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Abstract

General parameters are highly desirable in the natural sciences — e.g., reaction con-
ditions that enable high yields across a range of related transformations. This has a
significant practical impact since those general parameters can be transfered to re-
lated tasks without the need for laborious and time-intensive re-optimization. While
Bayesian optimization (BO) is widely applied to find optimal parameter sets for spe-
cific tasks, it has remained underused in experiment planning towards such general
optima. In this work, we consider the the real-world problem of condition opti-
mization for chemical reactions to study whether performing generality-oriented
BO can accelerate the identification of general optima, and whether these optima
also translate to unseen examples. This is achieved through a careful formulation
of the problem as an optimization over curried functions, as well as systematic
benchmarking of generality-oriented strategies for optimization tasks on real-world
experimental data. We find that the optimization for general reaction conditions are
determined by the sampling of substrates, with random selection outperforming
more data-driven strategies.

1 Introduction

Identifying parameters that deliver satisfactory performance on a wide set of tasks, which we refer to
as general parameters, is crucial for numerous real-world challenges. Examples are the identification
of sensor settings that allow accurate measurements in different environments [27], or the design of
footwear that provides good performance for a wide range of people on different undergrounds [51]. A
particularly prominent example comes from the domain of chemical synthesis, where finding reaction
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Figure 1: Left: While conditions can be optimized to maximize the reaction outcome for only one
substrate (red), generality-optimized conditions provide a satisfactory reaction outcome for multiple
substrates. Right: Optimization loop for generality-oriented optimization under partial monitoring.

conditions under which different starting materials can be reliably converted into the corresponding
products, remains a critical challenge [9, 50, 52, 54, 58, 65]. Such general reaction conditions are of
particular interest, e.g., in the pharmaceutical industry, where thousands of reactions of each type are
carried out regularly, and optimizing each reaction is unfeasible [65].

In general, the ability to rapidly identify optimal reaction conditions has posed a long-standing
challenge to synthetic chemists, even for a single starting material [62]. At the same time, this
is crucial for achieving an efficient and sustainable chemical industry [5, 18, 57]. In recent years,
traditional human-centric optimization workflows have been complemented by data-driven methods
such as Bayesian Optimization (BO) in order to increase optimization efficiency [11, 12, 25, 60].
Coupled with robotic reaction execution, autonomous reaction optimization has emerged as a key
application of self-driving labs in the chemical domain to date [64]. However, in the vast majority of
cases, reaction conditions are specifically optimized for single substrates, neglecting any generality
considerations during optimization (Figure 1, left-hand side) [13, 62].

This can be attributed to the fact that directly observing the generality of selected conditions is associ-
ated with largely increased experimental costs, as experimental evaluations on multiple substrates are
required. Attempts to reduce the required number of experiments inevitably increase the complexity
of the decision-making process, thus, in the absence of appropriate decision-making algorithms,
hindering its widespread usage in real-world scenarios. Here, generality-oriented optimization turns
into a partial monitoring scenario, in which each condition can only be evaluated on a subset of
all possible substrates. As a consequence, any iterative experiment planning algorithm needs to
recommend both the condition and the substrate for the next experimental evaluation (Figure 1,
right-hand side). Experimentally measuring the outcome of the recommended experiment corre-
sponds to a partial observation of the generality objective, which needs to be taken into account when
recommending the next experiment.

Although, in the past two years, isolated studies have targeted the identification of general reaction
conditions through a variation of BO [6], multi-armed bandit optimization [66], or genetic algorithms
[17], generality-oriented optimizations are still not commonly performed in real-world experiments
(see Section 2.2.3). This likely arises from the fact that the applicability and limitations of these
algorithms are yet to be understood, which is crucial for their effective integration into real-world
laboratory workflows [64].

For these reasons, we herein perform a systematic study into generality-oriented optimization.
Therefore, we formulate generality-oriented optimization as an optimization problem over curried
functions, and perform systematic benchmarks on various real-world chemical reaction optimization
tasks. Specifically for the latter, we (i) confirm the expectation that optimization over multiple
substrates leads to more general optima, and (ii) demonstrate that the finding these optima crucially
depends on effective strategies for navigating the space of all possible substrates.

In summary, our contributions are four-fold:
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• Principled formulation of generality-oriented optimization as an optimization problem over
a curried function.

• Expansion and adaptation of established reaction optimization benchmark tasks, improving
their utility as benchmarks for generality-oriented BO.

• Evaluation of different optimization algorithms for identifying general optima.

• CURRYBO as an open-source extension to BOTORCH [7] for generality-oriented optimiza-
tion problems [1].

2 Foundations of generality-oriented Bayesian optimization

To formalize the generality-oriented optimization problem, we provide a principled outline by
considering it as an extension of established global optimization approaches over curried functions.
For clarity, we also discuss its distinction to different variations of global optimization, including
multiobjective, multifidelity, and mixed-variable optimization.

2.1 Global optimization

Global black-box optimization is concerned with finding the optimum of an unknown objective
function f(x):

x̂ = argmax
x∈X

f(x) (1)

Suppose f(x) is a function that (a) is not analytically tractable, (b) is very expensive to evaluate, and
(c) can only be evaluated without obtaining gradient information. In this scenario, BO has emerged as
a ubiquitous approach for finding the global optimum x̂ ∈ X in a sample-efficient manner [19]. The
working principle of BO involves a probabilistic surrogate model g(x) to approximate f(x), which
can be used to compute a predictive posterior distribution over g under all previous observations
D = {(xi, f(xi)}ki=1. The most prominent choice for p(g(x) | D) are Gaussian processes [GPs; 53],
with various types of Bayesian neural networks becoming increasingly popular in the past decade
[29, 36, 37, 44]. Based on the predictive posterior, an acquisition function α over the input space
X is used to decide at which xnext ∈ X the objective function should be evaluated next. Key to the
success of BO is the implicit exploitation–exploration tradeoff in α, which makes use of the posterior
distribution p(g(x) | D) [47]. Common choices of α are Upper Confidence Bound [UCB; 3, 33, 34],
Expected Improvement [32], Knowledge Gradient [15, 16, 26] or Thompson Sampling [TS; 63]. The
hereby selected xnext is evaluated experimentally, resulting in f(xnext), and the described procedure
is repeated until a satisfactory outcome is observed, or the experimentation budget is exhausted.

2.2 Global optimization for generality

2.2.1 Problem formulation

Extending the global optimization framework, we consider a black-box function f : X ×W → R in
joint space X ×W , where x ∈ X can be continuous, discrete or mixed-variable. W = {wi}ni=1 is a
discrete parameter space of size n (see Figure 2). Each evaluation of f is expensive and does not
provide any gradient information. In the example of reaction condition optimization, x corresponds
to conditions from the reaction condition space X (e.g. the reaction temperature), and w ∈ W are the
substrates (starting materials of a reaction) that are considered for generality-oriented optimization.
Let curry be a currying operator on the second argument, i.e., curry(f) : W →

(
X → R

)
, that

transforms a function taking two arguments into a family of functions, each taking one argument.
Then, for some w ∈ W , evaluating curry(f)(w) yields a new function f( · ;w) : X → R, where
f(x;w) = f(x,w). Importantly, these f( · ;w) : X → R correspond to functions that can be
evaluated experimentally (i.e. the reaction of a specific substrate as a function of conditions), even
though evaluations are expensive. This allows us to describe all observable functions through an
n-sized set F = {f( · ;wi) : X → R}ni=1. In the context of reaction condition optimization, F
consists of all functions that describe the reaction outcome for each substrate.

