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ABSTRACT

Recent work showed that the attention maps of Vision Transformers (VTs), when
trained with self-supervision, can contain a semantic segmentation structure which
does not spontaneously emerge when training is supervised. In this paper, we
explicitly encourage the emergence of this spatial clustering as a form of training
regularization, this way including a self-supervised pretext task into the standard su-
pervised learning. In more detail, we exploit the assumption that, in a given image,
objects usually correspond to few connected regions, and we propose a spatial for-
mulation of the information entropy to quantify this object-based inductive bias. By
minimizing the proposed spatial entropy, we include an additional self-supervised
signal during training. Using extensive experiments, we show that the proposed
regularization is beneficial with different training scenarios, datasets, downstream
tasks and VT architectures. The code will be available upon acceptance.

1 INTRODUCTION

(a) (b) (c) 

Figure 1: ViT attention maps obtained using the [CLS]
token query and thresholded to keep 60% of the mass
(Caron et al., 2021). (a) Standard supervised learning. (b)
DINO. (c) Training using SAR.

There is a growing interest in the
computer vision community on Vision
Transformers (VTs), as a computational
paradigm alternative to standard Convo-
lutional Neural Networks (CNNs). VTs
are inspired by the Transformer network
(Vaswani et al., 2017), which is the
de facto standard in Natural Language
Processing (NLP) (Devlin et al., 2019;
Radford & Narasimhan, 2018) and it
is based on multi-head attention layers
transforming the input tokens (e.g., lan-
guage words) into a set of final embed-
ding tokens. Dosovitskiy et al. (2021) recently proposed an analogous processing paradigm, where
word tokens are replaced by image patches, and self-attention layers are used to model global pair-
wise dependencies over all the input tokens. As a consequence, differently from CNNs, where the
convolutional kernels have a spatially limited receptive field, ViT (Dosovitskiy et al., 2021) has a
dynamic receptive field, which is given by its attention maps (Naseer et al., 2021). However, ViT
heavily relies on huge training datasets (e.g., JFT-300M (Dosovitskiy et al., 2021), a proprietary
dataset of 303 million images), and underperforms CNNs when trained on ImageNet-1K (∼ 1.3
million images (Russakovsky et al., 2015)) or using smaller datasets (Dosovitskiy et al., 2021; Raghu
et al., 2021). To mitigate the need for a huge quantity of training data, a recent line of research
is exploring the possibility of reintroducing typical CNN mechanisms in VTs (Yuan et al., 2021b;
Liu et al., 2021b; Wu et al., 2021; Yuan et al., 2021a; Xu et al., 2021; Li et al., 2021b; Hudson &
Zitnick, 2021). The main idea behind these works is that convolutional layers, mixed with the VT
self-attention layers, help to embed a local inductive bias in the VT architecture, i.e., to encourage
the network to focus on local properties of the image domain. In this paper, we follow an orthogonal
(and relatively simpler) direction: rather than changing the VT architecture, we propose to include a
local inductive bias using an additional pretext task during training which can be easily plugged into
existing VTs without significant structural modifications. Specifically, we maximize the probability
of producing attention maps which focus on local regions (of variable size), based on the idea that,
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most of the time, an object is represented by one or very few spatially connected regions in the input
image. This pretext task exploits a locality principle, characteristic of the natural images, and extracts
additional (self-supervised) information from images without the need of architectural changes.

Our work is inspired by the findings presented in Caron et al. (2021); Bao et al. (2021); Naseer et al.
(2021), in which the authors show that VTs, trained using self-supervision (Caron et al., 2021; Bao
et al., 2021) or shape-distillation (Naseer et al., 2021), can spontaneously develop attention maps with
a semantic segmentation structure. For instance, Caron et al. (2021) show that the last-layer attention
maps of ViT, when this is trained with their self-supervised DINO algorithm, can be thresholded and
used to segment the most important foreground objects of the input image without any pixel-level
annotation during training (see Fig. 1 (b)). Similar findings are shown in Bao et al. (2021); Naseer
et al. (2021). Interestingly, however, Caron et al. (2021) show that the same ViT architectures, when
trained with supervised methods, produce much more spatially disordered attention maps (Fig. 1
(a)). This is confirmed by Naseer et al. (2021), who observed that the attention maps of ViT, trained
with supervised protocols, have a widely spread structure over the whole image. The reason why
“blob”-like attention maps spontaneously emerge, when VTs are trained with some algorithms but not
with others, is still unclear. However, in this paper we build on top of these findings and we propose a
spatial entropy loss function which explicitly encourages the emergence of locally structured attention
maps (Fig. 1 (c)), independently of the main algorithm used for training. Importantly, our goal is
not to extract segmentation-like structures from the attention maps. Instead, we use the proposed
spatial entropy loss to introduce an object-based local prior in VTs: since real life objects usually
correspond to one or very few connected image regions, then also the corresponding attention maps
of a VT head should focus most of their largest values on spatially clustered regions. The possible
discrepancy between this inductive bias (the semantic content in a given image has a low spatial
entropy) and the actual spatial entropy measured in each VT head, provides a self-supervised signal
which is independent of the possible image label and it alleviates the need for huge supervised training
datasets, without changing the VT architecture.

The second contribution of this paper is based on the empirical results recently presented by Raghu
et al. (2021), who showed that VTs are more influenced by the skip connections than CNNs and,
specifically, that in the last blocks of ViT, the patch tokens (see §3) representations are mostly
influenced by the skip connection path. This means that, in the last blocks of ViT, the self-attention
layers have a relatively small influence on the final token embeddings. Since our spatial entropy is
measured on the last-block attention maps, we propose to remove the skip connections in the last
layer (only). We empirically show that this minor architectural change is beneficial for ViT, both
when used jointly with our spatial entropy loss, and when used with a standard training procedure.

Our regularization method, which we call SAR (Spatial Attention-based Regularization), can be easily
plugged into existing VTs without drastic architectural changes and it can be applied to different
scenarios, jointly with a main-task loss function. For instance, when used in a supervised classification
task, the main loss is the (standard) cross entropy, used jointly with our spatial entropy loss. The
goal of SAR is to use the spatial layout of the attention map values as additional unsupervised
information which alleviates the need of large supervised data when training a VT. In summary, our
main contributions are the followings: (1) We propose a spatial entropy loss which exploits the spatial
clustering of the attention maps to extract an additional self-supervised signal during training. (2)
We propose to remove the last-block skip connections, empirically showing that this is beneficial for
the patch token representations. (3) Using extensive experiments, we show that SAR improves the
accuracy of different VT architectures, leading to a very large boost when trained from scratch with
small-medium datasets.

