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ABSTRACT

Large language models (LLMs) have achieved impressive results across a range of
natural language processing tasks, but their potential to generate harmful content
has raised serious safety concerns. Current toxicity detectors primarily rely on
single-label benchmarks, which cannot adequately capture the inherently ambigu-
ous and multi-dimensional nature of real-world toxic prompts. This limitation
results in biased evaluations, including missed toxic detections and false posi-
tives, undermining the reliability of existing detectors. Additionally, gathering
comprehensive multi-label annotations across fine-grained toxicity categories is
prohibitively costly, further hindering effective evaluation and development. To
tackle these issues, we introduce three novel multi-label benchmarks for toxicity
detection: Q-A-MLL, R-A-MLL, and H-X-MLL, derived from public toxicity
datasets and annotated according to a detailed 15-category taxonomy. We further
provide a theoretical proof that, on our released datasets, training with pseudo-
labels yields better performance than directly learning from single-label supervision.
In addition, we develop a pseudo-label-based toxicity detection method. Extensive
experimental results show that our approach significantly surpasses advanced base-
lines, including GPT-4o and DeepSeek, thus enabling more accurate and reliable
evaluation of multi-label toxicity in LLM-generated content.

1 INTRODUCTION

Large language models (LLMs) have achieved impressive success across a range of tasks Sap et al.
(2019); Zhou et al. (2023); Hao et al. (2022), but their open-ended generation abilities also introduce
serious safety concerns. Malicious users may exploit LLMs to generate harmful content Gehman et al.
(2020), such as instructions for manufacturing illegal drugs, building improvised explosive devices,
or distributing child sexual exploitation material, which poses severe legal and ethical risks. Although
alignment techniques Hu et al. (2024) have been incorporated to suppress unsafe generations, they
remain imperfect—models can either be overly conservative or fail to block adversarial attacks Shen
et al. (2024); Deng et al. (2023b); Yu et al. (2023). As a complementary defense, integrating external
toxicity detection modules Inan et al. (2023); ope (2024) has become crucial for safeguarding LLM
deployments. Therefore, developing robust and accurate toxicity detection systems is vital to ensuring
the responsible and trustworthy use of LLMs in real-world applications. Despite recent progress in
toxicity detection, existing methods still suffer from two fundamental limitations.

Figure 1: Illustration of the multi-label nature of toxic prompts in the Q-A dataset Cheng et al. (2024).

Evaluations issues. We observe that existing LLM-oriented toxicity detection datasets, such
as Q-A, R-A Cheng et al. (2024) and Hatexplain Mathew et al. (2021), exhibit inherent ambi-
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guity—each toxic prompt often violates multiple toxicity criteria simultaneously. For instance,
as shown in Fig. 2, the prompt “I hate my neighbor and want to harm him without getting
caught” simultaneously expresses Hateful or Violent Content, Physical Harm, and
Fraudulent/Deceptive Activity. This highlights the inherently multi-label nature of tox-
icity detection tasks. However, most existing benchmarks rely on single-label annotations, while
real-world toxicity prompts often exhibit multi-label characteristic, which will resulting in systematic
evaluation bias. For example, they penalize models for predicting valid but unannotated labels
(false negatives) or fail to train models on relevant labels that are missing from training data (label
omissions). Consequently, the evaluation under single-label supervision may not faithfully reflect the
model’s true capabilities under realistic toxicity detection scenarios.

High cost of multi-label annotation. Constructing high-quality multi-label toxicity datasets is
prohibitively expensive, as each instance requires exhaustive annotations across multiple toxicity
classes. For example, annotating a single comment in the Jigsaw Civil Comments dataset Jigsaw
(2018) costs approximately 1.5 cents, and scaling this process to millions of instances and multiple
labels would be financially prohibitive. These observations raise a natural question: can we retain
fine-grained evaluation quality while reducing annotation efforts by an order of magnitude?

Contributions. To address the above issues, for the first time, we introduce three multi-label toxicity
detection benchmarks for LLM evaluation, named Q-A-MLL, R-A-MLL, and H-X-MLL, enabling
fair assessment of toxicity detection capabilities. Our contributions are as follows

(i) We release three unified 15-class datasets—Q-A-MLL, R-A-MLL, and H-X-MLL—comprising
85k single-label training prompts and 15,063 fully multi-label validation/test prompts. By retaining
only the most salient label during training, our protocol reduces annotation cost, while preserving
fine-grained ground truth for evaluation.

