂)
]

= Ef∗,f̂

[
− log

qx(f
∗(x), f̂)

q(f̂)qx(f∗(x))
− log qx(f

∗(x))

]
= −I(f∗(x); f̂) + logM.
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where in the last step we use the fact that qx is uniform over [M ], and plug in the definition of mutual
information. The total loss is thus

Ef∗,f̂

[
L(f̂)

]
≥
∑

x∈[N ]

p(x)
(
−I(f∗(x); f̂) + logM

)
. (21)

Since the yi are independent,

B ≥ I(f∗; f̂) ≥
∑

x∈[N ]

I(f∗(x); f̂).

Also, 0 ≤ I(f∗(x); f̂) ≤ H(f∗(x)) = logM . Therefore equation 21 is minimized when
I(f∗(x); f̂) = logM for the B/ logM most frequent tokens. Altogether,

Ef∗,f̂

[
L(f̂)

]
≥ logM ·

∑
x>⌈ B

log M ⌉

p(x).

Proof of Corollary 1. Let p(x) = Zαx
−α, where Zα =

∑
x∈[N ] x

−α. We can bound

n∑
x=k

p(x) =

∑n
x=k x

−α∑n
x=1 x

−α
≍ k1−α.

Therefore

Ef∗,f̂

[
L(f̂)

]
≥ logM ·

∑
x>⌈ B

log M ⌉

p(x) ≳ logM

(
B

logM

)1−α

≳ B1−α.

E.2 FACTUAL RECALL

Proof. Define ℓ(s, r) := ED,f̂

[
− log f̂(s, r)a∗(s,r)

]
so that

L = p(s, r) · ℓ(s, r).

Let us define the expanded dataset D := {Ar}r∈R ∪ {a∗(s, r)}s∈S,r∈R. We observe that D →
a∗ → F → f̂ is a Markov chain, and thus by the data processing inequality

B ≥ I(D; f̂).

Next, by the chain rule, we can decompose

I(D; f̂) = I(A1, . . . ,AR; f̂) + I(a∗; f̂ | A1, . . . ,AR)

≥ I(A1, . . . ,AR; f̂) +
∑
s,r

I(a∗(s, r); f̂ | A1, . . . ,AR)

= I(A1, . . . ,AR; f̂) +
∑
s,r

I(a∗(s, r); f̂ | Ar),

where the first inequality uses the fact that the a∗(s, r) are conditionally independent given the Ar,
and the second uses that a∗(s, r) is independent of Ar′ given Ar, for r ̸= r′.

We can decompose the first mutual information term, using the fact that the Ar are nearly indepen-
dent:

Lemma 8. Assume that |V| ≥ 2RD. Then

I(A1, . . . ,AR; f̂) ≥
∑
r

I(Ar; f̂)−
2R2D2

|V|
.
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We next relate I(Ar; f̂) to the loss. The intuition is that if the loss for a fixed r the quantity∑
s ℓ(s, r) is small, then the predictor f̂ must contain information about the answer set Ar.

Lemma 9. Assume that |V| ≥ 2D. Define η := C
√

D
S log(2D2 log |V|) for a sufficiently large

constant C, and assume that η ≤ 1. Then

I(Ar; f̂) ≥ −(1 + η)
D

S
·
∑
s∈[S]

ℓ(s, r) +D log
|V|
D

−2D log |V|
|V|

− 2D2

|V|
− ηD − 1︸ ︷︷ ︸

lower order term

Finally, we relate I(a∗(s, r); f̂ | Ar) to the loss. Similarly, the intuition to this theorem is that if the
loss ℓ(s, r) is small, then f̂ must contain information about the true association a∗(s, r).

Lemma 10. For all s, r,

I(a∗(s, r); f̂ | Ar) ≥ logD − ℓ(s, r).

Combining Lemma 8, Lemma 9, and Lemma 10, we get

B ≥ I(A1, . . . ,AR; f̂) +
∑
s,r

I(a∗(s, r); f̂ | Ar)

= −(1 + η)
D

S

∑
s,r

ℓ(s, r) +RD log
|V|
D

−2RD log |V|
|V|

− 2RD2

|V|
− ηRD −R− 2R2D2

|V|︸ ︷︷ ︸
lower order term

+ SR logD −
∑
s,r

ℓ(s, r)

= −
(
(1 + η)

D

S
+ 1

)∑
s,r

ℓ(s, r) + SR logD +RD log
|V|
D

− εlot,

where εlot :=
2RD log |V|

|V| + 2RD2

|V| + ηRD +R+ 2R2D2

|V| ≪ RD log |V|
D is a lower order term.

