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Abstract
As Large Language Models (LLMs) rapidly evolve,1

their influence in science is becoming increas-2

ingly prominent. The emerging capabilities of3

LLMs in task generalization and free-form dia-4

logue can significantly advance fields like chem-5

istry and biology. However, the field of single-6

cell biology, which forms the foundational building7

blocks of living organisms, still faces several chal-8

lenges. High knowledge barriers and limited scal-9

ability in current methods restrict the full exploita-10

tion of LLMs in mastering single-cell data, imped-11

ing direct accessibility and rapid iteration. To this12

end, we introduce INSTRUCTCELL, which signifies13

a paradigm shift by facilitating single-cell analy-14

sis with natural language. By thoroughly under-15

standing single-cell instructions through the multi-16

modal architecture, INSTRUCTCELL has acquired17

profound expertise in single-cell biology and the18

capability to accommodate a diverse range of anal-19

ysis tasks. Extensive experiments further demon-20

strate INSTRUCTCELL’s robust performance and21

potential to deepen single-cell insights, paving the22

way for more accessible and intuitive exploration23

in this pivotal field.24

1 Introduction25

Artificial Intelligence for Science (AI4Science) has emerged26

as a pivotal force in advancing scientific research [Wang et27

al., 2023; Tinn et al., 2023], particularly in complex domains28

like nuclear fusion [Degrave et al., 2022], protein structure29

prediction [Jumper et al., 2021], and autonomous chemical30

discovery [Daniil et al., 2023]. Among the various AI tools,31

Large Language Models (LLMs) are at the forefront, demon-32

strating significant advancements in fields such as biology33

and chemistry [Zheng et al., 2023; Zhao et al., 2023; Zhang34

et al., 2024]. These models excel in interpreting biological35

sequential data and following human instructions [Tong and36

Zhang, 2023; Fang et al., 2024], making human language an37

essential medium for acquiring biological insights. As a re-38

sult, LLMs are breaking down barriers to biological knowl-39

edge, revolutionizing research paradigms, and deepening our40

understanding of life sciences.41

Figure 1: INSTRUCTCELL facilitates single-cell analysis through
conversational interactions.

