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Abstract

Gaussian splatting has emerged as the preferred 3D scene representation due to its1

incredible speed and accuracy in novel view generation. Various attempts have thus2

been made to adapt multi-view structure prediction networks to directly predict per-3

pixel 3D Gaussians from images. However, most work has focused on enhancing4

self-supervised depth prediction networks to estimate additional parameters for 3D5

Gaussians – orientation, scale, opacity, and appearance. We show that optimizing6

a view-synthesis loss alone is insufficient to recover geometrically meaningful7

splats in this simple manner. We systematically analyse and address the inherent8

ambiguities in learning 3D Gaussian splats with self-supervision to learn pose-free9

generalisable splatting. Our approach achieves state-of-the-art performance in10

(i) geometrically consistent reconstructions, (ii) relative pose estimation between11

images, and (iii) novel-view synthesis on the RealEstate10K and ACID datasets.12

We also showcase zero-shot capabilities of the proposed generalizable splatting on13

ScanNet, where our method substantially outperforms the prior art in recovering14

geometry and estimating relative pose.15

1 Introduction16

3D Gaussian splatting (3DGS) [22] has recently revolutionized 3D structure and appearance modeling17

from multi-view images. Departing from traditional depth or point cloud representations of the scene18

structure, 3D Gaussians implicitly model surface reflections and environment lighting to encode view-19

dependent scene appearance. They are memory-efficient compared to explicit volumetric alternatives,20

and they facilitate rendering of the scene from arbitrary viewpoints in a fraction of a second. Due to21

these capabilities, 3D Gaussians have become a prevalent choice for scene representation.22

Learning-based structure estimation methods, such as single- or two-view depth predictors, are23

increasingly being adapted to directly predict 3D Gaussians using feedforward neural networks.24

Various laudable attempts have been made recently in training neural networks to predict 3D Gaussians25

directly from images, achieving photorealistic results without per-scene optimization [2, 3, 43, 47,26

35, 54, 51]. These methods are commonly referred to as generalizable Gaussian splatting. Most27

generalizable Gaussian splatting methods adapt well-studied one- or multi-view structure prediction28

networks [46, 42, 25] to estimate locations of the 3D Gaussians. These networks typically use29

image encoders that take in one or multiple images followed by decoders that predict Gaussian30

means, in the form of per-pixel depth [46] or 3D point locations [42, 25] for each input view. Nearly31

all generalizable Gaussian splatting methods append additional decoders to depth or point-cloud32

estimation architectures to predict Gaussian properties such as orientation, scale, opacity and view-33

dependent color – typically without much foresight. These networks are usually trained by minimizing34

view-synthesis loss on a few target views, closely following existing self-supervised depth estimators35

– though they differ in image formation due to the underlying change in scene representation.36

This prevalent setup overlooks several key issues inherited from the underlying 3DGS optimization:37
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Figure 1: Qualitative comparison of mesh reconstructions from two input views. We compare
the baseline methods MVSplat [3] and NoPoSplat [51] with our approach on RE10K dataset [57].
The top row displays the textured meshes reconstructed by fusing virtual depth maps via TSDF;
the bottom row visualizes Gaussian-surface normals for the first input view, and the RGB/depth
rendered from a novel (virtual) viewpoint. Inaccuracy in rendered depth and normals is evident for
both baselines. These inconsistent depths, when fused, create several holes in the mesh reconstruction.
Our method recovers accurate geometry of fine details such as the towel, wall painting, and stool.

• 3D Gaussians are grossly overparameterized compared to depth maps or point clouds.38

Successful estimation of 3D Gaussians typically requires a large number of densely sampled39

viewpoints. Few-shot 3DGS is an active field of research and often relies on regularization40

priors [59, 4], which are largely ignored when training generalizable splatting networks.41

• Unlike per-pixel depths or 3D point locations – which are uniquely defined (up to scale) –42

multiple 3D Gaussian configurations can produce equally valid renderings. This inherent43

ambiguity makes training difficult, even when depth data is available for supervision.44

• Successful per-scene Gaussian splatting methods typically rely on multiple non-45

differentiable heuristics (i.e., splitting, and duplication of Gaussians). However, existing46

generalizable methods are trained purely via view-synthesis gradient loss and neglect these47

heuristics. i.e. they assume that all Gaussians remain perpetually alive during training.48

As a result, existing generalizable Gaussian splatting methods often converge to geometrically49

degenerate Gaussians. While the predicted locations (means) remain relatively stable —- benefiting50

from well-established single- or multi-view depth estimators – other parameters (opacity, orientation,51

scale) are prone to collapse. As shown in Figure 2, existing generalizable approaches struggle to52

learn meaningful opacities, orientations, or scales when trained with view-synthesis loss alone in53

both pose-aware and pose-free settings. In particular, we observe implausible Gaussian orientations54

(in the form of normals) as well as unjustified elongation of the 3D Gaussians (scales).55

We show that these artifacts are due to the inherent over-parametrization of geometry in the form56

of splats, which require structural consistency priors to make the self-supervised learning viable.57

