
Colored Noise in PPO: Improved Exploration and
Performance Through Correlated Action Sampling

Jakob Hollenstein1,3 Georg Martius3,4 Justus Piater1,2
1Department of Computer Science, Universität Innsbruck, Innsbruck, Austria

2Digital Science Center, Universität Innsbruck, Innsbruck, Austria
3 Max Planck Institute for Intelligent Systems, Tübingen, Germany

4 Department of Computer Science, Eberhard Karls University, Tübingen, Germany
{jakob.hollenstein,justus.piater}@uibk.ac.at

georg.martius@uni-tuebingen.de

Abstract

Proximal Policy Optimization (PPO), a popular on-policy deep reinforcement
learning method, employs a stochastic policy for exploration. In this paper, we
propose a colored noise-based stochastic policy variant of PPO. Previous research
highlighted the importance of temporal correlation in action noise for effective
exploration in off-policy reinforcement learning. Building on this, we investigate
whether correlated noise can also enhance exploration in on-policy methods like
PPO. We discovered that correlated noise for action selection improves learning per-
formance and outperforms the currently popular uncorrelated white noise approach
in on-policy methods. Unlike off-policy learning, where pink noise was found to
be highly effective, we found that a colored noise, intermediate between white and
pink, performed best for on-policy learning in PPO. We examined the impact of
varying the amount of data collected for each update by modifying the number of
parallel simulation environments for data collection and observed that with a larger
number of parallel environments, more strongly correlated noise is beneficial. Due
to the significant impact and ease of implementation, we recommend switching to
correlated noise as the default noise source in PPO.

1 Introduction

Exploration plays a crucial role in deep reinforcement learning, particularly in continuous action
space applications like robotics, where the number of states and actions is infinite. In the continuous
action space setting, exploration is typically achieved by introducing variability around the mean
action proposed by the policy. For instance, deterministic off-policy algorithms such as TD3 [6] and
DDPG [11] use additive action noise, while stochastic off-policy algorithms such as SAC [7] and
MPO [1] employ a Gaussian distributed policy to sample actions and induce variation. On-policy
algorithms such as TRPO [18] and PPO [19] follow a similar approach by sampling variations from a
Gaussian distribution.

While previous research [9, 4, 17] has emphasized the importance of temporal correlation in action
noise for exploration in off-policy algorithms, on-policy algorithms such as PPO do not incorporate
correlated action noise and instead sample uncorrelated variations from a Gaussian distributed policy.

PPO, as an on-policy deep reinforcement learning algorithm, offers several advantages over off-policy
algorithms: by not relying on replay buffers, on-policy algorithms exhibit fewer instabilities due
to distributional shift between the distribution of previously collected data and the current policy-
induced distribution. Moreover, on-policy algorithms mitigate Q-function divergence issues since the
policy evaluation can leverage data collected under the current policy. These benefits make on-policy

16th European Workshop on Reinforcement Learning (EWRL 2023).

methods particularly advantageous when environment samples are inexpensive to obtain. However,
exploration in on-policy methods needs to be induced by changes to the environment (exploration
reward) or by changes to the policy itself, as, by definition, on-policy methods learn from data
induced by the current policy. Consequently, altering the exploration technique without changing the
environment implies a change in the policy distribution.

Contributions In this paper, we introduce and empirically evaluate a modification to PPO incor-
porating temporally correlated colored noise into the stochastic policy’s distribution. Utilizing the
re-parameterization trick, we maintain a Gaussian distributed behavior while injecting correlated
noise instead of uncorrelated noise. The correlated noise is parameterized by its color β.

Our experiments demonstrate that adopting colored noise enhances performance in the majority of
tested environments. Surprisingly and in contrast to previous research on off-policy methods, where
Eberhard et al. [4] found pink noise to perform best, we found the optimal colored noise for improved
performance — for the on-policy method PPO — to lie between white and pink noise (β = 0.5, see
Sec. 2). Furthermore, as the number of parallel data collection environments increases, we observe
a trend towards more correlated noise. However, for the benchmarks considered in this work, our
results indicate that utilizing about four parallel environments, resulting in 8192 samples per update
step (see Sec. H for the relation of Nsteps and Nenv), together with noise in between white and pink
noise, is the most efficient approach.

1.1 Related Work

Reinforcement learning is a promising technique for solving complex control problems. An important
milestone for the development of deep reinforcement learning was the work of Mnih et al. [12]
showing human level performance of reinforcement learning on the Atari Games benchmark. In
contrast to the Atari Games benchmarks which has complicated observation spaces but discrete action
spaces, reinforcement learning for robotic applications has to deal with continuous action spaces,
for example in the benchmarks provided by Tassa et al. [20], where the task is to control simulated
robots. Because the action selection process is more complicated in continuous spaces, policy search
methods [23] are favored. This includes off-policy methods such as DDPG [11], TD3 [6], MPO [1]
or SAC [7] which can learn from arbitrary data and on-policy methods such as TRPO [18] and PPO
[19] which iteratively improve the policy using data collected by the current iteration of the policy.
On-policy methods exhibit better convergence properties and behave more stably but require larger
amounts of training data.

Exploration, the problem of discovering better action sequences, is of pivotal importance in RL and is
tackled in many ways. Amin et al. [2], Ladosz et al. [10] and Yang et al. [24] provide recent surveys
of the exploration research landscape in deep reinforcement learning. In this work, we turn to the
simple yet effective method which forms the backbone of most RL algorithms: undirected noisy
exploration.

In off-policy methods, exploration is often achieved by perturbing the action selection process, for
example by perturbing the parameters of the policy [15] or by additively perturbing the action,
i.e., by adding action noise. This action perturbation can be done, for example, using temporally
uncorrelated Gaussian noise, or temporally correlated noise generated by an Ornstein-Uhlenbeck
process [22]. Previous research has shown that temporal correlation of actions, i.e., Gaussian noise vs.
Ornstein-Uhlenbeck noise can be beneficial or harmful for state-space coverage and policy learning,
but that this depends on the task environment and its dynamics [8, 9]. Another method for temporally
correlated perturbations was introduced by Raffin et al. [17] where the “action noise” is generated
deterministically by a function only dependent on the state, but the function parameters are randomly
changed after a number of steps.

