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Abstract

Existing offline reinforcement learning (RL) algorithms typically assume that
training data is either: 1) generated by a known policy, or 2) of entirely un-
known origin. We consider multi-demonstrator offline RL, a middle ground where
we know which demonstrators generated each dataset, but make no assumptions
about the underlying policies of the demonstrators. This is the most natural set-
ting when collecting data from multiple human operators, yet remains unexplored.
Since different demonstrators induce different data distributions, we show that this
can be naturally framed as a domain generalization problem, with each demon-
strator corresponding to a different domain. Specifically, we propose Domain-
Invariant Model-based Offline RL (DIMORL), where we apply Risk Extrapolation
(REx) [15] to the process of learning dynamics and rewards models. Our results
show that models trained with REx exhibit improved domain generalization per-
formance when compared with the natural baseline of pooling all demonstrators’
data. We observe that the resulting models frequently enable the learning of su-
perior policies in the offline model-based RL setting, can improve the stability of
the policy learning process, and potentially enable increased exploration.

1 Introduction

In the standard online reinforcement learning (RL) paradigm, agents often require millions of in-
teractions with the environment in order to learn an optimal policy for completing a task. In many
settings, however, the process of exploration in the real-world is undesirable, impractical or unsafe
[17, 19]. It would therefore be preferable to enable learning from demonstrations, rather than direct
interaction with the environment. Datasets targeting activity recognition from ego-centric videos [8]
highlight the prevalence and ease of collecting demonstrations in our setting. Demonstrations are
provided by one or more demonstrators, each executing their own behavioural policy, πB–their
method of achieving the task. Various approaches to performing offline RL have been proposed
[17, 19], however, to the best of our knowledge, none of these have exploited information regarding
the collection of data from multiple demonstrators.

A fundamental challenge in off-policy RL is policy-induced distributional shift; this is especially
problematic in offline RL [17, 28]. Standard off-policy methods often fail when trained using offline
data [10]. Value-based offline RL algorithms have addressed this by encouraging the learning agent
to stay close to the behaviour policy that generated the training data. Such a constraint can (provably)
limit performance, however Buckman et al. [4], and other model-based approaches, which do not
suffer from this weakness, have been found to outperform value-based methods [28, 14].
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Rather than constraining the learning agent’s exploration, the aim of our work is to increase the
robustness of environment models1 to distributional shifts by applying Risk Extrapolation (REx)
[15] during their training. Our hope is that this will enable learning policies to explore more of
the state-action space without incurring significant training instability. REx assumes that training
data from multiple domains (in our case, demonstrators) is available. While the demonstrator that
generated each training record is known, no knowledge about the demonstrator’s policy is required.
Even if distributional shifts more extreme than those observed at training time are encountered, REx
aims to achieve similar risks on out-of-distribution domains by encouraging the training losses/risks
across the domains present in the training data to be equal [15].

The primary contribution of our work is a practical algorithm for performing Domain-Invariant
Model-based Offline RL (DIMORL) using multi-demonstrator datasets. We empirically show
that environment models trained with REx exhibit improved average and worst-case performance
on out-of-distribution datasets. Furthermore, in a majority of cases, policies trained offline using
these models attain higher average returns. We demonstrate that environment models trained with
REx can enable more stable offline model-based policy learning, and potentially support increased
exploration. We present hypotheses for the benefits observed, and share the supporting evidence
gathered thus far. Further experimentation and analysis are needed to draw firm conclusions.

2 Background and Related Work

Offline Reinforcement Learning In offline RL, an agent π is trained using only a fixed dataset D
of transitions ({s, a, r, s′}) [10], or trajectories ({s1, a1, r1, ..., sT , aT , rT }) [1], without any further
interaction with the environment [17, 19]. The data may also include meta-data about the policies
used to collect the data. Our aim is to learn the optimal policy, π∗(a|s), that maximises the expected
sum of discounted rewards π∗ = argmaxπ Eπ[

∑∞
t=0 γ

tr(st, at)], using discount factor γ ∈ (0, 1].

Distributional Shift While the transition distribution of a Markov-Decision Process (MDP) is
independent of the policy being followed, the state and state-action visitation distributions induced
by behavioural policy πB , dπB (s) and dπB (s, a) respectively, are not. The data collected for offline
policy training is typically assumed to be composed of iid samples drawn from dπB (s, a), and is
likely to cover only a fraction of the total state-action space. In order to learn optimal policies,
we would like our learning algorithm to generalize to other areas of this space; departing from the
support of the training data in order to learn good behaviours that are not exhibited in the static
dataset [28, 27]. The policy being learned, πoff, would therefore induce new state and state-action
visitation distributions, dπoff(s) and dπoff(s, a). Errors made by the learned environment models, such
as those arising from poor generalization performance under distributional shifts, can result in model
exploitation: the policy being trained learns to take advantage of model errors when optimizing the
reward, leading to poor performance in the real environment [5, 20, 13, 7, 17]. However, in more
extreme cases, model exploitation can cause significant instability in training, preventing a policy
from being learned [16, 18].

Offline Model-Based Reinforcement Learning Kidambi et al. [14] and Yu et al. [28] proposed
the model-based offline RL algorithms MoREL and MOPO respectively. Both of these methods are
conservative in the face of model uncertainty. However, they do not explicitly penalize deviations
from the demonstrator’s distribution, thus avoiding performance limitations demonstrated by Buck-
man et al. [4]. Both MoREL and MOPO work by modifying a learned MDP to penalize uncertain
transitions. MoREL’s pessimistic MDP adjusts P (s′|s, a) to transition to a low-reward terminal
state when the dynamics of (s, a) are uncertain, as measured by disagreement within an ensemble
of learned dynamics models [14]. In MOPO, Yu et al. [28] instead penalize uncertain transitions
directly in the reward function, and measure uncertainty as the maximum standard deviation across
members of an ensemble. MOPO extends MBPO [13], which utilizes learned environment models
to generate short roll-outs of length h that are employed to update the learning policy using the
soft-actor critic (SAC) policy gradient algorithm [11, 12].