By introducing such priors, our proposed method produces Gaussians that exhibit consistent and58

physically plausible geometric patterns. As shown in Figure 2, our proposed method produces59

accurate surface normals directly from the predicted Gaussian orientations. The resulting Gaussians –60

parameterized as 2D disks in 3D space – are elongated along geometric discontinuities and remain61

robust to image textures. The two approaches we selected for visualizing predicted 3D Gaussians62

broadly represent distinct underlying representations for encoding Gaussian means: (i) per-pixel63

depth maps [3], and (ii) per-pixel 3D locations aligned to a common reference frame [51]. Despite64

this difference, to our knowledge, all existing self-supervised generalizable splatting methods suffer65

from similar limitations – stemming from their reliance on the representations and loss functions66

introduced in [3, 51].67

In this work, we aim to systematically define the ideal configuration of a geometrically consistent68

Gaussian and propose appropriate priors to assist generalized Gaussian splatting. To that end, we69

opt to build upon the recently proposed NoPoSplat framework [51] as our baseline. We choose70
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Figure 2: Qualitative comparison of predicted Gaussian parameters. Each Gaussian has scales
s1 > s2 > s3, where s3 quantifies the uncertainty in localization of the surface the Gaussian belongs
to with surface orientation defined by its normal [18]. Row 1 (ours) shows: (a) the source image
to which Gaussians are aligned, (b) skewness of the estimated Gaussians within their own defining
plane, and (c) predicted Gaussian orientations visualized as surface-normal maps. Rows 2 and 3
show results for NoPoSplat and MVSplat, respectively: (d/g) Gaussians’ elongation perpendicular
to the dominant plane defined by it, (e/h) Gaussians’ skewness within the dominant plane, and
(f/i) normals to the dominant plane. Existing methods yield Gaussian orientations without clear
geometric meaning: MVSplat Gaussians (i) align mostly fronto-parallel to the source image plane, and
NoPoSplat Gaussians orientations (f) strongly depend on texture, spanning a few dominant directions
inconsistent with scene geometry. Our method produces plausible, near-Manhattan structured surface
orientations. Baseline Gaussians exhibit significant elongation perpendicular to their dominant
surfaces (visible as non-red colors in d/g). Notably, our Gaussians remain relatively circular (blue
color in b) on planar, textureless surfaces and become skewed ellipses (red color in b) near sharp
geometric edges such as shelves or wall corners.

NoPoSplat not only for its state-of-the-art performance across relative camera pose estimation and71

view-synthesis but also for its self-supervised formulation, which does not require groundtruth depth72

maps. Additionally, utilizing DUSt3R [42] framework, the approach is one of the few to provide73

generalizable splatting from a pair of images without requiring the relative pose of these images.74

We address ambiguities in learning over-parametrized 3D Gaussians by adding suitable regularization75

terms to the traditionally used view-synthesis loss. Our main observations are:76

• Defining the ideal 3D Gaussian orientations to be dominant normals of the scene surfaces (as77

in [18]) helps resolve structural ambiguities to enable learning of the Gaussian orientations.78

• Ensuring that the 3D Gaussians are pixel-aligned is extremely important with self-79

supervision. Particularly pose-free methods that use PnP for relative pose estimation require80

pixel alignment to ensure accurate camera pose and geometry prediction.81

• Standard priors used to enforce consistency in rendered depth and normal maps [18] are not82

easily deployable for joint learning of pose and structure. Instead, we enforce consistency83

between Gaussian orientations and means by leveraging the local image neighborhood of84

pixel-aligned Gaussians. This promotes stable training in generalizable splatting networks.85

We build upon NoPoSplat [51], integrating geometric consistency priors, and trained our network86

on the RealEstate10K (RE10K) dataset [57]. Our method outperforms prior work in novel-view87

synthesis and, importantly, produces plausible scene geometry that enables direct depth rendering88

from arbitrary viewpoints – something current methods cannot achieve. These consistent virtual89

depths can be fused using Truncated Signed Distance Function (TSDF) [55] and the reconstructed90

meshes are visualized for comparison with prior art in Figure 1. Our approach also establishes a new91
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state-of-the-art in relative pose estimation from image pairs, surpassing methods with task-specific92

training such as RoMa [6], geometry-supervised approaches such as DUSt3R [42, 25], and pose-free93

generalizable splatting method [51] – despite using less data and weaker supervision in some cases.94

Our approach achieves state-of-the-art zero-shot 3D reconstruction on ScanNet [5], outperforming all95

existing pose-free and pose-required generalizable splatting methods.96

To the best of our knowledge, this is the first work in the domain of generalizable Gaussian splatting97

which systematically analyze and evaluate the veracity and geometric meaningfulness of predicted98

Gaussian orientations and elongations. We address the shortcomings of existing approaches in99

training generalizable splatting networks to produce Gaussians that enable accurate depth rendering100

from virtual views. We believe that the presented analysis lays the groundwork for future research101

on training neural networks to predict Gaussions form images, in both depth-supervised and self-102

supervised setups.103

2 Related Work104

Owing to the state-of-the-art real-time view synthesis performance of 3D Gaussian splitting [22],105

significant effort has been put into improving 3DGS for scenarios such as few-view reconstruction106

