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Abstract

Gaussian splatting has emerged as the preferred 3D scene representation due to its
incredible speed and accuracy in novel view generation. Various attempts have thus
been made to adapt multi-view structure prediction networks to directly predict per-
pixel 3D Gaussians from images. However, most work has focused on enhancing
self-supervised depth prediction networks to estimate additional parameters for 3D
Gaussians — orientation, scale, opacity, and appearance. We show that optimizing
a view-synthesis loss alone is insufficient to recover geometrically meaningful
splats in this simple manner. We systematically analyse and address the inherent
ambiguities in learning 3D Gaussian splats with self-supervision to learn pose-free
generalisable splatting. Our approach achieves state-of-the-art performance in
(1) geometrically consistent reconstructions, (ii) relative pose estimation between
images, and (iii) novel-view synthesis on the RealEstate 10K and ACID datasets.
We also showcase zero-shot capabilities of the proposed generalizable splatting on
ScanNet, where our method substantially outperforms the prior art in recovering
geometry and estimating relative pose.

1 Introduction

3D Gaussian splatting (3DGS) [22] has recently revolutionized 3D structure and appearance modeling
from multi-view images. Departing from traditional depth or point cloud representations of the scene
structure, 3D Gaussians implicitly model surface reflections and environment lighting to encode view-
dependent scene appearance. They are memory-efficient compared to explicit volumetric alternatives,
and they facilitate rendering of the scene from arbitrary viewpoints in a fraction of a second. Due to
these capabilities, 3D Gaussians have become a prevalent choice for scene representation.

Learning-based structure estimation methods, such as single- or two-view depth predictors, are
increasingly being adapted to directly predict 3D Gaussians using feedforward neural networks.
Various laudable attempts have been made recently in training neural networks to predict 3D Gaussians
directly from images, achieving photorealistic results without per-scene optimization [2, 3, 43, 47,
35, 54, 51]. These methods are commonly referred to as generalizable Gaussian splatting. Most
generalizable Gaussian splatting methods adapt well-studied one- or multi-view structure prediction
networks [46, 42, 25] to estimate locations of the 3D Gaussians. These networks typically use
image encoders that take in one or multiple images followed by decoders that predict Gaussian
means, in the form of per-pixel depth [46] or 3D point locations [42, 25] for each input view. Nearly
all generalizable Gaussian splatting methods append additional decoders to depth or point-cloud
estimation architectures to predict Gaussian properties such as orientation, scale, opacity and view-
dependent color — typically without much foresight. These networks are usually trained by minimizing
view-synthesis loss on a few target views, closely following existing self-supervised depth estimators
— though they differ in image formation due to the underlying change in scene representation.

This prevalent setup overlooks several key issues inherited from the underlying 3DGS optimization:
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Figure 1: Qualitative comparison of mesh reconstructions from two input views. We compare
the baseline methods MV Splat [3] and NoPoSplat [51] with our approach on RE10K dataset [57].
The fop row displays the textured meshes reconstructed by fusing virfual depth maps via TSDF;
the bottom row visualizes Gaussian-surface normals for the first input view, and the RGB/depth
rendered from a novel (virtual) viewpoint. Inaccuracy in rendered depth and normals is evident for
both baselines. These inconsistent depths, when fused, create several holes in the mesh reconstruction.
Our method recovers accurate geometry of fine details such as the towel, wall painting, and stool.

* 3D Gaussians are grossly overparameterized compared to depth maps or point clouds.
Successful estimation of 3D Gaussians typically requires a large number of densely sampled
viewpoints. Few-shot 3DGS is an active field of research and often relies on regularization
priors [59, 4], which are largely ignored when training generalizable splatting networks.

* Unlike per-pixel depths or 3D point locations — which are uniquely defined (up to scale) —
multiple 3D Gaussian configurations can produce equally valid renderings. This inherent
ambiguity makes training difficult, even when depth data is available for supervision.