2 RELATED WORK

Vision Transformers. One of the very first fully-Transformer architectures for computer vision is
iGPT (Chen et al., 2020a), in which each image pixel is represented as a token. However, due to
the quadratic computational complexity of Transformer networks (Vaswani et al., 2017), iGPT can
only operate with very small resolution images. This problem has been largely alleviated by ViT
(Dosovitskiy et al., 2021), where the input tokens are p× p image patches (§3). The success of ViT
has inspired several similar Vision Transformer (VT) architectures in different application domains,
such as image classification (Dosovitskiy et al., 2021; Touvron et al., 2020; Yuan et al., 2021b; Liu
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et al., 2021b; Wu et al., 2021; Yuan et al., 2021a; Li et al., 2021b; Xu et al., 2021; d’Ascoli et al.,
2021), object detection (Carion et al., 2020; Zhu et al., 2021; Dai et al., 2021), segmentation (Strudel
et al., 2021; Rao et al., 2021), human pose estimation (Zheng et al., 2021), object tracking (Meinhardt
et al., 2021), video processing (Neimark et al., 2021; Li et al., 2021a), image generation (Jiang et al.,
2021; Hudson & Zitnick, 2021; Ramesh et al., 2022; Chang et al., 2022), point cloud processing (Guo
et al., 2021; Zhao et al., 2020), and many others. However, the lack of the typical CNN local inductive
biases makes VTs to need more data for training (Dosovitskiy et al., 2021; Raghu et al., 2021). For
this reason, many recent works are addressing this problem by proposing hybrid architectures, which
reintroduce typical convolutional mechanisms into the VT design (Yuan et al., 2021b; Liu et al.,
2021b; Wu et al., 2021; Yuan et al., 2021a; Xu et al., 2021; Li et al., 2021b; d’Ascoli et al., 2021;
Hudson & Zitnick, 2021; Li et al., 2021a). In contrast, we propose a different and simpler solution, in
which, rather than changing the VT architecture, we introduce a local inductive bias (§1) by means of
a pretext task based on the spatial entropy minimization.

Self-supervised learning. Most of the self-supervised approaches with still images impose a semantic
consistency between different views of the same image, where the views are obtained with data-
augmentation techniques. So far, most of the research in this field has been based on ResNet (He
et al., 2016) backbones, and can be roughly grouped in contrastive learning (van den Oord et al., 2018;
Hjelm et al., 2019; Chen et al., 2020b; He et al., 2020; Tian et al., 2020; Wang & Isola, 2020; Dwibedi
et al., 2021), clustering methods (Bautista et al., 2016; Zhuang et al., 2019; Ji et al., 2019; Caron et al.,
2018; Asano et al., 2020; Gansbeke et al., 2020; Caron et al., 2020; 2021), asymmetric networks (Grill
et al., 2020; Chen & He, 2021) and feature-decorrelation methods (Ermolov et al., 2021; Zbontar
et al., 2021; Bardes et al., 2021; Hua et al., 2021). Recently, many articles have appeared which use
VTs for self-supervised learning. For instance, Chen et al. (2021) have empirically tested different
representatives of the above categories using VTs, and they also proposed MoCo-v3, a contrastive
approach based on MoCo (He et al., 2020) but without the queue of the past-samples. DINO (Caron
et al., 2021) is an on-line clustering method which is one of the current state-of-the-art self-supervised
approaches using VTs. BEiT (Bao et al., 2021) adopts the typical “masked-word” NLP pretext task
(Devlin et al., 2019), but it needs to pre-extract a vocabulary of visual words using the discrete VAE
pre-trained in (Ramesh et al., 2021). Other recent works which use a “masked-patch” pretext task are
(He et al., 2021; Xie et al., 2021; Wei et al., 2021; Dong et al., 2021; Hua et al., 2022; Chen et al.,
2022; Bachmann et al., 2022; El-Nouby et al., 2021; Zhou et al., 2021; Kakogeorgiou et al., 2022).

In this paper, we do not propose a new self-supervised algorithm, but we rather use self-supervision
(we extract information from samples without additional manual annotation) to speed-up the conver-
gence in a supervised scenario. In the Appendix, we also show that SAR can be plugged on top of
both MoCo-v3 and DINO, boosting the accuracy of both of them. Similarly to this paper, Liu et al.
(2021a) propose a VT regularization approach based on predicting the geometric distance between
patch tokens. In contrast, we use the largest value connected regions in the VT attention maps to
extract additional unsupervised information from images and the two regularization methods can
potentially be used jointly. Li et al. (2020) compute the gradients of a ResNet with respect to the
image pixels to get an attention (saliency) map. This map is thresholded and used to mask-out the
most salient pixels. Minimizing the classification loss on this masked image encourages the attention
on the non-masked image to include most of the useful information. Our approach is radically
different and much simpler, because we do not need to manually set the thresholding value and we
require only one forward and one backward pass per image.

Spatial entropy. There are many definitions of spatial entropy (Razlighi & Kehtarnavaz, 2009;
Altieri et al., 2018). For instance, Batty (1974) normalizes the probability of an event occurring in
a given zone by the area of that zone, this way accounting for unequal space partitions. In (Tupin
et al., 2000), spatial entropy is defined over a Markov Random Field describing the image content,
but its computation is very expensive (Razlighi & Kehtarnavaz, 2009). In contrast, our spatial entropy
loss can be efficiently computed and it is differentiable, thus it can be easily used as an auxiliary
regularization task in existing VTs.

3 BACKGROUND

Given an input image I , Dosovitskiy et al. (2021) split I in a grid of K ×K non-overlapping patches,
and each patch is linearly projected into a (learned) input embedding space. The input of ViT is
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this set of n = K2 patch tokens, jointly with a special token, called [CLS] token, which is used
to represent the whole image. Following a standard Transformer network (Vaswani et al., 2017),
ViT (Dosovitskiy et al., 2021) transforms these n + 1 tokens in corresponding final n + 1 token
embeddings using a sequence of L Transformer blocks. Each block is composed of LayerNorm (LN),
Multiheaded Self Attention (MSA) and MLP layers, plus skip connections. Specifically, if the token
embedding sequence at the (l − 1)-th layer is zzzl−1 = [zzzCLS ;zzz1; ...zzzn], then:

zzz′ = MSA(LN(zzzl−1)) + zzzl−1, l = 1, . . . , L (1)

zzzl = MLP(LN(zzz′)) + zzz′, l = 1, . . . , L (2)

where the addition (+) denotes a skip (or “identity”) connection, which is used both in the MSA
(Eq. 1) and in the MLP (Eq. 2) layer. The MSA layer is composed of H different heads, and in the
h-th head (1 ≤ h ≤ H), each token embedding zzzi ∈ Rd is projected into a query (qqqhi ), a key (kkkhi )
and a value (vvvhi ). Given query (Qh), key (Kh) and value (V h) matrices containing the corresponding
elements, the h-th self-attention matrix (Ah) is:

Ah = softmax
(
Qh(Kh)T√

d

)
. (3)

Using Ah, each head outputs a weighted sum of the values in V h. The final MSA layer output is
obtained by concatenating all the head outputs and then projecting each token embedding into a
d-dimensional space. Finally, the last-layer (L) class token embedding zzzLCLS is fed to an MLP head,
which computes a posterior distribution over the set of the target classes and the whole network is
trained using a standard cross-entropy loss (Lce). Some hybrid VTs (see §2) such as CvT (Wu et al.,
2021) and PVT (Wang et al., 2021), progressively subsample the number of patch tokens, leading
to a final k × k patch token grid (k ≤ K). In the rest of this paper, we generally refer to a spatially
arranged grid of final patch token embeddings with a k × k resolution.