[59, 4, 26, 16, 45, 39], dynamically moving objects [44, 49, 48, 29], surface extraction [15, 18], and107

incorporating object semantics into 3D reconstructions [27]. Real-time simultaneous localization and108

mapping approaches have also adapted Gaussian splats as an inherent scene representation [31, 21].109

Additionally, Gaussian splats have been used for generating geometrically consistent images and110

video sequences [41, 44].111

The deep learning revolution of the last decade has significantly influenced geometric inference from112

one or more images. Earlier works focused on training neural networks to map a single image to113

depth map obtained from range sensors [8, 23, 9, 24, 33]. Multi-view extensions for these supervised114

learning algorithms are well explored as well [1, 19, 50, 14, 40, 38]. More recently, methods have115

explored reconstructing registered sets of per-pixel point clouds from multiple images, providing116

state-of-the-art relative pose and scene structure [42, 25].117

Additionally, it has been demonstrated that these feed-forward geometry prediction networks can be118

trained without depth sensors in a self-supervised manner by minimizing view synthesis losses [11, 12,119

56, 53, 13]. Structure prediction from single or few images has also been utilized as an optimization-120

free building block in high-fidelity tracking and mapping systems [58, 60]. Generalizable Gaussian121

Splatting methods have evolved recently to learn neural networks that predict 3D Gaussians explaining122

a scene directly from a few images. We broadly categorize these methods into following two123

categories:124

Pose-Dependent Generalizable 3DGS: Several works assume input images come with known or pre-125

computed poses (e.g., via SfM) and focus on designing architectures to infer 3D Gaussians from these126

posed views [2, 3, 32, 43, 47, 10, 37, 54]. A prominent example is pixelSplat [2], which introduced a127

two-view feed-forward network that utilizes epipolar cross attention transformer architecture to fuse128

multi-view information and predict per-pixel depth distribution for input images. This distributions129

are sampled to create a set of 3D Gaussian centers along the viewing rays. MVSplat [3] uses cost130

volume based fusion of multi-view information, adapting the Unimatch [46] architecture to regress131

for depth instead. Both methods use additional decoder heads to estimate rest of the 3D Gaussian132

parameters.133

Pose-Free Generalizable 3DGS: An emerging frontier involves dispensing with known camera134

poses—allowing the network to infer scene geometry and camera registration jointly from images135

alone [35, 20, 51]. Early efforts in this direction often build upon learned stereo matching. For136

example, [35] tackles uncalibrated stereo pairs by extending a foundation model (MASt3R [25]) that137

predicts dense point clouds from two images. It then outputs 3D Gaussians directly in a canonical138

frame, augmenting each point in the MASt3R reconstruction with color and covariance attributes.139

This process is supervised using the geometry of the 3D point cloud and followed by a novel-view140

synthesis stage to fine-tune appearance. NoPoSplat [51] adopts a more self-supervised, multi-view141

approach by anchoring one view’s coordinate system as canonical and training a network to predict142

all Gaussians directly in that space, using only a photometric loss for training.143
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To the best of our knowledge, all aforementioned generalizable splitting methods struggle to learn144

geometrically faithful orientations and scales for 3D Gaussians. The proposed approach alleviates145

this issue from generalizable splatting using appropriate geometric priors.146

3 Method147

In this section, we present our generalizable Gaussian splatting framework and loss functions148

we propose to address the ill-posed nature of self-supervised learning in predicting geometrically149

consistent Gaussians. For the architectural details, we refer the reader to supplementary material.150

Problem Definition Assuming that we are given a set of sparse images I = {It ∈ RH×W×3}Tt=1151

(which is also known as context images in [2, 35, 3, 51, 47, 20]), each with known camera intrinsics152

that form the set K = {Kt ∈ R3×3}Tt=1 capturing a rigid scene, our aim is to learn a feedforward153

neural network fΘ that maps these images and intrinsics (I,K) to a set of pixel-aligned Gaussians as154

fΘ(I,K) =
{
Gj
t :=

(
µj

t , α
j
t , q

j
t , s

j
t , c

j
t

)}j=1:H×W

t=1:T
, (1)

where Gj
t is the 2D Gaussian defined in the 3D space corresponding to a pixel j in image t. Each Gj

t155

is characterized by its center µ ∈ R3; orientation represented by a unit quaternion vector q ∈ R4;156

two scale parameters s ∈ R2 defining the elongation of the 3D Gaussians; opacity α ∈ R; and color157

encoded as spherical harmonics c ∈ Rd. In this work, we advocate the use of 2D Gaussians [18] to158

represent the scene instead of the standard 3D Gaussians adopted by prevalent generalizable Gaussian159

splatting frameworks [2, 3, 47, 51]. Following [18], we assume that estimated Gaussians are aligned160

with the scene surface and its elongation perpendicular to the local surface normal is zero. We show161

through extensive evaluations how this choice helps generalizable Gaussian splatting in Section 4.162