* Successful per-scene Gaussian splatting methods typically rely on multiple non-
differentiable heuristics (i.e., splitting, and duplication of Gaussians). However, existing
generalizable methods are trained purely via view-synthesis gradient loss and neglect these
heuristics. i.e. they assume that all Gaussians remain perpetually alive during training.

As a result, existing generalizable Gaussian splatting methods often converge to geometrically
degenerate Gaussians. While the predicted locations (means) remain relatively stable —- benefiting
from well-established single- or multi-view depth estimators — other parameters (opacity, orientation,
scale) are prone to collapse. As shown in Figure 2, existing generalizable approaches struggle to
learn meaningful opacities, orientations, or scales when trained with view-synthesis loss alone in
both pose-aware and pose-free settings. In particular, we observe implausible Gaussian orientations
(in the form of normals) as well as unjustified elongation of the 3D Gaussians (scales).

We show that these artifacts are due to the inherent over-parametrization of geometry in the form
of splats, which require structural consistency priors to make the self-supervised learning viable.
By introducing such priors, our proposed method produces Gaussians that exhibit consistent and
physically plausible geometric patterns. As shown in Figure 2, our proposed method produces
accurate surface normals directly from the predicted Gaussian orientations. The resulting Gaussians —
parameterized as 2D disks in 3D space — are elongated along geometric discontinuities and remain
robust to image textures. The two approaches we selected for visualizing predicted 3D Gaussians
broadly represent distinct underlying representations for encoding Gaussian means: (i) per-pixel
depth maps [3], and (ii) per-pixel 3D locations aligned to a common reference frame [51]. Despite
this difference, to our knowledge, all existing self-supervised generalizable splatting methods suffer
from similar limitations — stemming from their reliance on the representations and loss functions
introduced in [3, 51].

In this work, we aim to systematically define the ideal configuration of a geometrically consistent
Gaussian and propose appropriate priors to assist generalized Gaussian splatting. To that end, we
opt to build upon the recently proposed NoPoSplat framework [51] as our baseline. We choose
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Figure 2: Qualitative comparison of predicted Gaussian parameters. Each Gaussian has scales
51 > s > sz, where s3 quantifies the uncertainty in localization of the surface the Gaussian belongs
to with surface orientation defined by its normal [18]. Row 1 (ours) shows: (a) the source image
to which Gaussians are aligned, (b) skewness of the estimated Gaussians within their own defining
plane, and (c) predicted Gaussian orientations visualized as surface-normal maps. Rows 2 and 3
show results for NoPoSplat and MV Splat, respectively: (d/g) Gaussians’ elongation perpendicular
to the dominant plane defined by it, (e/h) Gaussians’ skewness within the dominant plane, and
(f/i) normals to the dominant plane. Existing methods yield Gaussian orientations without clear
geometric meaning: MVSplat Gaussians (i) align mostly fronto-parallel to the source image plane, and
NoPoSplat Gaussians orientations (f) strongly depend on texture, spanning a few dominant directions
inconsistent with scene geometry. Our method produces plausible, near-Manhattan structured surface
orientations. Baseline Gaussians exhibit significant elongation perpendicular to their dominant
surfaces (visible as non-red colors in d/g). Notably, our Gaussians remain relatively circular (blue
color in b) on planar, textureless surfaces and become skewed ellipses (red color in b) near sharp
geometric edges such as shelves or wall corners.

NoPoSplat not only for its state-of-the-art performance across relative camera pose estimation and
view-synthesis but also for its self-supervised formulation, which does not require groundtruth depth
maps. Additionally, utilizing DUSt3R [42] framework, the approach is one of the few to provide
generalizable splatting from a pair of images without requiring the relative pose of these images.

We address ambiguities in learning over-parametrized 3D Gaussians by adding suitable regularization
terms to the traditionally used view-synthesis loss. Our main observations are:

* Defining the ideal 3D Gaussian orientations to be dominant normals of the scene surfaces (as
in [18]) helps resolve structural ambiguities to enable learning of the Gaussian orientations.