While different environments respond differently to the temporal correlation of noise,
Eberhard et al. [4] found pink noise to act as a kind of middle ground between uncorrelated white
Gaussian noise, and correlated Brownian-motion-like noise, e.g., red noise and Ornstein-Uhlenbeck
noise. This middle ground, while not always the perfect choice, was found to be a much better default
choice.

Petrazzini and Antonelo [14] propose to improve exploration by changing the policy distribution of
PPO from a Gaussian distribution to a Beta distribution. Similarly, we propose to change the policy

2

distribution of PPO, but instead of a Beta distribution we propose to keep the Gaussian distribution
and bias the sampling to be temporally correlated using a colored-noise process.

Algorithmic details and hyperparameter choices are known to be important for PPO and were
empirically analyzed by Andrychowicz et al. [3] and Engstrom et al. [5]. Similarly, we performed
a comprehensive empirical evaluation of the impact of different noise correlation settings and the
setting of parallel data collection. From this evaluation, we recommend switching the default noise
process to a correlated noise process with β = 0.5.

2 Method

2.1 Colored Noise

Colored noise is a class of noise that exhibits temporal correlation and is characterized by a change of
1
fβ in its power spectral density (PSD) components, where f denotes the frequency and β determines
the “color” of the noise. The power spectral density (PSD) of a sequence consists of the squared
magnitude of the frequency components of the sequence’s Fourier transform. Given sequences of
noise samples τ (i)ε = {ε(i)1 , . . . ε

(i)
T }, and the power spectral density of each sequence |F(τ (i)ε)|2, the

expected PSD is calculated by averaging over each trajectory’s PSD: Ei[|F(τ (i)ε)|2].
Uncorrelated noise is called white noise and has a constant, flat line, expected power spectral density
(β = 0). The expected PSD of pink noise decreases with 1/f (β = 1) and for red noise the decrease
happens at a rate of 1/f2 (β = 2).

The effect of sampling actions from colored noise processes of different colors can be exemplified by
a velocity controlled robot that can take steps of various sizes in the x and y directions. The paths
taken by the robot, when the steps are controlled by noise, depend on the correlation of the noise.
The position (xt, yt) of the robot is the result of integrating over the noise sequence. Examples of
such integrated sequences, random walks, for colored noises of different β coefficients are shown in
Figure 1. Brownian motion, for example, exhibits red noise (β = 2) characteristics and is itself the
result of integrating white noise (β = 0) over time.

Colored noise can be generated in the time domain by drawing white noise samples and applying
an autoregressive filter or directly in the frequency domain by sampling the frequency components
accordingly. In our work we use the latter approach, by building on an implementation by Patzelt [13]
and adapted by Eberhard et al. [4] following an algorithm by Timmer and König [21]. We generate
colored noise sequences of length τ : τε = {ε1, . . . , ετ}. Sampling action noise is then implemented
as consuming the items from this sequence. Sec. C for further details.

2.2 PPO

PPO is a popular on-policy reinforcement learning algorithm that utilizes a policy gradient approach
to optimize the policy. To avoid learning instabilities, PPO aims to prevent large policy updates.
As an on-policy algorithm, PPO collects trajectories by interacting with the environment using the

−25 0 25

−40

−20

0

20

40
β = 0.0 White

−25 0 25

β = 0.5

−25 0 25

β = 1.0 Pink

−25 0 25

β = 2 Red

Figure 1: Two-dimensional random walks caused by colored noise of different β. Lower β values
cause more energy in high frequency parts of the power spectral density, causing the random walk to
change direction more frequently and thus causing more local and less global exploration. Higher
values of β result in more energy in the lower frequencies of the power spectral density. This translates
to random walks that change direction less frequently, and thus explore more globally.

3

Figure 2: Benchmark environments: (top) Mountain Car, Cartpole Balance, Cartpole Swingup, Ball
in Cup (Catch), (bottom) Hopper Hop, Cheetah Run, Walker Run, Reacher Hard, Pendulum Swingup,

current policy. Advantages are then computed for these data and the policy is updated. For the next
policy improvement, new data is collected. The number of data points collected for each update is a
hyperparameter.

The action selection process uses a policy network that outputs the mean (µt) and standard devia-
tion (σt) of a Gaussian distribution. An action is then sampled from this distribution:

at ∼ N (µt, σt). (1)

Using the re-parameterization trick, this is re-written:

at = µt + εt · σt; εt ∼ N (0, 1). (2)

Instead of sampling εt from a white noise Gaussian process, the default in PPO, we propose to use a
colored noise Gaussian process, similar to the approach of Eberhard et al. [4] for off-policy methods.

The generated noise samples ε(i)t still show Gaussian distributions at each time step (Figure A.1b).
Because we modify the ε in µ+ σ · ε and εt remains Gaussian, the data collection, viewed at each
individual step, remains asymptotically on-policy. However, while the marginal stays Gaussian, the
two-step correlation of εt vs. εt+1 changes with β (Figure A.1a). In this paper, we empirically
evaluate the impact of this correlation due to the use of colored noise.

3 Experiments

We perform an empirical evaluation of the impact of colored noise on the performance of PPO. To this
end we perform training runs, repeated with 20 independent seeds, on the benchmarks Ball in Cup
(Catch), Cartpole Balance, Cartpole Swingup, Cheetah Run, Hopper Hop, Mountain Car, Pendulum
Swingup, Reacher Hard and Walker Run. We vary the noise color β ∈ {−1 (blue), 0 (white), 0.2,
0.5, 0.75, 1 (pink), 1.25, 2 (red) } and test different numbers of parallel collection environments
Nenvs ∈ {1, 2, 4, 8, 16, 32, 64, 128}. This results in a total of 11520 experiments. See Sec. E for
further details.