Note that both Gaussian centers µj
t and orientations qj

t are defined in the image coordinates of163

the first image I1. Given these M × N × T Gaussians predictions, we render novel views of the164

scene {Îf ∈ RH×W×3}Ff=1 ⊂ I from F different viewpoints defined by its projection matrix165

Pf = (Rf ,Tf ) ∈ SE(3) to be matched with its observed images If s during training.166

We propose to minimize the view synthesis loss [51, 3, 2] from the predicted Gaussians as167

Lsynthesis =

F∑
f=1

Lrgb(If , Îf ) + Llpips(If , Îf ), (2)

where Îf (u, v) is the color corresponding to a pixel (u, v) in image If rendered by blending K168

ordered projected Gaussians G′ using the 2DGS rasterizer as169

Îf (u, v) =
K∑

k=1

ckαkG′(u, v)Πk−1
j=1 (1− αjG′(u, v)), (3)

Note that G′ is the projection of the Gaussians G onto the 2D image plane of the image If , see170

supplementary material for more details.171

As shown in Section 4, solely relying on view synthesis loss is proven to be insufficient for learning172

geometrically meaningful Gaussians. In this work, we propose to minimize two additional regular-173

ization losses: (i) a depth-surface normal consistency term Lorient to align the orientations of the174

Gaussians with the rendered depth; (ii) a grid alignment loss Lalign to ensure that the estimated175

Gaussians are aligned with the pixels of the provided images. Combining these two regularization176

with the view synthesis loss, we define our training objective function Ltotal as177

Ltotal = Lsynthesis + λoLorient + λaLalign, (4)

where λo and λa are weighting factors balancing the influence of each regularization. We discuss the178

motivation, formulation and impact of the regularization term in the following sections.179

3.1 Learning Gaussian’s Orientations.180

Recall that existing pose-free and pose-aware generalized Gaussian splatting approaches struggle181

to learn meaningful Gaussian’s orientations, see Figure 2. To provide geometric meaning for the182
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orientations of the Gaussians, we propose to align them with the dominant surface normals of the183

scene they belong to. To that end, we follow the setup in [18] to estimate only two non-zero Gaussian184

scales (sj,1t , sj,2t ) and set the third sj,3t (along the normal) to zero, so each Gaussian is "flat" in one185

direction. The resulting rank-deficient Gaussian covariance matrix Σj
t is defined as186

Σj
t = R(qj

t ) diag([sj,1t , sj,2t , 0]T ) (R(qj
t ))

T ,where R(qj
t ) ∈ SO(3) (5)

whose null space – the zero-eigenvalue direction – encodes the Gaussian’s surface normal that is187

predicted by the network N j
t .188

Swapping 3D Gaussians to 2D surface elements reduces the over-parameterization to an extent;189

however, the view synthesis loss of eq. (3) does not provide a sufficiently strong supervision signal for190

learning orientations. The most natural way to supervise Gaussian orientation is to use surface normal191

regularization prior from [18], where the authors propose to enforce consistency between rendered192

normal and rendered depth maps while doing splatting. Naively deploying such regularization to193

train our model does not work well. In the supplementary material, we discuss our observations and194

provide remedies for successfully adapting such regularization.195

Instead, we propose to use a simple yet effective alternative to supervise the predicted Gaussian196

orientation qj
t . Leveraging the assumption that each Gaussian Gj

t is aligned with the 2D image197

pixel j = (u, v) in image t, we define the local surface normal for Gj
t using the 3D positions of its198

neighboring pixels as N̂ j
t . We enforce these estimated local surface normals to be consistent with199

the predicted normal N j
t (null space of the convenience matrix Σj

t ) by minimizing the following loss200

Lorient =
1

T (H − 2)(W − 2)

T∑
t=1

W−1∑
u=2

H−1∑
v=2

∥1− < N j
t , N̂

j
t > ∥ρ, (6)

N̂ j
t = ∥(µ(u+1,v)

t − µ
(u−1,v)
t )× (µ

(u,v+1)
t − µ

(u,v−1)
t )∥∗, (7)

where, < ., . > and , .×. are dot and cross-product or two vectors, ∥.∥∗ represents vector normalization201

and ∥.∥ρ is Huber loss (implemented as SmoothL1Loss in Pytorch).202

Note that, unlike the loss used in 2D Gaussian splatting (2DGS) [18], Lorient does not involve any203

rasterization, providing a direct supervision for orientation given the Gaussian means. In fact, the204

proposed loss mimics the standard loss used for supervised learning of surface normals [7], where the205

ground truth normals are estimated from the depths using eq. (7). This simple loss in our experiments206

outperforms alternatives and can be used for depth supervised training of generalizable splats as well.207