1We use the term environment model to highlight that both dynamics and rewards models are learned. We
do not learn an initial state distribution. During policy training, transitions are generated from starting locations
sampled from an offline dataset. When evaluating policies, the real initial state distribution is used.
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Figure 1: Environment models trained against HalfCheetah multi-demonstrator datasets were used
to calculate the log-likelihoods of a selection of evaluation datasets, each generated by an individual
held-out demonstrator. Left: The environment model trained with REx (β = 20) exhibits more
consistent performance across the individual held-out demonstrator datasets. Models were trained
against the Mixed multi-demonstrator dataset. Right: REx increases the average (crosses and dashed
lines; error bars indicate one standard deviation) and worst-case (dots) log-likelihoods. Environment
models were trained against Novice, Mixed and Experienced multi-demonstrator datasets.

3 Methods

Our method stems from the observation that different demonstrators in an offline RL setting corre-
spond to different domains in a domain generalization setting. We propose the Domain-Invariant
Model-based Offline RL (DIMORL) algorithm, which supplements model-based offline RL tech-
niques by applying Risk Extrapolation (REx) [15] when training environment models.

3.1 Risk Extrapolation (REx)

The Risk Extrapolation (REx) domain generalization method aims to enforce strict equality of risks
(i.e., losses) across training domains [15]. This helps guarantee that a model trained with REx will
be invariant; i.e., it should also achieve (roughly) the same loss on test domains that are in the affine
span of the training domains. This is demonstrated in Fig. 1, which shows that an environment model
trained with REx achieves more consistent performance when evaluating log-likelihoods across a
range of datasets that were each generated by a different held-out demonstrator (i.e., demonstrators
that did not contribute to the model’s training data). We use the simple Variance-REx (V-REx)
algorithm, which penalizes the variance of the training risks:

RV-REx(θ)
.
= β Var({R1(θ), ...,RM (θ)}) +

M∑
e=1

Re(θ) (1)

whereRe is the risk on the e-th domain, and β controls the strength of the variance regularizer. The
robustness of REx to multiple forms of distributional shift [15] make it a strong candidate for our
investigations, however other domain generalization techniques could be explored [2, 21, 26, 23, 30].

3.2 Domain-Invariant Model-based Offline RL (DIMORL) Implementation

In this work, we implement a version of DIMORL that extends the MOPO algorithm [28] by apply-
ing REx during environment model training. Experiments are performed using β ∈ {0, 5, 10, 20},
λ ∈ {0, 1, 5} and h ∈ {5, 10}, except where otherwise stated. When β = 0 the MOPO algorithm is
recovered, and when additionally λ = 0 the MBPO algorithm is recovered, providing two baselines
against which our results can be compared. Ensembles of environment models, pθ,ϕ(st+1, rt|st, at),
are trained against multi-demonstrator datasets, DE =

⋃M
e=1De, where the outputs of model i pa-

rameterize a Gaussian distribution with diagonal covariance matrix: N (st+1, rt;µ
i
θ(s, a),Σ

i
ϕ(s, a)).

Individual risks, Re, are calculated for each demonstrator’s data, De, and REx used to reduce the
variance of the risks. Thus, we take advantage of knowing which demonstrator generated each
record, but assume no knowledge of any demonstrator’s policy. See Appendix A for further details.
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Table 1: Environment models trained with REx (i.e., where β > 0) yielded policies with the highest
average returns in two-thirds of datasets across three MuJoCo environments. For the Novice multi-
demonstrator datasets and Hopper Mixed dataset, the policies learned using DIMORL had higher
average returns (bolded values) than any of the individual demonstrators used to generate the dataset.
The average policy evaluation returns ± one standard deviation over three random seeds are shown,
along with the REx penalty coefficient β, MOPO penalty coefficient λ, and roll-out length h used.

Mult-Demonstrator Dataset
Novice Mixed Experienced

Environment Max Dem.
Return

DIMORL
Return

(β, λ, h) Max Dem.
Return

DIMORL
Return

(β, λ, h) Max Dem.
Return

DIMORL
Return

(β, λ, h)

HalfCheetah 7663 9056
± 122

(0,1,5) 11032 6687
± 4888

(0,1,5) 14511 4547
± 288

(10,5,10)

Hopper 3239 3482
± 23

(20,5,5) 3553 3569
± 40

(20,5,50) 3553 3493
± 33

(0,5,50)

Walker2D 1587 1594
± 1598

(20,0,10) 5430 2265
± 141 (2)

(20,0,5) 5430 4796
± 113

(20,0,10)

4 Experiments

As a proxy for real-world demonstrators, we trained a selection of policies online against the OpenAI
Gym MuJoCo Hopper, HalfCheetah and Walker2d environments [3, 25] using the soft actor-critic
(SAC) algorithm [11, 12]. Subsets comprising five of these pseudo-demonstrators were used to
generate three multi-demonstrator datasets for each environment: Novice, Mixed, and Expert. See
Appendix B for details of the SAC pseudo-demonstrators and multi-demonstrator datasets produced.

4.1 Domain Generalization Performance of Environment Models

We found that environment models trained with REx achieved higher average and worst-case out-
of-distribution (OOD) log-likelihoods for each environment and multi-demonstrator dataset. Across
all environments, OOD performance was worst for the Experienced datasets, and was most greatly
improved by the incorporation of REx to model training. This can be seen for the HalfCheetah
environment in Figure 1. The results for the other environments can be found in Appendix C. The
average and worst case performance generally continued to improve as the REx penalty coefficient
was increased from 5 to 20. While this might encourage the use of larger coefficients, we did not
find the domain generalization performance of the models to be well correlated with the average
returns of policies trained using them. This is discussed further in Appendix C.1.