3.1 Evaluation Details

We train each agent for a total of 2 048 000 time steps and evaluate every 10240 steps, resulting in 200
evaluation points. At each evaluation point, 50 evaluation episodes are performed. We average the
mean returns collected at each evaluation point, forming an estimate that captures the area under the
learning curve, and refer to this as the performance. Evaluation results are grouped by environment
and standardized to zero mean and unit variance to control for the impact of the environments. We
combine these standardized results by averaging across different environments and seeds.

3.1.1 Does Colored-Noise Affect the Performance of PPO?

Adding action-noise to the action selection process creates a divergence between the action distribution
of the policy and the actual action distribution, i.e., it induces a difference between the distribution of
the data the undisturbed policy would collect, compared to the policy disturbed by additive action

4

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

β Color

−0.4

−0.2

0.0

0.2

0.4

N
or

m
al

iz
ed

A
ve

ra
ge

R
et

ur
n

Figure 3: Performance averaged across Environments: Correlated noise β = 0.5 significantly
outperforms the default white noise (β = 0, Sec. F) used by PPO. The bars indicate the 95%
bootstrapped confidence intervals.

noise. Similarly, modifying the action selection process, by changing ε in (2), can potentially break
the learning process, as on-policy algorithms operate under the assumption that the collected data
match the distribution induced by the policy.

In this experiment, we compare how the learning performance (area under the learning curve, averaged
across environments, Sec. 3.1) of PPO reacts to a modified action selection process: to the use of
correlated noise (β ̸= 0) as compared to the standard case of using uncorrelated noise (β = 0).
Figure 3 shows the performance averaged across the different environments and across the different
numbers of parallel data collection environments. Results for each environment are standardized to
control for differences in reward scale. The mean performance, and 95% confidence intervals of the
mean, are depicted. The confidence intervals are estimated using (bias-corrected and accelerated)
bootstrapping. The results indicate a significant effect of the correlation of the noise. This is in line
with previous findings highlighting an impact of action-noise correlation on learned performance
[9, 4]. The results depicted in Figure 3 show an overall preference for colored noise at β = 0.5,
which lies between white noise (β = 0) and pink noise (β = 1). This contrasts with the results in
off-policy learning, where β = 1 was found to be superior across many environments [4]. On-policy
methods assume matching state-visitation frequencies between the collected data and what the current
policy would induce. More correlated noise induces larger state space coverage [9] and thus a larger
deviation from the states the deterministic-mean-action policy would visit. Thus, a potential reason
for this difference in noise color preference is that increasing the state-space coverage, by increasing
the noise correlation, increases the distributional shift between the data and policy-induced marginal
state-visitation frequencies.

In summary, we found colored noise to have a significant impact on learned policy performance
averaged across environments, with β = 0.5 performing best.

3.1.2 Is β = 0.5 a Better Default for PPO?

The default stochastic policy for PPO relies on uncorrelated noise sampled from a Gaussian distribu-
tion. The results shown in Figure 3 indicate that across environments β = 0.5 performs best. Previous
research found an environment specific response to action noise correlation for purely noisy policies
[8], as well as learning performance in off-policy methods [9, 4]. In accordance with these earlier
results, we found the best β∗ to vary depending on the environment. Table 1 lists the best performing
β∗ for each environment. In addition, we perform Welch t-tests to compare the performance of β∗ to
each β ∈ {0.5, 0.0, 1.0}. This shows that β = 0.5 performs comparable to β∗ in 5/9 environments.
In contrast, the current default β = 0 is significantly outperformed by β∗ in six environments and
only performs comparable in 3/9 environments. The best default found for off-policy learning, pink
noise (β = 1.0), is significantly outperformed in five out of nine cases and performs comparable in
4/9 environments. We therefore recommend switching the default from temporally uncorrelated noise
β = 0 to temporally correlated noise β = 0.5.

5

Environment β∗ Noise Color β = 0.5 p0.5 β = 0.0 p0.0 β = 1.0 p1.0

Cartpole Balance 0.00 White ✗ 0.04 ✓ – ✗ 0.01
Cheetah Run 0.00 White ✓ 0.14 ✓ – ✗ 0.01
Reacher Hard 0.00 White ✗ 0.01 ✓ – ✗ 0.01
Cartpole Swingup 0.50 ✓ – ✗ 0.03 ✗ 0.01
Ball in Cup (Catch) 0.75 ✓ 0.90 ✗ 0.01 ✓ 0.96
Hopper Hop 0.75 ✓ 0.68 ✗ 0.01 ✓ 0.09
Pendulum Swingup 0.75 ✓ 0.92 ✗ 0.04 ✗ 0.03
Walker Run 1.00 Pink ✗ 0.01 ✗ 0.01 ✓ –
Mountain Car 1.25 ✗ 0.01 ✗ 0.01 ✓ 0.45
Table 1: Optimal noise color per environment. ✓ vs. ✗ indicate whether each fixed β ∈ {0.5, 0.0, 1.0}
performs comparable to β∗ (✓) or is significantly (Welch t-test) outperformed by β∗ (✗). The p-values
are listed in p0.5, p0.0 and p1.0. β = 0.5 performs favorable (✓5/9) and improves over the current
default of white noise β = 0 (✓3/9)

3.1.3 How Does the Number of Parallel Collection Environments Affect the Performance?

On-policy methods are less efficient with respect to environment interaction samples compared
to off-policy methods. This makes on-policy methods particularly interesting when environment
samples are cheap to collect and can be collected in parallel. We collected environment samples
with different numbers of parallel environments Nenvs ∈ {1, 2, 4, 8, 16, 32, 64, 128} and kept the
number of total environment interactions (total time steps) constant across experiments. With each
of the parallel environments, 2048 samples are collected as the dataset for each update cycle. Thus,
depending on the number of environments, more (or less) samples are used for each update. Because
the total number of samples is limited (Sec. 3.1) this implies fewer (or more) updates in total. Figure 4
indicates that a larger number of parallel environments negatively affects performance. This is in line
with findings by Andrychowicz et al. [3], who also found that the most beneficial number of parallel
environments is dependent on the environment type. In our study, we find that about four parallel
environments are preferable. This translates to a preference for about 2048 · 4 = 8192 samples in
each update if the episode lengths are small enough to fit the 2048 step limit. In summary, we found
8192 samples per update, collected by four environments in parallel, to perform most efficiently for
the investigated class of tasks.