This paradigm shift opens new avenues for single-cell bi- 42

ology research, a field pivotal to understanding the basic 43

units of life. Single-cell biology examines the intricate func- 44

tions of these cells, ranging from energy production to ge- 45

netic information transfer [Bechtel, 2006], playing a criti- 46

cal role in unraveling the fundamental principles of life and 47

mechanisms influencing health and disease [Pollard et al., 48

2022]. The field has witnessed a surge in single-cell RNA 49

sequencing (scRNA-seq) data, driven by advancements in 50

high-throughput sequencing and reduced costs. Reposito- 51

ries like the Gene Expression Omnibus (GEO) [Barrett et 52

al., 2012] and the Human Cell Atlas (HCA) [Regev et al., 53

2017] have been instrumental in accumulating and dissem- 54

inating this data. The emerging field of single-cell founda- 55

tion models, such as scBERT and scGPT [Yang et al., 2022; 56

Theodoris et al., 2023; Cui et al., 2023; Mo et al., 2021], is 57

changing traditional task-specific approaches [Lieberman et 58



al., 2018; Shao et al., 2021; Liao et al., 2022]. These mod-59

els leverage extensive scRNA-seq datasets, applying NLP60

techniques to analyze gene expression matrices—structured61

formats that simplify scRNA-seq data into computationally62

tractable representations—during pre-training. They are sub-63

sequently fine-tuned for distinct single-cell analysis tasks.64

Despite their potential, the technical intricacies and knowl-65

edge prerequisites of these models pose challenges to their ac-66

cessibility and practical application, especially in fast-paced67

iteration scenarios.68

Recent efforts have been directed towards adapting LLMs69

for critical single-cell analysis tasks. For example, using70

ChatGPT for cell type annotation [Hou and Ji, 2023], con-71

verting cells into sequences of gene names and fine-tuning72

LLMs for single-cell analysis tasks [Levine et al., 2023], and73

retrieving textual summaries of genes from the NCBI gene74

database followed by obtaining gene embeddings through75

GPT-3.5 [Chen and Zou, 2023]. However, text and cells rep-76

resent two fundamentally different forms of language, with77

distinct representation spaces and sequence semantics. Tex-78

tual language is an abstraction based on human linguistic ex-79

pression, while scRNA-seq profiles the expression pattern of80

each gene within a cell. Treating these as a single modality81

can lead to information loss and hinder the model’s ability to82

deeply understand and master the connections between them.83

In this study, we introduce INSTRUCTCELL, a multimodal84

cell language model that leverages natural language to en-85

hance single-cell analysis. Initially, we construct a single-cell86

instruction dataset that LLMs can readily interpret. Subse-87

quently, by employing a multimodal architecture, INSTRUCT-88

CELL is designed to handle both high-dimensional cellular89

data and structured textual data, effectively merging quanti-90

tative cell expression profiles with qualitative textual anno-91

tations. To enhance the LLM’s expertise in the single-cell92

domain, we conduct instruction tuning on single-cell instruc-93

tions to adeptly execute a range of single-cell tasks. IN-94

STRUCTCELL leverages a unique encoding strategy where95

cellular data and textual data are co-encoded into a shared96

latent space. This allows for the direct comparison and com-97

bination of genomic information with textual descriptions, fa-98

cilitating a more detailed understanding of cellular functions.99

Moreover, INSTRUCTCELL enables researchers to input hu-100

man instructions, thereby facilitating the convenient execu-101

tion of essential tasks in single-cell analysis.102

2 Related Work103

Single-cell analysis. Single-cell analysis delves into the ex-104

amination and manipulation of individual cells, aiming to de-105

cipher their specific roles in complex biological systems. This106

discipline leverages scRNA-seq to reveal the active genes and107

their expression levels within single cells [Plass et al., 2018;108

Cao et al., 2019]. For efficient analysis, scRNA-seq data is109

organized into gene expression matrices, where columns and110

rows correspond to individual cells and genes, respectively,111

and the matrix values reflect gene expression levels [Brazma112

and Vilo, 2000]. Utilizing these matrices enables researchers113

to handle a range of critical tasks in single-cell analysis, such114

as dissecting the cellular composition of tissues and identify-115

ing novel cell types and states. The challenges in this field, 116

including managing high-dimensional data [Wu and Zhang, 117

2020; Tejada-Lapuerta et al., 2023], addressing data spar- 118

sity [Bouland et al., 2023], and handling the computational 119

demands of large-scale data analysis [Wolf et al., 2018], are 120

being addressed by the development of innovative computa- 121

tional tools and algorithms. These advancements are crucial 122

for distilling reliable and biologically relevant insights from 123

single-cell data. 124

Single-cell foundation models. Initial attempts to analyze 125

gene expression matrics involve machine learning methods 126

and autoencoder-based approaches [Liu et al., 2021; Oller- 127

Moreno et al., 2021; Ji et al., 2021]. However, these stud- 128

ies often produce models tailored for specific tasks, which 129

lack the adaptability for broader analytical applications [An- 130

gerer et al., 2017]. Inspired by the success of foundation 131

models in NLP tasks [Devlin et al., 2019; Lewis et al., 132

2020], the concept is naturally extended to the single-cell do- 133

main. Single-cell foundation models emerge to offer wide- 134

ranging capabilities across various single-cell analysis tasks. 135

ScBERT [Yang et al., 2022] acquires insights into individual 136

and combined gene expressions by analyzing millions of nor- 137

malized scRNA-seq data within the BERT framework. Gene- 138

former [Theodoris et al., 2023] employs a self-supervised 139

masked token prediction objective to decode gene networks, 140

subsequently fine-tuning for chromatin and network dynam- 141