3.2 Pixel-aligned Gaussians208

Although the first generalizable splatting approach [2] worked in a pose-aware setup and adapted209

two-view depth prediction network, they by construction constrains every Gaussians to lie on its corre-210

sponding viewing ray. Pose-free variants [51] drop the camera pose assumption by directly estimating211

the Gaussian’s locations in the canonical space using a DPT decoder. While this removes the need to212

warp Gaussians with known cameras, the parametrization rendered the structure estimation problem213

ill-posed especially under self-supervised regime. Specifically, in contrast to depth-supervised frame-214

works like DUSt3R [42], which learns an implicit structural prior by enforcing the reconstructed 3D215

point cloud to project onto the regular image grid, the view synthesis loss in eq. (3) does not offer216

such constraint. Gaussians can therefore move freely into geometrically degenerate configurations,217

hampering both structure and relative pose estimation.218

Therefore, we explicitly align each Gaussians to with its pixel’s viewing ray. Specifically, for each219

pixel (u, v) in frame t, the Gaussian’s centers µ(u,v)
t must be projected to that pixel location with220

known camera extrinsics (R,T) and intrinsic matrix K. We enforce this with the alignment loss as221

Lalign =
1∑

t,u,v M
(u,v)
t

T∑
t=1

W∑
u=1

H∑
v=1

M(u,v)
t ∥[u, v]T −Π(Kt[Rt|Tt]µ

(u,v)
t )∥22; (8)

where Mu,v
t is 1 if the Gaussian projects inside the image and have positive depths (otherwise 0) and222

Π([X,Y, Z]T ) = [X/Z, Y/Z]T is the perspective projection function. We demonstrate in Section 4223

that the proposed loss plays a crucial role in PnP-based relative pose estimation (Table 1) as well as224

accurate structure estimation (Table 3).225
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Table 1: Pose estimation (AUC) at multiple error thresholds on RE10K [57] (in-domain) and on
ScanNet-V1 [5] and ACID [30] (cross-domain). The overall best results are shown in bold, and the
best result-whether with or without photometric optimization-is underlined in each section. Methods
marked with † are trained on additional data (e.g., ScanNet, ACID), and those marked with ‡ use
extra supervision (e.g., ground-truth depth).

RE10K ScanNet-V1 ACID

Method 5◦ ↑ 10◦ ↑ 20◦ ↑ 5◦ ↑ 10◦ ↑ 20◦ ↑ 5◦ ↑ 10◦ ↑ 20◦ ↑
CoPoNeRF† 0.161 0.362 0.575 - - - 0.078 0.216 0.398
DUSt3R†‡ 0.301 0.495 0.657 0.085 0.210 0.398 0.166 0.304 0.437
MASt3R†‡ 0.372 0.561 0.709 0.083 0.200 0.381 0.234 0.396 0.541
RoMa†‡ 0.546 0.698 0.797 0.168 0.361 0.575 0.463 0.588 0.689

PnP+RANSAC
only

NoPoSplat 0.572 0.728 0.833 0.078 0.198 0.394 0.337 0.497 0.646
Ours (2DGS) 0.588 0.737 0.832 0.085 0.223 0.432 0.344 0.513 0.659
Ours (2DGS+Align) 0.621 0.760 0.849 0.123 0.279 0.471 0.382 0.540 0.674
Ours (2DGS+Orient) 0.613 0.756 0.848 0.118 0.267 0.460 0.376 0.537 0.673
Ours (2DGS+Align+Orient) 0.627 0.766 0.855 0.135 0.289 0.479 0.392 0.547 0.679

w/
Photometric
Optimisation

NoPoSplat 0.672 0.791 0.868 0.109 0.256 0.463 0.456 0.593 0.705
Ours (2DGS) 0.672 0.788 0.859 0.129 0.298 0.515 0.460 0.599 0.713
Ours (2DGS+Align) 0.686 0.799 0.870 0.136 0.311 0.512 0.474 0.607 0.718
Ours (2DGS+Orient) 0.679 0.798 0.871 0.141 0.323 0.520 0.475 0.610 0.721
Ours (2DGS+Align+Orient) 0.689 0.804 0.876 0.156 0.334 0.539 0.488 0.619 0.726

4 Experiments226

Datasets and implementation details. Following [2, 3, 51], we train our models on the large-scale227

RealEstate10K [57] (RE10K) dataset, with the train-test splits used by [51]. RE10K comprises228

predominantly indoor real-estate videos from YouTube, containing 67,477 training and 7,289 testing229

scenes, with camera poses computed using COLMAP [34]. For evaluating generalization, we further230

test on two additional datasets: ACID [30], containing aerial nature scenes captured by drones (with231

COLMAP-computed poses), and ScanNet [5], an RGB-D indoor scene dataset with distinct camera232

motion and characteristics. Specifically, we evaluate relative pose and geometry estimation on the233

ScanNet. Our training broadly follows recent generalizable splatting methods; full details are in234

supplementary material. Code and models will be released.235

4.1 Relative Pose Evaluation236

Relative pose is evaluated by computing the AUC of the cumulative pose error curve at three237

thresholds. We report results deploying a PnP + RANSAC algorithm to align the Gaussian means238

Table 2: Depth estimation for novel views on ScanNet-V1 [5]. We use the novel-view rendered
depth accuracy as a holistic measure of 3D reconstruction and interpolation. Our method outperforms
all competitors on every metric. Best scores are in bold, and top results without pose refinement are
underlined. Pose-required methods are marked †.