* Ensuring that the 3D Gaussians are pixel-aligned is extremely important with self-
supervision. Particularly pose-free methods that use PnP for relative pose estimation require
pixel alignment to ensure accurate camera pose and geometry prediction.

* Standard priors used to enforce consistency in rendered depth and normal maps [18] are not
easily deployable for joint learning of pose and structure. Instead, we enforce consistency
between Gaussian orientations and means by leveraging the local image neighborhood of
pixel-aligned Gaussians. This promotes stable training in generalizable splatting networks.

We build upon NoPoSplat [51], integrating geometric consistency priors, and trained our network
on the RealEstate 10K (RE10K) dataset [57]. Our method outperforms prior work in novel-view
synthesis and, importantly, produces plausible scene geometry that enables direct depth rendering
from arbitrary viewpoints — something current methods cannot achieve. These consistent virtual
depths can be fused using Truncated Signed Distance Function (TSDF) [55] and the reconstructed
meshes are visualized for comparison with prior art in Figure 1. Our approach also establishes a new
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state-of-the-art in relative pose estimation from image pairs, surpassing methods with task-specific
training such as RoMa [6], geometry-supervised approaches such as DUSt3R [42, 25], and pose-free
generalizable splatting method [51] — despite using less data and weaker supervision in some cases.
Our approach achieves state-of-the-art zero-shot 3D reconstruction on ScanNet [5], outperforming all
existing pose-free and pose-required generalizable splatting methods.

To the best of our knowledge, this is the first work in the domain of generalizable Gaussian splatting
which systematically analyze and evaluate the veracity and geometric meaningfulness of predicted
Gaussian orientations and elongations. We address the shortcomings of existing approaches in
training generalizable splatting networks to produce Gaussians that enable accurate depth rendering
from virtual views. We believe that the presented analysis lays the groundwork for future research
on training neural networks to predict Gaussions form images, in both depth-supervised and self-
supervised setups.

2 Related Work

Owing to the state-of-the-art real-time view synthesis performance of 3D Gaussian splitting [22],
significant effort has been put into improving 3DGS for scenarios such as few-view reconstruction
[59, 4, 26, 16, 45, 39], dynamically moving objects [44, 49, 48, 29], surface extraction [15, 18], and
incorporating object semantics into 3D reconstructions [27]. Real-time simultaneous localization and
mapping approaches have also adapted Gaussian splats as an inherent scene representation [31, 21].
Additionally, Gaussian splats have been used for generating geometrically consistent images and
video sequences [41, 44].

The deep learning revolution of the last decade has significantly influenced geometric inference from
one or more images. Earlier works focused on training neural networks to map a single image to
depth map obtained from range sensors [8, 23, 9, 24, 33]. Multi-view extensions for these supervised
learning algorithms are well explored as well [1, 19, 50, 14, 40, 38]. More recently, methods have
explored reconstructing registered sets of per-pixel point clouds from multiple images, providing
state-of-the-art relative pose and scene structure [42, 25].

Additionally, it has been demonstrated that these feed-forward geometry prediction networks can be
trained without depth sensors in a self-supervised manner by minimizing view synthesis losses [11, 12,
56, 53, 13]. Structure prediction from single or few images has also been utilized as an optimization-
free building block in high-fidelity tracking and mapping systems [58, 60]. Generalizable Gaussian
Splatting methods have evolved recently to learn neural networks that predict 3D Gaussians explaining
a scene directly from a few images. We broadly categorize these methods into following two
categories:

Pose-Dependent Generalizable 3DGS: Several works assume input images come with known or pre-
computed poses (e.g., via SfM) and focus on designing architectures to infer 3D Gaussians from these
posed views [2, 3,32, 43,47, 10, 37, 54]. A prominent example is pixelSplat [2], which introduced a
two-view feed-forward network that utilizes epipolar cross attention transformer architecture to fuse
multi-view information and predict per-pixel depth distribution for input images. This distributions
are sampled to create a set of 3D Gaussian centers along the viewing rays. MVSplat [3] uses cost
volume based fusion of multi-view information, adapting the Unimatch [46] architecture to regress
for depth instead. Both methods use additional decoder heads to estimate rest of the 3D Gaussian
parameters.

