
Published as a conference paper at ICLR 2026

TYPHOONMLA: A MIXED NAIVE-ABSORB MLA
KERNEL FOR SHARED PREFIX

Ahmet Caner Yüzügüler, Ahmet Çelik, Jiawei Zhuang & Lukas Cavigelli
Huawei
Switzerland
{ahmet.yuzuguler,ahmet.celik,zhuangjiawei,lukas.cavigelli}@huawei.com

ABSTRACT

Multi-Head Latent Attention (MLA) is a recent attention mechanism adopted in
state-of-the-art LLMs such as DeepSeek-v3 and Kimi K2. Thanks to its novel for-
mulation, MLA allows two functionally equivalent but computationally distinct
kernel implementations: naive and absorb. While the naive kernels (e.g., FlashAt-
tention) are typically preferred in training and prefill for their computational ef-
ficiency, existing decoding kernels (e.g., FlashMLA) rely on the absorb method
to minimize HBM bandwidth usage. However, the compute-bound nature of the
absorb implementations prohibits performance benefits from data reuse opportu-
nities in attention calculations, such as shared prefixes. In this work, we introduce
TyphoonMLA, a hybrid approach that combines naive and absorb formulations
to harness the strengths of both. TyphoonMLA effectively leverages the shared
prefix by applying the naive formulation to the compute-bound parts of attention
calculations, while reducing the bandwidth requirements for non-shared parts by
using the absorb formulation. As a result, TyphoonMLA improves the throughput
of attention calculations in MLA architectures by up to 3× and 3.24× on NPU
and GPUs, and boosts end-to-end throughput by up to 1.48× in tokens per second,
with only a 3% overhead in HBM size.

1 INTRODUCTION

Large Language Models (LLMs) have been widely adopted in various application domains, ranging
from chat assistants (OpenAI, 2023) to coding agents (Chen et al., 2021), thanks to their unprece-
dented language processing and reasoning capabilities. However, their substantial computational
requirements result in slow and inefficient inference, which undermines the user experience and
increases operational costs. Therefore, addressing these computational challenges is essential for
enabling broader adoption and ensuring their sustainable deployment.

To improve the efficiency of LLM inference, a new attention architecture called Multi-Head Latent
Attention (MLA) has recently been introduced (DeepSeek-AI et al., 2024a). In this architecture, the
key and value tensors that hold contextual information from previous tokens, i.e., the KV-cache, are
stored in a low-rank latent space, which helps eliminate memory bandwidth bottlenecks in attention
layers. MLA’s flexibility to merge the latent-space projection layers with matrix multiplication
operations in attention calculations (i.e., absorption trick) makes it possible to implement MLA in
two functionally equivalent but computationally distinct ways, namely, naive and absorb.

In training and prefill, where performance is typically limited by the compute capacity (e.g., the total
throughput of Tensor cores in GPUs), the compute-efficient naive implementation is preferred. In
decode, where the HBM bandwidth dictates the performance, the memory-efficient absorb imple-
mentation is used. As a result, MLA architectures utilize computational resources more effectively
both in training and inference, making them a more efficient alternative to other attention archi-
tectures, such as Multi-Head Attention (MHA) (Vaswani et al., 2017) or Grouped-Query Attention
(GQA) (Ainslie et al., 2023). Consequently, MLA serves as the backbone of various state-of-the-art
LLMs, such as DeepSeek-v3 (DeepSeek-AI et al., 2024b) and Kimi K2 (Bai et al., 2025).

Another promising direction to improve the efficiency of attention kernels is prefix sharing (Juravsky
et al., 2024). In various application scenarios, a portion of the KV-cache is shared across multiple

1



Published as a conference paper at ICLR 2026

queries, creating a data reuse opportunity that can help alleviate memory bottlenecks. For instance,
many of the inference services today employ a system prompt, which is shared among all user
queries to enhance the safety and quality of generated responses. Both official documentation and
recent leaks through prompt-injection attacks have revealed that system prompts used in popular
inference services reach lengths of tens of thousands of tokens (e.g., Claude-4 has a system prompt
of 26k tokens (Johnson, 2025)). Furthermore, parallel reasoning techniques, such as Tree-of-thought
(ToT) (Yao et al., 2023) and Graph-of-thought (GoT) (Besta et al., 2024), as well as the speculative
decoding techniques (Wang et al., 2025a), often result in multiple queries attending to the same part
of the KV-cache, boosting the potential for data reuse in attention computation.

To effectively benefit from this potential data reuse in attention calculations, recent studies have
proposed several MHA and GQA kernel implementations (Yao et al., 2025; Pan et al., 2025; Wang
et al., 2025b). In these designs, the shared parts of the KV-cache are read only once from HBM
and reused across multiple queries, reducing HBM accesses and mitigating memory bandwidth bot-
tlenecks. Although these techniques improve the efficiency and performance of MHA and GQA
kernels, they are not directly applicable to MLA, since the performance of a typical MLA kernel
implementation is limited by computation rather than memory bandwidth. As a result, current MLA
kernels fail to fully exploit the data reuse opportunities available in attention computation.

In this paper, we propose a novel MLA method that effectively leverages data reuse in the shared
parts of the KV-cache to improve the efficiency and performance of attention computation. Our key
observation that leads to the proposed solution lies in the fact that, while the absorb implementa-
tion is preferred in memory-bound regions, the naive implementation becomes more efficient in the
compute-bound regions when the KV-cache is shared across multiple queries, as it requires fewer
floating-point operations than the absorb implementation. Building on this insight, our proposed
MLA method merges the naive and absorb implementations: it uses the naive formulation in the
shared parts of the KV-cache to exploit its computational efficiency and the absorb formulation in
the non-shared parts of the KV-cache to benefit from its memory bandwidth efficiency.

We demonstrate through extensive experiments on GPUs and NPUs that TyphoonMLA substantially
improves resource utilization and offers a speedup of up to 3.2×. Moreover, the proposed method
is compatible with other optimization techniques, such as PagedAttention (Kwon et al., 2023) and
RadixAttention (Zheng et al., 2024), and it supports existing parallelization strategies, such as tensor
and sequence parallelism. Therefore, TyphoonMLA can be effortlessly integrated into popular infer-
ence frameworks, such as vLLM and SGLang. Furthermore, the proposed method is mathematically
equivalent to standard MLA implementations; thus, it does not cause any accuracy degradation and
requires neither training nor fine-tuning.

In short, this paper makes the following contributions:

• We introduce TyphoonMLA, a novel MLA inference method that achieves higher com-
putational efficiency and resource utilization in attention calculations. To the best of our
knowledge, this is the first work that combines both naive and absorb implementations in
MLA calculations.

• We provide a detailed analysis that shows that TyphoonMLA requires fewer floating-point
operations in compute-bound regions and consumes less HBM bandwidth in the memory-
bound regions than existing MLA kernels.

• We conduct a series of experiments on NPUs and GPUs, demonstrating that TyphoonMLA
improves attention throughput by up to 3.2× for DeepSeek-v3 and Kimi K2, with only a
3% overhead in memory footprint.

Our code is open-sourced and publicly available1. Generative AI tools were used to edit and refine
this paper to improve the clarity and quality of writing.

