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Abstract—This work addresses the block-diagonal
semidefinite program (SDP) relaxations for the clique
number of the Paley graphs. The size of the maximal
clique (clique number) of a graph is a classic NP-complete
problem; a Paley graph is a deterministic graph where
two vertices are connected if their difference is a quadratic
residue (square) in a finite field with the number of elements
given by certain primes and prime powers. Improving
the upper bound for the Paley graph clique number for
prime powers that are non-squares is an open problem in
combinatorics. Moreover, since quadratic residues exhibit
pseudorandom properties, Paley graphs are related to the
construction of deterministic restricted isometries, an open
problem in compressed sensing. Recent work provides
numerical evidence that the current upper bounds can
be improved by the sum-of-squares (SOS) relaxations. In
particular, the bounds given by the SOS relaxations of
degree 4 (SOS-4) have been empirically observed to be
growing at an order smaller than square root of the prime.
However, computations of SOS-4 appear to be intractable
with respect to large graphs. Gvozdenovic et al. introduced
a more computationally efficient block-diagonal hierarchy
of SDPs and computed the values of these SDPs of degrees
2 (L2) for the Paley graph clique numbers associated with
primes p less or equal to 809, which bound from above the
corresponding SOS-4 relaxations. We compute the values of
the L2 relaxations for p’s between 821 and 997. Our results
provide some numerical evidence that these relaxations,
and therefore also the SOS-4 relaxations, may be scaling
at an order smaller than the square root of p. However, due
to the size of the SDPs, we have not been able to compute L2
relaxations for p’s greater than 997. Therefore, our scaling
estimate is not conclusive and presents an interesting open
problem for further study.

I. THE CLIQUE NUMBER OF THE PALEY GRAPHS

A Paley graph Gq is a graph with q vertices, where q is
a prime power such that q = 1 mod 4;1 two vertices are
connected by an edge {i, j} whenever i−j is a quadratic

1By the law of quadratic reciprocity, this condition ensures that −1
is a quadratic residue in Fq . Therefore, if i− j is a quadratic residue
then so is j − i, and the graph is undirected.

residue in Fq . (We may sometimes refer to quadratic
residues as squares, and to nonresidues as nonsquares.)2

The clique number ω(G) of a graph G is the number
of vertices in its largest complete subgraph or clique. For
any Paley graph Gq , this number is bounded above by√
q [33].
For a Paley graph with q = p2k where k is a positive

integer, the foregoing bound is tight [11]. However, less
is known about ω(Gq) when q is a prime power that
is a non-square. In particular, if q = p, the state-of-
the-art lower bounds are scaling as log p · log log log p;
the log log log p term can be improved to log log p con-
ditional on the Generalized Riemann Hypothesis (see
[15] and Theorem 13.5 in [28]). On the other hand,
the existing state-of-the-art upper bounds in references
[7], [18] improve on

√
p only by a constant prefactor.

We will refer to the upper bound (
√

2p− 1 + 1)/2 in
those references as HP (Gp). Numerical experiments
appear to suggest that the Paley graph clique number
is polylogarithmic in p (see discussion of [13], [31] in
[2]). However, proving even a p

1
2−ε bound for some

ε > 0 is regarded as a difficult open problem in additive
combinatorics [20], sometimes referred to as the square
root bottleneck (see also [23]).

II. CONNECTIONS TO DETERMINISTIC RESTRICTED
ISOMETRIES

Paley graphs are connected to the construction of
deterministic M ×N matrices with the restricted isom-
etry property (RIP), an important problem in com-
pressed sensing and sparse recovery [32]. Random ma-
trix constructions achieve RIP when sparsity is on the
order of M/polylog(N). However, most deterministic
constructions, such as equiangular frames (ETFs), are
based on controlling a certain coherence value, which
achieves RIP only when sparsity is on the order of

√
M ;

2See [21] for general background on Paley graphs.



this limitation is known as the square root bottleneck.3

The only unconditional construction that overcomes this
bottleneck was provided in [9], [10], which leveraged
additive combinatorics techniques to achieve RIP for
Ω(M

1
2 +ε) sparsity for small ε > 0 (see also [27]).

Reference [4] constructed a family of deterministic
ETF matrices using the quadratic residues modulo a
prime number p (the Paley matrices) which provably
achieve RIP when sparsity is on the order of

√
p by the

aforementioned coherence analysis but are conjectured
to achieve it when sparsity on the order of p/polylog(p)
(which would match the random construction if p is
proportional to M ). Reference [3] used a matrix con-
struction based on the Legendre symbol (which is closely
connected to Paley graphs) to reduce the number of
random bits in a random RIP matrix.