4.2 Offline Agent Training

Policies learned using environment models trained with REx obtained the highest average return for
two-thirds of multi-demonstrator datasets across the MuJoCo environments investigated. Of these,
the largest REx penalty coefficient investigated (β = 20) yielded the highest return in all but one
setting. Table 1 provides an overview of the hyperparameter settings used to achieve the highest
performing policies. The full results are discussed in Appendix D.1.

We additionally found that environment models trained with REx were more robust to noisy initial
state distributions; highlighting the benefits that improved domain generalization performance can
bring to policy training (see Appendix F.1). We further attempted to learn policies using roll-out
starting locations sampled randomly from datasets not used to train the environment models, with
the expectation that environment models trained with REx would exhibit improved robustness to
such distributional shifts. However, no good policies were learned under any settings investigated
(see Appending D.2), likely due to the distributional shifts encountered being simply too extreme.

4.3 Increased Policy Training Stability

In an attempt to pinpoint the sources of the benefits brought by environment models trained with
REx, we analyzed the agent training performance and found that, for the HalfCheetah environment,
the Q-functions of soft actor-critic policies were often less prone to becoming degenerate when using
REx penalty coefficients β ∈ {10, 20}. This is demonstrated in Fig. 2. We present two hypotheses
regarding the source of the Q-function instability, and why REx may be yielding improvements.
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Figure 2: Average Q-Values (left) and episode returns (right) during policy training for the Mixed
HalfCheetah multi-demonstrator dataset, with λ = 0 and h = 10. Left: Q-functions learned during
SAC policy training were less likely to become degenerate when using environment models trained
with larger REx penalty coefficients (β ∈ {10, 20}). For each value of β, individual results across
three random seeds are shown. Right: When evaluating policies against the learned environment
model used to train them (dashed lines), extreme episode returns were observed for models trained
using no or lower penalties (β ∈ {0, 5}). Average values across three random seeds are shown.

Degenerate Predictions: The magnitude of the evaluation returns in Figure 2 highlight that the
learned reward models can make degenerate predictions. This could lead to instability in Q-function
training. However, the returns shown were obtained over 1000 step episodes, whereas roll-outs of
h ∈ {5, 10} steps were typically generated for policy training. The reward models would therefore
need to make degenerate predictions within 5-10 steps to negatively impact Q-function learning. We
have observed cases of this (see Appendix E), however it does not appear to be a necessary condition
for Q-function instability to occur. Note, rather than the issue lying solely with the reward models,
it is likely that errors in the dynamics models will also contribute by leading the agent into unnatural
states. Further analysis of the trajectories produced in the learned environment is necessary.

Environment Model Complexity: The learned environment model may be less well-behaved and
more complex than the real environment. For instance, a small change in the current state could
have a large and unpredictable impact on the predicted next state. If we assume the neural network
used has sufficient capacity and is provided with sufficient data to capture the real environment,
the function approximation component of the classic deadly triad [24] would theoretically not be
an issue. However, the environment model state representation may fail to capture all quirks in the
model, resulting in function approximation continuing to be problematic.

4.4 Increased Exploration During Policy Training

We hypothesize that the improved domain generalization performance of environment models
trained with REx may enable increased exploration of the state-action space during policy train-
ing, yielding more optimal policies. Our hope is that policy training will continue to remain stable,
and model exploitation will be minimized. To visualize the extent of exploration, we use PCA to
project transition records into two-dimensions. Initial experiments potentially indicate increased ex-
ploration (see Appendix F.2), however further work is necessary to ensure our observations cannot
simply be explained by the fraction of the original data’s variance that is captured by the projection.

5 Conclusions

We have highlighted and exploited the opportunity to take advantage of knowledge regarding which
demonstrators generated offline datasets, without assuming any information about each demonstra-
tor’s policy. We presented a practical algorithm for Domain-Invariant Model-based Offline RL (DI-
MORL), and have illustrated that this method may improve the stability of policy learning, enable in-
creased exploration, and yield more optimal policies in many settings. Further experimentation and
analysis is needed to validate our findings, and to fully take advantage of the algorithm’s potential.
The flexibility of our approach enables the combination of many alternative domain generalization
techniques and model-based RL algorithms, presenting exciting avenues for future investigation.
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Appendices
A DIMORL Implementation Details

The MOPO algorithm [28] and codebase2 is used as the basis for our practical implementation
of DIMORL. Our modified version is outlined in Algorithm 1. We train ensembles of environ-
ment models, pθ,ϕ(st+1, rt|st, at), against multi-demonstrator datasets DE =

⋃M
e=1De, where

the outputs of the models parameterise a Gaussian distribution with diagonal covariance matrix:
N (st+1, rt;µ

i
θ(s, a),Σ

i
ϕ(s, a)).

Individual negative log-likelihood values, Re
nll, are calculated for each demonstrator’s data, De.

These are then used to calculate the MOPO V-REx loss given by Equation 2, where β is the REx
penalty coefficient. Rwr is an ℓ2 weight regularisation penalty, andRvb is a loss term relating to the
learning of variance bounds. Chua et al. [6] highlight that outside of the training distribution the
predicted variance can assume arbitrary values, and can both collapse to zero or explode to infinity
(in contrast to models like GPs where variance values are better behaved). Chua et al. [6] found
that bounding the output variance such that it cannot exceed the range seen in the training data was
beneficial, and so include the Rvb penalty. The weight regularisation and variance bounding terms
also appear in the loss function used by MOPO to train environment models [28].