1https://github.com/huawei-csl/TyphoonMLA-community

2



Published as a conference paper at ICLR 2026

WQa

WKVa

RMS 
Norm

Rot. 
Emb.

WKVb1

RMS 
Norm

Rot. 
Emb.

so
ftm

ax

WKVb2 WO

qu
er

ie
s

ou
tp

ut
s

x

x

xWQb

so
ftm

ax

x x

co
m

bi
ne

LS
E

K 
Cache

V 
Cache

Prefill
(naive)

PE 
Cache

noPE 
Cache

Sh
ar

ed Up-
projection

K 
Cache

V 
Cache

PE 
Cache

noPE 
Cache

KV-cache 
in latent space

Prefill
Decode

WQa

WKVa

RMS 
Norm

Rot. 
Emb.

WKVb1

RMS 
Norm

Rot. 
Emb.

so
ftm

ax

WKVb2 WO

qu
er

ie
s

ou
tp

ut
sx

x

xWQb

TyphoonMLA

PE 
Cache

noPE 
Cache

FlashMLA

WQa

WKVa

RMS 
Norm

Rot. 
Emb.

WQb

RMS 
Norm

Rot. 
Emb.

so
ftm

ax

WO

qu
er

ie
s

ou
tp

ut
s

WKVb

x x

FlashAttention

System Prompt

User Prompt 1
User Prompt 2

c) TyphoonMLAa) Naive

b) Absorb

K 
Cache

V 
Cache

N
on

sh
ar

ed

User Prompt 4
User Prompt 3

Figure 1: a) The naive formulation of MLA. b) The absorb formulation of MLA. c) The prefill and
decode stages of TyphoonMLA.

2 BACKGROUND

In this section, we first provide background on MLA and describe its two implementation variants:
naive and absorb. We then discuss prefix sharing in LLM inference and its potential for improving
the efficiency of self-attention kernels in MLA layers.

2.1 MULTI-HEAD LATENT ATTENTION

MLA is an attention mechanism introduced by DeepSeek-v2 and adopted by state-of-the-art
LLMs such as DeepSeek-v3 (DeepSeek-AI et al., 2024b), Kimi K2 (Bai et al., 2025), and Long-
Cat (Meituan et al., 2025). Unlike standard attention mechanisms, MLA employs a low-rank key-
value joint compression mechanism to reduce KV-cache size and bandwidth requirements during in-
ference. Moreover, its novel positional encoding enables the key-value projections to be rearranged
in a way that leads to two computationally distinct implementations, namely naive and absorb.

Naive: The naive implementation of MLA keeps the KV-cache in an uncompressed form. Fig. 1(a)
illustrates the components of MLA in a naive implementation. Therein, after passing through the
rotational embedding and RMS normalization layers, the key and value tensors are decompressed
using the up-projection matrix, denoted as WKV b in the figure. As a result, the K and V caches
consist of multiple attention heads, and the self-attention calculation becomes equivalent to the
standard MHA formulation.

Absorb: The absorb implementation of MLA utilizes the commutative property of matrix multi-
plication to reposition the up-scaling matrix. In absorb formulation, as shown in Fig. 1(b), the up-
projection matrix is split into two submatrices (denoted as WKV b1 and WKV b2) and placed before
and after the query (WQb) and output (WO) projection layers. This formulation allows the KV-cache
to remain in a compressed form, represented as PE and noPE caches in the figure. However, apply-
ing the up-projection matrix to the queries further expands their embedding dimensions, requiring
more floating-point operations in the self-attention calculations. Moreover, the resulting formulation
is incompatible with existing self-attention kernels (e.g., FlashAttention (Dao et al., 2022)), neces-
sitating the development of specialized kernels for MLA layers (e.g., FlashMLA (Jiashi Li, 2025),
ThunderMLA (Spector et al., 2025)).

2.2 PREFIX SHARING

In various inference scenarios, large portions of the KV-cache are shared across multiple queries,
creating opportunities for data reuse. First, modern inference services often employ system prompts

3



Published as a conference paper at ICLR 2026

to enhance the safety and quality of generated responses. These system prompts include tool us-
age instructions, API call descriptions, and even recent news updates after the model’s knowledge
cutoff dates, and can consist of tens of thousands of tokens (Johnson, 2025). Second, recent LLM
reasoning techniques, such as Chain-of-Thought with self-consistency (Wang et al., 2023), Tree-
of-Thought (Yao et al., 2023), and Graph-of-Thought (Besta et al., 2024), reformulate inference as
a tree or graph search, in which multiple branches run in parallel while sharing a common prefix.
Finally, certain speculative decoding techniques (Wang et al., 2025a) require validating multiple
candidate tokens in parallel, which share a long sequence of past tokens. In all these cases, multiple
queries attend to overlapping regions of the KV-cache, offering a significant data reuse opportunity
to improve the efficiency and performance of attention computations.

3 PROPOSED METHOD

In the previous section, we discussed two distinct ways of implementing MLA. In this section, we
provide details about TyphoonMLA, which combines both implementations.

3.1 TYPHOONMLA

As previously discussed, the shared prefix introduces data reuse in the shared parts of the attention
calculations. Building on this insight, TyphoonMLA partitions the attention calculation into low-
and high-arithmetic-intensity components and applies absorb and naive formulations, respectively.
Fig. 1(c) illustrates how TyphoonMLA works.

Prefill: In the prefill stage, a tree-like query structure is formed from the incoming user requests
and a shared prefix (e.g., a system prompt). The queries are processed by the LLM using a prefix-
aware naive kernel, producing PE and noPE caches in the low-rank latent space. The portion of the
PE and noPE caches that corresponds to the shared prefix is then expanded via the up-projection
to form the K and V caches. Consequently, the shared and non-shared parts of the KV-cache are
stored in uncompressed and compressed formats, respectively, enabling the use of both naive and
absorb formulations. Notably, the up-projection incurs no additional computational overhead, as it
is already performed by standard naive kernels during the prefill stage.

Decode: In the decode stage, TyphoonMLA first applies the down-projection layers WQa and
WKV a to the queries, obtaining the q and kv vectors. The q vectors pass through an RMS normaliza-
tion layer, followed by the up-projection layer WQb. The kv vectors are split into two subvectors, one
of which passes through a rotational embedding layer, and the other through an RMS normalization.
All operations up to this point are common to TyphoonMLA, naive, and absorb implementations.