1 2 4 8 16 32 64 128

n-Environments

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

A
ve

ra
ge

R
et

ur
n

Figure 4: Performance averaged across environments and noise colors: the number of parallel data
collection environments has a significant impact on the performance. Bootstrapped 95% confidence
intervals for the mean are shown. With Nenv = 4 achieving the highest performance, though not
significantly outperforming Nenv = 8

6

11111111 22222222 44444444 88888888 1616161616161616 3232323232323232 6464646464646464 128128128128128128128128

Number of parallel Envs.

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

N
oi

se
C

ol
or
β

(a) Marker size represents averaged performance
(scaled to the sixth power to highlight differences)

11111111 22222222 44444444 88888888 1616161616161616 3232323232323232 6464646464646464 128128128128128128128128

Number of parallel Envs.

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

-1

0
0.2

0.5

0.75

1

1.25

2

N
oi

se
C

ol
or
β

(b) Marker size represents rank of averaged perfor-
mance within the same number of environments

Figure 5: Preferred noise color depends on number of environments: Average performance across
environment, impact of noise color β combined with n-envs number of parallel environments: (a) A
trend is visible: the averaged performance is larger for larger β when more collection environments
are used, but the decline due to the number of environments outweighs this trend. (b) Ranks of
average performance are indicated by circle size, ranks are calculated across noise-colors but within
the same number of environments. The positive trend between number of environments and larger β
is clearly visible.

3.1.4 How Does the Number of Parallel Collection Environments and Noise Color Interact?

The previous section indicated that the learning performance is impacted by the number of parallel
collection environments and hence the size of the dataset used in each update cycle. We found a
significant difference between the noise preference in off-policy methods (β = 1.0) and PPO as an
on-policy method (β = 0.5). Since off-policy methods showed a preference for a larger β (β = 1)
and off-policy methods employ a replay buffer, and thus have access to more samples in each update,
this begs the question: does the number of samples used in each PPO update show any interaction
with the preferred noise type β?

Figure 5a shows the average performance across environments depending on the number of collection
environments (x) and noise color (y). A positive association between larger β (more correlated noise)
and larger number of environments Nenv becomes visible. This trend is more discernible when the
performances for each noise color are compared separately for each number of parallel collection
environments. Figure 5b shows the rank of the average performance, separately ranked for each color:
a larger number of environments leads to favorable performance of more correlated noise, indicating
that with larger samples (i.e., larger Nenv), more exploration is beneficial. However, in combination
with the finding from Sec. 3.1.3, we find the best performing configuration as β = 0.5, Nenvs = 4.

3.1.5 Why Do Larger β Work Better for Larger Nenv?

In the previous section we showed that, grouping for each Nenv and comparing the different β within
each group, there is a tendency for better performance in larger β values when Nenv was increased.

Larger β values lead to more correlated perturbation sequences {ε1, . . . εT } and, since many environ-
ments feature integrative dynamics, larger state space coverage [4, 9]. While this is beneficial for
acquiring new information, it also implies that the samples are more spread out and that the density
around the mean actions proposed by the policy is smaller. Similarly, a systematic non-zero bias
would prevent the policy from collecting on-policy data and would lead to learning instability.

We measured the bias, as the mean across each sequence of {ε1, . . . , εT }, for different β and found
that, while there is no systematic bias (= 0) for all β, the spread of the bias increases with β
(Figure 6a). The resulting standard deviation of the bias as a function of β is shown in Figure 6b.

7

0.0 0.5 1.0 1.5 2.0

Noise Color β

−3

−2

−1

0

1

2

3

B
ia

s
(M

ea
n)

(a) Distribution of the bias in εt, calculated by the mean
across sequences of perturbations {ε0, . . . , εT }, as a
function of the noise color β.

0.0 0.5 1.0 1.5 2.0

Noise Color β

0.0

0.1

0.2

0.3

St
d.

de
v.

of
Tr

aj
ec

to
ry

B
ia

s

(b) Standard deviation of the bias in {ε0, . . . , εT }, cal-
culated as the standard deviations over the biases in (a)
as a function of noise color β.

Figure 6: Increasing the noise color β, increases the correlation in the perturbations and the spread of
the bias of each noise sequence.

11111111 22222222 44444444 88888888 1616161616161616 3232323232323232 6464646464646464 128128128128128128128128

Number of parallel Envs.

−1.00

0.00
0.20

0.50

0.75

1.00

1.25

2.00

−1.00

0.00
0.20

0.50

0.75

1.00

1.25

2.00

−1.00

0.00
0.20

0.50

0.75

1.00

1.25

2.00

−1.00

0.00
0.20

0.50

0.75

1.00

1.25

2.00

−1.00

0.00
0.20

0.50

0.75

1.00

1.25

2.00

−1.00

0.00
0.20

0.50

0.75

1.00

1.25

2.00

−1.00

0.00
0.20

0.50

0.75

1.00

1.25

2.00

−1.00

0.00
0.20

0.50

0.75

1.00

1.25

2.00

N
oi

se
C

ol
or
β

Empirical
Predicted

Figure 7: Performance rank, viewed separately for each number of parallel environments. Results
from our empirical analysis are compared to a projected best noise color. Larger numbers of parallel
environments decrease the variance of the bias, allowing for larger β.

When Nenv is increased, more sequences of {ε1, . . . , εT } are pooled. This results in a decrease of
the variance of the bias of the collected sample σN = σ√

Nenv
. We can estimate a standard deviation

σ̂(β,Nenv) of the bias for a given β and Nenv, by combining σ(β), the standard deviation of the bias
as a function of β (Figure 6b), and the reduction due to the sample size 1√

Nenv
.