4 METHOD

Generally speaking, an object usually corresponds to one or very few connected regions of a given
image (Fig. 1). Our goal is to exploit this natural image inductive bias and penalize those attention
maps which do not lead to a spatial clustering of their largest values. Intuitively, if we compare
Fig. 1 (a) with Fig. 1 (b), we observe that, in the latter case, the attention maps are more “spatially
ordered”, i.e. there are less and bigger “blobs” (obtained after thresholding the map values (Caron
et al., 2021)). Since an image is usually composed of a few main objects, each of which most of the
times is represented as a connected region of tokens, during training we penalize those attention maps
which produce a large number of small blobs. We use this as an auxiliary pretext task which extracts
information from images without additional annotation, by exploiting the assumption that spatially
close tokens should preferably belong to the same cluster.

4.1 SPATIAL ENTROPY LOSS

For each head of the last Transformer block, we compute a similarity map Sh (1 ≤ h ≤ H ,
see §3) by comparing the [CLS] token query (qqqhCLS) with all the patch token keys (kkkhx,y, where
(x, y) ∈ {1, ..., k}2):

Sh
x,y =< qqqhCLS , kkk

h
x,y > /

√
d, (x, y) ∈ {1, ..., k}2, (4)

where < aaa,bbb > is the dot product between aaa and bbb. Sh is extracted from the self-attention map Ah

by selecting the [CLS] token as the only query and before applying the softmax (see §4.3 for a
discussion about this choice). Sh is a k × k matrix corresponding to the final k × k spatial grid of
patches (§3), and (x, y) corresponds to the “coordinates” of a patch token in this grid.

In order to extract a set of connected components containing the largest values in Sh, we zero-out
those elements of Sh which are smaller than the mean value m = 1/n

∑
(x,y)∈{1,...,k}2 Sh

x,y:

Bh
x,y = ReLU(Sh

x,y −m), (x, y) ∈ {1, ..., k}2, (5)
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Figure 2: A schematic illustration of the spatial entropy. (a) The original image. (b) The thresholded
similarity map Bh (zero values shown in black). (c) The 8-connectivity relation used to group
non-zero elements in Bh. (d) The resulting two connected components (C1 and C2).

where thresholding using m corresponds to retain half of the total “mass” of Eq. 4. We can now use a
standard algorithm (Grana et al., 2010) to extract the connected components from Bh, obtained using
an 8-connectivity relation between non-zero elements in Bh (see Fig. 2):

Ch = {C1, ..., Chr
} = ConnectedComponents(Bh). (6)

Cj (1 ≤ j ≤ hr) in Ch is the set of coordinates (Cj = {(x1, y1), ..., (xnj , ynj )}) of the j-th
connected component, whose cardinality (nj) is variable, and such is the total number of components
(hr). Given Ch, we define the spatial entropy as:

H(Sh) = −
hr∑
j=1

Ph(Cj) logP
h(Cj), (7)

Ph(Cj) =
1

|Bh|
∑

(x,y)∈Cj

Bh
x,y, (8)

where |Bh| =
∑

(x,y)∈{1,...,k}2 Bh
x,y . Importantly, in Eq. 8, the probability of each region (Ph(Cj))

is computed using all its elements, and this makes the difference with respect to a non-spatial entropy
which is directly computed over all the elements in Sh, without considering the adjacency relation.
Note that the less the number of components hr or the less uniformly distributed the probability
values Ph(C1), ...P

h(Chr
), the lower H(Sh). Using Eq. 7, the spatial entropy loss is defined as:

Lse =
1

H

H∑
h=1

H(Sh). (9)

Lse is used jointly with the main task loss. For instance, in case of supervised training, we use:
Ltot = Lce + λLse, where λ is the weight given to Lse.

4.2 REMOVING THE SKIP CONNECTIONS

Raghu et al. (2021) empirically showed that, in the last blocks of ViT, the patch token representations
are mostly propagated from the previous layers using the skip connections (§1). We presume this is
(partially) due to the fact that only the [CLS] token is used as input to the classification MLP head
(§3), thus the last-block patch token embeddings are usually neglected. Moreover, Raghu et al. (2021)
show that the effective receptive field (Luo et al., 2017) of each block, when computed after the MSA
skip connections, is much smaller than the effective receptive field computed before the MSA skip
connections. Both empirical observations lead to the conclusion that the MSA skip connections in the
last blocks may be detrimental for the representation capacity of the final patch token embeddings.
This problem is emphasized when using our spatial entropy loss, since it is computed using the
attention maps of the last-block MSA (§4.1). For these reasons, we propose to remove the MSA skip
connections in the last block (L). Specifically, in the L-th block, we replace Eq. 1-2 with:

zzz′ = MSA(LN(zzzL−1)), (10)

zzzL = MLP(zzz′) + zzz′. (11)

Note that, in addition to removing the MSA skip connections (Eq. 10), we also remove the subsequent
LN (Eq. 11), because we empirically observed that this further improves the VT accuracy (see §5.1).
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4.3 DISCUSSION

In this section, we discuss and motivate the choices made in §4.1 and §4.2. First, we use Sh, extracted
before the softmax (Eq. 3), because, using the softmax, the network can “cheat”, by increasing the
norm of the vectors qqqCLS and kkkx,y ((x, y) ∈ {1, ..., k}2). As a result, the dot product < qqqCLS , kkkx,y >
also largely increases, and the softmax operation (based on the exponential function) enormously
exaggerates the difference between the elements in Sh, generating a very peaked distribution, which
zeros-out non-maxima (x, y) elements. We observed that, when using the softmax, the VT is able
to minimize Eq. 9 by producing single-peak similarity maps which have a 0 entropy, each being
composed of only one connected component with only one single token (i.e., hr = 1 and nj = 1).

Second, the spatial entropy (Eq. 7) is computed for each head separately and then averaged (Eq. 9) to
allow each head to focus on different image regions. Note that, although computing the connected
components (Eq. 6) is a non-differentiable operation, Ch is only used to “pool” the values of Bh

(Eq. 8), and each Cj can be implemented as a binary mask (more details in the Appendix).