RMOPO V-REx =

M∑
e=1

[Re
nll] + β · Var

(
R1

nll,R2
nll, . . . ,RM

nll

)
+Rwr +Rvb (2)

Algorithm 1 DIMORL - an extension of MOPO[28] to include REx in environment model training

Require: : MOPO reward penalty coefficient λ, roll-out length h, roll-out batch size b, REx penalty
coefficient β

1: Train on batch data DE an ensemble of N probabilistic dynamics models
{pθ,ϕ(st+1, rt|st, at) = N (µi

θ(s, a),Σ
i
ϕ(s, a))}Ni=1 with REx penalty coefficient β

2: Initialise policy πoff and empty replay buffer Dmodel ← ∅
3: for epoch 1, 2, . . . do
4: for 1, 2, . . . , b (in parallel) do
5: Sample state s1 from DE for the initialisation of the roll-out
6: for j = 1, 2, . . . , h do
7: Sample an action aj ∼ π(sj)

8: Randomly pick dynamics T̂ from {T̂ i}Ni=1 and sample sj+1, rj ∼ T̂ (sj , aj)
9: Compute r̃j = rj − λmaxNi=1 ||Σi

ϕ(sj , aj)||F
10: Add sample (sj , aj , r̃j , sj+1) to Dmodel

11: Drawing samples from DE
⋃
Dmodel, use SAC to update πoff

Environment model training was split into two phases:

1. ERM: No REx penalty is used (i.e., β = 0) until the original MOPO termination condition
is reached: the loss on a held-out evaluation dataset does not decrease by more than 1 %
for any model in the ensemble for five consecutive epochs [28].

2. REx: Training was then allowed to continue for the same number of epochs completed
in the ERM phase, with the REx penalty coefficient now set to a user defined value. We
investigated REx penalty coefficients β ∈ {0, 5, 10, 20} in our work.

B SAC Demonstrators and Multi-Demonstrator Datasets

To proxy for real-world demonstrators (whether humans, or pre-existing control policies), we train
a selection of demonstrator policies, πe, using online RL algorithms and the OpenAI Gym MuJoCo

2https://github.com/tianheyu927/mopo
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Table 2: Two implementations (Softlearning [11, 12] and D3RLPY [22]) of the online soft actor-
critic (SAC) algorithm [11, 12] are used to create pseudo-demonstrators by taking snapshots at
regular intervals during training to emulate demonstrators (with distinct policies) of varying degrees
of skill. As would be expected, the return of the policies generally increases with the amount of
training.

Environment Online Training
Steps (millions)

Policy Return
Softlearning D3RLPY

HalfCheetah 0.1 5126 3744
HalfCheetah 0.2 - 5050
HalfCheetah 0.25 7663 -
HalfCheetah 0.5 9324 7225
HalfCheetah 1 11032 8300
HalfCheetah 2 14511 9022
HalfCheetah 3 14215 -
Hopper 0.1 667 2567
Hopper 0.2 3239 1974
Hopper 0.4 3414 2395
Hopper 0.6 3051 2158
Hopper 0.8 3524 2625
Hopper 1.0 3553 3179
Walker2d 0.1 319 369
Walker2d 0.2 - 1587
Walker2d 0.25 1225 -
Walker2d 0.5 3004 3900
Walker2d 1 4139 4312
Walker2d 2 4134 5430
Walker2d 3 4795 -

Hopper, HalfCheetah and Walker2d environments. The sole purpose of these policies is to generate
individual demonstrator datasets, De, for use in training environment models. Each dataset com-
prises Ne transition tuples of the form: (se, ae, s′e, re, e). The unique demonstrator identifier e is
used to identify individual domains during the training of dynamics models with Risk Extrapolation
(REx). The identifier is simply a number, and provides no information about the policy followed
by the demonstrator. Independently sampled evaluation datasets are also created for each demon-
strator. Collections of M individual datasets are combined to produce multi-demonstrator datasets:
DE = {(sei , aei , s′ei , rei , e)

Ne
i=1}Me=1.

A selection of soft actor-critic (SAC) [11, 12] policies are trained online. To increase the diversity
of the demonstrators, we use two different implementations of the SAC algorithm: Softlearning,
the official SAC implementation [11, 12]; and D3RLPY, which implements a version of SAC with
delayed policy updates [22]. Policies are trained using the default hyperparameters provided in
their respective repositories. As shown in Table 2, snapshots are taken at regular intervals during
training to emulate demonstrators (with distinct policies) of varying degrees of skill. Table 3 shows
the individual pseudo-demonstrator policies obtained. To further increase data diversity, additional
demonstrator datasets are created using a random policy, πN .

We select individual subsets of five pseudo-demonstrators (i.e., five distinct policies) to produce
three multi-demonstrator datasets for each MuJoCo environment: Novice, Mixed, and Experienced.
As their names indicate, the Novice and Experienced datasets comprise transition records generated
using pseudo-demonstrators trained online for minimal and extended number of training steps re-
spectively, while Mixed uses a combination of each. Each pseudo-demonstrator contributes 20,000
transition records, and so each multi-demonstrator dataset consists of a total of 100,000 records.

In future work, we would look to train pseudo-demonstrators using a greater variety of online RL
algorithms to further increase the diversity of policies used.
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Table 3: Individual demonstrator policies the comprise the Novice, Mixed and Experienced multi-
demonstrator datasets, including the return of the policy. Each individual demonstrator contributed
20,000 transition records. Rand denotes a random policy, SL a policy trained using the Softlearning
library, and D3 a policy trained using the D3RLPY library.