ics tasks. ScGPT [Cui et al., 2023] benefits from genera- 142

tive pre-training, excelling in functions like cell type anno- 143

tation, gene perturbation prediction, and pseudo-cell genera- 144

tion. Distinct from foundation models, INSTRUCTCELL em- 145

ploys instruction tuning on single-cell instructions, equipping 146

the model with the ability to accurately follow instructions 147

across various single-cell analysis tasks without the need for 148

pre-training and fine-tuning. 149

Instruction-following models. The inherent strength of 150

LLMs lies in their ability to follow and execute human in- 151

structions. Trained on specialized instruction datasets, these 152

models develop a deep understanding of intricate instruc- 153

tions, offering flexibility and a broader scope compared to 154

traditional foundation models. This versatility has led to di- 155

verse innovations within biology, such as language-guided 156

molecular design [Edwards et al., 2022; Fang et al., 2024; 157

Zeng et al., 2023], medical question-answering [Singhal et 158

al., 2023], and automated experimental design [Daniil et 159

al., 2023]. The exploration of instruction-following mod- 160

els is emerging as a promising avenue in the single-cell do- 161

main. GPTCelltype [Hou and Ji, 2023] explores the fea- 162

sibility of using GPT-4 for cell type annotation, indicating 163

a new step forward in language-guided single-cell analy- 164

sis. Cell2sentence [Levine et al., 2023] demonstrates how 165

gene expression profiles can be translated into gene name se- 166

quences, illustrating the potential for integrating LLMs into 167

analyzing single-cell data. Apart from them, INSTRUCTCELL 168

employs a multimodal architecture to familiarize LLMs with 169

scRNA-seq data and extend their proficiency across a variety 170

of tasks through instruction tuning. It facilitates a seamless 171

entry for researchers into the field, allowing direct informa- 172

tion acquisition through chat and thereby enhancing the ac- 173



Figure 2: The overview of INSTRUCTCELL.

cessibility of single-cell analysis.174

3 Methodology175

3.1 Instruction Construction176

The objective of INSTRUCTCELL is to enable researchers to177

conduct comprehensive single-cell analysis using natural lan-178

guage inputs, ensuring LLM’s adeptness in both single-cell179

and natural language. For this purpose, we construct a single-180

cell instruction dataset. We collect scRNA-seq data from181

publicly available single-cell datasets and design templates182

corresponding to different tasks, transforming them into in-183

structions for LLMs to understand. These instructions can be184

in the form of pure text or a mixture of text and scRNA-seq185

data. As illustrated in Figure 2 (a), we focus on the following186

single-cell tasks outlined:187

Pseudo-cell Generation. Pseudo-cell generation focuses188

on generating gene expression profile tailored to specific cell189

type labels. The prompt requests the model to construct a190

cell for a given cell type, and the target is expected to be191

a cell accurately representing the gene expression profile of192

that cell type. This task is vital for unraveling gene expression193

and regulation across different cell types, offering insights for194

medical research and disease studies, particularly in the con-195

text of diseased cell types.196

Cell Type Annotation. For cell type annotation, the model197

is tasked with precisely classifying cells into their respective198

types based on gene expressions. Here, the prompt involves199

providing a gene expression profile for the model to deter-200

mine the cell type, with the target being the accurate identifi-201

cation and classification of that cell type. This task is funda-202

mental for understanding cellular functions and interactions203

within tissues and organs, playing a crucial role in develop-204

mental biology and regenerative medicine.205

Drug Sensitivity Prediction. The drug sensitivity predic- 206

tion task aims to predict the response of different cells to var- 207

ious drugs. In this task, the prompt presents a cell along with 208

a specific drug, and the model is tasked with predicting the 209

cell’s response to the drug. The target is an accurate predic- 210

tion of the cell’s sensitivity or resistance to the drug. It is 211

pivotal in designing effective, personalized treatment plans 212

and contributes significantly to drug development, especially 213

in optimizing drug efficacy and safety. 214

In real-world scenarios, human communication exhibits in- 215

herent diversity and complexity, characterized by a wide ar- 216

ray of linguistic styles and expressions. INSTRUCTCELL, de- 217

signed to engage in conversational interactions, must be adept 218

at handling this linguistic variability. For each task, we start 219

with a clear and concise human-written description. This de- 220

scription is then fed into GPT-4, leveraging its capability to 221

produce diverse renditions of the same concept. This diver- 222

sity in training ensures that INSTRUCTCELL learns to under- 223

stand and respond to different modes of language expression, 224

making it a robust tool for versatile communicative interac- 225

tions in single-cell analysis. 226

3.2 Multimodal Cell Language Model 227

In order to enable the model to simultaneously handle both 228

text and single-cell data modalities, INSTRUCTCELL is built 229

on a multimodal language model architecture that facilitates 230

cross-modal knowledge sharing, enhancing the model’s abil- 231

ity to process different data types. As illustrated in Figure 2 232

(b), tokens or embeddings related to text and cells are repre- 233

sented in pink and yellow, respectively. 234

For precise processing of instructions containing single- 235

cell gene expression data, we designed special symbols 236

<CELL> and </CELL> to mark the beginning and end of cell 237

data. This strategy allows the model to semantically differen- 238

tiate between text and single-cell data, preventing confusion 239



Figure 3: Distribution of real cells and generated cells.