Pose-Free Generalizable 3DGS: An emerging frontier involves dispensing with known camera
poses—allowing the network to infer scene geometry and camera registration jointly from images
alone [35, 20, 51]. Early efforts in this direction often build upon learned stereo matching. For
example, [35] tackles uncalibrated stereo pairs by extending a foundation model (MASt3R [25]) that
predicts dense point clouds from two images. It then outputs 3D Gaussians directly in a canonical
frame, augmenting each point in the MASt3R reconstruction with color and covariance attributes.
This process is supervised using the geometry of the 3D point cloud and followed by a novel-view
synthesis stage to fine-tune appearance. NoPoSplat [51] adopts a more self-supervised, multi-view
approach by anchoring one view’s coordinate system as canonical and training a network to predict
all Gaussians directly in that space, using only a photometric loss for training.
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To the best of our knowledge, all aforementioned generalizable splitting methods struggle to learn
geometrically faithful orientations and scales for 3D Gaussians. The proposed approach alleviates
this issue from generalizable splatting using appropriate geometric priors.

3 Method

In this section, we present our generalizable Gaussian splatting framework and loss functions
we propose to address the ill-posed nature of self-supervised learning in predicting geometrically
consistent Gaussians. For the architectural details, we refer the reader to supplementary material.

Problem Definition Assuming that we are given a set of sparse images Z = {I, € RE>*W>31T |
(which is also known as context images in [2, 35, 3, 51, 47, 20]), each with known camera intrinsics
that form the set K = {K,; € R3*3}1_| capturing a rigid scene, our aim is to learn a feedforward
neural network feg that maps these images and intrinsics (Z, K) to a set of pixel-aligned Gaussians as

, S\ YJ=LHXW

fo(Z.K) = {G] == (ui.od.ql.slcl)} . (M
where G7 is the 2D Gaussian defined in the 3D space corresponding to a pixel j in image t. Each G/
is characterized by its center p € R3; orientation represented by a unit quaternion vector q € R*;
two scale parameters s € R? defining the elongation of the 3D Gaussians; opacity o € R; and color
encoded as spherical harmonics ¢ € R. In this work, we advocate the use of 2D Gaussians [18] to
represent the scene instead of the standard 3D Gaussians adopted by prevalent generalizable Gaussian
splatting frameworks [2, 3, 47, 51]. Following [18], we assume that estimated Gaussians are aligned
with the scene surface and its elongation perpendicular to the local surface normal is zero. We show
through extensive evaluations how this choice helps generalizable Gaussian splatting in Section 4.

Note that both Gaussian centers ,u{ and orientations qg are defined in the image coordinates of
the first image I;. Given these M x N x T Gaussians predictions, we render novel views of the

scene {I 7 €RHE wag}ff:l C Z from F different viewpoints defined by its projection matrix
P; = (Ry, Ty) € SE(3) to be matched with its observed images I¢s during training.

We propose to minimize the view synthesis loss [51, 3, 2] from the predicted Gaussians as

F
Esynthesis = Z ﬁ’r‘gb(va If) + »Clpips (Ifa If)v (2)
f=1

where 1 #(u,v) is the color corresponding to a pixel (u,v) in image Iy rendered by blending K
ordered projected Gaussians G’ using the 2DGS rasterizer as

K
if(u, v) = Z crarG' (u, v)ijgll(l - a;G'(u,v)), 3)
k=1

Note that G’ is the projection of the Gaussians G onto the 2D image plane of the image I, see
supplementary material for more details.