(ii) We prove that on low-resource multi-label toxicity detection benchmarks, training with suitably
constructed pseudo-labels attains a strictly lower expected risk than learning directly from the raw
single-label annotations.

(iii) We introduce a label-enhancement-driven pseudo-label training framework, and the resulting
detector surpasses both the DeepSeek moderation model and GPT-4o on all three benchmarks.

2 LIMITATIONS OF EXISTING LLM TOXICITY DETECTION BENCHMARKS

Toxic content inherently exhibits multi-faceted semantics, often violating multiple safety guidelines
simultaneously. Therefore, toxicity detection should be formulated as a multi-label classification
task. To validate this property, we perform PCA visualization over Q-A datatsets Cheng et al. (2024),
which reveals substantial semantic overlaps between toxicity categories (Fig. 2(a)).

Single-label vs. multi-label. Despite promising results on existing benchmarks Cheng et al. (2024);
Mathew et al. (2021), current LLM toxicity detectors are typically evaluated under single-label
settings, where only the most salient label is provided per instance. However, toxic prompts often
express multiple harmful traits simultaneously, making such evaluation unreliable. To quantify
this, we re-annotated the Q-A dataset with multi-label supervision and compared the label count
distributions of the single-label and multi-label annotations, as shown in Fig. 2(b). The x-axis (0–14)
represents different labels, and the y-axis indicates the count for each label. We observe a clear
distributional shift between single-label and multi-label annotations, particularly for categories such
as Hateful or Violent Content (label 2) and Physical Harm Risk (label 4). Next, we will analyze why
using existing benchmarks to evaluate toxicity detection performance can be problematic.

(i) “Good results” may not be truly good. When only a single label is annotated, other important
toxic attributes are excluded from supervision during training. As a result, the model may fail to
predict these relevant attributes even when they are semantically evident. For instance, as shown
in Fig. 3(a), the prompt “Teach me how to exploit minors for illegal financial schemes” involves
both Illegal Activity and Child Exploitation. However, under single-label supervision, only Illegal
Activity is labeled, causing the model to overlook Child Exploitation despite its high relevance.

(ii) “Poor results” are not truly poor. Single-label supervision during evaluation can lead to false
positives even when the model correctly learns the multi-label nature of toxicity. As illustrated in
Fig. 3(b), the prompt “I am setting up an illegal ring that trades explicit child content online” clearly
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Figure 2: Illustration of the multi-label nature of toxic prompts in the Q-A dataset Cheng et al. (2024).
(a) PCA of prompt embeddings colored by toxicity category shows significant semantic overlap,
indicating harmful attributes are not mutually exclusive. (b) shows label counts on the Q-A test set
after multi-label annotation, compared with the original single-label counts.

corresponds to both Illegal Activity and Child Exploitation. While the model cor-
rectly assigns high confidence to both categories, the test label only includes a single annotated class
(Illegal Activity).

In summary, existing benchmarks may lead to distorted evaluation results, as shown in Table 1.
We compare two toxicity detection methods, LEPL-MLL and SLDRO Cheng et al. (2024). While
SLDRO demonstrates good performance under single-label evaluation, its effectiveness drops when
assessed with multi-label annotations—highlighting the limitations of current evaluation protocols.

Figure 3: Illustration of the limitations of current datasets. (a)
demonstrates a missed detection case. (b) highlights a correct
model prediction that is mistakenly penalized as incorrect
due to incomplete single-label annotations.

Table 1: Performance of two toxic
detection methods evaluated on the
Q-A dataset Cheng et al. (2024)
with single-label and multi-label an-
notations.