Evaluation of a specific f(xobs;wobs) then corresponds to measuring the reaction outcome of a
substrate (described by wobs) under specific reaction conditions xobs.
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Figure 2: Conceptual overview of the generality-oriented optimization problem. Left: The function
values across the joint space X ×W . Right: Mean aggregation applied to the function family f(x;w),
that is obtained via currying of the joint space X ×W . The quantity ϕ

(
f(x;w),W

)
constitutes the

partially observable objective function, of which x̂ = argmaxx∈X ϕ(x) is the optimum that should
be identified.

In generality-oriented optimization, the goal is to identify the optimum x̂ ∈ X that is generally
optimal across W , meaning x̂ maximizes a user-defined generality metric over all w ∈ W (see
Figure 2 for illustration). We refer to this generality metric as the aggregation function ϕ:

x̂ = argmax
x∈X

ϕ(x) := argmax
x∈X

ϕ
(
f(x;w),W

)
(2)

In the reaction optimization example, this corresponds to conditions (e.g. reaction temperature) that
give e.g. the highest average yield over all considered substrates. In this scenario, the choice of ϕ is
the mean ϕ(f(x;w),W) = 1/|W|

∑
w∈W f(x;w). An alternative choice of ϕ could or the number

of function values {f(x;wi)}ni=1 above a user-defined threshold [9]. Further practically relevant
aggregation functions are described in Appendix A.1.1.

While equation 2 appears like a standard global optimization problem over X , evaluating ϕ(x)
itself is intractable due to the aggregation over W . Indeed, to evaluate ϕ(x) on a single x, one
must perform n-many expensive function evaluations to first obtain {f(x;wi)}ni=1. Due to this
impracticality, ideally, the number of such function evaluations is minimized. Thus, this setting
differs from the conventional global optimization problem, due to its partial observation nature: One
can only compute ϕ(x) via a subset of observations {f(x;wj)}mj=1 where m < n.

To maximize sample efficiency, an optimizer should always recommend a new pair (xnext,wnext) to
evaluate next — in other words: ϕ(xnext) is only observed partially via a single evaluation of f , i.e.,
m = 1. Treating this in the conventional framework of BO, we can build a probabilistic surrogate
model g(xi;wi) from all k available observations D = {(xi,wi, f(xi;wi)}ki=1. From the posterior
distribution over g, we estimate the posterior distribution over ϕ via Monte-Carlo integration [7], see
Appendix A.1.2 for further details.

Unlike the conventional BO case, we now need a specific acquisition policy A to decide which
x ∈ X and w ∈ W the aggregated objective function ϕ(x) should be partially evaluated. Note that A
plays an important role since it must respect the partial observability constraint. That is, it must also
propose a single w at each BO step such that the general (over all wi’s) optimum x̂ is obtained in as
few steps as possible. We discuss specific choices of A in Table 1; more details in Appendix A.1.3.

Given the pair (xk+1,wk+1), the aggregated objective ϕ(xk+1) is partially observed, D is updated,
and the discussed steps are repeated until the experimentation budget is exhausted. Eventually, owing
to the partial monitoring scenario [42, 43, 55], the final optimum after a budget of k experiments, x̂k,
is returned greedily, i.e. as the x ∈ X that maximizes the mean of the predictive posterior of ϕ. A
summary of this is provided in Algorithm 1.

2.2.2 Distinction from existing variants of the BO formalism

Despite seeming similarities with multiobjective, multifidelity, and mixed-variable optimization,
the generality-oriented approach describes a distinctly different scenario, necessitating distinct
algorithmic solutions.
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Algorithm 1 Generality-oriented Bayesian optimization
Input:

Set of observable functions F = {f(·;wi) : X → R}ni=1

Initial dataset Dk =
{
xj ,wj , f(xj ;wj)

}k

j=1

Aggregation function ϕ
(
f(x;w),W

)
Surrogate model g(x,w) and acquisition policy A
Budget K

1: while k ≤ K do
2: Compute posterior distribution p

(
gk(x,w) | Dk

)
3: Acquire xk+1,wk+1 = A

(
p
(
gk(x,w) | Dk

)
, ϕ

(
f(x;w),W

))
4: Observe f(xk+1;wk+1)
5: Update Dk+1 = Dk

⋃{
(xk+1,wk+1, f(xk+1wk+1))

}
6: k = k + 1
7: end while

8: return x̂ = argmax
x∈X

E
[
p
(
ϕ(x) | DK

)
| x

]

• In contrast to multiobjective optimization, here, we consider a single optimization objective,
i.e. ϕ(x). However, this objective can only be partially observed. Whereas the overall
optimization problem aims to identify x̂ ∈ X , finding the next recommended observation
requires a joint optimization over X and W .

• In contrast to multifidelity BO, the functions parameterized by w ∈ W do not correspond to
the same objective with different fidelities. Rather, they are independent functions which all
contribute equally to the objective function ϕ(x).

• Unlike mixed-variable BO [14], the goal of generality-oriented BO is not to find (x,w)
that maximizes the objective in the joint space. Rather, the goal is to find the set optimum
x̂ that maximizes ϕ

(
f(x;w),W

)
over f(x;w). In the case of ϕ being a sum, this bears

resemblance to maximizing the marginal over x (see Figure 2). Moreover, X itself can be
continuous, discrete or mixed, thus, X ×W can be a fully-discrete space.

2.2.3 Related works

Given the enormous importance of general reaction conditions for accelerating molecular discovery,
the concept of "reaction generality" has been discussed on multiple occasions in the past years
[9, 50, 52, 54, 65], and has been included in computational molecular design studies [17].

The first example of actual generality-oriented optimization has been reported by Angello et al.
[6], who describe a modification of BO, sequentially acquiring xnext (maximized probability of
improvement over all x ∈ X ) and wnext (minimized posterior variance over all w ∈ W given
xnext). The authors demonstrate its applicability in automated experiments on Suzuki–Miyaura cross
couplings. Their algorithm is evaluated herein as the CURRYBO 1LA-VAR strategy.

Following an alternative strategy, Wang et al. [66] recently formulated generality-oriented optimiza-
tion as a multi-armed bandit problem, where each arm corresponds to a possible reaction condition.
It should be noted that, in this scenario, uniform sampling of all arms is required for initializing the
algorithm. While the approach has mainly been tested for optimization campaigns with few possible
reaction conditions, this requirement renders its application impractical for a high number of discrete
conditions or even continuous variables. However, such cases are commonly faced in real-world
optimization campaigns and benchmarked herein.