As shown in Section 4, solely relying on view synthesis loss is proven to be insufficient for learning
geometrically meaningful Gaussians. In this work, we propose to minimize two additional regular-
ization losses: (i) a depth-surface normal consistency term L,;.;cn: to align the orientations of the
Gaussians with the rendered depth; (ii) a grid alignment loss L4, to ensure that the estimated
Gaussians are aligned with the pixels of the provided images. Combining these two regularization
with the view synthesis loss, we define our training objective function L;,¢4; as

['total = Esynthesis + )\oﬁorient + /\aﬁaligna (4)
where A, and )\, are weighting factors balancing the influence of each regularization. We discuss the
motivation, formulation and impact of the regularization term in the following sections.

3.1 Learning Gaussian’s Orientations.

Recall that existing pose-free and pose-aware generalized Gaussian splatting approaches struggle
to learn meaningful Gaussian’s orientations, see Figure 2. To provide geometric meaning for the
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orientations of the Gaussians, we propose to align them with the dominant surface normals of the
scene they belong to. To that end, we follow the setup in [18] to estimate only two non-zero Gaussian

scales (st gl s{’ ) and set the third st ? (along the normal) to zero, so each Gaussian is "flat" in one
direction. The resulting rank-deficient Gaussian covariance matrix Ei is defined as

=] = R(q]) diag([s]",s7,0]") (R(q{))", where R(q}) € SO(3) ®)

whose null space — the zero-eigenvalue direction — encodes the Gaussian’s surface normal that is
predicted by the network N7 .

Swapping 3D Gaussians to 2D surface elements reduces the over-parameterization to an extent;
however, the view synthesis loss of eq. (3) does not provide a sufficiently strong supervision signal for
learning orientations. The most natural way to supervise Gaussian orientation is to use surface normal
regularization prior from [18], where the authors propose to enforce consistency between rendered
normal and rendered depth maps while doing splatting. Naively deploying such regularization to
train our model does not work well. In the supplementary material, we discuss our observations and
provide remedies for successfully adapting such regularization.

Instead, we propose to use a simple yet effective alternative to supervise the predicted Gaussian

orientation q{ . Leveraging the assumption that each Gaussian gg’ is aligned with the 2D image

pixel j = (u,v) in image ¢, we define the local surface normal for gf using the 3D positions of its

neighboring pixels as th . We enforce these estimated local surface normals to be consistent with

the predicted normal Nf (null space of the convenience matrix E'tj ) by minimizing the following loss
T W-1H-1

£orient (H 2 W 2 ;uZZ 1)22||1_<N5’N]>Hp7 (6)

u+1,v u—1,v
NE = = )

x (gt ey, %)

where, < .,. > and, .X. are dot and cross-product or two vectors, ||. || represents vector normalization
and |||, is Huber loss (implemented as SmoothL1Loss in Pytorch).

Note that, unlike the loss used in 2D Gaussian splatting (2DGS) [18], L,ient does not involve any
rasterization, providing a direct supervision for orientation given the Gaussian means. In fact, the
proposed loss mimics the standard loss used for supervised learning of surface normals [7], where the
ground truth normals are estimated from the depths using eq. (7). This simple loss in our experiments
outperforms alternatives and can be used for depth supervised training of generalizable splats as well.

3.2 Pixel-aligned Gaussians

Although the first generalizable splatting approach [2] worked in a pose-aware setup and adapted
two-view depth prediction network, they by construction constrains every Gaussians to lie on its corre-
sponding viewing ray. Pose-free variants [51] drop the camera pose assumption by directly estimating
the Gaussian’s locations in the canonical space using a DPT decoder. While this removes the need to
warp Gaussians with known cameras, the parametrization rendered the structure estimation problem
ill-posed especially under self-supervised regime. Specifically, in contrast to depth-supervised frame-
works like DUSt3R [42], which learns an implicit structural prior by enforcing the reconstructed 3D
point cloud to project onto the regular image grid, the view synthesis loss in eq. (3) does not offer
such constraint. Gaussians can therefore move freely into geometrically degenerate configurations,
hampering both structure and relative pose estimation.