Pose-required† w/o Pose Refine. w Pose Refine.

Metric PixelSplat MVSplat DepthSplat NoPoSplat Ours (2DGS) NoPoSplat Ours (2DGS)
(3DGS) (3DGS) (3DGS) (3DGS) λa, λo = 0 λo = 0 λa = 0 λa, λo ̸= 0 (3DGS) λa, λo = 0 λo = 0 λa = 0 λa, λo ̸= 0

Abs Rel ↓ 0.299 0.189 0.135 0.131 0.121 0.109 0.115 0.108 0.126 0.114 0.102 0.106 0.100
δ1 < 1.10 ↑ 0.552 0.412 0.578 0.554 0.668 0.679 0.674 0.680 0.567 0.692 0.706 0.704 0.707
δ1 < 1.25 ↑ 0.818 0.745 0.864 0.851 0.879 0.890 0.884 0.892 0.861 0.884 0.901 0.898 0.904

Table 3: Depth estimation for source views on ScanNet-V1 [5]. Best self-supervised scores are in
bold, and top results without pose refinement are underlined. Pose-required methods are marked †,
and those using extra supervision (e.g., ground-truth depth) are marked ‡ (upper-bound reference).

Supervised‡ Pose-required† Pose-free w/o Refine. Pose-free w Refine.

Metric DUSt3R pixelSplat MVSplat DepthSplat NoPoSplat Ours (2DGS) NoPoSplat Ours (2DGS)
(3DGS) (3DGS) (3DGS) (3DGS) λa, λo = 0 λo = 0 λa = 0 λa, λo ̸= 0 (3DGS) λa, λo = 0 λo = 0 λa = 0 λa, λo ̸= 0

Abs Rel ↓ 0.059 0.288 0.132 0.105 0.121 0.118 0.111 0.114 0.109 0.112 0.105 0.100 0.102 0.098
δ1 < 1.10 ↑ 0.886 0.553 0.641 0.722 0.662 0.665 0.672 0.671 0.675 0.698 0.705 0.714 0.713 0.716
δ1 < 1.25 ↑ 0.967 0.820 0.891 0.914 0.869 0.875 0.886 0.881 0.888 0.883 0.894 0.904 0.900 0.907
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Inputs pixelSplat MVSplat NoPoSplat DepthSplat Ours GT RGB

Figure 3: Qualitative comparison of rendered novel-view depth on RE10k [57] (top two rows)
and ACID [30] (bottom row).

Inputs pixelSplat MVSplat NoPoSplat DepthSplat Ours GT Depth

Figure 4: Qualitative comparison of rendered novel-view depth on ScanNet-V1 [5].

with image grid as proposed in DUSt3R[42]. NoPosplat [51] proposes a gradient-descent relative239

pose refinement in which the predicted Gaussians are rendered to generate optimal input image240

pairs for refining the pose obtained by PnP+RANSAC. Pose Jacobians from [31] are used for this241

refinement over a fixed number of iterations. Since these Jacobians expect 3D Gaussians, we lift our242

2D Gaussians by assigning a small nonzero third scale, to facilitate comparisons.243

Table 1 compares relative pose estimation across several methods. CoPoNeRF [17] is trained on244

RE10K and ACID with explicit pose supervision; DUSt3R [42] uses indoor RGB-D and Internet SfM245

data (e.g., ScanNet++ [52], MegaDepth [28]) with a 3D regression loss supervising both depth and246

pose; MASt3R [25] follows DUSt3R’s scheme but adds large-scale outdoor sequences (Waymo [36]);247

RoMA [6] is trained on MegaDepth and ScanNet with depth-and-pose supervision. In contrast,248

our models use no explicit depth supervision and are trained only on RE10K data. Despite this,249

we outperform all these methods by a large margin, both on the in-domain RE10K test set and in250
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zero-shot evaluations on ACID and ScanNet. The sole exception is RoMA [6] on ScanNet-V1, the251

dataset it was explicitly trained on for relative pose estimation.252

Compared to NoPoSplat, our method yields substantial relative-pose gains using only PnP+RANSAC.253

Incorporating the alignment loss Lalign produces marked improvements in both in-domain and254

cross-domain zero-shot tests, while the orientation loss Lorient provides a further pose-estimation255

boost, with the combined full loss achieving the best performance. As in NoPoSplat, minimizing the256

input-image synthesis loss also benefits our pose estimation. Although gains on RE10K and ACID257

were modest, we observe proportionally larger improvements on ScanNet-V1 with this optimization.258

4.2 Geometry Evaluation259

Geometric veracity of the estimated 2D/3D Gaussian splats is the key focus of this work. Traditionally,260

the geometry predicted by feed-forward neural networks is evaluated by measuring the depth errors261

for the input views. However, input depths do not capture the interpolation capability of predicted262