Finally, we remove the MSA skip connections only in the last block (Eq. 10-11) because, according
to the results reported in (Raghu et al., 2021), removing the skip connections in the ViT intermediate
blocks, brings to an accuracy drop. In contrast, in §5.1 we show that our strategy, which keeps the
ViT architecture unchanged apart from the last block, is beneficial even when used without our spatial
entropy loss. In the rest of this paper, we refer to our full method SAR as composed of the spatial
entropy loss (§4.1) and the last-block MSA skip connection and LN removal (§4.2).

5 EXPERIMENTS

In §5.1 we analyse the contribution of the spatial entropy loss and the skip connection removal. In
§5.2 we show that, using SAR and different VT architectures, we can improve VT training in different
scenarios: (1) training from scratch on ImageNet-1K and small/medium datasets, (2) transfer learning
on small datasets, (3) out-of-distribution testing. In §5.3 we analyse the properties of the attention
maps generated using SAR. In the Appendix, we provide additional experiments in which we compare
with the regularization approach of Liu et al. (2021a) and we use segmentation downstream tasks and
self-supervised learning approaches. Each model was trained using 8 NVIDIA V100 32GB GPUs.

5.1 ABLATION STUDY

In this section, we analyse the influence of the λ value (§4.1), the removal of the skip connections and
the LN in the last VT block (§4.2), and the use of the spatial entropy loss (§4.1). In all the ablation
experiments, we use ImageNet-100 (IN-100) (Tian et al., 2020; Wang & Isola, 2020), which is a
subset of 100 classes of ImageNet and ViT-S/16, a 22 million parameter ViT (Dosovitskiy et al.,
2021), trained with 224× 224 resolution images and 14× 14 patches tokens (k = 14) with a patch
resolution of 16 × 16 (Touvron et al., 2020). Moreover, in all the experiments in this section, we
adopt the training protocol and the data-augmentations described in Liu et al. (2021b).
In Tab. 1 (a), we train from scratch all the models using 100 epochs and we show the impact on
the test set accuracy using different values of λ. In the experiments of this table, we use our loss
function (Ltot = Lce + λLse) and we remove both the skip connections and the LN in the last block
(Eq. 10-11), thus the column λ = 0 corresponds to the result reported in Tab. 1 (b), Row “C” (see
below). In the rest of the paper, we use the results obtained with this setting (IN-100, 100 epochs,
etc.) and the best λ value (λ = 0.01) for all the other datasets, training scenarios (e.g., training from
scratch or fine-tuning) and VT architectures (e.g., ViT, CvT, PVT, etc.). In fact, although a higher
accuracy can very likely be obtained by tuning λ, our goal is to show that SAR is an easy-to-use
regularization approach, even without tuning its only hyperparameter.

In Tab. 1 (b), we train from scratch all the models using 100 epochs and Row “A” corresponds to our
run of the original ViT-S/16 (Eq. 1-2). When we remove the MSA skip connections (Row “B”), we
observe a +0.42 points improvement, which becomes +1.5 if we also remove the LN ( Row “C”).
This experiment confirms that the last block patch tokens can learn more useful representations if we
inhibit the MSA identity path (Eq. 10-11). However, if we also remove the skip connections in the
subsequent MLP layer (Row “D”), the results are inferior to the baseline. Finally, when we use the
spatial entropy loss with the original architecture (Row “E”), the improvement is marginal, but using
Lse jointly with Eq. 10-11 (full model, Row “F”), the accuracy boost with respect to the baseline is
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Table 1: ImageNet 100. (a) Influence of the spatial entropy loss weight λ (100 epochs). (b) Analysis
of the different components of SAR (100 epochs). (c) Influence of the number of epochs.

λ Top-1 Acc.

0 75.72
0.001 75.82
0.005 76.16
0.01 76.72
0.05 76.22
0.1 75.88

(a)

Model Top-1 Acc.

A: Baseline 74.22
B: A + no MSA skip connections 74.64 (+0.42)
C: B + no LN 75.72 (+1.5)
D: C + no MLP skip connections 73.76 (-0.46)
E: A + spatial entropy loss 74.78 (+0.56)
F: A + SAR 76.72 (+2.5)

(b)

Top-1 Acc.

Model 100 ep. 300 ep.

ViT-S/16 74.22 80.82
ViT-S/16+SAR 76.72 (+2.5) 85.24 (+4.42)

(c)

much stronger. Tab. 1 (c) compares training with 100 and 300 epochs and shows that, in the latter
case, SAR can reach a much higher relative improvement with respect to the baseline (+4.42).

5.2 MAIN RESULTS

Training from scratch on ImageNet. We start with a set of experiments on ImageNet-1K (IN-1K), in
which we plug SAR into different VT architectures: ViT (Dosovitskiy et al., 2021), T2T (Yuan et al.,
2021b), PVT (Wang et al., 2021) and CvT (Wu et al., 2021). We omit other common frameworks such
as, for instance, Swin (Liu et al., 2021b) because of the lack of a [CLS] token in their architecture.
Although the [CLS] token used, e.g, in §4.1 to compute Sh, can potentially be replaced by a vector
obtained by average-pooling all the patch embeddings, we leave this for future investigations.
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Figure 3: IN-1K, validation set ac-
curacy with respect to the number
of training epochs.

Moreover, for computational reasons, we focus on small-
medium capacity VTs (see Tab. 2 for details on the number
of parameters of each VT). Importantly, for each tested method,
we use the original training protocol developed by the cor-
responding authors, including the learning rate schedule, the
batch size, the VT-specific hyperparameter values and the data-
augmentation type used to obtain the corresponding published
results (see column “Training Protocol” in Tab. 2). Finally, as
mentioned in §5.1, we keep fixed the only SAR hyperparameter
(λ = 0.01). Although better results can likely be obtained by
hyperparameter tuning (including the VT-specific hyperparame-
ters), our goal is to show that SAR can be easily used in different
VTs increasing their final testing accuracy. Thus, differently
from a common practice, we have not tuned the hyperparame-
ters on the IN-1K validation set. The results reported in Tab. 2
show that SAR improves all the tested VTs, independently of
their specific architecture, model capacity or training protocol.
Notably, SAR leads to almost 1 point difference with respect to ViT-S/16 (Touvron et al., 2020),
which is obtained without any additional learnable parameters. Note that both PVT and CvT have
a final grid resolution of 7 × 7, which is smaller than the 14 × 14 grid used in ViT and T2T, and
this probably has a negative impact on our spatial based entropy loss. In Fig. 3, we show that, using
ViT-S/16, SAR can largely speed-up training. For instance, ViT-S/16 + SAR, with 100 epochs,
achieves almost the same accuracy as the baseline trained with 150 epochs, while we surpass the final
baseline accuracy (79.8% at epoch 300) with only 250 training epochs (79.9% at epoch 250).