between data types. The single-cell gene expression data is240

mapped to a cell latent representation by a dedicated encoder241

and then is fed into the embedding layer along with text data242

for combined encoding. This design enables the model to243

understand both textual information and cell features in the244

same semantic space, enhancing the model’s comprehensive245

expressive capabilities.246

In tasks that generate purely textual data, such as cell247

type annotation and drug sensitivity prediction, we treat these248

as sequence generation tasks. This method leverages the249

model’s pre-trained language understanding capabilities to250

generate relevant textual outputs, improving the relevance251

and accuracy of the outputs. In Figure 2 (b), the symbols of252

hText Token represent embeddings from the pre-trained model,253

while gText Token symbols are newly generated embeddings254

that will be mapped back to specific tokens to produce the255

final textual output.256

The pseudo-cell generation task is more complex, requir-257

ing the model to generate single-cell gene expression profiles.258

To facilitate this, we first introduce a g<SIGNAL> to remind the259

language model that it will next generate the cell’s embed-260

ding, gCELL. This signaling mechanism helps maintain direc-261

tion and accuracy in the generation task. We then employ262

an autoencoder module to reconstruct the model-generated263

gCELL into a single-cell gene expression profile. It is impor-264

tant to note that during the inference phase, we remove the265

encoder in this module and retain only the decoder. This ar-266

chitectural choice enables INSTRUCTCELL not only to handle267

complex multimodal inputs but also to provide high-quality268

predictions and analyses across various bioinformatics and269

medical applications. By exposing this multimodal cell lan-270

guage model to a wide variety of single-cell analysis tasks, it271

not only identifies task-specific patterns but also develops a272

holistic understanding of the entire domain.273

4 Experiments274

4.1 Experimental Settings275

Baselines. The compared baselines include scGPT [Cui et276

al., 2023], and scBERT [Yang et al., 2022], each specifically277

designed for single-cell analysis.278

Implementation Details. INSTRUCTCELL is implemented us-279

ing the PyTorch framework and trained on 4 Nvidia V100280

GPUs. We initialize our model using T5-base model [Raf-281

fel et al., 2020] as pre-trained foundations. For the pseudo-282

cell generation task, we utilize 68,185 fresh peripheral283

blood mononuclear cells (PBMCs) from the PBMC68K284

dataset [Zheng et al., 2017]. For the cell type annotation285

task, we select and clean cells from two datasets: 2,108 cells286

from the pancreas (pancreatic islet) sequenced using Smart- 287

seq2 [Segerstolpe et al., 2016], and 20,528 cells from the 288

pancreas (pancreatic islet) sequenced using SMARTer [Xin et 289

al., 2016]. For the drug sensitivity prediction task, we select 290

two datasets: GSE149383 [Aissa et al., 2021] records the re- 291

sponse of 2,254 human lung cancer cells to the drug Erlotinib, 292

and GSE117872 [Sharma et al., 2018; Ravasio et al., 2020; 293

Suphavilai et al., 2021] records the response of 1,302 human 294

oral squamous cancer cells to the drug Cisplatin. All these 295

instructions are split into train/validation/test datasets in an 296

8:1:1 ratio. 297

4.2 Pseudo-cell Generation 298

When given specific cell types, we evaluate the performance 299

of the generated cells using the following metrics: 300

• MMD (Maximum Mean Discrepancy): Used to measure 301

if the differences between the model-generated samples 302

and the actual samples are sufficiently small. A smaller 303

MMD value indicates better performance of the model 304

in simulating single-cell data. 305

• S-KNN (Self-KNN): This custom metric assesses 306

whether the model-generated single cells possess bio- 307

logical significance. Specifically, for a simulated single- 308

cell dataset, assume category i contains ci cells; the 309

model needs to generate ci cells for each category. Af- 310

ter generating the cells, the system calculates the near- 311

est K neighbors for each cell, excluding the cell itself, 312

and evaluates the label consistency based on these neigh- 313

bors’ labels. The average label consistency across all 314

cells is computed and defined as the SKNN metric. 315