Gaussians and are insensitive to the opacity, orientation, and scale. We propose a more holistic263

evaluation of the predicted scene structure by rendering multiple virtual depth maps from the264

reconstructed Gaussians and reporting Absolute Relative Error and depth accuracy for two different265

thresholds. As we do not aim to extrapolate beyond the given view frustum, we use the same266

view-synthesis test set for depth evaluation. Virtual depth maps are rendered using the ground-truth267

relative pose w.r.t the first input frame, assuming perfectly aligned multi-view Gaussians. This puts268

pose-free methods at a severe disadvantage – small pose alignment errors amplify depth errors – yet269

they outperform pose-aware counterparts by a large margin, as shown in Table 3. Our approach270

substantially outperforms the NoPoSplat baseline. While the 2DGS parameterization improves271

the accuracy of structure recovery, the orientation and alignment losses deliver much larger gains.272

This trend persists even after per-image pose optimization is performed to align the recovered 3D273

Gaussians isolating pose-estimation error from reconstruction quality.274

We compare novel-view depth estimation of our method against pixelSplat [2], MVSplat [3], NoPoS-275

plat [51] and DepthSplat [47] in Figure 3 on RE10K and ACID. MVSplat, DepthSplat and NoPoSplat276

depths are hypersensitive to texture, while pixelSplat produces notably noisier depths in textureless277

regions. In contrast, our method yields more plausible depths despite not requiring relative poses.278

Similar trends are observed in Figure 4 on ScanNet test scenes.279

While our primary goal is to predict pixel-aligned, geometrically consistent Gaussians for novel-view280

depth rendering, we also benchmark source-view depth estimation accuracy of all baseline methods in281

Table 3. For each method, we report their best depth—whether rendered from Gaussians or predicted282

by their depth-estimation head—under its best-performing configuration. For example, pixelSplat283

attains its highest accuracy using rendered depth, whereas MVSplat and DepthSplat perform best284

with their network-predicted depths. Our method achieves the lowest AbsRel error and performs285

competitively in thresholded accuracy, slightly trailing DepthSplat [47]. More detailed results for286

one- and two-view depth prediction are provided in the supplementary material.287

4.2.1 Novel View Synthesis Evaluation288

While not central to our contributions, we evaluate in-domain novel-view synthesis against relevant289

baselines. Our method outperforms prior work in novel-view synthesis on Re10K dataset, largely290

thanks to its warping-free formulation. We also observe improvements over NoPoSplat when training291

with our proposed loss. Detailed results in the supplementary material.292

5 Conclusion293

We propose a novel self-supervised, generalizable splatting network that mitigates geometric incon-294

sistencies in Gaussian splat recovery previously overlooked by the community. Our model produces295

state-of-the-art, geometrically consistent Gaussian splats from just two unposed images. While296

we train on RE10k using an asymmetric transformer architecture under self-supervision, our core297

contributions are invariant to these design choices. The priors introduced here will help future work298

on generalizable splatting and learning-based 3D scene recovery.299
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• It is OK to report 1-sigma error bars, but one should state it. The authors should584

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis585

of Normality of errors is not verified.586
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Question: For each experiment, does the paper provide sufficient information on the com-593

puter resources (type of compute workers, memory, time of execution) needed to reproduce594

the experiments?595

Answer: [Yes]596

Justification: See Section 4, and supplemental material.597

Guidelines:598

• The answer NA means that the paper does not include experiments.599

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,600

or cloud provider, including relevant memory and storage.601

• The paper should provide the amount of compute required for each of the individual602

experimental runs as well as estimate the total compute.603

• The paper should disclose whether the full research project required more compute604

than the experiments reported in the paper (e.g., preliminary or failed experiments that605

didn’t make it into the paper).606

9. Code of ethics607

Question: Does the research conducted in the paper conform, in every respect, with the608

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?609

Answer: [Yes]610

Justification: This paper conforms, in every respect, with the NeurIPS Code of Ethics.611

Guidelines:612

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.613

• If the authors answer No, they should explain the special circumstances that require a614

deviation from the Code of Ethics.615

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-616

eration due to laws or regulations in their jurisdiction).617

10. Broader impacts618

Question: Does the paper discuss both potential positive societal impacts and negative619

societal impacts of the work performed?620

Answer: [Yes]621

Justification: See supplemental material.622

Guidelines:623

• The answer NA means that there is no societal impact of the work performed.624

• If the authors answer NA or No, they should explain why their work has no societal625

impact or why the paper does not address societal impact.626

• Examples of negative societal impacts include potential malicious or unintended uses627