Unlike naive and absorb implementations, TyphoonMLA performs self-attention calculations using
both compressed and uncompressed KV-cache while reusing the shared operations. As described
in Algorithm 1, TyphoonMLA takes the output of WQb up-projection layer (Q), shared KV-cache
in uncompressed form (CK and CV ), non-shared KV-cache in latent form (CN and CR), and KV
up-projection matrices (WKV b1 and WKV b2) as inputs. The input queries Q are first split from their

Algorithm 1 TyphoonMLA Decode Attention Kernel
Require: Queries after WQb proj. and RoPE layers, Q ∈ RB×H×Dqk

Require: Shared KV-cache in uncompressed form, CK ∈ RB×Ls×Dqk , CV ∈ RB×Ls×Dv

Require: Non-shared KV-cache in latent space, CN ∈ RB×Ln×Dl , CR ∈ RB×Ln×Dr

Require: KV up-projection matrices, WKV b1 ∈ RH×Dn×Dl , WKV b2 ∈ RH×Dv×Dl

1: [QN ,QR]← Q ▷ Split Q from dimension Dqk into [Dn, Dr]
2: QR ← RoPE(QR) ▷ Apply positional encoding
3: QK ← [QN ,QR] ▷ Merge after RoPE
4: ON , lN ← softmax(QKCK

⊺)CV ▷ Compute naive component
5: QA ← QNWKV b1

6: OA, lA ← softmax(QAC
⊺
N +QRC

⊺
R)CN ▷ Compute absorb component

7: OA ← OAW
⊺
KV b2

8: O← combine(ON ,OA, lN , lA) ▷ Combine partial outputs using LSEs
9: return O

4



Published as a conference paper at ICLR 2026

Table 1: Computational analysis of naive, absorb, and TyphoonMLA. B: batch size, Sq: query
sequence length, Ls: shared context length, Ln: non-shared context length, H: number of heads,
Dqk: head dim. for Q and K, Dv: head dim for V, Dl: KV LoRA rank, Dn: noPE head dim, Dr:
RoPE head dim. TyphoonMLA always requires smaller memory operations than naive (highlighted
in red ) and fewer multiply-accumulate operations (MACs) than absorb (highlighted in blue ).

MAC DEEPSEEK-V3 (×1024)

NAIVE BSqLsH(Dqk +Dv) +BSqLnH(Dqk +Dv) 40×BLs + 40×BLn

ABSORB BSqLsH(2Dl +Dr) +BSqLnH(2Dl +Dr) 136×BLs + 136×BLn

TYPHOONMLA BSqLsH(Dqk +Dv) +BSqLnH(2Dl +Dr) 40×BLs +136×BLn

HBM R/W DEEPSEEK-V3 (×1024)

NAIVE LsH(Dqk +Dv) +BLnH(Dqk +Dv) 40× Ls + 40×BLn

ABSORB Ls(Dl +Dr) +BLn(Dl +Dr) 0.56× Ls + 0.56×BLn

TYPHOONMLA LsH(Dqk +Dv) +BLn(Dl +Dr) 40× Ls + 0.56×BLn

embedding dimension into two tensors, and a positional encoding is applied. Then, similar to the
naive implementation, the queries are multiplied by the uncompressed K cache, CK , passed through
a softmax function, and multiplied by the V cache, CV . Similar to the absorb implementation, the
queries are first up-projected using the WKV b1 matrix, multiplied by the compressed PE and noPE
caches (CR and CN ), passed through a softmax function, and multiplied again by the noPE cache.
As required by the absorb formulation, the output of the absorb component is then up-projected
once again using the WKV b2 matrix. Finally, the partial results from these two components are
then aggregated using a combine function with the help of the log-sum-exp (LSE) of the softmax
denominators (lN and lA). TyphoonMLA is mathematically equivalent to both absorb and naive
implementations; therefore, it does not require any re-training or fine-tuning.

Fall-back to Absorb: At small batch sizes, when there is insufficient data reuse, the naive imple-
mentation can become less efficient than absorb due to higher memory access costs. To address this,
TyphoonMLA automatically switches to an absorb-only kernel whenever the batch size falls below
a predefined threshold. By doing so, TyphoonMLA avoids any performance penalty at small batch
sizes, ensuring consistently high efficiency across a wide range of batch sizes.

Parallelization: TyphoonMLA is fully compatible with existing parallelization strategies for atten-
tion computation. Although the compressed PE and noPE caches have a single head dimension,
the uncompressed K and V caches can be parallelized across attention heads. Additionally, both
compressed and uncompressed caches can be easily parallelized across the sequence dimension. As
a result, TyphoonMLA seamlessly supports both tensor and sequence parallelism, enabling efficient
scaling across multiple NPUs or GPUs.

3.2 COMPUTATIONAL ANALYSIS

To quantify the potential performance benefits of the proposed method, we derive the computational
requirements of attention calculations in terms of the number of multiply-accumulate operations
(MAC) and the size of memory read/write operations (HBM R/W) for TyphoonMLA, as well as the
naive and absorb formulations. Table 1 summarizes these derivations with respect to architectural
and generation parameters. In the right-most column, we substitute the architectural parameters with
those of the DeepSeek-v3 to facilitate a direct comparison. In our analysis, we consider only self-
attention computations, excluding the projection layers, since self-attention dominates execution
time at long sequence lengths and asymptotically approaches the total runtime.

Since the absorb implementation is typically compute-bound, its performance is primarily deter-
mined by the number of MACs. In contrast, the naive implementation is generally memory-bound,
so its efficiency is dominated by the amount of data read from HBM. Therefore, to maximize overall
performance, TyphoonMLA aims to achieve lower MACs than absorb in compute-bound regions
and fewer HBM read and writes than naive in memory-bound regions.

5



Published as a conference paper at ICLR 2026

Table 1 shows that the naive implementation requires reading (40×Ls +40×BLn)× 1024 words
from HBM. In comparison, TyphoonMLA reads only (40 × Ls + 0.56 × BLn) × 1024 words,
which is the same for the shared portion but approximately 70× smaller for the non-shared portion.
The absorb implementation, typically compute-bound, requires (136×BLs +136×BLn)× 1024
MAC operations. TyphoonMLA, in contrast, requires only (40×BLs +136×BLn)× 1024 MAC
operations, which is the same for the non-shared portion, but 3.4× smaller in the shared portion.
This analysis reveals that TyphoonMLA requires fewer bytes to read from HBM than the naive
formulation in memory-bound regions and fewer MACs than the absorb formulation in compute-
bound regions, reducing the overall computational complexity of attention calculations in MLA.

To combine the partial results of the naive and absorb parts, TyphoonMLA uses a CombineLSE func-
tion, similar to the epilogue stage in Flash Attention (Dao et al., 2022). This function performs only
vector operations and requires reading 2BSqHDv bytes from HBM and performing 2BSqHDv

MAC operations. Since the computational complexity of this function is independent of the KV
sequence length, which typically ranges from hundreds to thousands, its computational overhead is
insignificant compared to the other components of the attention calculations.

For TyphoonMLA to achieve a speedup, reading the shared portion of the KV-cache should be faster
with the naive implementation than computation with the absorb implementation. This happens only
when there is sufficient data reuse, which occurs when the batch size is larger than a threshold. By
equating the memory read time of the naive and the computation time of the absorb implementation
for the shared part of the KV-cache, we identify the batch size threshold, Bθ, in terms of architectural
parameters (defined above) and hardware specifications, namely throughput T and HBM memory
bandwidth M , as follows:

LsH(Dqk +Dv)

M
=

BθSqLsH(2Dl +Dr)

T
=⇒ Bθ =

(Dqk +Dv)

Sq(2Dl +Dr)

T

M
(1)

When the architectural parameters are replaced with those of DeepSeek-v3 and the hardware pa-
rameters with Ascend NPU (T = 376 TOPS/s, M = 1.8 TB/s), we obtain Bθ = 61. This threshold
indicates the break-even point, beyond which TyphoonMLA becomes computationally more effi-
cient than the absorb implementation, whereas, for batch sizes smaller than Bθ, TyphoonMLA falls
back to the absorb kernel to avoid any slowdown.