Despite these advances, their applicability and limitations have remained unclear. Thus, after the
problem formulation provided in Section 2.2.1, our work provides a comparison over different
generality-oriented strategies. Our analysis focuses on published approaches, as well as additional
BO-based strategies, owing to their demonstrated real-world applicability in reaction condition
optimization [12, 64].
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Due to the partial monitoring nature of generality-oriented optimization, we want to highlight work
that has been conducted on the partial monitoring case in bandit optimization scenarios [42, 43, 55].
However, to the best of our knowledge, work in this field has mostly dealt with an information-
theoretic approach towards optimally scaling algorithms. We refer the readers to select publications
[35, 39–41]. However, systematic evaluations in scenarios that require sample-efficent optimization,
particularly addressing the early stages of optimization campaigns, has not been targeted.

3 Methods

3.1 Experimental benchmark problems

We consider two real-world chemical reaction benchmark problems stemming from high-throughput
experimentation [HTE; 10, 68]. Each problem evaluates the optimization of a chemically relevant
reaction outcome (such as enantioselectivity ∆∆G‡, or starting material conversion), and contains
an experimental dataset of substrates, conditions and measured outcomes. For each benchmark,
generality is evaluated over substrates or substrate pairs (16 - 25 discrete options), and is optimized
over one or two categorical reaction conditions (43 - 96 discrete conditions). Since it has been well-
demonstrated that these problems can be effectively modeled by regression approaches [4, 56, 68],
we trained a random forest regressor on each dataset, which was used as the ground-truth emulator for
all experiments [30]. Extensive analysis of the benchmark problems can be found in Appendix A.2.
Moreover, to overcome well-known biases towards high-outcome reactions, we augmented the
existing search spaces via a chemically sensible expansion workflow (see Appendix A.2.2). The
STONED algorithm [49] was used to generate a pool of new in-domain substrates which possess
the required functional groups for the reaction, and exhibit structural similarity (fingerprint distance)
above a user-defined threshold. From this pool, substrates with low reaction outcomes, as predicted
by the ground-truth emulator, were preferentially sampled for expanding the original search space,
ensuring enrichment with low-outcome reactions.

To analyze the utility of generality-oriented BO for each benchmark problem, we first use exhaustive
grid search over all potential reaction conditions to identify the most general reaction conditions
across a varying number of "train" substrates. The generality of these conditions was subsequently
evaluated on a held-out test set of substrates to derive a test-set independent generality score, that
scales the generality of selected conditions with the minimal and maximal obtainable generality
across the test set substrates. With this generality score, we investigate whether generality-oriented
optimization across more substrates indeed yields more transferable reaction conditions. Further
details on the generality score and the data-analysis are provided in Appendix A.3.

3.2 Optimization algorithms

Using the benchmark problems outlined above, we perform systematic evaluations of multiple meth-
ods for the identification of general optima. Table 1 summarizes the strategies for recommending the
next data point (xnext,wnext) (cf. Section 2.2) that are discussed in the main text. Each strategy is eval-
uated under two different definitions of generality, namely the mean and the number-above-threshold
aggregation (threshold aggragation) functions described in Section 2.2.1 (see Appendix A.1.1 for
further details).

In all BO experiments, we used a GP regressor, as provided in BoTorch, with the Tanimoto kernel as
implemented in Gauche [24]. Molecules were represented using Morgan Fingerprints [46] with 1024
bits and a radius of 2. Fingerprints were generated using RDKit [2]. For each experiment, we provide
statistics over 30 independent runs, each performed over different substrates and initial conditions,
but with fixed random seeds to ensure cross-method comparability. Further baseline experiments are
discussed in Appendix A.4.

4 Results and discussion

We commenced our analysis by investigating the overall utility of generality-oriented optimization to
yield general and transferable optima. In our initial studies, we evaluated generality as the average
outcome over all w ∈ W (mean aggregation function). Exhaustive grid search, which enables us to
identify the ground truth optima for each set of train substrates evaluated during optimization, reveals
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Table 1: Benchmarked acquisition policies

Optimization strategy Description

CURRYBO 2LA-RAND Sequential two-step lookahead acquisition policy, using Thompson Sampling
acquisition function to select xnext and a Random selection of wnext with a greedy
final recommendation

CURRYBO 1LA-VAR Sequential one-step lookahead acquisition policy, using an UCB acquisition
function with β = 0.5 to select xnext and a posterior variance acquisition function
to select wnext with a greedy final recommendation. This strategy resembles the
algorithm described by Angello et al. [6]

CURRYBO 1LA-RAND Sequential one-step lookahead acquisition policy, using an UCB acquisition
function with β = 0.5 to select xnext and a random acquisition of wnext with a
greedy final recommendation.

BANDIT Multi-armed bandit algorithm as outlined and implemented by Wang et al. [66]
RANDOM GREEDY Sequential acquisition policy, using a random acquisition function to select xnext

and a random acquisition function to select wnext with a greedy final recommen-
dation

RANDOM Random acquisition policy of xnext and wnext and final random recommendation

that with an increasing number of train substrates, the transferability of the found optima to a held-out
set of test substrate increases (Figure 3, left). While this finding is arguably unsurprising, and merely
confirms a common assumption in the field [65], it indicates possible caveats concerning the use of
these problems as benchmarks for generality-oriented optimization: Even with larger numbers of
train substrates, the ground-truth optima for the train sets did not lead to optimal outcomes on the
corresponding test sets, as evidenced by test set generality scores significantly below 1.0.

These observations indicate the existence of multiple scattered local optima. We attribute this to
an overall high density of high-outcome results across the search space (see Appendix A.2) – a
well-known bias in chemical reaction databases [8, 61]. This is, however, not necessarily reflective
of the "real-world" scenario encountered in reaction condition optimization. At this stage, it should
be noted that, while widely used as such, the problems have not been designed as benchmarks for
reaction condition optimization. These issues motivated the search space expansion, as discussed in
Section 3.1. On the augmented benchmark tasks, we find that transferability of the identified optima
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Figure 3: Top: Normalized test-set generality score as determined by exhaustive grid search for the
Pd-catalyzed carbon-heteroatom coupling benchmark on the original (left) and augmented (right)
problems. Average and standard error are taken from thirty different train/test substrates splits.
Bottom: Normalized test-set generality score as determined by exhaustive grid search for the N,S-
Acetal formation benchmark on the original (left) and augmented (right) problems. Average and
standard error are taken from thirty different train/test substrates splits.
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algorithms are described in Table 1.

to a held-out test set is significantly improved (Figure 3, right), and the consideration of multiple
substrates during optimization robustly leads to well-generalizing optima. Notably, these observations
are not limited to the definition of generality as the average over all w ∈ W , but remain valid for
further aggregation functions (see Appendix A.6.1). These findings underline that – especially in
"needle in a haystack scenarios" – generality-oriented optimization is indeed necessary for finding
transferable optima. Most importantly, these scenarios are most commonly found in real-world
reaction optimization, where for most reactions, the majority of possible conditions do not lead to
observable product quantities. This re-emphasizes the need for benchmark problems that reflect
experimental reality.

With these findings at hand, we investigated how to select the Wtrain ⊂ W to identify maximally
transferable optima. Surprisingly, we find that molecular-distance-based selection, aiming at a broad
coverage of W [20, 21, 28, 59], did not outperform random sampling approaches. We provide an
extended discussion of this observation in Appendix A.6.1.