Training from scratch on small-medium datasets. Comparing the improvement obtained using
ViT-S/16 + SAR on IN-1K (+0.9) with the corresponding improvement obtained on IN-100 (+4.42,
Tab. 1 (c)), we observe that SAR is relatively more effective when the dataset size is smaller. This is
likely due to the fact that, usually, regularization techniques are most effective with small(er) datasets
(Liu et al., 2021a; Balestriero et al., 2022). For instance, Balestriero et al. (2022) empirically show
that common data-augmentation techniques are more relatively effective with a smaller training
dataset, which is quite intuitive, being data-augmentation used to increase the diversity of a dataset.
Similarly, the goal of SAR is to extract unsupervised information from images to alleviate the need of
large labeled datasets (§1), thus, this additional (self-)supervision is relatively more effective when
there is less (manual) supervision data. To further validate this, we present another set of experiments
in which we follow a recent trend of works (Liu et al., 2021a; El-Nouby et al., 2021; Cao & Wu,
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Table 2: IN-1K experiments with different VTs. For each tested VT, we plugged SAR on the publicly
available code of the corresponding baseline and we used the suggested hyperparameter values for
training. All results but ours are reported from the corresponding paper indicated in the column
“Training Protocol”. All the results have been obtained using 300 training epochs.

Architecture Training Protocol Params (M) FLOPs (G) Top-1 Acc.

ViT-T/16 DEiT (Touvron et al., 2020) 5 1.6 72.2
ViT-T/16 + SAR DEiT (Touvron et al., 2020) 5 1.6 72.4 (+0.2)
ViT-S/16 DEiT (Touvron et al., 2020) 22 4.7 79.8
ViT-S/16 + SAR DEiT (Touvron et al., 2020) 22 4.7 80.7 (+0.9)

T2T-ViT-14 T2T (Yuan et al., 2021b) 21.5 6.1 81.5
T2T-ViT-14 + SAR T2T (Yuan et al., 2021b) 21.5 6.1 81.9 (+0.4)

PVT-Small PVT (Wang et al., 2021) 24.5 3.8 79.8
PVT-Small + SAR PVT (Wang et al., 2021) 24.5 3.8 79.84 (+0.04)

CvT-13 CvT (Wu et al., 2021) 20 4.5 81.6
CvT-13 + SAR CvT (Wu et al., 2021) 20 4.5 81.8 (+0.2)

Table 3: Training from
scratch on small-medium
datasets.

Model ViT-S/16 ViT-S/16+SAR

Cars 35.3 64.65 (+29.35)
Clipart 41.0 64.95 (+23.95)
Painting 38.4 57.11 (+18.17)
Sketch 37.2 62.98 (+30.78)

Table 4: Transfer learning results.The first row corresponds to a
standard fine-tuning protocol, while the other configurations include
SAR either in the pre-training or in the fine-tuning stage.

SAR pre-training SAR fine-tuning CIFAR-10 CIFAR-100 Flowers Pets

✗ ✗ 98.59 88.95 95.07 92.21
✓ ✗ 98.69 (+0.1) 89.19 (+0.24) 96.05 (+0.98) 92.7 (+0.49)
✗ ✓ 98.72 (+0.13) 88.95 95.1 (+0.03) 92.34 (+0.13)
✓ ✓ 98.65 (+0.06) 89.21 (+0.26) 96.1 (+1.03) 92.7 (+0.49)

2021) where VTs are trained from scratch on small-medium datasets (without pre-training on IN-1K).
Specifically, we strictly follow the training protocol proposed by El-Nouby et al. (2021), where 5,000
epochs are used to train ViT-S/16 directly on each target dataset. The results are shown in Tab. 3,
where the accuracy values of the baseline (ViT-S/16 without SAR) are reported from (El-Nouby et al.,
2021). Tab. 3 shows that SAR can drastically improve the ViT-S/16 accuracy on these small-medium
datasets, with a relative improvement ranging in [+18.17,+30.78].

Transfer learning. In this battery of experiments, we evaluate SAR in a transfer learning scenario. We
adopt the four datasets used in (Dosovitskiy et al., 2021; Touvron et al., 2020; Chen et al., 2021; Caron
et al., 2021): CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), Oxford Flowers102 (Nilsback &
Zisserman, 2008), and Oxford-IIIT-Pets (Parkhi et al., 2012). The standard transfer learning protocol
consists in pre-training on IN-1K, and then fine-tuning on each dataset. This corresponds to the first
row in Tab. 4, where the IN-1K pre-trained model is ViT-S/16 in Tab. 2. The next three rows show
different pre-training/fine-tuning configurations, in which we use SAR in one of the two phases or in
both (see the Appendix for more details). All the configurations lead to an overall improvement of the
accuracy with respect to the baseline, and show that SAR can be used flexibly. For instance, SAR can
be used when fine-tuning a VT trained in a standard way, without the need to re-train it on ImageNet.

Out-of-distribution testing. Finally, we test the robustness of our VTs trained with SAR when
the testing distribution is different from the training distribution. Specifically, following Bai et al.
(2021), we use two different testing set: (1) ImageNet-A (Hendrycks et al., 2019), which are real-
world images but collected from challenging scenarios (e.g., occlusions, fog scenes, etc.), and (2)
ImageNet-C (Hendrycks & Dietterich, 2018), which is designed to measure the model robustness
against common image corruptions. Note that training is performed on IN-1K. Thus, in Tab. 5,
ViT-S/16 and ViT-S/16 + SAR correspond to the models we trained on IN-1K whose results on the
IN-1K standard validation set are reported in Tab. 2. ImageNet-A and ImageNet-C are used only for
testing, hence they are useful to assess the behaviour of a model when evaluated on a distribution
different from the training distribution (Bai et al., 2021). The results reported in Tab. 5 show that SAR
can greatly improve the robustness of ViT (note that with the mCE metric, the lower is better (Bai
et al., 2021)). We presume that this is a side-effect of our spatial entropy loss minimization, which
leads to heads usually focusing on the foreground objects and, therefore, reducing the dependence
with respect to the background appearance variability distribution.
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Table 5: Out-of-distribution testing on ImageNet-
A (IN-A) and ImageNet-C (IN-C).

Model IN-A (Acc. ↑) IN-C (mCE ↓)

ViT-S/16 19.2 52.8
ViT-S/16 + SAR 22.39 (+3.19) 51.6 (-1.2)

Table 6: A comparison of the segmentation prop-
erties of the attention maps on PASCAL VOC-12.

Model Jaccard similarity (↑)

ViT-S/16 19.18
ViT-S/16 + SAR 31.19 (+12.01)

5.3 ATTENTION MAP ANALYSIS

This section qualitatively and quantitatively analyses the attention maps obtained using SAR. Fig. 4
visually compares the attention maps obtained with ViT-S/16 and ViT-S/16 + SAR. As expected,
standard training generates attention maps with a widely spread structure. Conversely, using SAR, a
semantic segmentation structure clearly emerges. Note that, similarly to the self-supervised results
shown in DINO (Caron et al., 2021), these segmentation masks have been obtained without any
pixel-level annotation. However, differently from DINO, we have explicitly encouraged the network
to produce attention maps with low spatial entropy. For a quantitative analysis, we follow the protocol
used in (Caron et al., 2021; Naseer et al., 2021), where the Jaccard similarity is used to compare the
ground-truth segmentation masks of the objects in PASCAL VOC-12 (Everingham et al., 2010) with
the thresholded attention masks of the last ViT block. Specifically, the attention maps of all the heads
are thresholded to keep 60% of the mass, and the head with the highest Jaccard similarity with the
ground-truth is selected (Caron et al., 2021; Naseer et al., 2021). Tab. 6 shows that SAR significantly
improves the segmentation results, quantitatively confirming the qualitative analysis in Fig. 4.