4 EXPERIMENTS

Building on the complexity analysis presented in Section 3.2, we now provide empirical evidence
to validate the performance benefits of TyphoonMLA. In this section, we evaluate the performance
of TyphoonMLA and compare it against various baselines on NPUs and GPUs. First, we measure
TyphoonMLA’s throughput on popular datasets using DeepSeek-v3 and Kimi K2 with different
system prompts. Next, we examine its performance breakdown to validate our insights. Finally, we
assess TyphoonMLA’s memory footprint and compare it against the absorb baseline.

Experiments on NPUs: We implemented TyphoonMLA for Ascend NPUs using the CANN
toolkit (Huawei, 2024a). For the absorb component of TyphoonMLA, we developed a cus-
tom kernel that supports paged and variable-length KV-cache using the Ascend CATLASS
library (Huawei, 2025). For the naive component of TyphoonMLA, we employed the
NpuFusedInferAttentionScore function from TorchNPU (Huawei, 2024b). For the pro-
jection layers and combine logic, we used TorchNPU’s einsum and vector operators.

To evaluate the impact of system prompt length on performance, we selected three system
prompts with varying lengths, summarized in Table 2. As benchmark datasets, we used the
MMLU (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), and SimpleQA (Wei et al., 2024),
which comprise questions and answers from various topics. We repeat each experiment for batch
sizes of 64, 128, 256, 512, and 1024.

To simulate a realistic deployment scenario, we adopted continuous batching with a paged KV-cache
with a block size of 128. Each experiment starts by randomly sampling questions from a dataset and
forming a batch of queries. At the end of each decode iteration, the completed queries are replaced
with new questions sampled from the dataset. Each experiment is continued until the entire dataset

6



Published as a conference paper at ICLR 2026

0.0

0.1

0.2

0.3
Pr

om
pt

A

No
rm

. T
hr

ou
gh

pu
t

DeepSeek-v3
MMLU

DeepSeek-v3
GSM8K

DeepSeek-v3
SimpleQA

Kimi K2
MMLU

Kimi K2
GSM8K

Kimi K2
SimpleQA

0.00

0.25

0.50

0.75

Pr
om

pt
B

No
rm

. T
hr

ou
gh

pu
t

64 12
8

25
6

51
2

10
24

0.0

0.5

1.0

Pr
om

pt
C

No
rm

. T
hr

ou
gh

pu
t

64 12
8

25
6

51
2

10
24 64 12

8
25

6
51

2
10

24 64 12
8

25
6

51
2

10
24 64 12

8
25

6
51

2
10

24 64 12
8

25
6

51
2

10
24

Batch size

PagedAttentionMLA CATLASS-Absorb TyphoonMLA

Figure 2: Benchmark results on Ascend NPUs. Y-axes represent normalized throughput in terms of
the number of generated tokens per second per layer. Some data points for baselines are missing as
their memory footprint exceeds the HBM capacity.

is processed. The throughput is then calculated by dividing the total number of generated tokens by
the total execution time across all decode iterations. We calculate the speedup as the throughput of
TyphoonMLA divided by the best of the two baselines.

Table 2: System prompts used in the ex-
periments, taken from (Johnson, 2025).

Name LLM service #tokens

Prompt A Claude-4 26472
Prompt B OpenAI/o3 7069
Prompt C Grok/Personas 4759

We run the experiments on an Ascend NPU, equipped
with 24 Davinci cores and 64 GB of HBM memory,
which provides a throughput of 376 TOPS/s in FP16 pre-
cision and an HBM bandwidth of 1.8TB/s. We compared
TyphoonMLA’s throughput with that of the baseline ker-
nels, namely TorchNPU PagedAttentionMLA kernel and
a custom-built CATLASS Absorb-only kernel.

Fig. 2 presents the normalized throughput of Typhoon-
MLA and the baseline methods for the attention layers
of DeepSeek-v3 and Kimi K2. TyphoonMLA consis-
tently outperforms both baselines across all datasets, sys-
tem prompts, and batch sizes, achieving speedups between 1.2× and 3×. As expected, TyphoonMLA
offers the highest speedup with Prompt A, since longer system prompts increase the ratio of shared
to non-shared portions of the KV-cache. We further observe that the speedup is generally higher for
the Kimi K2 than for DeepSeek-v3. This is because the number of attention heads in Kimi K2 is 64,
half of DeepSeek-v3, which makes the former’s performance more sensitive to data reuse. Overall,
these results confirm that TyphoonMLA effectively exploits the shared prefix and delivers consistent
and significant speedups over the existing MLA kernels.

Experiments on GPUs: We also implemented TyphoonMLA using the FlashInfer naive and absorb
MLA kernels (Ye et al., 2025) and repeated our NPU experiments on a GPU. Fig. 3 reports the
normalized throughput of TyphoonMLA on a GPU with a 1 PetaFLOPS/s of theoretical throughput
in FP16, 3.3 TB/s of HBM bandwidth, comparing it against the FlashMLA (Jiashi Li, 2025) and
FlashInfer (absorb-only) baselines at batch sizes of 64, 128, 256, 512, and 1024. TyphoonMLA
achieves higher throughputs than both baselines, with factors up to 3.24×. Similar to the NPU re-
sults, TyphoonMLA accelerates Kimi K2 more than DeepSeek-v3, owing to its smaller number of

7



Published as a conference paper at ICLR 2026

0

100

200

300

400
Pr

om
pt

A

Th
ro

ug
hp

ut
 

(k
To

ke
n/

s)

DeepSeek-v3
MMLU

DeepSeek-v3
GSM8K

DeepSeek-v3
SimpleQA

Kimi K2
MMLU

Kimi K2
GSM8K

Kimi K2
SimpleQA

0

500

1000

Pr
om

pt
B

Th
ro

ug
hp

ut
 

(k
To

ke
n/

s)

64 12
8

25
6

51
2

10
24

0

500

1000

1500

Pr
om

pt
C

Th
ro

ug
hp

ut
 

(k
To

ke
n/

s)

64 12
8

25
6

51
2

10
24 64 12

8
25

6
51

2
10

24 64 12
8

25
6

51
2

10
24 64 12

8
25

6
51

2
10

24 64 12
8

25
6

51
2

10
24

Batch size

FlashMLA FlashInfer TyphoonMLA

Figure 3: Benchmark results on GPU for various batch sizes. Y-axes represent throughput in terms
of the number of generated tokens per second per layer.

Table 3: Token generation rate for DeepSeek-v3 processing MMLU dataset with a batch size of 128
per GPU.

FlashMLA TyphoonMLA

Attention time
(ms)

Total time
(ms)

TGR
(kToken/s)

Attention time
(ms)

Total time
(ms)

TGR
(kToken/s)

Prompt A 99.1 127.2 1.01 58.1 86.3 1.48
Prompt B 34.5 62.6 2.04 25.9 54.0 2.37
Prompt C 26.9 55.0 2.33 22.0 50.1 2.56

attention heads. Moreover, it achieves the highest speedups with Prompt A, as it has the highest
token count. Overall, these results demonstrate that TyphoonMLA generalizes effectively to GPUs,
delivering substantial performance gains across diverse hardware platforms.