Eventually, having established the fundamental utility of generality-oriented optimization, we set
out to perform a systematic evaluation into how to identify those optima using iterative optimization
under partial monitoring of the optimization objective. We evaluate previously reported strategies
[6, 66], as well as additional BO-based approaches (Table 1). As a summary, Figure 4 shows
the optimization trajectories of these different algorithms, quantified as a normalized, problem-
independent optimization metric (GAP = (yi − y0)/(y

∗ − y0), where yi’s are maximum observed
values and y∗ is the true global optimum) [31], and averaged across both benchmark problems.
Individual optimization trajectories for each benchmark problem are shown in Figure 5 and in
Appendix A.6.

In spite of performance differences across the benchmark tasks, we were surprised to find overall
good performance of random data point acquisition combined with a model-based greedy prediction
of the final global optimum (RANDOM GREEDY). As this strategy is seldomly employed as a baseline
in optimization, it is interesting to observe optimization behavior which is almost on par with iterative
data-driven techniques — particularly in the context of fixed-budget optimization. In fact, in many
scenarios, it outperformed data-driven algorithms for iteratively picking and evaluating xnext and
wnext (see Figure 4 and Figure 5). The optimization behavior of the BANDIT algorithm is significantly
affected by the necessity to uniformly sample all arms (i.e. all x ∈ X ) at the outset of a campaign,
which disfavors it in scenarios with large X , such as the Pd-catalyzed carbon-heteroatom coupling
benchmark (see Figure 5). In contrast, for small to medium-sized X (e.g. the N,S-acetal formation
benchmark), competitive optimization behavior is observed after sampling all x ∈ X (see Figure 5).

In contrast, the BO-based algorithm (CURRYBO 1LA-VAR) recommends improved general condi-
tions already after few experimental evaluations. However, we observe that sequentially acquiring
xnext by optimizing a conventional acquisition function, and wnext based on posterior variance (i.e.
uncertainty)[6], leads to comparatively slow optimization, with little indication of reliably converging
towards the global optimum (Figure 4). To identify the origin of this behavior, we subsequently
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algorithms are described in Table 1.

evaluated variations of this algorithm, using different strategies for acquiring wnext. To our surprise,
randomly selecting wnext (similar to the BANDIT algorithm) showed significantly more sample-
efficient optimization than uncertainty-based selection, and consistently converged towards the global
optimum [CURRYBO 1LA-RAND, Figure 6; 38, 48]. Importantly, this is observed across all tasks,
emphasizing the importance of performing broad and systematic benchmarks in different real-world
settings. Eventually, we evaluated the possibility to improve the strategy for acquiring xnext. As
opposed to conventional BO, where the goal is to pick the next data point by maximizing the chance
that this next point is the optimum (one-step lookahead), the partial monitoring scenario would
conceptually require a different approach. Here, xnext should be picked to maximize the chance of
recommending the optimum in the subsequent greedy pick. To account for this, we implemented
and benchmarked a BO strategy building on two-step lookahead acquisition functions [CURRYBO
2LA-RAND; 22, 23, 67]. Combined with random selection of wnext, however, only marginal im-
provements in optimization performance were observed (Figure 6). At the same time, the use of
different acquisition functions due to implementation constraints (see Appendix A.1.3) prevents a
direct, rigorous comparison. Yet, these findings clearly suggest that the efficacy of generality-oriented
optimization is largely governed by sampling wnext, while a data-driven acquisition of xnext is required
for efficient optimization.

5 Conclusion

We explored the extension of global optimization frameworks for the identification of general optima,
exemplified by the real-life problem of chemical reaction condition optimization. Systematic analysis
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of common reaction optimization benchmarks supports the hypothesis that optimization over multiple
related tasks can indeed lead to more general optima, particularly in such scenarios where the
density of high-outcome experiments across the search space is low. We provide augmented versions
of these benchmarks to reflect these real-life considerations. To identify general optima through
iterative optimization, we find that, due to the partial observation nature of the problem, efficient
exploration of the W-space is crucial for the success of generality-oriented optimization, and that in
our experiments, random sampling outperforms all other strategies for this task. Whilst our findings
present an important step towards applying generality-oriented optimization in chemical laboratories,
our study also re-emphasizes the need for further benchmark problems that are reflective of the
real-world scenarios [45]. Such studies, as well as more systematic evaluations of chemical reaction
representations and substrate selection policies, will be beneficial for a more principled usage of
generality-oriented optimization. It should be added that within our experiments, we assume the
existence of general reaction conditions that are transferable to new substrates. While we show
that, within the chemical space explored in the benchmarks, these general reaction conditions exist,
such an assumption may not hold ias the search space further expands. In such cases, identifying
multiple domains with domain-general conditions may present a more practical strategy. In addition,
we want to emphasize that the identified general optima may differ significantly from the specific
global optimum for each substrate. In practice, however, this is usually sufficient: In molecular
discovery (e.g. drug discovery), the primary objective is to establish conditions that yield a non-
zero outcome, thus enabling the evaluation of a new, unknown substrate’s properties. In process
optimization, general conditions can serve as a valuable starting point for further, substrate-specific
optimization. Therefore, building on our results, we anticipate that generality-oriented optimization
will be increasingly adopted in experimental chemistry and beyond, contributing to the development
of more applicable and sustainable reactions.
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A Appendix

A.1 Bayesian Optimization for Generality

A.1.1 Aggregation Functions

The aggregation function is a user-defined property that determines how the “set optimum” is
calculated across objective functions. Through the choice of the set optimum, prior knowledge
and preferences about the specific optimization problem at hand can be included. In this work, the
following aggregation functions are evaluated:

Mean Aggregation

ϕ(f(x;w),W) =
1

|W|
∑
w∈W

f(x;w) =
1

n

n∑
i=1

f(x;wi) (3)

Threshold Aggregation

ϕ
(
f(x;w

)
,W) =

∑
w∈W

σ
(
f(x;w)− fthr

)
=

n∑
i=1

σ
(
f(x;wi)− fthr

)
(4)

Conceivably, other aggregation functions also have practical use-cases, for example:

Mean Squared Error (MSE) Aggregation

ϕ
(
f(x;w),W

)
= − 1

|W|
∑
w∈W

(
fopt(x;w)− f(x;w)

)2
= − 1

n

n∑
i=1

(
fopt,i − f(x;wi)

)2
(5)

Minimum Aggregation

ϕ
(
f(x;w),W

)
= min

wi∈W
f(x;wi) (6)

The above definitions assume that all f(x;wi) have the same range, and that the optimization problem
is formulated as maximization problem.

A.1.2 Acquisition Functions and the Sample Average Approximation

For the evaluation of posterior distributions, and the calculation of acquisition function values, we use
the sample-average approximation, as introduced by Balandat et al. [7]. From a posterior distribution
at time point k p

(
gk(x)

)
, M posterior samples ζm(x) ∼ p

(
gk(x)

)
are drawn. These posterior

samples can be used to estimate the posterior distribution, and to calculate acquisition function values
as expectation values EM over all M samples.