We assume that the variance of the bias was optimal for the best performing β for each Nenv. We
estimate this optimal variance of the bias σ∗ as the average of σ̂(n, β) for the best performing
β (Table 2).

We calculate the difference between all combinations and the optimal combination:
Eij = (σ∗ − σ̂(βi, Nj))

2 and rank these differences Eij separately for each Nenv (Figure 7). We find
a trend closely matching the performance ranking: larger variance due to larger β is compensated by
larger number of environments (and thus samples). The theoretical best β for each Nenv (Figure 7)
closely follows our empirical observation (Figure 5b).

This indicates, that the increased variance in the bias due to larger β is compensated by larger Nenv and
since generally more exploration (i.e, larger β) would be favorable to collect more diverse samples,
the set of best trade-off configurations of (β,Nenv) shows a positive correlation between β and Nenv.

8

4 Conclusion

In this work, we performed a comprehensive empirical evaluation of temporally correlated colored
noise in the on-policy method PPO. The temporal correlation of colored noise can be seen in the
power spectral density (PSD) of the noise sequence: the PSD varies with 1/fβ , where β determines
the color of the noise. By employing the re-parameterization trick ε is sampled from a Gaussian
distributed, yet temporally correlated, noise source. We evaluated on a set of standard benchmark
tasks and found the average expected policy performance was significantly improved when switching
from the default uncorrelated white noise source (β = 0) to a correlated noise (β = 0.5) between
white and pink noise (β = 1). We evaluated different numbers of parallel collection environments
and found that too large or too small numbers of parallel collection environments hinder learning
performance (with n = 4 performing best in our evaluation). We found that with an increase in
parallel collection environments, more correlated noise performs better. We recommend correlated
colored noise (β = 0.5) for on-policy learning as a more efficient default than white noise.

Acknowledgments We want to thank Onno Eberhard and Samuele Tosatto for helpful feedback
on earlier revisions of this text. Georg Martius is a member of the Machine Learning Cluster of
Excellence, EXC number 2064/1 – Project number 390727645.

9

References
[1] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and

Martin Riedmiller. Maximum a Posteriori Policy Optimisation. arXiv:1806.06920 [cs, math,
stat], June 2018. http://arxiv.org/abs/1806.06920.

[2] Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Precup. A Survey
of Exploration Methods in Reinforcement Learning. CoRR, abs/2109.00157, September 2021.
http://arxiv.org/abs/2109.00157.

[3] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël
Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain
Gelly, and Olivier Bachem. What Matters for On-Policy Deep Actor-Critic Methods? A
Large-Scale Study. In International Conference on Learning Representations, January 2021.
https://openreview.net/forum?id=nIAxjsniDzg.

[4] Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius. Pink Noise Is All
You Need: Colored Noise Exploration in Deep Reinforcement Learning. In The Eleventh
International Conference on Learning Representations, February 2023. https://openreview.
net/forum?id=hQ9V5QN27eS.

[5] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep RL: A case study on PPO
and TRPO. In International Conference on Learning Representations, 2020. https://
openreview.net/forum?id=r1etN1rtPB.

[6] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error
in Actor-Critic Methods. In International Conference on Machine Learning, pages 1587–1596.
PMLR, October 2018. http://arxiv.org/abs/1802.09477.

[7] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-
Critic Algorithms and Applications. arXiv:1812.05905 [cs, stat], January 2019. http://
arxiv.org/abs/1812.05905.

[8] Jakob Hollenstein, Matteo Saveriano, Auddy Sayantan, Erwan Renaudo, and Justus Piater. How
does the type of exploration-noise affect returns and exploration on Reinforcement Learning
benchmarks? In Austrian Robotics Workshop 2021, Vienna, Austria, pages 22–26, June 2021.
https://iis.uibk.ac.at/public/papers/Hollenstein-2021-ARW.pdf.

[9] Jakob Hollenstein, Sayantan Auddy, Matteo Saveriano, Erwan Renaudo, and Justus Pi-
ater. Action Noise in Off-Policy Deep Reinforcement Learning: Impact on Exploration
and Performance. Transactions on Machine Learning Research, November 2022. ISSN
2835-8856. https://openreview.net/forum?id=NljBlZ6hmG&referrer=%5BAuthor%
20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions).

[10] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep rein-
forcement learning: A survey. Inf. Fusion, 85:1–22, 2022. doi: 10.1016/j.inffus.2022.03.003.
https://doi.org/10.1016/j.inffus.2022.03.003.

[11] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In Proc. 4th Int. Conf. Learning Representations, (ICLR), 2016. http://arxiv.org/abs/
1509.02971.

[12] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, February 2015. ISSN 0028-0836, 1476-4687. doi:
10.1038/nature14236. http://www.nature.com/articles/nature14236.

[13] Felix Patzelt. Felixpatzelt/colorednoise. https://github.com/felixpatzelt/
colorednoise, June 2019.

10

http://arxiv.org/abs/1806.06920
http://arxiv.org/abs/2109.00157
https://openreview.net/forum?id=nIAxjsniDzg
https://openreview.net/forum?id=hQ9V5QN27eS
https://openreview.net/forum?id=hQ9V5QN27eS
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
https://iis.uibk.ac.at/public/papers/Hollenstein-2021-ARW.pdf
https://openreview.net/forum?id=NljBlZ6hmG&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
https://openreview.net/forum?id=NljBlZ6hmG&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
https://doi.org/10.1016/j.inffus.2022.03.003
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://www.nature.com/articles/nature14236
https://github.com/felixpatzelt/colorednoise
https://github.com/felixpatzelt/colorednoise

[14] Irving G. B. Petrazzini and Eric A. Antonelo. Proximal Policy Optimization with Continuous
Bounded Action Space via the Beta Distribution. In 2021 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pages 1–8, December 2021. doi: 10.1109/SSCI50451.2021.9660123.

[15] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
https://openreview.net/forum?id=ByBAl2eAZ.

[16] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. http://jmlr.org/papers/v22/20-1364.
html.