Finally, conditioned on a conjecture about the number
of edges in any subgraph of a Paley graph, the Paley
matrices overcome the square root bottleneck [5].4 In
this conditional construction, a lower bound on ω(Gp)
would lead to a lower bound on the distortion in the
sparse recovery (Theorem 2.3 in [5]).

III. SDP RELAXATIONS OF THE CLIQUE NUMBER

The clique number ω(G) of a graph G is a classical
NP-complete problem. It can be formulated as a polyno-
mial optimization over x ∈ Rn where n is the number
of vertices of G = (V,E):

ω(G) =

 max
∑
i∈V xi

s.t. x ∈ Rn, x2
i = xi for all i ∈ V,

xixj = 0 for all {i, j} /∈ E

 .

An extensive body of literature considered upper bounds
produced by convex relaxations, which are more compu-
tationally efficient. One particular question in this liter-
ature is whether semidefinite program (SDP) relaxations
would lead to an O(n

1
2−ε) upper bound on the clique

number for some ε > 0.
Erdos-Renyi graphs G ∼ G( 1

2 , n) are random graphs
where each edge is present independently with proba-
bility 1

2 . In this setting, reference [14] showed that the
Lovasz-Schrijver hierarchy of SDPs attains an Ω(

√
n)

lower bound for clique number relaxations of any con-
stant degree.

3Reference [1] designed deterministic RIP matrices that support the
same sparsity

√
M based on the coherence analysis; however, they are

constructed using the adjacency matrix of a Paley graph rather than an
ETF.

4Using a similar analysis, reference [22] showed an improvement
on the square root bottleneck by ε = 9

40
+ κ for small κ; while this

result is not conditioned on any conjectures, it only holds for signals
with a certain sparse structure.

Another line of work considered the sum of squares
(SOS) hierarchy of SDPs, also known as the Lasserre-
Parrilo hierarchy. In the context of the clique num-
ber problem, these relaxations, denoted by SOS2t(G)
where t is the degree of the hierarchy, are defined
as follows. Let P(V ) be the collection of all subsets
(power set) of V , and let Pt = {I ∈ P(V ) | |I| ≤ t}
and P=t = {I ∈ P(V ) | |I| = t} denote the subsets of
V with at most t and exactly t elements, respectively. For
y ∈ RP2t , we define the moment matrix of y Mt(y) ∈
RPt×Pt by Mt(y)IJ = yI∪J where I, J ∈ Pt(V ). We
also denote by K the set of all cliques of G. Then the
SOS hierarchy is given by

SOS2t(G) =


max

∑
i∈V yi,∅

s.t. y ∈ RP2t , y∅ = 1
yS,T = 0 ∀ S ∪ T /∈ K
Mt(y) � 0


In the average-case setting of G( 1

2 , n), reference [6] es-
tablished an Ω(

√
n) lower bound for the SOS relaxation

of any constant degree for the clique number problem
(see also earlier work [12], [19], [30] focusing on the
SOS4 relaxation).

A stable set of a graph G = (V,E) is a subset S ⊂ V
such that no two nodes in S have an edge between them.
The size α(G) of the largest stable set of G is called the
independence or stability number of G. The Lovász ϑ
function, which can be also formulated as an SDP, is a
convex relaxation of α(G). Note that for a complement
graph Ḡ, α(G) = ω(Ḡ), and Lovász ϑ represents the first
and weakest degree of the SOS hierarchy, i.e., ϑ(G) =
SOS2(Ḡ) (see, e.g., Section 4.1.3 in [16]).

Since the Paley graphs are self-complementary,
ω(Gp) = α(Gp). The classic upper bound α(Gp) ≤√
p is realized by the SOS2(Gp) relaxation of the

Paley graph clique problem (Theorem 13.14 in [8]
and Theorem 8 in [25]), but the current state-of-the-
art upper bound HP (Gp) in [7], [18] has a tighter
constant prefactor. Numerical experiments in [26] show
that the Lovasz ϑ relaxation with respect to appropriately
chosen local subgraphs of Gp with additional Schrijver’s
nonnegativity constraints often improves on HP (Gp);
see also [23].

Recent work revisited the higher-degree SOS relax-
ations in the deterministic context of the Paley graphs.
Specifically, for q = p prime, reference [24] presented
numerical experiments suggesting that SOS4(Gp) may
scale as O(p

1
2−ε) for some ε > 0 and proved that these

values are at least Ω(p
1
3 ).