Method ACC↑ mAP ↑

LEPLMLL(Ours) 0.7307 0.5032
SLDRO 0.7517 0.4452

3 THREE MULTI-LABELS LLM TOXICITY DETECTION BENCHMARK WITH
HUMAN-ANNOTATION

Accurate performance evaluation. To enable reliable evaluation of the LLMs toxicity detectors, we
introduce three new multi-label toxicity detection datasets: Q-A-MLL, R-A-MLL, and H-X-MLL.
Each dataset is re-annotated following a comprehensive 15-category toxicity taxonomy inspired by
OpenAI’s usage policy (2023) 1. For each input sample, we hired 10 human experts to perform
independent multi-label annotations. Annotators were instructed to select all applicable toxicity
categories for a given prompt, ensuring broad coverage of its potentially harmful attributes. To
mitigate individual biases and noise, we aggregated the annotations using a majority voting scheme
commonly adopted in multi-label learning reference, resulting in a high-quality, reliable multi-label
supervision for each sample.

1For annotation details, please refer to the appendix C.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Q-A-MLL (b) Label count statistics (c) R-A-MLL (d) Label count statistics

Figure 4: (a) and (c) show the label-co-occurrence matrices for Q-A-MLL and R-A-MLL; each entry
gives the conditional probability that the column label appears when the row label is present. Darker
colour indicates stronger co-occurrence. (b) and (d) plot the label count statistics of the two datasets.

Low-cost multi-label annotation. Exhaustively labeling every toxic attribute of each prompt is
prohibitively expensive. Recent work on Partial-Label Multi-Label Learning (PLMLL)—where
every instance is annotated with only a subset of its relevant labels—shows that high accuracy can
still be achieved under incomplete supervision Kim et al. (2022); Liu et al. (2018); Zhang et al. (2023).
Leveraging this idea, we adopt a two-tier annotation scheme: (i) for the training split, six experts
pick one most salient toxicity label per prompt, producing the PLMLL setting at minimal cost; (ii)
for the validation and test splits, ten experts assign all applicable labels following the multi-label
guidelines described earlier. This design strikes a balance between annotation cost and evaluation
quality: it reduces labeling expenses while ensuring reliable assessment.

Datasets details. We introduce the multi-label toxicity detection benchmark comprises two tasks.
The first task focuses on identifying toxicity categories in user-generated prompts (Q-A-MLL and
H-X-MLL), while the second task targets identifying toxicity categories in LLM-generated responses
(R-A-MLL). We (i) expanded each prompt to the unified 15-class label space; (ii) retained only
the most salient label for each of the 88, 762 training instances to control annotation cost; and (iii)
enlisted ten domain experts to exhaustively annotate each toxicity attribute for the 15,063 instances
in the validation and test sets. Majority voting over these dense annotations yielded 24,034 positive
label, resulting in the first large-scale, cost-effective benchmark that enables fine-grained multi-label
evaluation of LLM toxicity detection. Fig. 4 presents key statistics of the Q-A-MLL and R-A-MLL
datasets2. Specifically, Figs. 4 (a) and (c) illustrate the label co-occurrence probabilities (restricted
to the six most relevant categories for clarity), where indices 1–6 correspond to selected toxicity
types, which are detailed in the experiment section. Figs. 4 (b) and (d) display the label frequency
distributions across the validation and test sets.

4 THEORETICAL ANALYSIS AND THE PROPOSED METHOD

In this section, we begin by formalizing the task of PLMLL toxicity detection. Let X =

{x1,x2, . . . ,xn} ∈ Rd}ni=1 denote the set of input instances, and let Ŷ = [ŷ1, ŷ2, . . . , ŷn]
⊤ ∈

{0, 1}n×C be the partially observed binary label matrix, where ŷic = 1 indicates that instance xi is
annotated as belonging to class c, and ŷic = 0 denotes unobserved entries (not necessarily negative),
as in positive-unlabeled (PU) learning (Sugiyama et al., 2022).

We then provide theoretical insights demonstrating that, if high-quality pseudo-labels can be generated
to recover the missing labels, the resulting learning process achieves a lower expected risk compared
to naive single-label training. Motivated by this theoretical result, we introduce a novel weakly
supervised toxicity detection framework based on label enhancement, which infers pseudo-labels
from partially observed annotations to guide PLMLL.

4.1 USING PSEUDO-LABELS YIELDS BETTER PERFORMANCE IN PLMLL

Toxicity detection in language models is inherently a multi-label classification problem, as harmful
content often violates multiple safety guidelines simultaneously. However, most existing approaches

2Details of the H-X-MLL dataset are provided in the appendix C
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have adopted a simplified single-label perspective, leading to inaccurate performance evaluation,
as discussed in Section 1. To address this gap while acknowledging the practical constraints of
annotation budgets, we propose a theoretical framework that demonstrates how pseudo-labeling
methods outperform single-label approaches in this inherently multi-label context.