Therefore, we explicitly align each Gaussians to with its pixel’s viewing ray. Specifically, for each

pixel (u,v) in frame ¢, the Gaussian’s centers u( ) must be projected to that pixel location with
known camera extrinsics (R, T) and intrinsic matrix K. We enforce this with the alignment loss as

T W H

ﬁaugn=z o 2 2 > M )T = TR R T g™ )3 ®)

t,u,v t t=1 u=1v=1

where M;"" is 1 if the Gaussian projects inside the image and have positive depths (otherwise 0) and
([X,Y, Z)T) = [X/Z,Y/Z]T is the perspective projection function. We demonstrate in Section 4
that the proposed loss plays a crucial role in PnP-based relative pose estimation (Table 1) as well as
accurate structure estimation (Table 3).
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Table 1: Pose estimation (AUC) at multiple error thresholds on RE10K [57] (in-domain) and on
ScanNet-V1 [5] and ACID [30] (cross-domain). The overall best results are shown in bold, and the
best result-whether with or without photometric optimization-is underlined in each section. Methods
marked with { are trained on additional data (e.g., ScanNet, ACID), and those marked with { use
extra supervision (e.g., ground-truth depth).

REI10K ScanNet-V1 ACID

Method 51 10°1 20°1 5°1  10°tT 20°1T S5°1T  10°1 20°1

CoPoNeRFf 0.161 0.362 0.575 - - - 0.078 0.216 0.398

DUSt3R“. 0.301 0495 0.657 0.085 0210 0.398 0.166 0.304 0.437

MASt3R T 0.372  0.561 0.709 0.083 0.200 0.381 0.234 0.396 0.541

RoMa't 0.546 0.698 0.797 0.168 0.361 0.575 0.463 0.588 0.689

NoPoSplat 0.572 0.728 0.833 0.078 0.198 0.394 0.337 0.497 0.646

PnP+RANSAC Ours (2DGS) 0.588 0.737 0.832 0.085 0.223 0432 0.344 0.513 0.659
only Ours (2DGS+Align) 0.621 0.760 0.849 0.123 0.279 0.471 0.382 0.540 0.674
Y Ours (2DGS+Orient) 0.613 0.756 0.848 0.118 0.267 0.460 0.376 0.537 0.673
Ours (2DGS+Align+Orient) 0.627 0.766 0.855 0.135 0.289 0479 0.392 0.547 0.679

NoPoSplat 0.672 0.791 0.868 0.109 0.256 0.463 0.456 0.593 0.705

w/ Ours (2DGS) 0.672 0.788 0.859 0.129 0.298 0.515 0.460 0.599 0.713
Photometric Ours (2DGS+Align) 0.686 0.799 0.870 0.136 0311 0.512 0.474 0.607 0.718
Optimisation Ours (2DGS+Orient) 0.679 0.798 0.871 0.141 0.323 0.520 0475 0.610 0.721

Ours (2DGS+Align+Orient) 0.689 0.804 0.876 0.156 0.334 0.539 0.488 0.619 0.726

4 Experiments

Datasets and implementation details. Following [2, 3, 51], we train our models on the large-scale
RealEstate 10K [57] (RE10K) dataset, with the train-test splits used by [51]. RE10K comprises
predominantly indoor real-estate videos from YouTube, containing 67,477 training and 7,289 testing
scenes, with camera poses computed using COLMAP [34]. For evaluating generalization, we further
test on two additional datasets: ACID [30], containing aerial nature scenes captured by drones (with
COLMAP-computed poses), and ScanNet [5], an RGB-D indoor scene dataset with distinct camera
motion and characteristics. Specifically, we evaluate relative pose and geometry estimation on the
ScanNet. Our training broadly follows recent generalizable splatting methods; full details are in
supplementary material. Code and models will be released.

4.1 Relative Pose Evaluation

Relative pose is evaluated by computing the AUC of the cumulative pose error curve at three
thresholds. We report results deploying a PnP + RANSAC algorithm to align the Gaussian means

Table 2: Depth estimation for novel views on ScanNet-V1 [5]. We use the novel-view rendered
depth accuracy as a holistic measure of 3D reconstruction and interpolation. Our method outperforms
all competitors on every metric. Best scores are in bold, and top results without pose refinement are
underlined. Pose-required methods are marked T.