Latency Breakdown: To demonstrate how TyphoonMLA accelerates attention computations and
how its components behave under different batch sizes, we profiled its execution using the CANN
toolkit’s msprof tool and compared it against the CATLASS absorb-only baseline. Fig. 4 shows
the execution time breakdown of TyphoonMLA (bars on the left-hand side) and the CATLASS
baseline (bars on the right-hand side). In the figure, we denote the naive and absorb parts of attention
computation in TyphoonMLA as Stage 1, Attn and Stage 2 Attn, respectively; the up and down-
scaling required in the absorb formulation as WKV,B1-proj and WKV,B2-proj; and the combination
logic that merges the intermediate results of both stages as CombineLSE. We excluded the other
linear layers of the attention block, since they are identical across both methods and negligible at
long sequence lengths. In this experiment, we set the shared prefix length to 4096, the non-shared
sequence length of each request to 512, and used the architectural parameters of Kimi K2. Batch
sizes smaller than 128 are omitted, as in these cases, TyphoonMLA falls back to the absorb-only
implementation, becoming identical to the baseline. As the CATLASS baseline is absorb-only, it
contains only Stage 2 components.

The runtime breakdown of TyphoonMLA shows that its performance gains align closely with the
estimates from our theoretical analysis in Section 3.2. At a batch size of 1024, the attention calcu-

8



Published as a conference paper at ICLR 2026

lations in the CATLASS baseline take 6.43 ms, while the naive and absorb parts of TyphoonMLA
take 1.63 ms and 1.06 ms, respectively. Since the non-shared part of attention is identical between
TyphoonMLA and the baseline, we estimate the execution time of the shared part in the baseline as
6.43 − 1.06 = 5.37 ms. The ratio between the execution times of the shared parts in the baseline
and TyphoonMLA is therefore 5.37/1.63 = 3.3, which matches the reduction in the number of
operations between the naive and absorb formulations derived in Section 3.2. These results not only
validate our initial insights and theoretical analysis but also demonstrate that TyphoonMLA’s hybrid
design translates directly into measurable runtime improvements.

128 256 512 1024
Batch Size

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n 
tim

e 
(m

s)

Latency breakdown

Stage 1, Attn
Stage 2, WKV, B1-proj
Stage 2, Attn
Stage 2, WKV, B2-proj
CombineLSE

Figure 4: Latency breakdown of Ty-
phoonMLA (bars on the left-hand side)
and CATLASS absorb-only baseline
(bars on the right-hand side) for Kimi
K2 architecture. Stage 1 and Stage
2 represent the naive and absorb parts
of TyphoonMLA, and have sequence
lengths of 4096 and 512, respectively.

End-to-End Speedup: Previous experimental results
demonstrated that TyphoonMLA significantly accelerates
the attention layers in MLA architectures. However, the
execution time of the other layers in LLMs (e.g., MoE,
collective communication etc.) would remain unchanged.
Therefore, we now investigate the impact of the proposed
method on the end-to-end LLM decoding performance.
To that end, we estimate the token generation rate (TGR)
for DeepSeek-v3 with a batch size of 128 per device on a
system with 128 GPUs by measuring attention layers on
a GPU and using the profiling data for other layers pro-
vided by DeepSeek-AI (Deepseek-AI, 2025).

Table 3 reports the estimated TGR and per-iteration exe-
cution time for both the attention layers and the full model
when using TyphoonMLA, comparing against those with
FlashMLA as the baseline. Since attention computation
constitutes a substantial portion of overall runtime, the
speedup achieved by TyphoonMLA in the attention lay-
ers translates directly into notable end-to-end throughput
gains, reaching up to a 1.48× improvement in tokens per
second.

HBM Footprint: Since TyphoonMLA stores the shared
portion of the KV-cache in an uncompressed form, its
memory footprint differs from that of the absorb base-
lines. To quantify the impact of TyphoonMLA on the memory footprint, we analyze TyphoonMLA’s
HBM usage under various deployment settings and compare it against the absorb baseline. We as-
sume that the model is distributed across 384 NPUs, as in a CloudMatrix cluster (Zuo et al., 2025),
employing full expert parallelism on MoE layers and a combination of data, tensor, and sequence
parallelism of factors 24, 4, and 4, respectively. Fig. 5 shows the HBM size of DeepSeek-v3 for
batch sizes ranging from 4K to 32K and maximum sequence lengths from 32K to 256K, assuming
Prompt A as the shared prefix.

At small batch sizes and sequence lengths, HBM usage is dominated by the model weights, which
are identical for both TyphoonMLA and the absorb baseline. As batch size and sequence length
increase, the KV-cache grows for both methods. However, at large batch sizes and sequence lengths,
the memory occupied by the KV-cache that corresponds to the shared prefix becomes negligible
compared to the non-shared portion, which is identical for both methods. Consequently, Typhoon-
MLA incurs only a minimal HBM overhead, limited to approximately 3% across a wide range of
deployment scenarios.

5 RELATED WORK

LLM Serving Acceleration: Various prior work proposes system-level optimizations for LLM
serving. Orca (Yu et al., 2022) introduced continuous batching, which allows replacing the com-
pleted requests in a batch with new ones to improve effective throughput. Inspired by the OS virtual
memory concept, PagedAttention (Kwon et al., 2023) partitions the KV-cache into memory pages to
efficiently handle KV-cache with variable length. TyphoonMLA supports both continuous batching
and PagedAttention; thus, it benefits from the performance gains of such system-level optimiza-
tions. Furthermore, to distribute LLM inference across multiple devices, existing systems typically

9



Published as a conference paper at ICLR 2026

Absorb
TyphoonMLA

7.80GB
8.05GB

Seq. Length:32K

8.55GB
8.79GB

Seq. Length:64K

10.04GB
10.29GB

Seq. Length:128K

Ba
tc

h:
4K

13.03GB
13.28GB

Seq. Length:256K

Absorb
TyphoonMLA

7.94GB
8.19GB

9.44GB
9.69GB

12.44GB
12.69GB

Ba
tc

h:
8K

18.43GB
18.68GB

Absorb
TyphoonMLA

8.23GB
8.48GB

11.23GB
11.48GB

17.22GB
17.47GB

Ba
tc

h:
16

K

29.21GB
29.46GB

0 20 40 60 80
HBM size (GB)

Absorb
TyphoonMLA

8.81GB
9.06GB

0 20 40 60 80
HBM size (GB)

14.81GB
15.06GB

0 20 40 60 80
HBM size (GB)

26.80GB
27.05GB

0 20 40 60 80
HBM size (GB)

Ba
tc

h:
32

K

50.80GB
51.05GB

Model Size KV Cache Size

Figure 5: HBM footprint comparison for DeepSeek-v3 in FP8 precision for both weights and KV-
cache.

employ tensor (Shoeybi et al., 2019) and sequence (Jacobs et al., 2023) parallelism. TyphoonMLA
also seamlessly supports both types of parallelization, enabling deployment at scale.