Environment Policy Identifier
Multi-Demonstrator Dataset

Novice Mixed Experienced
Type Steps Return Type Steps Return Type Steps Return

HalfCheetah 1 Rand - - Rand - - SL 1 11032
HalfCheetah 2 SL 0.1 5126 SL 0.25 7663 SL 2 14511
HalfCheetah 3 SL 0.25 7663 SL 1 11032 SL 3 14215
HalfCheetah 4 D3 0.1 3744 D3 0.2 5050 D3 1 8300
HalfCheetah 5 D3 0.2 5050 D3 2 9022 D3 2 9022
Hopper 1 Rand - - Rand - - SL 0.6 3051
Hopper 2 SL 0.1 667 SL 0.2 3239 SL 0.8 3524
Hopper 3 SL 0.2 3239 SL 1 3553 SL 1 3553
Hopper 4 D3 0.1 2567 D3 0.2 1974 D3 0.8 2625
Hopper 5 D3 0.2 1974 D3 1 3179 D3 1 3179
Walker2D 1 Rand - - Rand - - SL 1 4139
Walker2D 2 SL 0.1 319 SL 0.25 1225 SL 2 4134
Walker2D 3 SL 0.25 1225 SL 1 4139 SL 3 4795
Walker2D 4 D3 0.1 369 D3 0.2 1587 D3 1 4312
Walker2D 5 D3 0.2 1587 D3 2 5430 D3 2 5430

C Environment Model OOD Performance

Figure 3 shows the average and worst-case log-likelihoods and mean-squared errors (MSEs)
obtained for environment models trained on all MuJoCo environments and multi-demonstrator
datasets. The performance metrics were calculated using datasets generated by demonstrators that
did not contribute to the multi-demonstrator dataset used to train the model. Across all environments
and multi-demonstrator datasets, environment models trained using REx achieved improved average
and worst-case log-likelihoods. The results were more mixed for the MSE values–small increases in
MSE were sometimes observed, as can be seen for the Walker2d Experienced dataset in Figure 3f.
The discrepancy likely arises given it was the variance of log-likelihoods across training domains
that was minimised during model training. Future experiments could evaluate the impact of updat-
ing the training procedure to minimise the variance of the training MSEs, or both the log-likelihoods
and MSEs simultaneously.

Increasing the REx penalty coefficient leads to higher log-likelihood values in the majority of cases.
One exception is the peak in worst-case performance that all Hopper multi-demonstrator datasets
exhibit when β = 10. This indicates that the REx penalty coefficient is still a hyperparameter that
needs to be appropriately tuned.

C.1 Correlation between Environment Model OOD Performance and Policy Returns

As demonstrated by Figure 4, no correlation is observed between the average OOD log-likelihood of
environment models and the average evaluation return of the policies trained using them. It should,
however, be noted that the distribution of roll-out starting locations differs across the experiments
(given that starting locations are drawn from the dataset used to train the environment model), which
will have had an influence on the observed results.

D Policy Training Results

D.1 ID Roll-out Starting Locations

The results of experiments run against multi-demonstrator datasets generated using the HalfCheetah,
Hopper and Walker2d environments are shown in Table 4, Table 5 and Table 6 respectively. In all
of these experiments, during policy training, roll-out starting locations were drawn from the same
dataset used to train the environment model.

Across all environments, a policy trained offline with DIMORL obtained a higher average return for
the Novice multi-demonstrator dataset than any of the individual demonstrators that were used to
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(a) HalfCheetah - LL (b) Hopper - LL (c) Walker2D - LL

(d) HalfCheetah - MSE (e) Hopper - MSE (f) Walker2D - MSE

Figure 3: Environment models trained with REx typically achieve improved average and worst-
case out-of-distribution performance, both in terms of log-likelihood (LL) and mean-squared error
(MSE).

(a) HalfCheetah (b) Hopper (c) Walker2D

Figure 4: No correlation is observed between the average OOD log-likelihood of environment mod-
els and the average evaluation returns of policies trained using them. The results shown are for a
roll-out length of 5. A line of best fit (LBF) is shown, along with the corresponding R2 value.

generate the dataset. The same consistency was not observed for the Mixed or Experienced datasets.
This reaffirms the importance of action diversity in offline model-based methods, whereas model-
free techniques are potentially better suited to datasets collected from less-diverse, more experienced
demonstrators, as was highlighted by Yu et al. [28].

We also note the lack of consistency in the results regarding the optimal MOPO penalty coefficient.
Yu et al. [29] highlight the poor calibration between the MOPO penalty and actual model error,
which is likely at least partly responsible for the inconsistency observed.
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Table 4: Average and standard deviation, over three random seeds, of the evaluation returns for
policies learned using dynamics models trained against multi-demonstrator datasets generated from
the HalfCheetah environment. The overall highest return for each multi-demonstrator dataset has
been bolded. If a value has a number in brackets next to it then only this number of agents completed
0.5 million steps of training. If there is no value then none of the agents completed 0.5 million steps
of training.