Altogether, we see that in order for all the losses ℓ(s, r) to equal zero, we require

B ≥ SR logD +RD log
|V|
D

− ϵlot ≥ SR logD + (1− c)RD log
|V|
D

Furthermore, when p(s, r) = 1
RS , then L = 1

SR

∑
s,r ℓ(s, r), and the bound becomes

B ≥ −((1 + η)RD +RS) · L+ SR logD +RD log
|V|
D

− εlot

− ((1 + c)RD +RS) · L+ SR logD + (1− c)RD log
|V|
D

E.3 AUXILIARY LEMMAS

Lemma 11. For random variables X,Y, Z,

I(X,Y ;Z) ≥ I(X;Z) + I(Y ;Z)− I(X;Y )

Proof. By standard properties of mutual information:

I(X,Y ;Z)− I(X;Z)− I(Y ;Z)

= H(X,Y )−H(X,Y | Z)−H(X) +H(X | Z)−H(Y ) +H(Y | Z)

= I(X;Y | Z)− I(X;Y )

≥ −I(X;Y ).
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Proof of Lemma 8. By Lemma 11,

I(A1, . . . ,AR; f̂) ≥
∑
r

I(Ar; f̂)−
∑
r

I(Ar;A1, . . . ,Ar−1)

=
∑
r

I(Ar; f̂)−

(∑
r

H(Ar) +H(A1, . . . ,Ar−1)−H(A1, . . . ,Ar)

)
=
∑
r

I(Ar; f̂)−
∑
r

H(Ar) +H(A1, . . . ,AR).

Since each Ar is a uniformly random subset of V , we have H(Ar) = log
(|V|
D

)
. Also, we can bound

H(A1, . . . ,AR) = log

((
|V|
D

)(
|V| −D

D

)
· · ·
(
|V| − (R− 1)D

D

))
.

Thus ∑
r

H(Ar)−H(A1, . . . ,AR) ≤ R log

(|V|
D

)(|V|−(R−1)D
D

)
= R log

|V|!(|V| −RD)!

(|V| −D)!(|V| − (R− 1)D)!

≤ RD log
|V|

|V| −RD

≤ 2R2D2

|V|
,

where we used the bound log 1
1−x ≤ 2x on (0, 1

2 ). Plugging in yields the desired bound.

Proof of Lemma 9. Let (z1, . . . , zD) be a random permutation of Ar. We first aim to relate I(A; f̂)

to I(zi; f̂). By the data processing inequality,

I(Ar; f̂) ≥ I(z1, . . . , zD; f̂).

By Lemma 11,

I(z1, . . . , zD; f̂) ≥
∑
i

I(zi; f̂)−
∑
i

I(zi; z1, . . . , zi−1)

=
∑
i

I(zi; f̂)−
∑
i

H(zi) +H(z1, . . . , zD).

The tuple (z1, . . . , zD) is chosen uniformly at random from VD, conditioned on all the zi being
distinct. Therefore H(zi) = log |V|, and H(z1, . . . , zD) = log (|V| · · · (|V| −D + 1)). Thus∑

i

H(zi)−H(z1, . . . , zD) = log

(
|V|D

|V| · · · (|V| −D + 1)

)

≤ D log
|V|

|V| −D

≤ 2D2

|V|
.

Altogether,

I(Ar; f̂) ≥
∑
i

I(zi; f̂)−
2D2

|V|
.

Next, using the definition of mutual information and Gibbs’ inequality,

I(zi; f̂) = Ezi,f̂

[
log

P(zi | f̂)
P(zi)

]
≥ Ezi,f̂

[
log

q(zi | f̂)
P(zi)

]

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

for any probability distribution q. Let us define q as follows. First, define f̃(s, r) := (1−ϵ)f̂(s, r)+
ϵ

|V|1 ∈ ∆V , for a small constant ϵ to be chosen later. Next, define

q(z | f̂) := 1

S

∑
s

f̃(s, r)z.

Plugging in, and observing that P(zi) = 1
|V| , we get that

I(zi; f̂) ≥ Ezi,f̂

[
log

(
1

S

∑
s

f̃(s, r)zi

)]
+ log |V|.