Efficient Attention Kernels: As attention computation constitutes a significant portion of the total
execution time of LLM inference, many prior studies focused on developing efficient attention ker-
nels. Flash Attention (Dao et al., 2022) partitions attention computations into tiles that fit on the on-
chip buffers to minimize HBM bandwidth usage. FlashDecoding (Dao, 2024) introduces the Split-K
method to improve the parallelization across GPU cores. Flashinfer (Ye et al., 2025) provides a
customizable attention template to facilitate the development of custom attention kernels. However,
all these techniques are developed for MHA; hence, they are not applicable to MLA. FlashMLA (Ji-
ashi Li, 2025), FlashMLA-ETAP (Dege et al., 2025), and ThunderMLA (Spector et al., 2025) pro-
pose efficient kernel designs for MLA. Unfortunately, these kernels are agnostic to the shared prefix
and an absorb-only implementation; therefore, they can not fully exploit hardware resources.

Prefix Sharing: Several prior works (e.g., SGLang, Hydragen etc.) have proposed techniques to
exploit shared prefixes in attention calculations and KV-cache management (Juravsky et al., 2024;
Zheng et al., 2024). Other frameworks (e.g., FlashInfer-Cascade, FastTree etc.) developed special-
ized MHA/GQA GPU kernels for tree-structured KV-caches to leverage the data reuse introduced
by shared prefixes (Ye et al., 2024a; Zhu et al., 2024; Ye et al., 2024b; Yao et al., 2025; Pan et al.,
2025; Wang et al., 2025b). However, these kernel designs target MHA/GQA architectures and aim to
reduce HBM bandwidth usage. Consequently, they are not applicable to MLA, whose decode stage
is typically compute-bound. In contrast, TyphoonMLA addresses this gap by reducing the number
of FLOPS required in the compute-bound decode stage of MLA, achieving substantial speedups.
Moreover, the mechanisms to handle complex tree-structured KV-caches introduced by the prior
work would be equally applicable to both naive and absorb implementations. Therefore, applying
these techniques to TyphoonMLA would be trivial.

6 CONCLUSIONS

In this paper, we proposed a novel MLA method, TyphoonMLA, which combines the naive and ab-
sorb implementations to effectively exploit shared prefixes in the KV-cache. Our theoretical analysis
showed that, in the presence of a shared prefix, TyphoonMLA requires fewer FLOPS in compute-
bound parts and smaller HBM bandwidth in memory-bound parts of the attention calculations than
the existing MLA kernels. Experimental results on NPUs and GPUs show that TyphoonMLA im-
proves attention throughput by up to 3.2× on DeepSeek-v3 and Kimi K2 models, while incurring
only a minimal increase in HBM footprint.

10



Published as a conference paper at ICLR 2026

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and
Sumit Sanghai. GQA: training generalized multi-query transformer models from multi-head
checkpoints. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pp. 4895–4901. Association for Computational Linguistics, 2023. doi:
10.18653/V1/2023.EMNLP-MAIN.298. URL https://doi.org/10.18653/v1/2023.
emnlp-main.298.

Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru Chen,
Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong, Angang Du,
Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao, Hongcheng
Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang Guo, Hao
Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu, Zhenxing
Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin, Yongsheng
Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao Li, Yiwei
Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin Liu, Chenyu
Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu, Tianwei Liu,
Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe Lu, Lijun Lu,
Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo Miao, Siyuan
Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi, Feifan Song,
Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng Teng, Chensi
Wang, Dinglu Wang, Feng Wang, and Haiming Wang. Kimi K2: open agentic intelligence.
CoRR, abs/2507.20534, 2025. doi: 10.48550/ARXIV.2507.20534. URL https://doi.org/
10.48550/arXiv.2507.20534.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Giani-
nazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoe-
fler. Graph of thoughts: Solving elaborate problems with large language models. In Michael J.
Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference on Ar-
tificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pp. 17682–17690. AAAI Press,
2024. doi: 10.1609/AAAI.V38I16.29720. URL https://doi.org/10.1609/aaai.
v38i16.29720.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural

11

https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.48550/arXiv.2507.20534
https://doi.org/10.48550/arXiv.2507.20534
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168


Published as a conference paper at ICLR 2026

Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

Deepseek-AI. Profiling Data in DeepSeek Infra, 2025. URL https://github.com/
deepseek-ai/profile-data.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi
Deng, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li,
Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, Hao Zhang, Hanwei Xu, Hao
Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai
Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue
Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming
Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou,
Shuiping Yu, Shunfeng Zhou, Size Zheng, Tao Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L.
Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q.
Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang
Chen, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Zihan Wang, and et al. Deepseek-v2: A strong,
economical, and efficient mixture-of-experts language model. CoRR, abs/2405.04434, 2024a.
doi: 10.48550/ARXIV.2405.04434. URL https://doi.org/10.48550/arXiv.2405.
04434.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Ji-
aqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong
Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li,
Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian,
Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du,
R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu
Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. Deepseek-
v3 technical report. CoRR, abs/2412.19437, 2024b. doi: 10.48550/ARXIV.2412.19437. URL
https://doi.org/10.48550/arXiv.2412.19437.

Pengcuo Dege, Qiuming Luo, Rui Mao, and Chang Kong. Flashmla-etap: Efficient transpose at-
tention pipeline for accelerating MLA inference on NVIDIA H20 gpus. CoRR, abs/2506.01969,
2025. doi: 10.48550/ARXIV.2506.01969. URL https://doi.org/10.48550/arXiv.
2506.01969.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Huawei. CANN Community Edition, 2024a. URL https://www.hiascend.com/en/
software/cann/community.

Huawei. Ascend Extension for PyTorch, 2024b. URL https://gitee.com/ascend/
pytorch.

Huawei. Ascend CATLASS, 2025. URL https://gitee.com/ascend/catlass.

12

http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://github.com/deepseek-ai/profile-data
https://github.com/deepseek-ai/profile-data
https://doi.org/10.48550/arXiv.2405.04434
https://doi.org/10.48550/arXiv.2405.04434
https://doi.org/10.48550/arXiv.2412.19437
https://doi.org/10.48550/arXiv.2506.01969
https://doi.org/10.48550/arXiv.2506.01969
https://openreview.net/forum?id=d7KBjmI3GmQ
https://www.hiascend.com/en/software/cann/community
https://www.hiascend.com/en/software/cann/community
https://gitee.com/ascend/pytorch
https://gitee.com/ascend/pytorch
https://gitee.com/ascend/catlass


Published as a conference paper at ICLR 2026

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Shuaiwen Leon Song,
Samyam Rajbhandari, and Yuxiong He. Deepspeed ulysses: System optimizations for enabling
training of extreme long sequence transformer models. CoRR, abs/2309.14509, 2023. doi: 10.
48550/ARXIV.2309.14509. URL https://doi.org/10.48550/arXiv.2309.14509.

Shengyu Liu Jiashi Li. Flashmla: Efficient mla decoding kernels. https://github.com/
deepseek-ai/FlashMLA, 2025.

Á. Johnson. System Prompts Leaks, 2025. URL https://github.com/asgeirtj/
system_prompts_leaks.