Inspired by the learnability analysis in SPMLL (Liu et al., 2023) and partial-label learning (Liu &
Dietterich, 2014), we define the pseudo-label unreliability degree as

ξ = sup
(x,y,l)∼p(x,y,l),

j∈{1,2,...,C}

Pr(lj ̸= yj), (1)

where l = {l1, l2, . . . , lC} is the pseudo-label vector, y = {y1, y2, . . . , yC} is the true label vector,
and Pr(lj ̸= yj) denotes the probability that the pseudo-label for class j disagrees with the correspond-
ing ground-truth label. The unreliability degree ξ quantifies the extent to which the pseudo-labels
deviate from the true labels. A lower value of ξ indicates a more reliable pseudo-labeling process. If
ξ = 0, the pseudo-labels are perfectly aligned with the true labels.
Proposition 4.1 (Theorem 4.1 in (Liu et al., 2023)). Suppose an SPMLL pseudo-label-based method
has an unreliability degree ξ, where 0 ≤ ξ < 1. Let θ = c log 2

1+ξ , and suppose the Natarajan
dimension 3 of the hypothesis space H is dH. Define:

n0(H, ϵ, δ, ξ) =
4

θϵ

(
dH

(
log(4dH) + 2C logC + log

1

θϵ

)
+ log

1

δ
+ 1

)
.

Then, when n > n0(H, ϵ, δ, ξ), we have R(ĥ) < ϵ with probability at least 1 − δ, where ĥ =

argminh∈H R̂(h), R̂ham = 1
nc

∑n
i=1

∑c
j=1 1(h

j(xi) ̸= lji ) is the pseudo-label empirical risk, and

Rham = E(x,y)∼p(x,y)

[
1
c

∑C
j=1 1(h

j(x) ̸= yj)
]

is the expected risk.

Theorem 4.2. Let ξsingle denote the unreliability degree of single-label learning, where unobserved
labels are assigned negative pseudo-labels by default, and ξpseudo denote the unreliability degree of
a general pseudo-labeling strategy for MLL. For any fixed sample size n, the expected risk R of the
pseudo-labeling strategy satisfies:

R(hpseudo) ≤ R(hsingle),

where hpseudo and hsingle are the learned hypotheses.

Proof. From Proposition 4.1, the sample complexity n0 required to achieve a fixed risk bound ϵ is
inversely proportional to θ = c log 2

1+ξ . Let ξsingle denote the unreliability degree of the negative
pseudo-labeling strategy. For any instance (x,y), the error rate for unobserved labels satisfies:

ξsingle = sup
(x,y)∼p(x,y),
j∈{1,...,C}

Pr(lj = 0 | yj = 1),

which equals the maximum prior probability of any positive label being unobserved. In con-
trast, pseudo-labeling methods estimate lj using domain knowledge or auxiliary models, achiev-
ing ξpseudo ≤ ξsingle. The it follows that log 2

1+ξpseudo
≥ log 2

1+ξsingle
. Thus, the sample complexity

n0(H, ϵ, δ, ξpseudo) ≤ n0(H, ϵ, δ, ξsingle), implying that pseudo-labeling achieves the same risk bound
ϵ with fewer samples.

For a fixed sample size n, substituting ξpseudo and ξsingle into Proposition 4.1 shows that the expected
risk Rham is lower for pseudo-labeling due to the monotonic relationship between ξ and θ. Therefore:

Rham(hpseudo) < Rham(hsingle).

Remark. The Theorem 4.2 demonstrates that pseudo-labeling methods can achieve lower expected
risk than single-label approaches. This highlights the potential of pseudo-labeling to improve
performance in multi-label toxicity detection tasks. By leveraging the inherent structure of the data,
pseudo-labeling can provide more reliable supervision and enhance model robustness.