ViT-S/16 ViT-S/16+SAR

Figure 4: A qualitative comparison between the attention maps generated by ViT-S/16 (left) and
ViT-S/16 + SAR (right). For each image, we show all the 6 attention maps (Ah) corresponding to the
6 last-block heads, computed using only the [CLS] token query.

6 CONCLUSIONS

In this paper we proposed SAR, a VT training regularization method which is based on a new
spatial entropy loss. Specifically, the proposed loss is based on the intuitive idea that objects usually
correspond to connected regions, and thus it penalizes spatially disordered attention maps. This way,
we can extract additional self-supervised information from the training images, alleviating the need
of huge labeled datasets to train VTs. Moreover, we also proposed to remove the last-block MSA
skip connections and LN layers, a minor architectural change which prevents the propagation of
the patch-token representations through the identity path. We empirically showed that this removal
is beneficial, with and without our spatial entropy loss. SAR can be very easily plugged into the
most common VT architectures, and our experiments show that this training regularization can boost
the classification accuracy and speed-up training, independently of the specific VT or target task.
SAR can drastically improve the accuracy when VTs are trained on small-medium datasets, which is
specifically useful in those domains in which pre-training on ImageNet is not possible.

Limitations. Since training VTs is very computationally expensive, in our experiments we used
only small/medium capacity VTs. We leave the extension of our empirical analysis to larger capacity
VTs for the future. For the same computational reasons, we have not tuned hyperparameters on
the datasets. However, we believe that the SAR accuracy improvement, obtained in all the tested
scenarios without hyperparameter tuning, further shows its robustness and ease to use.
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Appendix

A PSEUDO-CODE OF THE SPATIAL ENTROPY LOSS

Fig. 5 shows the pseudo-code for Lse (Eq. (9)). The goal is twofold: to show how easy is to compute
Lse, and how to make it differentiable. Specifically, Eq. (6) is based on a connected component
algorithm which is not differentiable. However, once Ch is computed, each element Cj ∈ Ch

(Cj = {(x1, y1), ..., (xnj
, ynj

)}) can be represented as a binary mask Mj , defined as:

Mj [x, y] =

{
1, if (x, y) ∈ Cj

0 otherwise
(12)

Using Eq. (12), we compute the probability Ph(Cj) of the component Cj using matrix multiplication,
which is done efficiently on GPUs. In practice, Eq. (8) is computed as:

Ph(Cj) =
1

|Bh|
∑
(x,y)

Bh
x,y ⊙Mj [x, y], (13)

where ⊙ is the element-wise product. This implementation makes it is possible to back-propagate the
spatial entropy loss even if the connected component algorithm is not differentiable.

# bs : batch size
# H : number of heads
# k x k : size of the embedding grid
# S : defined in Eq. 4 (main paper),
# tensor with shape [bs, H, k, k]

def SpatialEntropy(S, eps=1e-9):
bs, H, k, _ = S.size()
m = torch.mean(S, dim=[2, 3], keepdim=True)
B = torch.relu(S - m) + eps

with torch.no_grad():
batch_idxs, head_idxs, M = connected_components(B)

p_u = torch.sum(B[batch_idxs, head_idxs] * M, dim=[2, 3])
p_n = p_u / torch.sum(B, dim=[2, 3])
SE = -torch.sum((p_n * torch.log(p_n)) / (bs * H)
return SE

Figure 5: PyTorch-like pseudocode for our Spatial Entropy loss.
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B COMPARING THE SPATIAL ENTROPY LOSS WITH OTHER SOLUTIONS

In our preliminary experiments, we replaced the spatial entropy loss with a different loss based on a
total variation denoising (Rudin et al., 1992), criterion, which we formulated as:

Ltv =
1

H

H∑
h=1

∑
(x,y)∈{1,...,k}2

|Sh
x,y − Sh

x,y+1|+ |Sh
x,y − Sh

x+1,y|. (14)

However, Ltv drastically underperforms Lse and tends to produce blurred (more uniform) attention
maps. The main difference between Ltv and Lse is that the thresholding (Eq. 5) and the adjacency-
based clustering (Eq. 6) operations in Lse group together image regions of variable size and shape
which have in common high attention scores for a specific head, and, therefore, they presumably
represent the same semantics (e.g., a specific object). In contrast, Ltv compares patch tokens which
are adjacent to each other (e.g., Sh

x,y and Sh
x,y+1) but which do not necessarily share the same

semantics (e.g., Sh
x,y may belong to the background while Sh

x,y+1 belongs to a foreground object).
Thus, the implicit local inductive bias of the two losses is different: in case of Lse, the inductive bias
is that the image regions corresponding to the highest attention scores (for a specific head) should
be spatially grouped in few, big “blobs”, while, in the case of Ltv, the inductive bias is that generic
adjacent regions should have similar attention scores.

Finally, we have empirically tested slightly different similarity metrics. For instance, replacing Eq. (4)
with a cosine similarity computed as:

Ŝh
x,y =

< qqqhCLS , kkk
h
x,y >

||qqqhCLS ||||kkkhx,y||
, (x, y) ∈ {1, ..., k}2, (15)

and keeping all the rest unchanged (e.g., Eq. (5)-Eq. (9)), we get a slightly lower top-1 accuracy value
when training on IN-100 (76.25 versus 76.72 in Tab. 1 (c)). This is likely due to the fact that Ŝh

in Eq. (15) does not correspond to the metric used to compute the attention for the main task loss
(Eq. (3)). Thus, merging the main task loss (e.g., the cross entropy loss) with the spatial entropy loss
may be more difficult.

C ADDITIONAL EXPERIMENTS

In this section, we present additional experiments following the same setting used in §5 (e.g., same λ
value, using the original VT/algorithm hyperparameters, etc.).

C.1 TRAINING FROM SCRATCH ON IMAGENET-100

In this section, we extend the IN-100 experiments shown in §5.1 by including different VT archi-
tectures. Tab. 7 shows that SAR improves all the tested VTs, consistently with the results shown in
Tab. 2. Note that the SAR-based improvements on IN-100 are relatively larger than those obtained on
IN-1K, confirming that SAR is particularly beneficial with relatively smaller datasets.