Jordan Juravsky, Bradley C. A. Brown, Ryan Ehrlich, Daniel Y. Fu, Christopher Ré, and Aza-
lia Mirhoseini. Hydragen: High-throughput LLM inference with shared prefixes. CoRR,
abs/2402.05099, 2024. doi: 10.48550/ARXIV.2402.05099. URL https://doi.org/10.
48550/arXiv.2402.05099.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine Kaufmann,
and Jonathan Mace (eds.), Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023, pp. 611–626. ACM, 2023. doi: 10.1145/
3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

Meituan, Bei Li, Bingye Lei, Bo Wang, Bolin Rong, Chao Wang, Chao Zhang, Chen Gao, Chen
Zhang, Cheng Sun, et al. Longcat-flash technical report. arXiv preprint arXiv:2509.01322, 2025.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Zaifeng Pan, Yitong Ding, Yue Guan, Zheng Wang, Zhongkai Yu, Xulong Tang, Yida Wang, and
Yufei Ding. Fasttree: Optimizing attention kernel and runtime for tree-structured llm inference.
In Eighth Conference on Machine Learning and Systems, 2025.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. CoRR, abs/1909.08053, 2019. URL http://arxiv.org/abs/1909.08053.

Benjamin Spector, Aaryan Singhal, Dan Fu, and Chris Ré. ThunderMLA: Flashmla,
faster and fuseder!, 2025. URL https://hazyresearch.stanford.edu/blog/
2025-03-04-thundermla.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Jikai Wang, Yi Su, Juntao Li, Qingrong Xia, Zi Ye, Xinyu Duan, Zhefeng Wang, and Min Zhang.
Opt-tree: Speculative decoding with adaptive draft tree structure. Trans. Assoc. Comput. Lin-
guistics, 13:188–199, 2025a. doi: 10.1162/TACL\ A\ 00735. URL https://doi.org/10.
1162/tacl_a_00735.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=1PL1NIMMrw.

Zhibin Wang, Rui Ning, Chao Fang, Zhonghui Zhang, Xi Lin, Shaobo Ma, Mo Zhou, Xue
Li, Zhongfeng Wang, Chengying Huan, Rong Gu, Kun Yang, Guihai Chen, Sheng Zhong,
and Chen Tian. Flashforge: Ultra-efficient prefix-aware attention for LLM decoding. CoRR,

13

https://doi.org/10.48550/arXiv.2309.14509
https://github.com/deepseek-ai/FlashMLA
https://github.com/deepseek-ai/FlashMLA
https://github.com/asgeirtj/system_prompts_leaks
https://github.com/asgeirtj/system_prompts_leaks
https://doi.org/10.48550/arXiv.2402.05099
https://doi.org/10.48550/arXiv.2402.05099
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.48550/arXiv.2303.08774
http://arxiv.org/abs/1909.08053
https://hazyresearch.stanford.edu/blog/2025-03-04-thundermla
https://hazyresearch.stanford.edu/blog/2025-03-04-thundermla
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1162/tacl_a_00735
https://doi.org/10.1162/tacl_a_00735
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw


Published as a conference paper at ICLR 2026

abs/2505.17694, 2025b. doi: 10.48550/ARXIV.2505.17694. URL https://doi.org/10.
48550/arXiv.2505.17694.

Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
John Schulman, and William Fedus. Measuring short-form factuality in large language models.
CoRR, abs/2411.04368, 2024. doi: 10.48550/ARXIV.2411.04368. URL https://doi.org/
10.48550/arXiv.2411.04368.

Samuel Williams, Andrew Waterman, and David A. Patterson. Roofline: an insightful visual
performance model for multicore architectures. Commun. ACM, 52(4):65–76, 2009. doi:
10.1145/1498765.1498785. URL https://doi.org/10.1145/1498765.1498785.

Jinwei Yao, Kaiqi Chen, Kexun Zhang, Jiaxuan You, Binhang Yuan, Zeke Wang, and Tao Lin. Deft:
Decoding with flash tree-attention for efficient tree-structured LLM inference. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025. URL https://openreview.net/forum?id=2c7pfOqu9k.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html.

Lu Ye, Ze Tao, Yong Huang, and Yang Li. Chunkattention: Efficient self-attention with prefix-
aware KV cache and two-phase partition. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 11608–11620.
Association for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.ACL-LONG.623.
URL https://doi.org/10.18653/v1/2024.acl-long.623.

Zihao Ye, Ruihang Lai, Bo-Ru Lu, Chien-Yu Lin, Size Zheng, Lequn Chen, Tianqi Chen, and Luis
Ceze. Cascade inference: Memory bandwidth efficient shared prefix batch decoding, 2024b.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen,
Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, et al. Flashinfer: Efficient and customizable
attention engine for llm inference serving. arXiv preprint arXiv:2501.01005, 2025.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:
A distributed serving system for transformer-based generative models. In Marcos K. Aguil-
era and Hakim Weatherspoon (eds.), 16th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022, pp. 521–538.
USENIX Association, 2022. URL https://www.usenix.org/conference/osdi22/
presentation/yu.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark W. Barrett, and Ying Sheng.
Sglang: Efficient execution of structured language model programs. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html.

Lei Zhu, Xinjiang Wang, Wayne Zhang, and Rynson W. H. Lau. Relayattention for efficient
large language model serving with long system prompts. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pp. 4945–4957. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
ACL-LONG.270. URL https://doi.org/10.18653/v1/2024.acl-long.270.

14

https://doi.org/10.48550/arXiv.2505.17694
https://doi.org/10.48550/arXiv.2505.17694
https://doi.org/10.48550/arXiv.2411.04368
https://doi.org/10.48550/arXiv.2411.04368
https://doi.org/10.1145/1498765.1498785
https://openreview.net/forum?id=2c7pfOqu9k
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://doi.org/10.18653/v1/2024.acl-long.623
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
http://papers.nips.cc/paper_files/paper/2024/hash/724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html
https://doi.org/10.18653/v1/2024.acl-long.270


Published as a conference paper at ICLR 2026

Pengfei Zuo, Huimin Lin, Junbo Deng, Nan Zou, Xingkun Yang, Yingyu Diao, Weifeng Gao, Ke Xu,
Zhangyu Chen, Shirui Lu, Zhao Qiu, Peiyang Li, Xianyu Chang, Zhengzhong Yu, Fangzheng
Miao, Jia Zheng, Ying Li, Yuan Feng, Bei Wang, Zaijian Zong, Mosong Zhou, Wenli Zhou,
Houjiang Chen, Xingyu Liao, Yipeng Li, Wenxiao Zhang, Ping Zhu, Yinggang Wang, Chuanjie
Xiao, Depeng Liang, Dong Cao, Juncheng Liu, Yongqiang Yang, Xiaolong Bai, Yi Li, Huaguo
Xie, Huatao Wu, Zhibin Yu, Lv Chen, Hu Liu, Yujun Ding, Haipei Zhu, Jing Xia, Yi Xiong,
Zhou Yu, and Heng Liao. Serving large language models on huawei cloudmatrix384. CoRR,
abs/2506.12708, 2025. doi: 10.48550/ARXIV.2506.12708. URL https://doi.org/10.
48550/arXiv.2506.12708.

15

https://doi.org/10.48550/arXiv.2506.12708
https://doi.org/10.48550/arXiv.2506.12708


Published as a conference paper at ICLR 2026

1/4 1/2 1 2 4 8 16 32 64 128 256 512
Batch size

103

104

105

106

Th
ro

ug
hp

ut
 (Q

To
ke

ns
/s

)

DeepSeekv3

1/4 1/2 1 2 4 8 16 32 64 128 256 512
Batch size

Kimi-K2

Naive Roofline
Absorb Roofline

Figure 6: Roofline analysis of the naive and absorb implementations for DeepSeek-v3 and Kimi K2
models with a memory bandwidth of 1.8 TB/s and a cube throughput of 400 TFLOPS/s.