[17] Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement
learning. In Aleksandra Faust, David Hsu, and Gerhard Neumann, editors, Conference on
Robot Learning, 8-11 November 2021, London, UK, volume 164 of Proceedings of Machine
Learning Research, pages 1634–1644. PMLR, 2021. https://proceedings.mlr.press/
v164/raffin22a.html.

[18] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust Region
Policy Optimization. In Proceedings of the 32Nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, pages 1889–1897, Lille, France, 2015.
JMLR.org. http://dl.acm.org/citation.cfm?id=3045118.3045319.

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. CoRR, abs/1707.06347, 2017.

[20] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin
Riedmiller. DeepMind Control Suite. arXiv:1801.00690 [cs], January 2018. http://arxiv.
org/abs/1801.00690.

[21] J. Timmer and M. König. On generating power law noise. Astron. Astrophys, 300:707–710,
1995.

[22] George E. Uhlenbeck and Leonard S. Ornstein. On the theory of the Brownian motion. Physical
review, 36(5):823, 1930.

[23] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992. http://link.springer.com/
article/10.1007/BF00992696.

[24] Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Jianye Hao, Zhaopeng Meng, Peng Liu,
and Zhen Wang. Exploration in Deep Reinforcement Learning: A Comprehensive Survey.
CoRR, abs/2109.06668, July 2022. doi: 10.48550/arXiv.2109.06668. http://arxiv.org/
abs/2109.06668.

11

https://openreview.net/forum?id=ByBAl2eAZ
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://proceedings.mlr.press/v164/raffin22a.html
https://proceedings.mlr.press/v164/raffin22a.html
http://dl.acm.org/citation.cfm?id=3045118.3045319
http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1801.00690
http://link.springer.com/article/10.1007/BF00992696
http://link.springer.com/article/10.1007/BF00992696
http://arxiv.org/abs/2109.06668
http://arxiv.org/abs/2109.06668

A Colored-Noise Properties

Noise samples drawn from a colored-noise process are correlated between time steps when β > 0.

−2 0 2

εt

−2

0

2

ε t
+

1

β = 0

−2 0 2

εt

−2

0

2

ε t
+

1

β = 0.5

−2 0 2

εt

−2

0

2

ε t
+

1

β = 1.0

(a) Probability of εt vs. εt+1: subsequent noise samples are correlated when β > 0. (left) β = 0, (middle)
β = 0.5 (right) β = 1.0

0 25 50 75 100

t steps

−2

0

2

ε

β = 0

0 25 50 75 100

t steps

−2

0

2

ε

β = 0.5

0 25 50 75 100

t steps

−2

0

2

ε

β = 1.0

(b) Averaging over sequences of εt shows εt is Gaussian distributed at each step. The noise color does not
influence marginal distribution properties.

Figure A.1: While colored noise shows increasing two-step correlation between εt and εt+1 with
increasing β, the marginal distribution of εt at each time step remains Gaussian.

B Best β for Nenv

Nenv β Average Performance

1 0.5 0.44
2 0.5 0.87
4 0.5 1.04
8 0.75 0.97

16 0.75 0.81
32 0.75 0.28
64 1.25 -0.36

128 1.25 -0.71

Table 2: Noise color β associated with the best average perfor-
mance across environments. The listed performances were stan-
dardized to zero mean and unit variance for each environment.

12

C Colored noise generation

We build on the algorithm by Timmer and König [21] as implemented by Patzelt [13], Eberhard et al.
[4]: we generate noise sequences τε = {ε1 . . . ετ} of a pre-defined length τ . See Algorithm 1. In our
experiments, we use sequences of length τ = 1000, regenerating the whole sequence when all items
are consumed.

Algorithm 1 Generating Colored Noise using Inverse Fourier Transform

1: procedure GENERATECOLOREDNOISE(N, β)
2: L← ⌊N/2⌋
3: f ← { 1

N , 1
N , . . . , i

N , . . . , L
N } ▷ Frequencies of components 0 . . . L

4: s← {. . . , f − β/2
i , . . .} ▷ Calculate scales

5: wL ←
{
sL, if L is odd
sL/2, otherwise

6: w ← {s1, . . . sL−1, wL}
7: σ ← 2

N ·
√∑

w2
i

8: α = {. . . , αi, . . .} : αi ∼ N (0, si) ▷ Real part
9: β = {. . . , βi, . . .} : βi ∼ N (0, si) ▷ Imaginary part

10: α0 ∼ N (0, s0 ·
√
2)

11: β0 ← 0

12: αL ∼
{
N (0, s0 ·

√
2), if odd

N (0, s0), otherwise

13: βL ∼ N (0, s0) ·
{
0, if odd
1, otherwise

14: γ ← {. . . , γi, . . .} : γi = αi + iβi

15: τε = F−1[γ] · 1/σ
16: return τε ▷ Return noise sequence of length N
17: end procedure

D Benchmark Environments

Table 3: Environment name used throughout the paper and exact
spec-id used with gym

Environment Gym Spec.

Mountain Car MountainCarContinuous-v0
Ball in Cup (Catch) dm2gym.envs:Ball_in_cupCatch-v0
Cartpole Balance dm2gym.envs:CartpoleBalance_sparse-v0
Cartpole Swingup dm2gym.envs:CartpoleSwingup_sparse-v0
Cheetah Run dm2gym.envs:CheetahRun-v0
Hopper Hop dm2gym.envs:HopperHop-v0
Pendulum Swingup dm2gym.envs:PendulumSwingup-v0
Reacher Hard dm2gym.envs:ReacherHard-v0
Walker Run dm2gym.envs:WalkerRun-v0

13

E Hyperparameters & Experiment Details

We use the PPO implementation by Raffin et al. [16].

Table 4: Hyperparameters used in our experiments and default
values used by the PPO implementation [16] when different.