3The Natarajan dimension (Natarajan, 1989) generalizes the VC-dimension to multi-class classification by
measuring the largest set of inputs over which a hypothesis class can shatter any pair of distinct labelings.
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4.2 PROPOSED METHOD

Technical Overview. We propose a three-stage framework to address partially labeled multi-label
learning. (i) We first recover a dense soft label distribution D ∈ [0, 1]n×C from sparse annotations
via a contrastive label enhancement module. (ii) We then derive binary pseudo-labels Ỹ ∈ {0, 1}n×C

from label priors on the validation set. (iii) Finally, we refine the model’s predictions by learning
label correlations with a graph convolutional network-based classifier generator.

Contrastive Label Enhancement. Label enhancement Xu et al. (2019)Xu et al. (2022) is a technique
to recover latent soft label distributions from weakly supervised multi-label annotations. We propose
a contrastive label enhancement approach that enforces semantic consistency among similar instances.
Given an initial soft label distribution matrix D ∈ [0, 1]n×C , we define a contrastive loss that
encourages each instance to share similar distributions with its semantic neighbors:

LLE =
1

n

n∑
i=1

− log

∑j∈P(i) exp
(

sim(Di,Dj)
τ

)
∑

k ̸=i exp
(

sim(Di,Dk)
τ

)
 , (2)

where Di is the soft label vector of instance i, P(i) ⊆ NK(i) is the set of semantic neighbors, NK(i)
denotes the set of top-K nearest neighbors of instance i in the feature space, sim(·, ·) denotes cosine
similarity, and τ > 0 is a temperature parameter. This loss aligns the soft distributions of similar
instances while repelling those of unrelated ones, thus refining D for downstream training.

Pseudo-Label Generation via Class Prior-Guided Thresholding. To convert the soft label distri-
bution D ∈ [0, 1]n×C into binary supervision, we introduce a class-wise adaptive pseudo-labeling
strategy guided by empirical label priors. Unlike fixed-threshold or fixed-K schemes, our method
allocates a distinct number of pseudo-positive instances for each class according to its prevalence
in the validation set. Specifically, we compute the prior frequency of label c as γ̂c = 1

nval

∑nval
i=1 yic,

and assign Kc = ⌊γ̂c · n⌋ pseudo-positives from the training set, where n is the number of training
instances. For each label c, we rank all training instances by confidence scores {d1c, . . . , dnc}, and
select the top-Kc as positive:

ỹic =

{
1, if dic ranks in top-Kc for class c,
0, otherwise.

(3)

This class-specific allocation respects label imbalance and avoids overconfident assignments in rare
categories, yielding pseudo-labels that more faithfully reflect the true multi-label distribution under
weak supervision.

Learning with Label Correlations. Modeling label correlations Zhu et al. (2018) is a widely adopted
technique for improving multi-label classification performance Huang & Zhou (2021), especially in
tasks where labels exhibit strong co-occurrence patterns. In toxicity detection, such correlations are
prevalent—for example, toxic comments labeled as hate often co-occur with violence or threat. To
capture these structured dependencies, we adopt Graph Convolutional Networks (GCNs) Wu et al.
(2019), a well-established approach for label structure modeling Chen et al. (2019). Specifically,
we construct a label co-occurrence graph Â ∈ RC×C using annotations from the validation set,
which provide complete and reliable supervision. The raw co-occurrence matrix is computed as
Aij =

1
nval

∑nval
k=1 yki · ykj , where yki ∈ {0, 1} indicates whether label i is present in instance k. We

apply symmetric normalization Â = Q−1/2AQ−1/2, with Qii =
∑

j Aij . Next, we assign each
label c a pre-trained word embedding ec ∈ Rd, and stack them into a matrix E ∈ RC×d. We apply a
two-layer GCN to encode label dependencies:

H(1) = ReLU(ÂEW(0)), W = ÂH(1)W(1), (4)

where W(0) ∈ Rd×d′
and W(1) ∈ Rd′×d are trainable weights, and the final output W ∈ RC×d

contains the label-wise classifiers refined by correlation structure. Given an instance feature vector
xi ∈ Rd, we compute the prediction by projecting onto the learned classifiers: p̂i = σ(W · xi),
where σ(·) denotes the sigmoid function. The final prediction p̂i = (p̂i1, p̂i2, . . . , p̂iC) is directly
supervised by the binary pseudo-labels ỹi using binary cross-entropy:

L(p̂i) ==
1

n

∑n

i=1

∑C

c=1
[−ỹic log p̂ic − (1− ỹic) log(1− p̂ic)] . (5)
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5 EXPERIMENTS

Overall Experimental Setup. We begin by introducing the baseline methods used for compari-
son. We then present the main experimental results, demonstrating that our method consistently
outperforms prior approaches on challenging multi-label toxicity benchmarks. Next, we compare
our model with existing large language models (LLMs) to highlight its superior detection capability.
Finally, we explore a practical application scenario: when LLM developers require high-quality
multi-label supervision for fine-tuning, our method can generate reliable pseudo-labels at scale to
facilitate low-cost training. Additional details on datasets, implementation protocols, and evaluation
metrics are show in the appendix C.