A APPENDIX

A.1 ROOFLINE ANALYSIS

To analyze the computational characteristics of the naive and absorb implementations in the pres-
ence of a shared prefix, we plot the roofline model (Williams et al., 2009) of an AI accelerator for
DeepSeek-v3 and Kimi K2 under both implementations, as shown in Fig.6. The y-axis in the plots
represents throughput, calculated as the number of query tokens processed per second by the MLA
kernel, while the x-axis represents the batch size, which determines the number of operations per
byte (i.e., the operational intensity). The roofline model has two regions of operation: a bandwidth-
limited region, where performance is limited by memory bandwidth due to insufficient operational
intensity, and a compute-bound region, where performance is limited by the computational capacity
of a processor, such as the total throughput of the cube units in NPUs and GPUs.

As expected, the absorb implementation provides higher throughput at low operational intensities
thanks to the reduced memory bandwidth usage resulting from the compressed KV-cache stored in
latent space. As batch size increases and operational intensity rises, the throughput of the absorb
implementation does not improve further. For DeepSeek-v3, performance remains flat once the
compute-bound region is reached, while for Kimi K2, throughput quickly saturates beyond a batch
size of two. Thus, increasing operational intensity does not improve the performance of absorb
implementations, as they are typically compute-bound.

In contrast, the naive implementation greatly benefits from the increasing operational intensity and
achieves higher throughputs, as it is typically memory-bound at small batch sizes due to the un-
compressed KV-cache. At batch sizes larger than 64, where significant data reuse occurs, the naive
implementation achieves up to 3.4× higher throughput than the absorb implementation, thanks to
its lower number of required operations. This analysis indicates that, although the absorb imple-
mentation is advantageous at low operational intensities, the naive implementation offers superior
performance when sufficient operational intensity is present. These observations motivate our pro-
posed kernel, which combines both approaches to maximize efficiency and performance across both
compute and memory-bound regions of MLA calculations.

A.2 THEORETICAL ANALYSIS OF TYPHOONMLA

In this section, we visualize the computational characteristics of the naive and absorb formulations
using the computational model presented in Table 1. Fig. 7 depicts the estimated execution time of
the absorb implementation, naive implementation, and TyphoonMLA for varying batch sizes.

In the shared context part of the attention calculations, the execution time of the absorb formulation
increases linearly with the batch size, since its execution is compute-bound. In contrast, the execu-
tion time of the naive formulation remains constant until the batch size of 128, since its execution is
memory-bound and the memory bandwidth usage does not change with the batch size in the shared

16



Published as a conference paper at ICLR 2026

1 2 4 8 16 32 64 128 256
Batch Size

0.0

0.2

0.4

0.6
Ex

ec
ut

io
n 

Ti
m

e 
(m

s)

Shared Context 
 (Cs = 4096, Cn = 0)

Naive
Absorb
TyphoonMLA

1 2 4 8 16 32 64 128 256
Batch Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Nonshared Context 
 (Cs = 0, Cn = 128)
Naive
Absorb
TyphoonMLA

1 2 4 8 16 32 64 128 256
Batch Size

0.0

0.5

1.0

1.5

Full Context 
 (Cs = 4096, Cn = 128)

Naive
Absorb
TyphoonMLA

Figure 7: Theoretical analysis of Naive, Absorb, and TyphoonMLA.

prefix part of the KV-cache. Therefore, although faster at small batch sizes, the absorb becomes
slower than the naive at batch sizes larger than 64. Therefore, TyphoonMLA switches from absorb
to naive implementation at the batch size of 64 in order to achieve minimum execution time over the
full range of batch sizes.

In the non-shared context part of the attention calculations, the absorb is always faster than naive.
Therefore, TyphoonMLA employs the absorb implementation at all batch sizes. As a result of the
combination of the two stages, TyphoonMLA is identical to the absorb implementation at batch sizes
lower or equal to 64, beyond which the computational benefits of the naive implementation weighs
in and makes TyphoonMLA significantly faster than the absorb baseline.

A.3 SENSITIVITY TO BATCH SIZE

To analyze how different components of TyphoonMLA benefit from data reuse, we profile Typhoon-
MLA and the baseline methods on an Ascend NPU across a range of batch sizes during the execution
of DeepSeek-v3. Fig.8 shows the execution time of the shared part, non-shared part, and the overall
attention calculation. Consistent with the complexity analysis in Section 3.2, the absorb baseline
outperforms the naive baseline at small batch sizes in the shared part of the attention calculations
due to the reduced memory bandwidth requirements of the compressed KV-cache in latent space,
as shown in Fig.8(a). As the batch size increases, the execution time of the absorb baselines grows
nearly linearly, while the naive baseline remains about the same, thanks to improved operational
intensity. Around a batch size of 64, the naive baseline becomes faster than the absorb. To maintain

1 2 4 8 16 32 64 128 256 512
Batch Size

0

1

2

3

4

5

Ke
rn

el
 E

xe
c.

 T
im

e 
(m

s)

Shared Prefix
Naive (TorchNPU)
Absorb (Catlass)
Absorb (TorchNPU)
TyphoonMLA

(a) Shared part of MLA

1 2 4 8 16 32 64 128 256 512
Batch Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 Non-shared
Naive (TorchNPU)
Absorb (Catlass)
Absorb (TorchNPU)
TyphoonMLA

(b) Non-shared part of MLA

1 2 4 8 16 32 64 128 256 512
Batch Size

0

1

2

3

4

5

6

7 Full
Naive (TorchNPU)
Absorb (Catlass)
Absorb (TorchNPU)
TyphoonMLA

(c) Full execution

Figure 8: Performance breakdown of TyphoonMLA and the baselines on Ascend NPUs for
DeepSeek-v3, assuming a shared prefix of length 4096 and a query length of 128. Execution time
of individual components is measured using the CANN toolkit’s msprof tool.

17



Published as a conference paper at ICLR 2026

optimal performance across all batch sizes, TyphoonMLA switches from the absorb-only implemen-
tation to the mixed naive-absorb kernel once the batch size exceeds this cut-off point.

Fig.8(b) shows the execution time of TyphoonMLA and the baseline methods for the non-shared
part of the attention calculations. Since this part does not contain any shared prefix, increasing the
batch size does not improve the operational intensity; hence, the absorb implementations remain
faster than the naive across all batch sizes. Consequently, TyphoonMLA consistently employs the
absorb implementation for the non-shared part. When these two portions are combined, as shown in
Fig.8(c), TyphoonMLA behaves identically to the absorb baseline up to the cut-off batch size of 64,
beyond which TyphoonMLA outperforms the absorb baseline, achieving a speedup of up to 2× at
the batch size of 512. These results confirm that TyphoonMLA’s performance gains primarily arise
from exploiting the shared portion of the KV-cache.

18


	Introduction
	Background
	Multi-Head Latent Attention
	Prefix Sharing

	Proposed Method
	TyphoonMLA
	Computational Analysis

	Experiments
	Related Work
	Conclusions
	Appendix
	Roofline Analysis
	Theoretical Analysis of TyphoonMLA
	Sensitivity to batch size