• R-KNN (Real-KNN): We also introduce the R-KNN met- 316

ric to ensure that not only do the model-generated single 317

cells have biological meaning, but this biological signifi- 318

cance is consistent with that of actual cells. Specifically, 319

we use the cells in the test set as the training set for a 320

KNN classifier and the model-generated single cells as 321

the test set. We then calculate the accuracy of the KNN 322

classifier, which defines the R-KNN metric. 323

To assess the biological accuracy of gene expression pro- 324

file generated by INSTRUCTCELL, we visualize their corre- 325

sponding gene expression matrices in two dimensions, fol- 326

lowing the pseudo-cell generation experimental setting. Fig- 327

ure 3 shows that cell distributions generated by INSTRUCT- 328

CELL closely resemble those of real cells, confirmed by the 329

low MMD. The distinct clustering of cell types in the gen- 330

erated data demonstrates INSTRUCTCELL’s ability to capture 331

and differentiate unique cell characteristics, indicating its ca- 332

pacity to generate detailed profiles for each cell type. 333



Model
Segerstolpe-2016 Xin-2016

� Accuracy � Average F1 � Weighted F1 � Accuracy � Average F1 � Weighted F1

scBERT 96.42 96.38 95.44 98.57 98.22 98.01
scGPT 97.51 97.51 97.56 98.90 98.90 98.91

INSTRUCTCELL 99.50 99.17 99.50 99.50 99.39 99.50

Table 1: Performance (%) of cell type annotation on two datasets.

Model
GSE149383 GSE117872

� Accuracy � Average F1 � Weighted F1 � Accuracy � Average F1 � Weighted F1

scBERT 97.82 97.82 97.52 93.13 93.58 93.10
scGPT 96.46 96.46 96.45 80.15 80.15 80.94

INSTRUCTCELL 97.35 97.34 97.35 95.42 95.52 95.42

Table 2: Performance (%) of drug sensitivity prediction on two datasets.

4.3 Cell Type Annotation334

INSTRUCTCELL revolutionizes cell type annotation by elim-335

inating the need for classifier training. Instead, task de-336

scriptions and gene expression profiles are fed directly as in-337

structions into the model, which then predicts the cell type338

through a sequence generation manner. Table 1 reveals that339

INSTRUCTCELL holds a distinct edge over competing mod-340

els, reflecting its proficiency in deciphering complex relation-341

ships between gene expressions and corresponding cell types.342

The effectiveness of INSTRUCTCELL in this context is en-343

hanced by its ability to process and integrate verbal instruc-344

tions. These instructions not only specify the task at hand345

but also contextually enrich the model’s analysis, providing a346

linguistic framework that aligns with biological data. This in-347

tegration of language and biology through a multimodal lens348

allows INSTRUCTCELL to extract more meaningful insights349

from the data, leading to more accurate predictions.350

4.4 Drug Sensitivity Prediction351

Similarly, the task of drug sensitivity prediction is also ac-352

complished in an autoregressive manner, obviating the need353

for a distinct classifier. As shown in Table 2, experiments354

are conducted on two drug response datasets. INSTRUCT-355

CELL outperforms in both the GSE149383 and GSE117872356

datasets, surpassing the single-cell foundation model scGPT357

and achieving performance levels comparable to the single-358

cell foundation model scBERT. This performance advantage359

stems from our model’s ability to contextually analyze and360

synthesize information across different modalities. Rather361

than treating textual and cellular data as separate entities, IN-362

STRUCTCELL interprets them as complementary sources of363

information, leading to more accurate and robust predictions.364

5 Conclusion and Future Work365

In this work, we propose INSTRUCTCELL, a multimodal cell366

language model that facilitates single-cell analysis with nat-367

ural language. This approach not only bridges the gap be-368

tween disparate data modalities but also ingeniously inte-369

grates them, enhancing the LLM’s capability to process and370

interpret complex biological data. Our study on INSTRUCT-371

CELL confirms its proficiency in deciphering complex single-372

cell data and its versatility across a wide range of analysis 373

tasks. Interesting future directions include: i) integrating 374

more single-cell analysis tasks, ii) applying INSTRUCTCELL 375

in personalized medicine to tailor drug treatments. 376
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