Dataset Roll-out
Length

MOPO Pen.
Coeff, λ

REx Penalty Coefficient, β
0 5 10 20

Novice 5 0 8591 ± 417 5917 ± 2700 6723 ± 1616 8157 ± 908
Novice 5 1 9056 ± 122 7188 ± 1800 7591 ± 647 6352 ± 3320
Novice 5 5 7134 ± 263 3066 ± 2962 2242 ± 3340 4349 ± 3135
Novice 10 0 5511 ± 4172 6553 ± 1776 2822 ± 2288 4235 ± 3419
Novice 10 1 8977 ± 190 6774 ± 2508 6705 ± 1704 5719 ± 4102
Novice 10 5 7004 ± 312 2259 ± 3344 -197 ± 157 2188 ± 3283
Novice 20 0 4062 ± 4340 (2) 6344 ± 2459 2772 ± 2399 5410 ± 2667 (2)
Novice 20 1 4207 ± 4554 7392 ± 1953 5662 ± 1463 (2) 4070 ± 4113 (2)
Novice 20 5 3285 ± 3705 (2) 2329 ± 3531 -111 ± 39 (2) 3078 ± 3147 (2)
Novice 50 0 -205 ± 0 (1) 3700 ± 133 (2) 4210 ± 902 (2) 3839 ± 4340 (2)
Novice 50 1 4219 ± 4410 (2) 4847 ± 0 (1) 5602 ± 221 (2) 4249 ± 4182 (2)
Novice 50 5 3537 ± 3802 (2) -82 ± 0 (1) -152 ± 17 2842 ± 3143 (2)
Mixed 5 0 4961 ± 3372 2627 ± 1646 3160 ± 597 3273 ± 2486
Mixed 5 1 6687 ± 4888 4230 ± 1853 3195 ± 1720 4579 ± 77
Mixed 5 5 2374 ± 3472 6633 ± 499 4973 ± 3564 5161 ± 3728
Mixed 5 10 -197 ± 73 2362 ± 2944 2054 ± 3012 477 ± 445
Mixed 5 20 -131 ± 269 1588 ± 2415 84 ± 281 397 ± 136
Mixed 10 0 -369 ± 93 1329 ± 1448 (2) 1983 ± 1172 3087 ± 527
Mixed 10 1 -211 ± 147 3906 ± 34 (2) 3592 ± 805 3843 ± 966
Mixed 10 5 -379 ± 360 4464 ± 3360 4616 ± 3467 4722 ± 3401
Mixed 10 10 -67 ± 280 1637 ± 2564 2381 ± 3463 3904 ± 2862
Mixed 10 20 -359 ± 219 -196 ± 65 135 ± 250 -557 ± 238
Experienced 5 0 40 ± 714 -279 ± 344 -369 ± 112 -252 ± 161
Experienced 5 1 1607 ± 2549 -348 ± 83 -145 ± 125 -331 ± 21
Experienced 5 5 1424 ± 1799 1453 ± 2458 3612 ± 979 3629 ± 747
Experienced 10 0 -461 ± 17 (2) -404 ± 97 -455 ± 114 -344 ± 96
Experienced 10 1 -178 ± 48 -665 ± 248 -128 ± 125 -301 ± 107
Experienced 10 5 -239 ± 42 (2) 1227 ± 2208 4547 ± 288 3492 ± 614
Experienced 20 5 -56 ± 0 (1) 634 ± 1594 3291 ± 2146 2958 ± 1644

D.2 OOD Roll-out Starting Locations

We refer to roll-out starting locations as being OOD if they are sampled from any dataset other
than the one used to train the environment model that is used in policy training. The results of
experiments run against multi-demonstrator datasets generated using the HalfCheetah and Hopper
environments are shown in Table 7 and Table 8 respectively. Roll-out starting locations for these
experiments were drawn from the following datasets:

1. RAND: Transitions were generated by taking random actions in the environment.

2. D4RL-MR: The D4RL medium-replay datasets for each of the environments [9].

Experiments were not run for environment models trained on the HalfCheetah Experienced multi-
demonstrator dataset given that (when using MOPO penalty coefficient λ = 0) no policies were
learned when drawing starting locations from the same dataset used to train the models. If policies
cannot be learned using in-distribution starting locations, then we do not expect to be able to learn
them using OOD starting locations. Further, we are yet to run similar experiments for the Walker2D
multi-demonstrator datasets, but we anticipate similar results to those seen for the HalfCheetah and
Walker2D datasets (i.e., an inability to learn a policy). Additionally, experiments are still to be run
for MOPO penalty coefficients λ > 0.

E Degenerate Reward Predictions

Figure 5 demonstrates that abnormally large reward predictions can occur within the first 10 steps of
episodes generated using environment models trained without REx. Out of the 60 episodes shown
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Table 5: Average and standard deviation, over three random seeds, of the evaluation returns for
policies learned using dynamics models trained against multi-demonstrator datasets generated from
the Hopper environment. The overall highest return for each multi-demonstrator dataset has been
bolded. If a value has a number in brackets next to it then only this number of agents completed 1
million steps of training. If there is no value then none of the agents completed 1 million steps of
training.

Dataset Roll-out
Length

MOPO Pen.
Coeff, λ

REx Penalty Coefficient, β
0 5 10 20

Novice 5 0 1184 ± 772 200 ± 11 483 ± 242 210 ± 44
Novice 5 1 1386 ± 1444 1240 ± 550 567 ± 154 1104 ± 416
Novice 5 5 502 ± 214 788 ± 90 1473 ± 1423 1305 ± 1560
Novice 10 0 978 ± 69 1558 ± 832 1323 ± 395 1686 ± 815
Novice 10 1 1796 ± 320 1506 ± 274 2313 ± 938 1829 ± 694
Novice 10 5 3117 ± 488 3073 ± 335 3056 ± 516 3471 ± 25
Novice 20 0 2591 ± 1100 2412 ± 840 2052 ± 992 2596 ± 600
Novice 20 1 2350 ± 1270 1804 ± 1165 2356 ± 223 3254 ± 303
Novice 20 5 3001 ± 622 2621 ± 1165 2788 ± 932 3449 ± 15
Novice 50 0 2437 ± 1081 2570 ± 1331 2761 ± 981 2145 ± 909
Novice 50 1 2467 ± 1165 2809 ± 724 2708 ± 1097 3461 ± 26
Novice 50 5 2527 ± 1236 2632 ± 845 2762 ± 1017 3482 ± 23
Novice 100 5 3411 ± 0 (1) 3489 ± 12 (2) 3220 ± 396 3444 ± 0 (1)
Mixed 5 0 586 ± 128 602 ± 93 667 ± 128 459 ± 189
Mixed 5 1 664 ± 142 781 ± 257 574 ± 137 781 ± 24
Mixed 5 5 645 ± 119 749 ± 28 738 ± 34 1016 ± 150
Mixed 10 0 800 ± 33 876 ± 170 993 ± 325 1782 ± 1160
Mixed 10 1 1318 ± 622 911 ± 163 950 ± 468 919 ± 116
Mixed 10 5 1398 ± 639 1923 ± 1101 1491 ± 1481 2953 ± 518
Mixed 20 0 2521 ± 356 2706 ± 1232 2936 ± 823 1928 ± 731
Mixed 20 1 2208 ± 771 1988 ± 1149 1916 ± 780 2369 ± 857
Mixed 20 5 3483 ± 85 3558 ± 24 2864 ± 973 3320 ± 289
Mixed 50 0 2607 ± 863 2323 ± 1100 2010 ± 1146 2983 ± 724
Mixed 50 1 1443 ± 141 2940 ± 918 2598 ± 677 2767 ± 1121
Mixed 50 5 2839 ± 1049 3560 ± 48 3542 ± 50 3569 ± 40
Mixed 100 5 3226 ± 0 (1) 3529 ± 33 3142 ± 609 3445 ± 156
Experienced 5 0 638 ± 231 355 ± 49 689 ± 48 380 ± 232
Experienced 5 1 607 ± 205 505 ± 254 316 ± 184 225 ± 107
Experienced 5 5 517 ± 200 304 ± 194 538 ± 104 601 ± 73
Experienced 10 0 864 ± 74 542 ± 204 757 ± 114 904 ± 113
Experienced 10 1 971 ± 393 429 ± 593 827 ± 45 842 ± 122
Experienced 10 5 1813 ± 1214 1191 ± 972 781 ± 85 683 ± 162
Experienced 20 0 2199 ± 811 1735 ± 1287 517 ± 354 1297 ± 239
Experienced 20 1 2472 ± 1024 868 ± 447 880 ± 130 984 ± 168
Experienced 20 5 1030 ± 640 1632 ± 1343 1006 ± 44 1774 ± 1171
Experienced 50 0 2811 ± 904 1424 ± 1528 960 ± 745 1756 ± 1035
Experienced 50 1 2479 ± 1002 2098 ± 1068 931 ± 663 1242 ± 134
Experienced 50 5 3493 ± 33 1343 ± 1142 3441 ± 52 2443 ± 782
Experienced 100 5 3318 ± 0 (1) 334 ± 0 (1) - -
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Table 6: Average and standard deviation, over three random seeds, of the evaluation returns for
policies learned using dynamics models trained against multi-demonstrator datasets generated from
the Walker2d environment. The overall highest return for each multi-demonstrator dataset has been
bolded. If a value has a number in brackets next to it then only this number of agents completed 3
million steps of training. If there is no value then none of the agents completed 3 million steps of
training.