‘ Pose-required’ H w/o Pose Refine. ‘ w Pose Refine.
Metric PixelSplat MVSplat DepthSplat || NoPoSplat Ours (2DGS) NoPoSplat Ours (2DGS)
(3DGS) (3DGS)  (3DGS) (BDGS) Ay Ao =0 XAo=0 Aa =0 Xa,Xo Z0| (BDGS) Ao, Ao =0 XAo=0 Aa =0 Xa,Ao #0
Abs Rel

4 0.299 0.189 0.135 0.131 0.121  0.109 0.115  0.108 0.126 0.114  0.102 0.106 0.100
01 < 1.10 1| 0.552 0.412 0.578 0.554 0.668  0.679 0.674  0.680 0.567 0.692  0.706 0.704 0.707
61 <1.25 7| 0818 0.745 0.864 0.851 0.879  0.890 0.884  0.892 0.861 0.884 0901 0.898 0.904

Table 3: Depth estimation for source views on ScanNet-V1 [5]. Best self-supervised scores are in
bold, and top results without pose refinement are underlined. Pose-required methods are marked f,
and those using extra supervision (e.g., ground-truth depth) are marked { (upper-bound reference).

‘ Supervised? H Pose-required’ H Pose-free w/o Refine. ‘ Pose-free w Refine.
Metric DUSBR pixelSplat MVSplat DepthSplat || NoPoSplat Ours (2DGS) NoPoSplat Ours (2DGS)
N (3DGS) (3DGS)  (3DGS) BDGS) Ay, Ao =0 X=0 A =0 X, Xa #0| (BDGS) Aa, Ao =0 X =0 A =0 Aoy Ao #0
Abs Rel | 0.059 0.288 0.132 0.105 0.121 0.118 0.111 0.114 0.109 0.112 0.105 0.100 0.102 0.098
6 < 1.10 1 0.886 0.553 0.641 0.722 0.662 0.665  0.672 0.671  0.675 0.698 0.705  0.714 0.713 0.716
0y <125 1 0.967 0.820 0.891 0.914 0.869 0.875 0.886 0.881  0.888 0.883 0.894  0.904 0.900 0.907
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Figure 3: Qualitative comparison of rendered novel-view depth on RE10k [57] (top two rows)
and ACID [30] (bottom row).
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Figure 4: Qualitative comparison of rendered novel-view depth on ScanNet-V1 [5].

239 with image grid as proposed in DUSt3R[42]. NoPosplat [51] proposes a gradient-descent relative
240 pose refinement in which the predicted Gaussians are rendered to generate optimal input image
241 pairs for refining the pose obtained by PnP+RANSAC. Pose Jacobians from [31] are used for this
242 refinement over a fixed number of iterations. Since these Jacobians expect 3D Gaussians, we lift our
243 2D Gaussians by assigning a small nonzero third scale, to facilitate comparisons.

244 Table 1 compares relative pose estimation across several methods. CoPoNeRF [17] is trained on
245 RE10K and ACID with explicit pose supervision; DUSt3R [42] uses indoor RGB-D and Internet SfTM
246 data (e.g., ScanNet++ [52], MegaDepth [28]) with a 3D regression loss supervising both depth and
247 pose; MASt3R [25] follows DUSt3R’s scheme but adds large-scale outdoor sequences (Waymo [36]);
248 RoMA [6] is trained on MegaDepth and ScanNet with depth-and-pose supervision. In contrast,
249 our models use no explicit depth supervision and are trained only on RE10K data. Despite this,
250 we outperform all these methods by a large margin, both on the in-domain RE10K test set and in
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zero-shot evaluations on ACID and ScanNet. The sole exception is RoOMA [6] on ScanNet-V1, the
dataset it was explicitly trained on for relative pose estimation.