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations628

(e.g., deployment of technologies that could make decisions that unfairly impact specific629

groups), privacy considerations, and security considerations.630

• The conference expects that many papers will be foundational research and not tied631

to particular applications, let alone deployments. However, if there is a direct path to632

any negative applications, the authors should point it out. For example, it is legitimate633

to point out that an improvement in the quality of generative models could be used to634
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generate deepfakes for disinformation. On the other hand, it is not needed to point out635

that a generic algorithm for optimizing neural networks could enable people to train636

models that generate Deepfakes faster.637

• The authors should consider possible harms that could arise when the technology is638

being used as intended and functioning correctly, harms that could arise when the639

technology is being used as intended but gives incorrect results, and harms following640

from (intentional or unintentional) misuse of the technology.641

• If there are negative societal impacts, the authors could also discuss possible mitigation642

strategies (e.g., gated release of models, providing defenses in addition to attacks,643

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from644

feedback over time, improving the efficiency and accessibility of ML).645

11. Safeguards646

Question: Does the paper describe safeguards that have been put in place for responsible647

release of data or models that have a high risk for misuse (e.g., pretrained language models,648

image generators, or scraped datasets)?649

Answer: [NA]650

Justification: The paper poses no such risks.651

Guidelines:652

• The answer NA means that the paper poses no such risks.653

• Released models that have a high risk for misuse or dual-use should be released with654

necessary safeguards to allow for controlled use of the model, for example by requiring655

that users adhere to usage guidelines or restrictions to access the model or implementing656

safety filters.657

• Datasets that have been scraped from the Internet could pose safety risks. The authors658

should describe how they avoided releasing unsafe images.659

• We recognize that providing effective safeguards is challenging, and many papers do660

not require this, but we encourage authors to take this into account and make a best661

faith effort.662

12. Licenses for existing assets663

Question: Are the creators or original owners of assets (e.g., code, data, models), used in664

the paper, properly credited and are the license and terms of use explicitly mentioned and665

properly respected?666

Answer: [Yes]667

Justification: We have correctly cited and credited assets used by our work.668

Guidelines:669

• The answer NA means that the paper does not use existing assets.670

• The authors should cite the original paper that produced the code package or dataset.671

• The authors should state which version of the asset is used and, if possible, include a672

URL.673

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.674

• For scraped data from a particular source (e.g., website), the copyright and terms of675

service of that source should be provided.676

• If assets are released, the license, copyright information, and terms of use in the677

package should be provided. For popular datasets, paperswithcode.com/datasets678

has curated licenses for some datasets. Their licensing guide can help determine the679

license of a dataset.680

• For existing datasets that are re-packaged, both the original license and the license of681

the derived asset (if it has changed) should be provided.682

• If this information is not available online, the authors are encouraged to reach out to683

the asset’s creators.684

13. New assets685

Question: Are new assets introduced in the paper well documented and is the documentation686

provided alongside the assets?687
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Answer: [NA]688

Justification: This paper does not release new assets.689

Guidelines:690

• The answer NA means that the paper does not release new assets.691

• Researchers should communicate the details of the dataset/code/model as part of their692

submissions via structured templates. This includes details about training, license,693

limitations, etc.694

• The paper should discuss whether and how consent was obtained from people whose695

asset is used.696

• At submission time, remember to anonymize your assets (if applicable). You can either697

create an anonymized URL or include an anonymized zip file.698

14. Crowdsourcing and research with human subjects699

Question: For crowdsourcing experiments and research with human subjects, does the paper700

include the full text of instructions given to participants and screenshots, if applicable, as701

well as details about compensation (if any)?702

Answer: [NA]703

Justification: The paper does not involve crowdsourcing nor research with human subjects.704

Guidelines:705

• The answer NA means that the paper does not involve crowdsourcing nor research with706

human subjects.707

• Including this information in the supplemental material is fine, but if the main contribu-708

tion of the paper involves human subjects, then as much detail as possible should be709

included in the main paper.710

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,711

or other labor should be paid at least the minimum wage in the country of the data712

collector.713

15. Institutional review board (IRB) approvals or equivalent for research with human714

subjects715

Question: Does the paper describe potential risks incurred by study participants, whether716

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)717

approvals (or an equivalent approval/review based on the requirements of your country or718

institution) were obtained?719

Answer: [NA]720

Justification: The paper does not involve crowdsourcing nor research with human subjects.721

Guidelines:722

• The answer NA means that the paper does not involve crowdsourcing nor research with723

human subjects.724

• Depending on the country in which research is conducted, IRB approval (or equivalent)725

may be required for any human subjects research. If you obtained IRB approval, you726

should clearly state this in the paper.727

• We recognize that the procedures for this may vary significantly between institutions728

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the729

guidelines for their institution.730

• For initial submissions, do not include any information that would break anonymity (if731

applicable), such as the institution conducting the review.732

16. Declaration of LLM usage733

Question: Does the paper describe the usage of LLMs if it is an important, original, or734

non-standard component of the core methods in this research? Note that if the LLM is used735

only for writing, editing, or formatting purposes and does not impact the core methodology,736

scientific rigorousness, or originality of the research, declaration is not required.737

Answer: [NA]738
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Justification: LLM is used only for editing and formatting.739

Guidelines:740

• The answer NA means that the core method development in this research does not741

involve LLMs as any important, original, or non-standard components.742

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)743

for what should or should not be described.744
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