Herein, we use the following common acquisition functions:

• Upper Confidence Bound: UCB(x) = EM

(
ζm(x)

)
+ β · EM

(
ζm(x)− EM (ζm(x))

)
.

• Thompson Sampling: TS(x) = ζ(x) for the case of M = 1.

• Posterior Variance: PV(x) = EM

(
ζm(x)− EM (ζm(x))

)
, where σ(x) describes the stan-

dard deviation over all k posterior samples.

• Random Selection, where the acquisition function value is a random number.

Moreover, we evaluate the optimization performance using a primitive implementation of two-step
lookahead acquisition functions α∗ (see Algorithm 2). The acquisition function value of α∗ at a
location x0 is estimated as follows: For each of the M posterior samples ζm(x0) ∼ p

(
gk(x0)

)
, a

fantasy posterior distribution p′(gk+1(x0)) is generated by conditioning the posterior on the new
observation (x0, ζM (x0)). From this fantasy posterior distribution, the values of the inner acquisition
function α′ can be computed and optimized over x ∈ X . The final value of the two-step lookahead
acquisition function is returned as α∗(x0) = maxx∈X α′(x).
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Algorithm 2 Primitive implementation of a two-step lookahead acquisition function using the sample
average approximation.
Input:

input space X
location x0 at which to evaluate the two-step lookahead acquisition function
posterior distribution p

(
gk(x) | D

)
one-step lookahead acquisition function α(x)

1: draw M posterior samples ζm(x0) ∼ p
(
gk(x0)

)
2: empty set of fantasy acquisition function values A = {}
3: for m = 1, . . . ,M do
4: compute fantasy posterior p′(x) = p

(
gk+1(x) | (D ∪ (x0, ζm(x0))

)
5: optimize one-step-lookahead acquisition function αm = max

x∈X
α(p′(x))

6: update A = A ∪ {αm}
7: end for

8: return α∗(x0) =
1
M

∑M
m=1 αm

A.1.3 Benchmarked optimization strategies for selecting xnext and wnext

Herein, we outline the use of the benchmarked optimization strategies for generality-oriented opti-
mization. The discussed optimization strategies describe different variations of how to pick the next
experiments xnext and wnext.

Following the SAA outlined above, we estimate the predictive posterior distribution p
(
ϕ(x) | D

)
as follows: For each wi ∈ W , M (typically M = 512) samples ζim(x) ∼ p

(
gk(x,wi)

)
are drawn

from the posterior distribution of the surrogate model. Aggregating over all wi yields M samples
ζm(x) ∼ p

(
ϕ(x) | D

)
from the posterior distribution over ϕ(x), which can be used for calculating

the acquisition function values using the sample-based acquisition function logic, as described in
Appendix A.1.2. With this, we implement and benchmark the acquisition policies in Table 2.

The sequential acquisition is described in Algorithm 3 and refers to a strategy in which xnext and wnext
are selected sequentially. In the first step, xnext is selected by optimizing an x-specific acquisition
function αx over x ∈ X . With the selected xnext in hand, wnext is then selected by optimizing
an independent, w-specific acquisition function over w ∈ W . With αx = PI (Probability of
Improvement) and αw = PV, this would correspond to the strategy described in [6].

Algorithm 3 Sequential Acquisition Policy
Input:

posterior distribution p
(
gk(x,w) | D

)
aggregation function ϕ

(
f(x;w),W

)
acquisition function αx

acquisition function αw

1: compute posterior distribution p
(
ϕ(x) | D

)
= p

(
ϕ
(
gk(x,w),W

)
| D

)
2: acquire xnext = argmax

x∈X
αx

(
p
(
ϕ(x) | D

))
3: acquire wnext = argmax

w∈W
αw

(
p
(
gk(xnext,w) | D

))
4: return xnext,wnext
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Table 2: Benchmarked optimization strategies

Optimization strategy Description

CURRYBO 2LA-RAND Sequential two-step lookahead acquisition policy, using
Thompson Sampling acquisition function to select xnext and
a Random selection of wnext with a greedy final recommen-
dation

CURRYBO 1LA-VAR Sequential acquisition policy, using an UCB acquisition func-
tion with β = 0.5 to select xnext and a posterior variance
acquisition function to select wnext with a greedy final recom-
mendation. This strategy resembles the algorithm described
by Angello et al. [6]

CURRYBO 1LA-RAND Sequential acquisition policy, using an UCB acquisition func-
tion with β = 0.5 to select xnext and a random acquisition of
wnext with a greedy final recommendation.

BANDIT Multi-armed bandit algorithm as outlined and implemented
by Wang et al. [66]

CURRYBO 2LA SINGLE SUBSTRATE Sequential two-step lookahead acquisition policy, using
Thompson Sampling to select xnext. For wnext, always the
same substrate is selected.

CURRYBO 2LA COMPLETE MONI-
TORING

Sequential two-step lookahead acquisition policy, using
Thompson Sampling to select xnext. To select wnext, all sub-
strates are selected in a complete monitoring scenario. After
every experiment, the a greedy final recommendation is per-
formed.

CURRYBO 1LA SINGLE SUBSTRATE Sequential acquisition policy, using Thompson Sampling to
select xnext.. For wnext, always the same substrate is selected.

CURRYBO 1LA COMPLETE MONI-
TORING

Sequential acquisition policy, using Thompson Sampling to
select xnext. To select wnext, all substrates are selected in a
complete monitoring scenario. After every experiment, the a
greedy final recommendation is performed.

RANDOM GREEDY Sequential acquisition policy, using a random acquisition
function to select xnext and a random acquisition function to
select wnext with a greedy final recommendation

RANDOM Random acquisition policy of xnext and wnext and final ran-
dom recommendation

A.2 Benchmark Problem Details

A.2.1 Original Benchmark Problems

Three chemical reaction benchmarks have been considered in this work: Product quantity optimization
for Pd-catalyzed C–heteroatom couplings [10], and enantioselectivity optimization for a N,S-Acetal
formation [68]. In the following, the benchmark problems are described briefly.

Pd-catalyzed carbon-heteroatom coupling

The Pd-catalyzed carbon-heteroatom coupling benchmark is concerned with the reaction of different
nucleophiles with 3-bromopyridine (Figure 7). In total, 16 different nucleophiles were tested in a
nanoscale high-throughput experimentation platform. As reaction conditions, bases (six different
bases) and catalysts (16 different catalysts) were varied. In total, the benchmark consists of 1536
different experiments, for which the conversion is reported.

The average conversion is 2.05%, whereas the maximum conversion is 39.81% (Figure 8). The
average of the average conversion of each condition is 2.05%, while the maximum of the average
conversion of the catalysts is 7.60% (Figure 8). The catalyst-base combination with the highest
average conversion is shown in Figure 8.

With respect to the threshold aggregation function, the chosen threshold was 7.50%. The average
number of substrates with a conversion above this threshold are 1.615, while the maximum number
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Figure 7: Reaction diagram of the Pd-catalyzed carbon-heteroatom coupling, where 3-bromopyridine
reacts with a nucleophile. Reaction conditions include a catalyst and a base. The numbers indicate
the amount of different species in the benchmark.