Define Nz := {s : a∗(s, r) = z}. Let E be the event that |Nz| ≥ M for all z ∈ A. On the event E ,
we can bound

log

(
1

S

∑
s

f̃(s, r)zi

)
≥ log

 1

S

∑
s∈Nzi

f̃(s, r)a∗(s,r)


= log

 1

|Nzi |
∑

s∈Nzi

f̃(s, r)a∗(s,r)

+ log
|Nzi |
S

≥ 1

|Nzi |
∑

s∈Nzi

log f̃(s, r)a∗(s,r) + log
|Nzi |
S

≥ 1

M

∑
s∈Nzi

log f̃(s, r)a∗(s,r) + log
M

S
.

Thus

∑
i∈[D]

log

(
1

S

∑
s

f̃(s, r)zi

)
≥ 1

M

∑
i∈[D]

∑
s∈Nzi

log f̃(s, r)a∗(s,r) +D log
M

S

=
1

M

∑
s∈[S]

log f̃(s, r)a∗(s,r) +D log
M

S

≥ 1− ϵ

M

∑
s∈[S]

log f̂(s, r)a∗(s,r) −
Sϵ

M
log |V|+D log

M

S
.

On E , we have the naive bound

∑
i∈[D]

log

(
1

S

∑
s

f̃(s, r)zi

)
≥ D log

ϵ

|V|
.
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Altogether, we have∑
i∈[D]

I(zi; f̂)

≥ Ezi,f̂

∑
i∈[D]

log

(
1

S

∑
s

f̃(s, r)zi

)+D log |V|

≥ Ezi,f̂

1(E) ·
1− ϵ

M

∑
s∈[S]

log f̂(s, r)a∗(s,r) −
Sϵ

M
log |V|+D log

M

S


+ P(E) ·D log

ϵ

|V|
+D log |V|

≥ 1

M
Ezi,f̂

∑
s∈[S]

log f̂(s, r)a∗(s,r)

− Sϵ

M
log |V|+D log

M

S
+ P(E) ·D log

ϵ

|V|
+D log |V|

= − 1

M
·
∑
s∈[S]

ℓ(s, r)− Sϵ

M
log |V|+D log

M

S
+ P(E) ·D log

ϵ

|V|
+D log |V|

By Bernstein’s inequality and a union bound (a similar such concentration argument was used in the
lower bound proof in Allen-Zhu & Li (2024)), there exists a constant C such that P(E) ≥ 1− δ for

M =
S

D
− C

√
S

D
log(D/δ),

as long as S ≥ D log(D/δ). Set ϵ = 1
|V| , δ = 1

2D log |V| , and define η :=

2C
√

D
S log(2D2 log |V|) ≤ 1. We have that

M

S
=

1

D

(
1− C

√
D

S
log(D/δ)

)
=

1

D

(
1− η

2

)
,

and thus
S

M
=

D

1− η/2
≤ D(1 + η).

Therefore∑
i∈[D]

I(zi; f̂) ≥ −(1 + η)
D

S
·
∑
s∈[S]

ℓ(s, r)− (1 + η)
D log |V|

|V|
+D log

|V|
D

+D log(1− η/2)− 1

≥ −(1 + η)
D

S
·
∑
s∈[S]

ℓ(s, r) +D log
|V|
D

− 2D log |V|
|V|

− ηD − 1.

Altogether, we have

I(Ar; f̂) ≥
∑
i

I(zi; f̂)−
2D2

|V|

≥ −(1 + η)
D

S
·
∑
s∈[S]

ℓ(s, r) +D log
|V|
D

− 2D log |V|
|V|

− 2D2

|V|
− ηD − 1,

as desired.

Proof of Lemma 10. By the definition of mutual information and Gibbs’ inequality,

I(a∗(s, r); f̂ | Ar) = EAr

[
Ea∗(s,r),f̂ |Ar

[
log

P(a∗(s, r) | f̂ ,Ar)

P(a∗(s, r) | Ar)

]]
= EAr

[
Ea∗(s,r),f̂ |Ar

[
logP(a∗(s, r) | f̂ ,Ar)

]]
+ logD

≥ EAr

[
Ea∗(s,r),f̂ |Ar

[
log q(a∗(s, r) | f̂ ,Ar)

]]
+ logD
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where q(· | f̂ ,Ar) is any distribution over V . Let us define q to be

q(a | f̂ ,Ar) ∝ f̂(s, r)a · 1(a ∈ Ar)

Since a∗(s, r) ∈ Ar always, we have that q(a∗(s, r) | f̂ ,Ar) ≥ f̂(s, r)a∗(s,r), and thus

I(a∗(s, r); f̂ | Ar) ≥ EAr

[
Ea∗(s,r),f̂ |Ar

[
log f̂(s, r)a∗(s,r)

]]
+ logD

= ED

[
log f̂(s, r)a∗(s,r)

]
+ logD

= logD − ℓ(s, r).