We further analyze the impact of the amount of training data using different subsets of IN-100 with
different sampling ratio (ranging from 25% to 75%, with images randomly selected). We use the
same training protocol of Tab. 1 (c) (e.g., 100 training epochs, etc.) and we test on the whole IN-100
validation set. Tab. 8 shows the results, confirming that, with less data, the accuracy boost obtained
using SAR can significantly increase (e.g., with 75% of the data we have a 10.5 points improvement).

C.2 SELF-SUPERVISED EXPERIMENTS ON IMAGENET-100

In this section, we use SAR in a fully self-supervised scenario. Since self-supervised learning
algorithms are very time consuming, we use IN-100, which is a medium-size dataset. We plug
SAR on top of two state-of-the-art VT-based self-supervised learning algorithms: MoCo-v3 (Chen
et al., 2021) and DINO (Caron et al., 2021) (§2). When we use MoCo-v3, in Ltot (§4.1), we replace
the cross-entropy loss (Lce) with the contrastive loss used in (Chen et al., 2021). Similarly, when
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Table 7: IN-100 experiments with different VTs. For each tested VT, we plug SAR on the publicly
available code of the corresponding baseline and we use the suggested hyperparameter values for
training. All the results are obtained using 100 training epochs.

Model Top-1 Acc.

ViT-S/16 (Dosovitskiy et al., 2021) 74.22
ViT-S/16 + SAR 76.72 (+2.5)

T2T-ViT-14 (Yuan et al., 2021b) 82.42
T2T-ViT-14 + SAR 83.96 (+1.54)

PVT-Small (Wang et al., 2021) 76.57
PVT-Small + SAR 77.78 (+1.21)

CvT-13 (Wu et al., 2021) 83.38
CvT-13 + SAR 85.20 (+1.82)

Table 8: IN-100 experiments with different sampling ratios.

Sampling Ratio ViT-S/16 ViT-S/16+SAR

0.25 21.66 29.06 (+7.4)
0.50 29.86 38.02 (+8.16)
0.75 35.62 46.12 (+10.5)
1.00 74.22 76.72 (+2.5)

we use DINO, we use as the main task loss the “self-distillation” proposed in (Caron et al., 2021),
jointly with its multi-crop strategy. We used the official code of MoCo-v3 and DINO and we strictly
follow the algorithms and the training protocols of the baseline methods, including all the default
hyperparameters suggested by the corresponding authors. However, for computational reasons, we
used a 1024 batch size for MoCo-v3 and MoCo-v3 + SAR, and a batch size of 512 for DINO and
DINO + SAR. The VT backbone is ViT-S/16 for all the methods. More details in Appendix D.

We evaluate all models (with and without SAR) using the standard self-supervised evaluation protocol,
consisting in freezing the network after training and then training a linear classifier on top of the
frozen features (Caron et al., 2021; Chen et al., 2021). The results are reported in Tab. 9 (a), and
show that, on IN-100, SAR significantly improves these state-of-the-art algorithms, including DINO
(which inspired our work).

We qualitatively compare the attention maps obtained with and without SAR in Fig. 6 (MoCo-v3)
and Fig. 7 (DINO). Fig. 6 shows that, in MoCo-v3 + SAR, the head-specific attention maps focus
on slightly different aspects of the main object, while in MoCo-v3, the attention is much more
“disordered” (spread over the whole image). On the other hand, when comparing DINO with DINO +
SAR (Fig. 7), the attention map differences are more subtle. However, the higher inter-head variability
in DINO + SAR is one interesting difference. For instance, while DINO’s maps usually focus only
on the main foreground object, in DINO + SAR, different heads cover different foreground objects
(e.g., the cat and the sink in Row 11) or different background regions (e.g., the road and the sky in the
”train” figure of Row 5). This difference is probably due to the difference in how DINO and DINO +
SAR are optimized. In fact, in DINO, the only source of supervision is the comparison between two
different views of the same image (§2), which likely encourages the network to focus on the objects
most frequently in common. On the other hand, in DINO + SAR, the creation of connected regions is
also encouraged inside each image view using Lse.

These qualitative observations are confirmed by the quantitative results in Tab. 9 (b), where we
follow the protocol described in §5.3. SAR increases the Jaccard similarity of both self-supervised
algorithms.
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MoCo-v3 MoCo-v3 + SAR

Figure 6: A qualitative comparison between the attention maps generated by MoCo-v3 and MoCo-v3
+ SAR with the ViT-S/16 backbone (training on IN-100). For each image, we show all the 6 attention
maps (Ah) corresponding to the 6 last-block heads, computed using only the [CLS] token query.
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DINO DINO + SAR

Figure 7: A qualitative comparison between the attention maps generated by DINO and DINO +
SAR with the ViT-S/16 backbone (training on IN-100).
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Table 9: Quantitative results of self-supervised methods trained on IN-100 for 300 epochs. (a) Accu-
racy on IN-100 evaluated through linear probing. (b) Segmentation properties of the corresponding
attention maps evaluated on PASCAL VOC-12.

Method Top-1 Acc.

MoCo-v3 (Chen et al., 2021) 77.60
MoCo-v3 + SAR 78.88 (+1.28)

DINO (Caron et al., 2021) 77.42
DINO + SAR 79.90 (+2.48)

(a)

Method Jaccard similarity

MoCo-v3 (Chen et al., 2021) 27.40
MoCo-v3 + SAR 33.10 (+6.17)

DINO (Caron et al., 2021) 35.06
DINO + SAR 35.28 (+0.22)

(b)

Table 12: Segmentation downstream task on the ADE20K dataset.

Model mIoU

PVT-Small (Wang et al., 2021) 39.8
PVT-Small+SAR 41.1 (+0.3)

C.3 SUPERVISED CASE: ADDITIONAL EXPERIMENTS ON IMAGENET-1K

C.3.1 SEGMENTATION DOWNSTREAM TASK

In this section, we use a semantic segmentation task as the downstream task. Specifically, we adopt
the well-known segmentation benchmark ADE20K (Zhou et al., 2019) and we use PVT (§5) as the
VT backbone. PVT was chosen because it can be adapted to work as a Feature Pyramid Network
and has already been used for segmentation tasks (Wang et al., 2021). In Tab. 12 we report the
segmentation results (39.8 mIoU) obtained by Wang et al. (2021) when using ADE20K to fine-tune
PVT-Small pre-trained on IN-1K (the results of this pre-training, again taken from (Wang et al., 2021),
are reported in Tab. 2). In case of PVT-Small + SAR, we analogously used ADE20K to fine-tune the
PVT-Small + SAR model pre-trained on IN-1K, which corresponds to the results reported in Tab. 2.
Note that, as shown in Tab. 2, the improvement of SAR with respect to the PVT baseline was quite
marginal when pre-trained on IN-1K, mostly because of the reduced grid size (§5.2). The results in
Tab. 12 show that, using SAR for a downstream segmentation task, we can increase the PVT accuracy.
Although the improvement is marginal, it is consistent with all the other experiments, in which we
always get a performance boost, independently of the application scenario or the dataset, and without
hyper-parameter tuning.