Dataset Roll-out
Length

MOPO Pen.
Coeff, λ

REx Penalty Coefficient, β
0 5 10 20

Novice 5 0 263 ± 203 412 ± 263 501 ± 89 1068 ± 849
Novice 5 1 214 ± 222 98 ± 141 -2 ± 1 -2 ± 0
Novice 5 5 -2 ± 0 -3 ± 0 -2 ± 0 -3 ± 0
Novice 10 0 327 ± 62 521 ± 182 817 ± 242 1594 ± 1598
Novice 10 1 83 ± 121 325 ± 364 82 ± 118 86 ± 125
Novice 10 5 -3 ± 0 -2 ± 1 -2 ± 0 -3 ± 0
Mixed 5 0 -1 ± 3 (2) 500 ± 508 1721 ± 1700 2265 ± 141 (2)
Mixed 5 1 1 ± 6 1544 ± 2187 245 ± 349 -2 ± 0
Mixed 5 5 -3 ± 0 -3 ± 0 -3 ± 0 -3 ± 0
Mixed 10 0 2050 ± 1922 1614 ± 2099 1095 ± 704 1653 ± 1563
Mixed 10 1 -2 ± 0 1501 ± 2125 273 ± 390 -2 ± 0
Mixed 10 5 -3 ± 0 -3 ± 0 -2 ± 1 -2 ± 1
Experienced 5 0 1685 ± 1850 144 ± 10 316 ± 232 947 ± 263
Experienced 5 1 -3 ± 0 (2) 2318 ± 2326 (2) 1297 ± 1839 3080 ± 2202
Experienced 5 5 -3 ± 0 -4 ± 0 -3 ± 0 -4 ± 0
Experienced 10 0 3245 ± 1375 3121 ± 1667 3524 ± 1791 4796 ± 113
Experienced 10 1 1602 ± 2270 4785 ± 126 979 ± 1389 1501 ± 2127
Experienced 10 5 -3 ± 1 -3 ± 0 -3 ± 0 -3 ± 0

Table 7: Average and standard deviation, over three random seeds, of the evaluation returns for poli-
cies learned using dynamics models trained against multi-demonstrator datasets generated from the
HalfCheetah environment. During offline policy training with the SAC algorithm, roll-out starting
locations were sampled from the indicated dataset. If a value has a number in brackets next to it then
only this number of agents completed 0.5 million steps of training. If there is no value then none of
the agents completed 0.5 million steps of training.

Env. Model
Train. Dataset

Roll-out Start.
Loc. Dataset

Roll-out
Length

REx Penalty Coefficient, β
0 5 10 20

Novice RAND-1 5 374 ± 24 (2) -54 ± 496 -710 ± 613 -164 ± 216
Novice RAND-1 10 -156 ± 180 (2) 153 ± 0 (1) -311 ± 6 (2) -345 ± 9 (2)
Novice D4RL-HC-MR 5 155 ± 392 -438 ± 77 -354 ± 152 -518 ± 192
Novice D4RL-HC-MR 10 442 ± 625 (2) -411 ± 124 -485 ± 223 -786 ± 370
Mixed RAND-1 5 -339 ± 41 -453 ± 64 (2) -395 ± 42 (2) -392 ± 40
Mixed RAND-1 10 -485 ± 0 (1) -360 ± 0 (1) -361 ± 9 (2) -369 ± 10
Mixed D4RL-HC-MR 5 -459 ± 209 -598 ± 211 -641 ± 58 -638 ± 94
Mixed D4RL-HC-MR 10 -767 ± 378 (2) -494 ± 200 (2) -483 ± 114 -665 ± 160

in Figure 5, six contained reward predictions with an absolute value exceeding one million. If
these episodes are excluded then the largest absolute reward prediction was 12.29. No episodes
generated absolute reward predictions greater than 12.29 in the first 5 steps, while 2 episodes did
within the first 10 steps. Note that our aim in this experiment was merely to show the possibility
of abnormally large reward predictions in the early stages of episodes, not prove that the problem is
common/widespread.