Param. Value Default

lr 0.00025 0.0003
n-steps 2048
batch-size 128 64
n-epochs 10
gamma 0.99
gae-lambda 0.95
clip-range 0.2
normalize-advantage True
ent-coef 0
vf-coef 0.5
max-grad-norm 0.5
use-sde False
sde-sample-freq -1
stats-window-size 100

F Colored Noise β = 0 matches Vanilla PPO

0.0 Vanilla

β = 0 & Vanilla

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

N
or

m
al

iz
ed

A
ve

ra
ge

R
et

ur
n

Figure F.1: Gaussian noise as used in vanilla PPO corresponds to white (β = 0) colored noise.
Thus, the two algorithms are equivalent: Due to slightly different code paths minor deviations in
performance estimates are expected, but the confidence intervals largely overlap and thus there is no
significant difference between β = 0 and the vanilla PPO implementation.

14

G Final Returns & Performance

Final Return Performance
mean max mean max

env

Ball in Cup (Catch) 685.85 966.92 500.22 869.97
Cartpole Balance 742.18 1000.00 608.22 976.19
Cartpole Swingup 126.55 843.10 75.24 627.93
Cheetah Run 222.70 558.55 139.34 351.39
Hopper Hop 5.44 77.86 2.39 34.25
Mountain Car 66.92 98.33 61.88 93.53
Pendulum Swingup 338.21 885.04 205.43 678.91
Reacher Hard 266.71 935.94 139.72 613.31
Walker Run 105.10 473.11 69.66 194.53

Table 5: Return of the final policy (Final Return), mean/max across noise colors and number of
parallel collection environments. Return averaged across training (Performance), mean/max across
noise colors and number of parallel collection environments

15

H Update Size Matters: Nenv vs. Nsteps

In this work we found Nenv = 4 to perform best. This has to be viewed in combination with
Nsteps = 2048, which is the default value for the used implementation. Note that the environments
used in our experiments have an episode length < Nsteps and thus, the relevant quantity is the update
size (Nenv ·Nsteps). This is confirmed by the experiment in Figure H.1. Which shows the main results
(filtered by β = 0.5) and additional experimental results (β = 0.5) over various Nenv ∈ {2, 4, 8}
and matching changes in Nsteps ∈ {4096, 2048, 1024} to keep the overall update size at 8192. The
results indicate that the change of Nenv vs. Nsteps (when keeping the total update size constant), are
not significant.

2/
40

96

4/
20

48

8/
10

24

1/
20

48

2/
20

48

4/
20

48

8/
20

48

16
/2

04
8

32
/2

04
8

64
/2

04
8

12
8/

20
48

n-env / n-steps

−1.0

−0.5

0.0

0.5

1.0

N
or

m
al

iz
ed

A
ve

ra
ge

R
et

ur
n

n-steps/n-env Analysis
Main Results β = 0.5

Figure H.1: Analysis of the impact of Nenv vsNsteps for β = 0.5: When the total sample
size is investigated (Nenv · Nsteps), the influence of Nenv and Nsteps appears not significant (for
Nsteps > episode length).

I Nepochs vs β

In this experiment we analyze the impact of varying Nepochs ∈ {5, 10, 20} where 10 is the default
used in the main experiments. Figure I.1 shows that the color preference for β = 0.5 does not appear
to change significantly with variation in Nepochs. The experiments were performed with Nenv = 4 on
the same environments and seeds as before. Halving Nepochs reduces the performance, while doubling
the number of epochs does not appear to have a significant impact on the color preference.

16

5/
0
.2

0

5/
0
.5

0

5/
0
.7

5

10
/0
.2

0

10
/0
.5

0

10
/0
.7

5

20
/0
.2

0

20
/0
.5

0

20
/0
.7

5

n-epochs / β

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

A
ve

ra
ge

R
et

ur
n

Figure I.1: Analysis of the impact of Nepochs vs. β on performance. β ∈ {0.2, 0.5, 0.75}, Nenv = 4
and Nepochs ∈ {5, 10, 20}. The color preference does not appear to change significantly with variations
in Nepochs.

17

J Final Returns per β

Table 6: Final Return per β and Nenvs. β = 0 is equivalent to the vanilla PPO implementation. Mean
across seeds is reported.

β -1.00 0.00 0.20 0.50 0.75 1.00 1.25 2.00 Vanilla
env n-envs

Ball in Cup (Catch) 1 701.4 833.4 843.5 811.4 721.8 308.4 356.1 290.8 811.4
2 826.3 816.7 900.4 863.6 798.3 751.1 376.5 386.4 888.5
4 887.7 936.8 929.1 922.8 829.2 861.8 584.3 393.3 926.6
8 886.6 933.2 921.9 930.4 887.7 766.8 793.4 403.4 896.8

16 799.0 881.0 932.2 938.6 906.4 913.8 922.3 385.8 884.8
32 570.2 575.2 829.0 907.4 929.0 891.9 832.6 532.3 488.4
64 451.5 146.5 349.4 721.5 688.3 753.8 855.9 664.3 140.0

128 225.7 126.0 133.5 218.7 306.0 574.7 733.8 743.2 127.4
Cartpole Balance 1 820.6 981.2 1000.0 1000.0 810.1 691.5 171.1 51.0 973.4

2 902.7 992.5 1000.0 1000.0 998.2 983.6 637.7 59.4 997.2
4 892.3 1000.0 1000.0 1000.0 999.0 988.1 799.1 49.0 998.4
8 762.2 996.7 1000.0 986.1 1000.0 999.4 743.8 89.0 1000.0

16 221.3 1000.0 1000.0 990.8 1000.0 1000.0 723.8 35.4 1000.0
32 153.9 990.7 1000.0 1000.0 1000.0 1000.0 901.3 96.7 1000.0
64 115.0 967.3 1000.0 1000.0 1000.0 920.8 860.2 418.3 1000.0

128 99.5 865.7 771.4 569.9 525.6 319.4 322.7 225.3 711.4
Cartpole Swingup 1 45.0 275.8 347.6 221.1 29.6 15.2 8.6 3.3 239.5

2 55.6 404.4 534.2 337.8 146.9 25.1 26.3 10.2 268.8
4 27.4 469.8 488.0 501.7 113.6 70.0 24.4 7.2 461.3
8 27.5 407.5 393.8 365.3 118.8 29.0 19.7 13.9 430.5