0.0 0.1 0.2 0.3 0.4
Conversion

101

103

N
um

be
r o

f r
ea

ct
io

ns

Mean: 0.021 Max: 0.398

0.00 0.02 0.04 0.06 0.08
φ(f(x̂; w),W)

0

5

10

15

N
um

be
r o

f c
on

di
tio

ns

Mean: 0.021 Max: 0.076

Figure 8: Top left: Distribution of the conversion for the Pd-catalyzed carbon-heteroatom coupling
in the original benchmark. Top right: Distribution of the average conversion for each catalyst-base
combination for the Pd-catalyzed carbon-heteroatom coupling in the original benchmark. Bottom:
Catalyst-base combination with the highest average conversion in the original benchmark.

of substrates is 7 (Figure 9). The catalyst-base combination with the highest number of substrates
with a conversion above the threshold is the same as shown in Figure 8.
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Figure 9: Left: Distribution of the conversion for the Pd-catalyzed carbon-heteroatom coupling in
the original benchmark. Right: Distribution of the number of substrates with a conversion above
the specified threshold for each catalyst-base combination for the Pd-catalyzed carbon-heteroatom
coupling in the original benchmark.
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N,S-Acetal formation

The N,S-Acetal formation benchmark is concerned with the nucleophilic addition of different thiols
to imines, catalyzed by chiral phosphoric acids (CPAs) (see Figure 10). In total, five different imines
and five different thiols were tested in manual experiments. As reaction conditions, 43 different CPA
catalysts were considered. In total, the benchmark consists of 1075 different experiments, for which
∆∆G‡, as a measure of the enantioselectivity, is reported.

Figure 10: Reaction diagram of the N,S-Acetal formation, where an imine reacts with a thiol. Reaction
conditions include a catalyst. The numbers indicate the amount of different species in the benchmark.

The average ∆∆G‡ is 0.988 kcal/mol, whereas the maximum ∆∆G‡ is 3.135 kcal/mol (see Fig-
ure 11). The average of the average ∆∆G‡ for each condition is 0.988 kcal/mol, while the maximum
of the average ∆∆G‡ for all conditions is 2.395 kcal/mol (see Figure 11). The catalyst with the
highest average ∆∆G‡ is shown in Figure 11.
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Figure 11: Top left: Distribution of ∆∆G‡ for the N,S-Acetal formation in the original benchmark.
Top right: Distribution of the average ∆∆G‡ for each catalyst for the N,S-Acetal formation in the
original benchmark. Bottom: Catalyst with the highest average ∆∆G‡ in the original benchmark.

With respect to the threshold aggregation function, the chosen threshold was 2.0 kcal/mol. The
average number of substrates with ∆∆G‡ above this threshold are 1.907, while the maximum
number of substrates is 17 (Figure 12). The catalyst with the highest number of substrates with
∆∆G‡ above the threshold is the same as shown in Figure 11.
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Figure 12: Left: Distribution of ∆∆G‡ for the N,S-Acetal formation in the original benchmark.
Right: Distribution number of substrates with a ∆∆G‡ above the specified threshold for each catalyst
for the N,S-Acetal formation in the original benchmark.

A.2.2 Augmentation

Since the described benchmarks consist of a high number of high-outcome experiments (the respective
search spaces were rationally designed by expert chemists), we augment them with more negative
examples to make them more relevant to real-world optimization campaigns. New substrates are
generated by mutating the originally reported substrates via the STONED algorithm [49]. In a first
filtering step, new substrates were removed if they had a Tanimoto similarity to the original substrate
smaller than 0.75 and if they did not possess the functional groups required for the reaction. To
ensure that the benchmark is augmented with negative examples, random forests are fitted to the
original benchmarks (see above). The mean absolute errors of the random forest regressors fitted to
the original benchmarks are shown in Table 3. Newly generated substrates were incorporated if the
average reaction outcome over all reported reaction conditions is below a defined threshold. For the
Pd-catalyzed carbon-heteroatom coupling, and N,S-Acetal formation the thresholds are 1.0%, and
0.7 kcal/mol, respectively. If a substrate passed these filters, the reactions with all different reported
conditions were added, with reaction outcomes being taken from as predicted from the random forest
emulator.

Table 3: MAE and MSE of fitted random forest regressors to the original benchmark problems.

Benchmark problem MAE MSE

Pd-catalyzed carbon-heteroatom coupling 3.16× 10−3 7.65× 10−5

N,S-Acetal formation 4.95× 10−2 kcal/mol 5.46× 10−3 kcal/mol

A.2.3 Augmented Benchmark Problems

Pd-catalyzed carbon-heteroatom coupling

Augmentation increases the number of different nucleophiles from 16 to 31 (see Figure 13). Combined
with the 96 reported reaction condition combinations, the augmented dataset consists of 2976
reactions, for which the conversion is reported.

Figure 13: Reaction diagram of the Pd-catalyzed carbon-heteroatom coupling, where 3-bromopyridine
reacts with a nucleophile. Reaction conditions include a catalyst and a base. The numbers indicate
the amount of different species in the augmented benchmark.

Augmentation decreased the average conversion from 2.05% to 1.34%, whereas the maximum
conversion remained the same at 39.81% (see Figure 14). The average of the average conversion of
each condition is decreased from 2.05% to 1.34%, and the maximum of the average conversion of
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each condition is also decreased from 7.60% to 6.00% (see Figure 14). The catalyst-base combination
with the highest average conversion is unaffected by the augmentation.
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Figure 14: Top left: Distribution of the conversion for the Pd-catalyzed carbon-heteroatom coupling
in the augmented benchmark. Top right: Distribution of the average conversion for each catalyst-base
combination for the Pd-catalyzed carbon-heteroatom coupling in the augmented benchmark. Bottom:
Catalyst-base combination with the highest average conversion in the augmented benchmark.

With respect to the threshold aggregation function, the chosen threshold was 7.50%. The average
number of substrates with a conversion above this threshold are 1.646, while the maximum number
of substrates is 8 (Figure 15). The catalyst-base combination with the highest number of substrates
with a conversion above the threshold is the same as shown in Figure 14.
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Figure 15: Left: Distribution of the conversion for the Pd-catalyzed carbon-heteroatom coupling in
the augmented benchmark. Right: Distribution of the number of substrates with a conversion above
the specified threshold for each catalyst-base combination for the Pd-catalyzed carbon-heteroatom
coupling in the augmented benchmark.

N,S-Acetal formation

Augmentation increases the number of thiols from five to 13, while the number of imines remained
constant at five (see Figure 16). Combined with the 43 reported reaction conditions, the augmented
benchmark consists of 2795 reactions, for which ∆∆G‡ is reported.

Augmentation decreased the average ∆∆G‡ from 0.988 kcal/mol to 0.757 kcal/mol, whereas the
maximum ∆∆G‡ was slightly decreased from 3.135 kcal/mol to 3.114 kcal/mol (see Figure 17). This
decrease is due to the fact that values are taken as predicted by the random forest emulator. Through
augmentation, the average of the average ∆∆G‡ of each condition decreased from 0.988 kcal/mol to
0.757 kcal/mol, while the maximum of the average ∆∆G‡ of all conditions decreased as well from
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Figure 16: Reaction diagram of the N,S-Acetal formation, where an imine reacts with a thiol. Reaction
conditions include a catalyst. The numbers indicate the amount of different species in the augmented
benchmark.