Compared to NoPoSplat, our method yields substantial relative-pose gains using only PnP+RANSAC.
Incorporating the alignment loss L4154, produces marked improvements in both in-domain and
cross-domain zero-shot tests, while the orientation loss L,.;en: provides a further pose-estimation
boost, with the combined full loss achieving the best performance. As in NoPoSplat, minimizing the
input-image synthesis loss also benefits our pose estimation. Although gains on RE10K and ACID
were modest, we observe proportionally larger improvements on ScanNet-V1 with this optimization.

4.2 Geometry Evaluation

Geometric veracity of the estimated 2D/3D Gaussian splats is the key focus of this work. Traditionally,
the geometry predicted by feed-forward neural networks is evaluated by measuring the depth errors
for the input views. However, input depths do not capture the interpolation capability of predicted
Gaussians and are insensitive to the opacity, orientation, and scale. We propose a more holistic
evaluation of the predicted scene structure by rendering multiple virtual depth maps from the
reconstructed Gaussians and reporting Absolute Relative Error and depth accuracy for two different
thresholds. As we do not aim to extrapolate beyond the given view frustum, we use the same
view-synthesis test set for depth evaluation. Virtual depth maps are rendered using the ground-truth
relative pose w.r.t the first input frame, assuming perfectly aligned multi-view Gaussians. This puts
pose-free methods at a severe disadvantage — small pose alignment errors amplify depth errors — yet
they outperform pose-aware counterparts by a large margin, as shown in Table 3. Our approach
substantially outperforms the NoPoSplat baseline. While the 2DGS parameterization improves
the accuracy of structure recovery, the orientation and alignment losses deliver much larger gains.
This trend persists even after per-image pose optimization is performed to align the recovered 3D
Gaussians isolating pose-estimation error from reconstruction quality.

We compare novel-view depth estimation of our method against pixelSplat [2], MV Splat [3], NoPoS-
plat [51] and DepthSplat [47] in Figure 3 on RE10K and ACID. MV Splat, DepthSplat and NoPoSplat
depths are hypersensitive to texture, while pixelSplat produces notably noisier depths in textureless
regions. In contrast, our method yields more plausible depths despite not requiring relative poses.
Similar trends are observed in Figure 4 on ScanNet test scenes.

While our primary goal is to predict pixel-aligned, geometrically consistent Gaussians for novel-view
depth rendering, we also benchmark source-view depth estimation accuracy of all baseline methods in
Table 3. For each method, we report their best depth—whether rendered from Gaussians or predicted
by their depth-estimation head—under its best-performing configuration. For example, pixelSplat
attains its highest accuracy using rendered depth, whereas MV Splat and DepthSplat perform best
with their network-predicted depths. Our method achieves the lowest AbsRel error and performs
competitively in thresholded accuracy, slightly trailing DepthSplat [47]. More detailed results for
one- and two-view depth prediction are provided in the supplementary material.

4.2.1 Novel View Synthesis Evaluation

While not central to our contributions, we evaluate in-domain novel-view synthesis against relevant
baselines. Our method outperforms prior work in novel-view synthesis on Re10K dataset, largely
thanks to its warping-free formulation. We also observe improvements over NoPoSplat when training
with our proposed loss. Detailed results in the supplementary material.

5 Conclusion

We propose a novel self-supervised, generalizable splatting network that mitigates geometric incon-
sistencies in Gaussian splat recovery previously overlooked by the community. Our model produces
state-of-the-art, geometrically consistent Gaussian splats from just two unposed images. While
we train on RE10k using an asymmetric transformer architecture under self-supervision, our core
contributions are invariant to these design choices. The priors introduced here will help future work
on generalizable splatting and learning-based 3D scene recovery.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Section 3, Section 4.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section 1, Section 4.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section 1, Section 3.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See Section 4, and supplemental material. We will release our code and model.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 4, and supplemental material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This paper does not include experiments reporting error bars.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section 4, and supplemental material.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See supplemental material.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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12.

13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have correctly cited and credited assets used by our work.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: LLM is used only for editing and formatting.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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