16 39.0 372.1 328.5 320.9 159.9 55.9 29.8 19.8 264.0
32 11.9 119.1 235.0 264.7 149.5 71.9 38.6 10.3 191.4
64 4.5 19.8 23.1 72.0 35.8 46.7 28.2 15.7 16.6

128 0.7 6.1 7.0 5.4 9.0 14.0 5.8 14.0 4.1
Cheetah Run 1 220.8 279.5 242.9 184.6 145.6 95.3 99.9 124.6 240.0

2 273.5 327.2 316.8 290.0 206.2 170.3 152.3 162.2 331.4
4 311.6 357.2 357.3 311.6 326.8 299.0 239.6 217.2 337.7
8 314.2 368.1 330.3 320.7 348.4 350.9 320.1 223.5 362.6

16 289.9 334.3 328.6 354.5 338.4 323.7 297.5 200.5 358.8
32 204.4 276.2 294.7 296.4 254.2 230.3 166.5 100.0 242.8
64 147.8 118.5 178.6 182.2 166.7 93.1 70.3 39.9 131.7

128 84.2 123.5 128.9 104.9 87.1 64.8 45.9 37.8 127.2
Hopper Hop 1 3.7 2.4 1.6 4.3 3.4 0.4 1.0 2.0 2.4

2 3.7 1.2 2.5 3.0 4.0 5.0 2.3 2.5 1.7
4 9.5 5.2 3.3 14.1 7.9 6.5 9.2 9.0 6.5
8 4.9 5.9 12.1 16.2 28.7 10.3 9.9 5.1 7.8

16 7.6 4.7 9.8 23.2 21.4 14.7 13.6 10.6 2.8
32 4.0 3.5 3.1 5.1 5.9 7.5 5.5 3.4 0.4
64 0.3 0.3 0.3 0.3 0.3 0.4 0.6 0.2 0.3

128 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Mountain Car 1 -0.0 -0.0 28.0 93.9 93.9 93.9 93.8 93.8 -0.0

2 -0.0 -0.0 32.4 93.9 93.9 93.8 93.9 93.9 -0.0
4 -0.0 -0.0 23.4 93.9 93.8 93.8 93.8 93.8 -0.0
8 -0.0 -0.0 84.6 93.9 93.8 93.8 93.8 93.7 -0.0

16 -0.0 -0.0 79.9 93.9 93.8 93.8 93.8 93.6 4.7
32 -0.0 -0.0 93.8 93.8 93.9 93.8 93.8 93.4 -0.0
64 -0.0 -0.0 95.7 93.2 93.5 93.5 93.5 92.5 -0.0

128 -0.0 -0.0 96.7 95.0 94.3 93.6 92.7 91.9 -0.0
Pendulum Swingup 1 501.9 714.5 648.0 521.1 328.5 153.2 106.3 58.5 697.2

2 401.4 673.6 675.2 646.3 362.6 168.9 165.5 101.1 737.0
4 420.3 677.5 766.9 694.6 625.0 403.1 270.7 153.1 733.1
8 333.9 655.1 694.4 675.7 554.9 210.9 152.8 56.5 642.5

16 149.9 370.7 432.6 640.7 646.9 379.6 207.3 29.7 381.5
32 32.6 192.3 221.6 441.9 582.9 602.7 413.1 304.5 135.3

Continued on next page

18

β -1.00 0.00 0.20 0.50 0.75 1.00 1.25 2.00 Vanilla
env n-envs

64 9.8 4.4 10.4 71.5 367.8 494.0 526.3 523.5 7.6
128 2.0 1.2 1.1 2.2 15.1 69.5 126.2 199.0 1.1

Reacher Hard 1 10.9 22.6 30.5 19.0 14.6 17.5 13.4 12.1 66.4
2 55.1 426.0 291.9 186.0 43.4 18.9 20.9 16.3 350.2
4 133.8 663.8 513.8 332.5 188.5 45.5 37.2 19.0 559.5
8 292.0 696.4 516.2 533.3 310.8 133.2 76.2 60.7 692.0

16 322.5 776.5 718.1 654.4 499.5 422.7 308.4 169.7 742.9
32 341.5 833.6 791.8 712.1 600.5 447.4 264.7 188.9 665.7
64 207.2 551.8 597.6 546.7 283.2 132.1 105.3 150.8 499.4

128 55.4 208.8 204.4 78.4 35.7 30.7 20.7 56.2 237.1
Walker Run 1 39.2 97.6 100.5 96.5 93.3 89.1 82.8 84.5 103.8

2 48.7 126.4 122.4 141.8 127.0 130.3 102.8 82.2 122.2
4 75.9 131.1 141.5 173.7 169.3 178.2 145.7 87.7 117.4
8 84.8 95.6 116.4 167.9 222.2 261.4 191.8 89.4 111.2

16 70.0 68.2 71.5 126.5 251.2 269.0 196.2 76.1 66.9
32 59.4 55.0 60.8 117.8 188.2 181.6 140.1 67.2 57.5
64 55.7 46.2 51.4 61.5 70.9 73.3 68.8 55.3 47.3

128 41.6 39.5 41.4 48.7 46.8 42.7 43.1 43.2 39.3

19

	Introduction
	Related Work

	Method
	Colored Noise
	PPO

	Experiments
	Evaluation Details
	Does Colored-Noise Affect the Performance of PPO?
	Is =0.5 a Better Default for PPO?
	How Does the Number of Parallel Collection Environments Affect the Performance?
	How Does the Number of Parallel Collection Environments and Noise Color Interact?
	Why Do Larger Work Better for Larger Nenv?

	Conclusion
	Colored-Noise Properties
	Best for Nenv
	Colored noise generation
	Benchmark Environments
	Hyperparameters & Experiment Details
	Colored Noise =0 matches Vanilla PPO
	Final Returns & Performance
	Update Size Matters: Nenv vs. Nsteps
	Nepochs vs
	Final Returns per