For large graphs, the SOS relaxations appear to be
computationally intractable, especially for higher degree

2



t of the hierarchy, which entail optimization over RPt×Pt

matrices. For example, the SOS4 relaxations do not ap-
pear to be currently computationally feasible for p > 250
(Section 6 and Figure 1 in [24]).

IV. BLOCK-DIAGONAL SDP HIERARCHY

References [16], [17] introduced a new hierarchy of
SDPs, denoted by Lt, which is nested between the
Lovasz-Schrijver and SOS hierarchies, and in particular
the optimal values of this new hierarchy Lt bound
from above the corresponding SOS-2t values. This new
hierarchy is more computationally tractable that the SOS
hierarchy because it is based on the block-diagonal
submatrices of the moment matrix. In the context of the
Paley graph clique number, the size of the block-diagonal
relaxations can be reduced further by leveraging graph
symmetries. This section provides an exposition of the
L2 relaxations in [16], [17].

For y ∈ RPt+1 and a subset of vertices T ⊂ V
of size |T | = t − 1, let M(T ; y) ∈ RPt−1×(n+1)

be a principal submatrix of Mt(y) whose rows and
columns are indexed by A(T ) =

⋃
S⊆T AS where

AS = {S} ∪ {S ∪ {i} | i ∈ V }. Following [17], we
consider AS as a multiset, i.e., we keep possible repeated
occurrences, e.g., S and S ∪ {i} if i ∈ S.5 Let AS(y)
denote the principal submatrix of M(T ; y) indexed by
the set AS : it is a symmetric (n + 1)× (n + 1) matrix
with entries

AS(y)00 = yS , AS(y)0i = yS∪{i}, AS(y)ij = yS∪{i,j}

for i, j ∈ V . We will index matrix and vector entries by
[0, . . . , n−1], the elements of a finite field Fn to simplify
our subsequent discussion of the Paley graph relaxations.
By Lemma 2.2 in [17] M(T ; y) is positive semidefinite
(PSD) if and only if for all S ⊆ T the matrix

A(S, T )(y) :=
∑

S′:S⊆S′⊆T

(−1)|S
′\S|AS′(y)

is PSD.
These reductions lead to the following relaxation of

the independence set problem of an arbitrary graph with

5Therefore, |AS | = 2t−1(n + 1) and M(T ; y) ∈
R2t−1(n+1)×2t−1(n+1). Technically M(T ; y) is a submatrix of
Mt(y) after removing the repeating rows of the latter.

n vertices:6 Lt(G) =

max
∑
i∈V

y{i}

s.t.y ∈ RPt+1 , y∅ = 1

y{i,j} = 0 ∀ (i, j) ∈ E
A(S, T )(y) � 0 for all S ⊂ T and T ∈ P=t−1


This optimization problem has

(
n
t−1

)
2t−1 PSD con-

straints with respect to n+1×n+1 matrices A(S, T )(y).
In the remainder of this section, for consistency with

[16], [17], we will consider the independent set problem
rather than the equivalent maximal clique problem.

In the context of a Paley graph Gp, references [16],
[17] exploit its symmetries to reduce the number of
the PSD constraints. Using the vertex-transitivity of the
graph and Lemma 2.4.5 in [16], the PSD constraints in
L2(Gp) is reformulated in terms of two (p+1)×(p+1)
matrices using just one arbitrary vertex h ∈ V , e.g., {0};
the resulting matrices A∅(y) and A{0}(y) used in the
constraints are given below. Furthermore, a Paley graph
is edge-transitive - this symmetry allows to reduce the
number of optimization variables corresponding to non-
edges to one variable, y{0,k} for some {0, k} /∈ E.

The cliques and independent sets of size 3 (triangles)
form orbits under the graph automorphism group of
affine mappings φab : Fp → Fp given by φab(u) =
au + b where u ∈ Fp, a, b ∈ Fp and a 6= 0 is a
square in Fp. Therefore, the number of optimization
variables corresponding to triangles without edges can
be reduced to the number of the orbits of φab acting on
such triangles.