F Additional Experiments

F.1 Noisy Roll-out Starting Locations

To further assess the potential benefits of environment models trained with REx, we analysed the
impact of adding noise to the roll-out starting locations used during offline policy training. Note
that the environment models were trained on the original multi-demonstrator datasets (which have
no noise), and starting locations were still sampled from the same datasets used to train the environ-
ment models. The only change was that noise with standard deviation σ ∈ {0.00, 0.01, 0.05, 0.10}

15



Table 8: Average and standard deviation, over three random seeds, of the evaluation returns for
policies learned using dynamics models trained against multi-demonstrator datasets generated from
the Hopper environment. During offline policy training with the SAC algorithm, roll-out starting
locations were sampled from the indicated dataset. If a value has a number in brackets next to it then
only this number of agents completed 1 million steps of training. If there is no value then none of
the agents completed 1 million steps of training.

Env. Model
Train. Dataset

Roll-out Start.
Loc. Dataset

Roll-out
Length

REx Penalty Coefficient, β
0 5 10 20

Novice RAND-1 5 6 ± 1 8 ± 2 9 ± 2 8 ± 2
Novice RAND-1 10 5 ± 1 9 ± 1 8 ± 2 9 ± 3
Novice D4RL-H-MR 5 179 ± 126 253 ± 175 281 ± 200 236 ± 165
Novice D4RL-H-MR 10 245 ± 172 385 ± 27 398 ± 35 297 ± 170
Mixed RAND-1 5 5 ± 1 7 ± 2 7 ± 2 6 ± 2
Mixed RAND-1 10 7 ± 1 9 ± 2 8 ± 2 31 ± 36
Mixed D4RL-H-MR 5 270 ± 70 102 ± 130 99 ± 133 82 ± 104
Mixed D4RL-H-MR 10 311 ± 66 310 ± 15 310 ± 36 307 ± 1

Experienced RAND-1 5 10 ± 4 8 ± 2 9 ± 2 9 ± 2
Experienced RAND-1 10 16 ± 12 9 ± 3 12 ± 4 13 ± 3
Experienced D4RL-H-MR 5 177 ± 132 355 ± 467 186 ± 121 313 ± 29
Experienced D4RL-H-MR 10 261 ± 172 181 ± 54 332 ± 81 281 ± 64

Figure 5: Abnormally large reward predictions can be made within the first 10 steps of an
episode. Six different starting locations were randomly sampled from the HalfCheetah Mixed multi-
demonstrator dataset. Ten episodes of 1000 steps were then generated from each starting location,
using an environment model trained on the HalfCheetah Mixed multi-demonstrator dataset and a
policy trained using the same environment model (β = 0, λ = 0, h = 10). For each episode, the
rewards at each step over the first 100 steps are shown. The dashed vertical red lines denote the 5
and 10 step marks.
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was added to the datasets before starting locations were sampled from them. Figure 6 shows that
environment models trained with REx yielded policies with higher average returns across all noise
levels for both the HalfCheetah and Hopper environments. For the Walker2D environment, envi-
ronment models trained with REx penalty coefficients β ∈ {10, 20} yielded policies with higher
returns. For both HalfCheetah and Hopper environments, the highest policy evaluation return was
obtained when σ = 0.01–suggesting that a small amount of noise was beneficial. We hypothesise
that the distribution of noisy starting locations is more diverse, enabling greater exploration. In the
case of the Hopper environment, it was the environment model trained without REx that obtained
the highest average return for σ = 0.01, whereas the returns for the equivalent HalfCheetah and
Walker2D environment models decreased significantly. This may be thanks to the greater simplicity
of the Hopper environment.

(a) HalfCheetah, h = 5 (b) Hopper, h = 5 (c) Walker2D, h = 10

Figure 6: The average returns of policies learned using environment models trained with REx
display a greater robustness to noisy initial state distributions. Noise with standard deviation
σ ∈ {0.00, 0.01, 0.05, 0.10} was added to the roll-out starting locations used during offline pol-
icy training. Environment models were trained on the original multi-demonstrator datasets, which
had no noise.

F.2 Analysis of Training Exploration using PCA

In an attempt to determine whether environment models trained with REx supported increased ex-
ploration of the state-action space during policy training, we investigated the use of PCA to project
transition records into two-dimensions, such that they could be visualised. For experiments using
the Gym MuJoCo HalfCheetah environment, we sampled 100,000 transition records from the model
pool every 100,000 training steps, excluding the zeroth and final training steps. Figure 7 shows the
projections for a set of six policy training experiments, using the Mixed dataset and β ∈ {0, 10}. The
projection matrix was trained on the complete collection of sampled transition records for the six
experiments. Note that, unlike all other experiments presented in this paper, the environment models
used in these experiments received one additional epoch of training prior to being used to learn a
policy. This is the default behaviour of the MOPO codebase when utilising pre-trained environment
models [28].

The average return for the experiments that did not use an environment model trained with REx was
-420 ± 50, while for the REx experiments it was 8128 ± 1053. The projected records appear to
indicate that increased exploration of the state-action space took place when using an environment
model trained with REx. It is important to recognise, however, that the projections for REx experi-
ments have higher explained variance, which may partially or fully explain the observed difference.
The results will of course be sensitive to the datasets used to learn the projection matrix. We believe
that further investigation of this method is warranted.
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Figure 7: A 2D projection of state-action pairs sampled from the model pool during offline policy
training appears to indicate that increased exploration of the state-action space took place when
using an environment model trained with REx (β = 10). It is important to recognize, however,
that the projections for the REx experiments have higher explained variance, which may partially or
fully explain the observed differences. The projection matrix was trained on the complete collection
of sampled transition records for the six experiments shown. MOPO penalty coefficient λ = 5 and
roll-out length h = 10 were used.
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