F TECHNICAL LEMMAS

Lemma 12. Let u, v be drawn uniformly over the d-dimensional sphere of radius 1. Then

E
[
⟨u, v⟩2p

]
≤ (2p)pd−p

Lemma 13 (Hypercontractivity for product distributions). Let f : (Sd−1)k × Rm → R be a poly-
nomial of total degree at most p. Then

∥f∥Lq(ν⊗k
d ⊗µm) ≤ (q − 1)p/2∥f∥L2(ν⊗k⊗µm),

where νd is the uniform distribution over the sphere Sd−1, and µm is the standard Gaussian in m
dimensions.

Hypercontractivity for the Boolean hypercube (which implies hypercontractivity for Gaussian space)
and for the sphere are consequences of Beckner (1975; 1992). To show Lemma 13, one can use
similar techniques to the proof of Corollary 12 in Montanaro (2012).
Lemma 14. Let f : (Sd−1)k × Rm → R be a polynomial of total degree at most p. Assume that
Ef ≥ 0, where the expectation is taken with respect to ν⊗k

d ⊗ µm. Then if

2pe−1 logp(1/δ)Var(f)

(Ef)2
≤ 1,

f ≤ 0 with probability at most δ.

Proof. By Markov’s inequality,

P(f ≤ 0) ≤ P(|f − Ef | ≥ Ef)
≤ P(|f − Ef |q ≥ (Ef)q)

≤ E[|f − Ef |q]
(Ef)q

.

Since f is a degree p polynomial, by Lemma 13 we have that

E[|f − Ef |q]1/q ≤ qp/2Var(f)1/2.

Therefore

P(f ≤ 0) ≤
(
qpVar(f)

(Ef)2

)q/2

.

Setting q = 2 log(1/δ), we see that whenever

2pe−1 logp(1/δ)Var(f)

(Ef)2
≤ 1,

we have

P(f ≤ 0) ≤
(
qpVar(f)

(Ef)2

)q/2

≤ δ,

as desired.
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F.1 HERMITE POLYNOMIALS

Let µ be the standard Gaussian in 1 dimension, and let L2(µ) be the function space of square-
integrable functions with respect to this Gaussian measure. The Hermite polynomials {hk}k≥0

form an orthonormal basis of L2(µ). In particular, hk is a degree k polynomial, satisfying

⟨hi, hk⟩L2(µ) = δij .

One useful property of Hermite polynomials is the following:
Lemma 15. Let u,w ∈ Rd with ∥u∥ = ∥w∥ = 1, and let x ∼ N (0, Id). Then

Ex[hk(⟨u,x⟩)hk(⟨w,x⟩)] = ⟨u,w⟩k.

Next, let µd be the standard Gaussian in d dimensions. The function space L2(µd) has an orthonor-
mal basis of Hermite tensors {Hek}k≥0, where Hek : Rm →

(
Rd
)⊗k

:

Definition 1. Let the kth Hermite tensor Hek : Rm →
(
Rd
)⊗k

be defined as

Hek(x) = (−1)k
∇kµd(x)

µd(x)
,

where µm(x) = (2π)−d/2 exp
(
− 1

2∥x∥
2
)

is the Gaussian density. We remark that each entry of

Hek(x) is a degree k polynomial in x, and

The Hermite tensors satisfy the following useful properties:
Lemma 16 (Properties of Hermite Tensors).

• (Connection to Hermite Polynomials) If w ∈ Rd, ∥w∥ = 1, then

hk(⟨w,x⟩) = ⟨Hek(x),w
⊗k⟩

• (Stein’s Lemma) For x ∼ N (0, Id), f ∈ L2(µd),

Ex[f(x)Hek(x)] = Ex

[
∇kf(x)

]
.
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