2.395 kcal/mol to 1.969 kcal/mol (see Figure 17). The catalyst with the highest average ∆∆G‡ is
unaffected by the augmentation.

0 1 2 3
∆∆G  / kcal/mol

0

200

400

N
um

be
r o

f r
ea

ct
io

ns

Mean: 0.757
Max: 3.114

0.0 0.5 1.0 1.5 2.0 2.5
φ(f(x̂; w),W)

0

5

10

N
um

be
r o

f c
on

di
tio

ns

Mean: 0.757
Max: 1.969

Figure 17: Top left: Distribution of ∆∆G‡ for the N,S-Acetal formation in the augmented benchmark.
Top right: Distribution of the average ∆∆G‡ for each catalyst for the N,S-Acetal formation in
the augmented benchmark. Bottom: Catalyst with the highest average ∆∆G‡ in the augmented
benchmark.

With respect to the threshold aggregation function, the chosen threshold was 2.0 kcal/mol. The
average number of substrates with ∆∆G‡ above this threshold are 1.814, while the maximum
number of substrates is 16 (Figure 18). The catalyst with the highest number of substrates with
∆∆G‡ above the threshold is the same as shown in Figure 17.
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Figure 18: Left: Distribution of ∆∆G‡ for the N,S-Acetal formation in the augmented benchmark.
Right: Distribution number of substrates with a ∆∆G‡ above the specified threshold for each catalyst
for the N,S-Acetal formation in the augmented benchmark.
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A.3 Grid Search for Analyzing Benchmark Problems

To analyse the utility of considering multiple substrates in an optimization campaign, we performed
exhaustive grid search on the described benchmark problems. For each problem, the substrates were
split into an initial train and test set among the substrates. In total, thirty different train/test splits were
performed. The obtained train set was further subsampled into smaller training sets with varying sizes
to investigate the influence on the number of substrates. Sampling among the substrates in the train
set was performed either through random sampling, random sampling or “Average Sampling”, where
the required number of substrates was chosen as the substrates with the highest average Tanimoto
similarity to all other train substrates. For each subsampled training set, the most general conditions
were identified. The general reaction outcome, as specified by the aggregation function, is evaluated
for these conditions on the held-out test set. Further, this general reaction outcome was scaled from 0
to 1, where 0 is the worst possible general reaction outcome for the given test set and 1 is the best
possible general reaction outcome for the test set. Hence, this score should be maximized. For the
different benchmark problems, we report this generality score, where we also compare the behaviour
of the original and augmented problems. Below, the results of the described data analysis are shown
for the benchmark problems not shown in the main text.

A.4 Details on BO for generality benchmarking

To identify whether BO for generality, as described above, can efficiently identify the general optima,
we conducted several benchmarking runs on the described benchmark problems. On each problem,
we perform benchmarking for multiple optimization strategies, as listed in Table 2.

In each optimization campaign, we used a single-task GP regressor, as implemented in GPyTorch,
with a TanimotoKernel as implemented in Gauche [24]. Molecules were represented using Morgan
Fingerprints [46] with 1024 bits and a radius of 2. Fingerprints were generated using RDKit [2].
It is noteable that, while such a representation was chosen due to its suitability for broad chemical
spaces, more specific representations such as descriptors might be able to improve the optimization
performance.

The acquisition policies were benchmarked on all benchmark problems with differently sampled
substrates for the optimization. For each benchmark, we selected the train set randomly, consisting
of twelve nucleophiles in the Pd-catalyzed carbon-heteroatom coupling benchmark, three imines
and three thiols in the N,S-Acetal formation benchmark.Thirty independent optimization campaigns
were performed for each. The generality of the proposed general conditions at each step during the
optimization is shown.

A.5 Details on bandit algorithm benchmarking

The benchmarking of BANDIT [66] was performed across the benchmark problems using their
proposed UCB1TUNED algorithm with differently sampled substrates for the optimization. For each
benchmark, we selected the train set randomly, consisting of twelve nucleophiles in the Pd-catalyzed
carbon-heteroatom coupling benchmark, and three imines and three thiols in the N,S-Acetal formation
benchmark. Thirty independent optimization campaigns were performed for each. To ensure fair
comparison with CURRYBO-based strategies, the ground truth was set to be the proxy function
calculated for each dataset. To select the optimum x value at each step t, we relied on the authors
definition of the best arm as the most sampled arm at step t.

A.6 Additional Results and Discussion

A.6.1 Additional results on the dataset analysis for utility of generality-oriented optimization

In addition to analysing the utility of generality-oriented optimization for ϕ as the Mean Aggregation,
which is shown in Figure 3, we also performed a similar analysis for ϕ as the Threshold aggregation,
where the chosen thresholds are as described in Appendix A.2. The results of this analysis is shown
in Figure 19. Similar to the case where ϕ is the mean aggregation, we observed that in the case of
the augmented benchmark, generality-oriented optimization yields more general reaction conditions.
While in the case of the N,S-Acetal formation benchmarks the obtained generality score decreases
slightly compared to the original benchmark, the generality score remains high in both cases. For
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Figure 19: Top: Generality score as determined by exhaustive grid search for the Pd-catalyzed
carbon-heteroatom coupling benchmark on the original (left) and augmented (right) problems and
ϕ as the threshold aggregation. Average and standard error are taken from thirty different train/test
substrates splits. Bottom: Generality score as determined by exhaustive grid search for the N,S-Acetal
formation benchmark on the original (left) and augmented (right) problems and ϕ as the threshold
aggregation. Average and standard error are taken from thirty different train/test substrates splits.

the Pd-catalyzed carbon-heteroatom benchmark, we notice worse generalizability scores than for the
mean aggregation, which demonstrates that it is harder to obtain general reaction conditions for the
threshold aggregation.

Furthermore, we studied how different sampling techniques among the train set substrates influence
the obtained generality scores. As sampling techniques, we used random sampling, farthest point
sampling and “average sampling”, as outlined in Appendix A.3. For ϕ as the mean aggregation, the
results for the two different benchmarks are shown in Figure 20 and Figure 21 for the Pd-catalyzed
carbon-heteroatom coupling benchmark and the N,S-Acetal formation benchmark, respectively. For ϕ
as the threshold aggregation, the results for the two different benchmarks are shown in Figure 22 and
Figure 23 for the Pd-catalyzed carbon-heteroatom coupling benchmark and the N,S-Acetal formation
benchmark, respectively. Throughout the different benchmarks and aggregation functions, we observe
that the generality score obtained through using the sampled train substrates are highly similar and
no method clearly outperforms the others. It is particularly notable that farthest point sampling did
not outperform other sampling techniques, as this strategy is commonly used to select chemicals to
broadly cover chemical space [20, 21, 28, 59]. We hypothesize that this method insensitivity is due
to the low number of substrates for chosen for the train set, which was chosen to still reflect realistic
experimental cases.