Since a Paley graph is edge-transitive, the representa-
tives of the orbits of fully connected triangles are given
by {0, 1, β} where both β and β − 1 are squares in
Fp. The representatives of the orbits of φab acting on
triangles without any edges, which can be represented
as {0, α, β}, can be expressly computed as well. Lemma
6.2.1 in [29] explicitly sets forth their orbits; there are
approximately (p − 5)/24 orbits. Let Ω be the set of
representatives of such orbits, and denote m := |Ω|.
Then

L2(Gp) =


max p · y{0}

s.t. y{0}, y{0,k} ∈ R, y ∈ Rm

A∅(y)−A{0}(y) � 0

A{0}(y) � 0


(2a)
(2b)
(2c)
(2d)

6The independence set formulation leads more naturally than the
equivalent clique number formulation to further simplifications of the
Lt program discussed here in the context of Paley graphs.
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where

A∅(y) =

(
1 y{0}1

ᵀ

y{0}1 y{0}I + y{0,k}AḠp

)
encodes the vertices by y{0} and nonedges by y{0,k},
both scalars, and AḠp

is the adjacency matrix of the
complement graph Ḡp. Also we have

A{0}(y) =

 y{0} y{0} y{0,k}q
ᵀ

y{0} y{0} y{0,k}q
ᵀ

y{0,k}q y{0,k}q M


where the leftmost column q := (AḠp

)1:end,0 of the
adjacency matrix AḠp

, and

M := y{0,k}diag(q) +
∑

{α,β}∈Ω

y{0,α,β}X
αβ .

The matrix Xαβ ∈ Rp−1×p−1 encodes the orbit of φab
acting on each representative triangle {0, α, β}: Xαβ

ij =
1 if {i, j} ∈ φab({0, α, β}) for any a, b ∈ Fp where
a 6= 0 is a square in Fp, and Xαβ

ij = 0 otherwise. (Note
Xαβ
ii = 0 for all {α, β} ∈ Ω.)
Since the second row and columns of A{0}(y) will

match those of A∅(y), we can remove the first row
and column in each matrix for purposes of the (2c)
constraint. This leads to a p×p rather than p+1×p+1
matrix in that constraint. Lastly for purposes of the
other constraint (2d), we can remove from A{0}(y) the
rows and columns with edges (which are indexed by the
nonresidues) leading to a (p+ 1)/2× (p+ 1)/2 matrix.

V. NEW COMPUTATIONS

We replicated the L2(Gp) computations reported in
[16], [17] using Matlab/CVX for primes p ≤ 809 as
well as extended them for all p < 1000.7 These resulting
new values are shown in Table I. Figure 1 shows that
L2(Gp) ∼ p0.456 which is tighter than HP (Gp) =
(
√

2p− 1+1)/2, the upper bound on ω(Gp) established
in [7], [18].8 Moreover, since SOS4(Gp) ≤ L2(Gp), our
results provide some numerical evidence that the SOS4

relaxations of the Paley graph clique number may be
asymptotically growing at an order smaller than square
root of p. However, due to the size of the SDPs, we have
not been able to compute the L2(Gp) values for p > 997.
Therefore, our scaling estimate is not conclusive and
presents an interesting open problem for further study.

7The code is available at http://vkobzar.com/.
8For reference, we have also plotted and fitted to a power model the

L3(Gp) values for p ≤ 809 determined in [16], [17].

p ϑ(Gp) L2(Gp) ω(Gp)

821 28.653 18.673 12
829 28.792 18.105 11
853 29.206 18.909 13
857 29.275 18.429 13
877 29.614 19.711 13
881 29.682 18.689 11
929 30.48 19.292 13
937 30.61 19.248 11
941 30.676 19.34 11
953 30.871 19.199 11
977 31.257 19.737 13
997 31.575 20.058 13

TABLE I: The L2(Gp) values for 809 < p < 1000
determined in this paper, together with the values of ω(Gp)
obtained from [31].

Fig. 1: The L2(Gp) values for 809 < p < 1000 determined
in this paper, and the L2(Gp) and L3(Gp) values for p ≤
809 determined in [16], [17] are fitted to power models of the
form apb. The values of ω(Gp) were obtained from [31] and
HP (Gp) = (

√
2p− 1 + 1)/2 represents the upper bound on

ω(Gp) established in [18].

VI. POTENTIAL EXTENSIONS

We hope that the L2(Gp) values can be either es-
timated analytically, or computed numerically for p >
997 leading to a new scaling estimate with a higher
confidence level than that of the estimate obtained in
this work. We also hope that the higher degree Lt

relaxations can be computed and used to upper bound
the corresponding SOS2t values in the context of the
Paley graph clique number and beyond. To achieve new
numerical results, it may be advantageous to decompose
the AS(y) matrices in the positive semidefinite con-
straints in terms of smaller matrices. A result of this

4



kind was obtained in [29] with respect to the Lovasz
ϑ by decomposing the moment matrix in terms of the
so-called “zonal” matrices. Another possible alternative
would entail adapting the approach used in [26] by
computing a block diagonal relaxation with respect to
a suitable local subgraph of a Paley graph. We leave
these potential extensions for future work.
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