C.3.2 COMPARISON WITH OTHER VT REGULARIZATION METHODS

In this section, we compare SAR with the Dense Relative Localization (DRLoc) loss (Liu et al.,
2021a), which is based on an auxiliary self-supervised task used to regularize VT training (§2).
DRLoc encourages the VT to learn spatial relations within an image by predicting the relative
distance between the (x, y) positions of randomly sampled output embeddings from the k× k grid of
the last layer L. Tab. 13 shows that SAR outperforms DRLoc, using the same training protocol and a
ViT-S/16 architecture trained on IN-1K.

C.3.3 ADDITIONAL QUALITATIVE ANALYSIS OF THE ATTENTION MAPS

In this section, we extend the analysis of §5.3 providing additional qualitative results obtained using
supervised training on IN-1K.

Fig. 8 shows the attention maps of ViT-S/16 and ViT-S/16 + SAR. These attention maps show that the
ViT-S/16 attention scores are spread over all the image, while in ViT-S/16 + SAR they are much more
spatially clustered and usually focused on the main object(s) of the input image. For example, the first
row shows that the heads of ViT-S/16 focus on the upper part of the image, and only the keyboard of
the laptop emerges. Vice versa, from the ViT-S/16 + SAR attention heads, it is possible to recognise
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Table 13: Quantitative results using a ViT-S/16 trained with and without SAR and compared with
(Liu et al., 2021a). All models are trained in ImageNet-1K for 300 epochs.

Method Top-1 Acc.

ViT-S/16 (Dosovitskiy et al., 2021) 79.8
ViT-S/16 + DRLoc (Liu et al., 2021a) 80.2 (+0.4)
ViT-S/16 + SAR 80.7 (+0.9)

the shape and size of the laptop precisely. Similarly, the second last row shows an example where the
input image contains some elephants. While the different heads of ViT-S/16 seem to focus mainly on
the background, the first head of ViT-S/16 + SAR is clearly focused on the elephants. Importantly,
different heads of ViT-S/16 + SAR usually focus on different semantic concepts, which shows that
there are no collapse phenomena using the spatial entropy loss (see Eq. (7) and the corresponding
discussion in §4.3).

D IMPLEMENTATION DETAILS

In the following, we list the implementation details. Unless stated otherwise, we train our models on
8 V100 GPUs.

D.1 VIT BASED MODELS

We train our models using the public code of Touvron et al. (2020)1 for ViT and we modify the
original code when we use SAR, as described in §4.2. The models are trained with a batch size of
1024, using the AdamW optimizer (Loshchilov & Hutter, 2019) with initial learning rate of 0.001,
a cosine learning rate schedule, a weight decay of 0.05 and using the original data-augmentation
protocol.

D.2 HYBRID ARCHITECTURES

In all the supervised experiments, we used the officially released code for PVT (Wang et al., 2021)2,
T2T (Yuan et al., 2021b)3 and CvT (Wu et al., 2021)4, strictly following the original training protocol
for each architecture.

PVT and T2T are trained with batch size of 1024, using the AdamW optimizer with an initial learning
rate of 0.001, momentum 0.9 and weight decay of 0.05. CvT is trained with a batch size of 2048
and an initial learning rate of 0.02, decayed with a cosine schedule. The data augumentations of the
original articles are based on the DeiT protocol (Touvron et al., 2020). We refer the reader to the
original papers for further details. When we use SAR, we modify the original public code, following
§4.2.

D.3 FINE-TUNING

We fine-tune the ViT-S/16 models pretrained on IN-1K (see Tab. 2), always keeping unchanged the
VT architecture used in the pre-training stage. This is done to avoid making the adaptation task more
difficult, since each of the four datasets used in Tab. 4 is composed of a relatively small number of
samples. For instance, when SAR is used during pre-training but removed during fine-tuning (second
row of Tab. 4), in the fine-tuning stage we use only Lce for training but we do not re-introduce
skip connections or LN layers in the last block (i.e., we use Eq. (10)-Eq. (11) when fine-tuning).
Conversely, when the pre-training is performed without SAR, which is introduced only in the fine-
tuning stage (third row of Tab. 4), when fine-tuning, we use Ltot = Lce + λLse, but keeping the
standard skip connections and the LN layer in the last block (Eq. (1)-Eq. (2)).

1https://github.com/facebookresearch/deit
2https://github.com/whai362/PVT/tree/v1
3https://github.com/yitu-opensource/T2T-ViT
4https://github.com/microsoft/CvT
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ViT-S/16 ViT-S/16 + SAR

Figure 8: A qualitative comparison between the attention maps generated by ViT-S/16 and ViT-S/16
+ SAR (supervised case, training on IN-1K).
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The models are fine-tuned for 100 epochs with a batch size of 512, and an initial learning rate of
0.0005 decayed with a cosine schedule.

D.4 SELF-SUPERVISED EXPERIMENTS

In our self-supervised experiments, we adopt the original code for MoCo-v3 (Chen et al., 2021)5 and
DINO (Caron et al., 2021)6 with a ViT-S/16 backbone. For computational reasons, we restrict our
experiments training the models on IN-100 for 300 epochs. Moreover, to fit the available resources,
we reduce the batch size to 1024 for MoCo-v3, while DINO is trained with the default multi-crop
strategy (2 × 2242 + 10 × 962), but with a batch size of 512. We thoroughly follow the authors’
specifications for the other hyperparameters. The results in Tab. 9 are obtained using a standard linear
evaluation protocol in which the pretrained backbone is frozen, and a linear classifier is trained on
top of it, using SGD for 100 epochs on IN-100.

E DATASET LICENSING DETAILS

CIFAR-10, CIFAR-100 are released to the public with a non-commercial research and/or educational
use7. Oxford flower102 is released to the public with an unknown license through its website8,
and we assume a non-commercial research and/or educational use. ImageNet annotations have a
non-commercial research and educational license9.

PASCAL VOC 2012 images abide by the Flickr Terms of Use10.

Cars images have a non-commercial research and educational license11

ClipArt, Painting and Sketches are part of the DomainNet dataset which is released under a fair use
license12.

The ImageNet-A13 and ImageNet-C14 images are released with unknown licence, so we refer to the
original authors to use these datasets.

5https://github.com/facebookresearch/moco-v3
6https://github.com/facebookresearch/dino
7https://www.cs.toronto.edu/˜kriz/cifar.html
8https://www.robots.ox.ac.uk/˜vgg/data/flowers/102/
9https://image-net.org/download

10http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
11http://ai.stanford.edu/˜jkrause/cars/car_dataset.html
12http://ai.bu.edu/DomainNet/#dataset
13https://github.com/hendrycks/natural-adv-examples
14https://github.com/hendrycks/robustness
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