A.6.2 Additional results on the benchmarking for the Mean Aggregation function

In addition to the experiments shown in the main text, we benchmarked CURRYBO 1LA-VAR,
CURRYBO 1LA-RAND and CURRYBO 2LA-RAND against their analogons when a single substrate
is selected (Figure 24) as well as the complete monitoring case (Figure 25). For CURRYBO 1LA-
VAR and CURRYBO 1LA-RAND, we observe a more efficient optimization behaviour when the
generality-oriented optimization considers multiple substrates, as shown in Figure 24 and Figure 27.
For CURRYBO 2LA-RAND, we observe similar performance. This is driven by a very efficient
optimization of the two-step lookahead strategy for the single substrate in the N,S-Acetal formation
reaction benchmark. Further, as single substrates already show a very high generality score for the
N,S-Acetal formation benchmark (see Figure 3), this results in a superior performance of single
substrate generality-optimization. However, due to this dependence on the benchmark, we expect
that this behaviour would change with more available benchmarks.

Figure 25 demonstrates a clear advantage of generality-oriented optimization, which is equipped to
deal with the partial monitoring scenario, against a complete monitoring baseline. We hypothesize
that this is because more conditions (values of x) can be evaluated, as not every substrate (which
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Figure 20: Generality score as determined by exhaustive grid search for the Pd-catalyzed carbon-
heteroatom coupling benchmark on the original (left) and augmented (right) problems for the mean
aggregation as ϕ. Average and standard error are taken from thirty different train/test substrates splits.

is 9 and 12 for the two benchmarks) has to be tested for a specific set of reaction conditions. This
underlines the utility of improved and efficient decision-making algorithms in complex optimization
scenarios.
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Figure 21: Generality score as determined by exhaustive grid search for the N,S-Acetal formation
benchmark on the original (left) and augmented (right) problems for the mean aggregation as ϕ.
Average and standard error are taken from thirty different train/test substrates splits.

A.6.3 Additional results on the benchmarking for the Threshold Aggregation function

Whereas data-driven approaches have considered the average yield as the only generality metric [6,
66], the need for multiple definitions for generality has been emphasized [9]. Such a flexible definition
allows to find the conditions that fulfill the need for specific real-world applications. To showcase
the flexibility of generality-oriented optimization as outlined in this work, we implemented several
aggregation functions (see Appendix A.1.1). Herein, we perform benchmarking on the Threshold
Aggregation function, that strives to find conditions that provide a desirable reaction outcome (i.e.
above the threshold), for the highest number of substrates. The benchmarked optimization strategies
are as described in Table 2 and already demonstrated for the Mean Aggregation.

In general, we notice a highly similar optimization performance for the CURRYBO 1LA-RAND,
CURRYBO 1LA-VAR and CURRYBO 2LA-RAND strategies. These results align with observations
for the mean aggregation function, as discussed in Section 4. This shows a strong performance
of BO-based strategies in generality-oriented optimization, as efficient optimizations are observed
for multiple generality metrics. Similar to optimization for the mean aggregation, CURRYBO
1LA-RAND outperforms the optimization when only considering a single substrate, while it does
not outperform CURRYBO 2LA-RAND. Further, both CURRYBO 1LA-VAR and CURRYBO 2LA-
RAND outperform generality-oriented optimization with complete monitoring. This again underlines
the importance of tailored decision-making algorithms in complex tasks.
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Figure 22: Generality score as determined by exhaustive grid search for the Pd-catalyzed carbon-
heteroatom coupling benchmark on the original (left) and augmented (right) problems for the threshold
aggregation as ϕ. Average and standard error are taken from thirty different train/test substrates splits.

0 2 4 6 8

Number of substrates

0.90

0.92

0.94

0.96

0.98

1.00

G
en

er
al

ity
sc

or
e

(↑
)

Original Search Space

0 2 4 6 8

Number of substrates

Augmented Search Space

Random Sampling Farthest Point Sampling Average Sampling

Figure 23: Generality score as determined by exhaustive grid search for the N,S-Acetal formation
benchmark on the original (left) and augmented (right) problems for the threshold aggregation as ϕ.
Average and standard error are taken from thirty different train/test substrates splits.
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Figure 24: Top: GAP metric [31] for the generality-oriented optimization over all train substrates,
averaged over all benchmark sets on the original (left) and augmented (right) problems. Mid-
dle: GAP metric [31] for the generality-oriented optimization over all train substrates for the
Pd-catalyzedcarbon-heteroatom coupling benchmark on the original (left) and augmented (right)
problems. Bottom: GAP metric [31] for the generality-oriented optimization over all train substrates
for the N,S-Acetal formation benchmark on the original (left) and augmented (right) problems.
Optimization strategies are described in Table 1.
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Figure 25: Top: GAP metric [31] for the generality-oriented optimization over all train substrates,
averaged over all benchmark sets on the original (left) and augmented (right) problems. Mid-
dle: GAP metric [31] for the generality-oriented optimization over all train substrates for the
Pd-catalyzedcarbon-heteroatom coupling benchmark on the original (left) and augmented (right)
problems. Bottom: GAP metric [31] for the generality-oriented optimization over all train substrates
for the N,S-Acetal formation benchmark on the original (left) and augmented (right) problems.
Optimization strategies are described in Table 1.
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Figure 26: GAP metric [31] for the generality-oriented optimization over all train substrates, averaged
over all benchmark sets on the original (left) and augmented (right) problems. The threshold
aggregation was considered as a generality metric. Optimization strategies are described in Table 1.
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Figure 27: Generality-oriented optimization trajectories of different algorithms, averaged over all
benchmark problems on the original (left) and augmented (right) search spaces with the threshold
aggregation. Optimization algorithms are described in Table 1.
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Figure 28: Top: GAP metric [31] for the generality-oriented optimization over all train substrates,
averaged over all benchmark sets on the original (left) and augmented (right) problems. The threshold
aggregation was considered as a generality metric. Middle: GAP metric [31] for the generality-
oriented optimization over all train substrates for the Pd-catalyzedcarbon-heteroatom coupling
benchmark on the original (left) and augmented (right) problems. The threshold aggregation was
considered as a generality metric. Bottom: GAP metric [31] for the generality-oriented optimization
over all train substrates for the N,S-Acetal formation benchmark on the original (left) and augmented
(right) problems. The threshold aggregation was considered as a generality metric. Optimization
algorithms are described in Table 2.
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Figure 29: Top: GAP metric [31] for the generality-oriented optimization over all train substrates,
averaged over all benchmark sets on the original (left) and augmented (right) problems. The threshold
aggregation was considered as a generality metric. Middle: GAP metric [31] for the generality-
oriented optimization over all train substrates for the Pd-catalyzedcarbon-heteroatom coupling
benchmark on the original (left) and augmented (right) problems. The threshold aggregation was
considered as a generality metric. Bottom: GAP metric [31] for the generality-oriented optimization
over all train substrates for the N,S-Acetal formation benchmark on the original (left) and augmented
(right) problems. The threshold aggregation was considered as a generality metric. Optimization
algorithms are described in Table 2.
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