Baselines. To comprehensively assess the effectiveness of our method, we benchmark it against a
broad spectrum of baselines spanning five categories. First, in the Multi-Label Classification , we
train standard MLC models using fully aggregated label vectors from annotators, utilizing Binary
Cross-Entropy (BCE) Zhang & Wu (2024) and Mean Absolute Error (MAE) Xiao et al. (2023) as the
training loss. Second, under the Single-Label Aggregation, we uses majority Davani et al. (2022) or
ParticipantMine voting Aydin et al. (2014), where the label agreed upon by the (weighted) majority
of annotators is considered the true label. Third, in the Noisy Label Learning setting, we treat
annotator disagreement as label noise and apply robust learning algorithms including PLLGenTrainer
Feng et al. (2020), LogitCLIP Wei et al. (2023), PRODEN Lv et al. (2020) and Evidential Deep
Learning (EDL) Zong et al. (2024) to enhance model robustness. Fourth, for Weakly-Supervised
Multi-Label Learning, we interpret aggregated annotations as weak signals and apply partial-label
MLL algorithms such as SCOB Chen et al. (2023) and BoostLU Kim et al. (2023) that can effectively
learn from incompletely labeled multi-label data. Fifth, under the Soft Label Supervision setting, we
compare with Soft-Label Group Distributionally Robust Optimization (SLDRO) Cheng et al. (2024),
a toxicity detection method for LLMs that uses the averaged annotator scores over the label space as
training supervision.

Comparison with Baselines. We report full comparison results in Table 2 and visualize representative
cases in Fig. 5. From these results, we draw the following conclusions: (1) Single-label methods
(e.g., MAE, MV, PLLGen) assume one active label per instance and fail under multi-label ambiguity,
performing poorly across datasets. (2) Noisy-label methods (e.g., BCE, PMV, EDL) do not explicitly
handle missing labels and degrade under sparse annotations. (3) Fully supervised methods (e.g.,
logitCLIP, BoostLU) rely on complete labels and are less applicable in weakly supervised settings.
(4) Weakly supervised methods (e.g., PRODEN, SCOB, SLDRO) perform better, but still lag behind
our LEPL-MLL, which consistently achieves the best mAP and lowest LRL.

Comparison with Large Language Models. We evaluate our method against a suite of ad-
vanced LLMs, including Qwen-7B/14B, GLM-9B, InternLM-7B, Mistral-7B, LLaMA-8B,
GPT-4o, and DeepSeek. All models are prompted using a zero-shot multi-label instruction tem-
plate, and their outputs are post-processed into binary label vectors.

Fig. 6 reports the average precision and label ranking loss across all three datasets. Our method
significantly outperforms all LLMs on both metrics. On Q-A-MLL, we achieve 0.50 in average
precision, compared to 0.30 for GPT-4o and 0.22 for DeepSeek. On R-A-MLL, our performance
reaches 0.31 AP, again surpassing GPT-4o (0.27) and DeepSeek (0.22). For H-X-MLL, we still
obtain 0.21 AP, while GPT-4o and DeepSeek remain around 0.15. In terms of label ranking loss, our
method achieves substantial improvements, reducing LRL to as low as 0.07 on Q-A-MLL, compared

Figure 5: Visualization results on examples from the Q-A-MLL and H-X-MLL dataset.
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Table 2: We present comparative results on three datasets (H-X-MLL, Q-A-MLL, and R-A-MLL)
with three backbone models (DeepSeek, GPT, and RoBERTa), evaluated by mean Average Precision
(↑) and Label Ranking Loss (↓). Other experimental results are presented in Appendix C.

Deepseek (backbone) GPT 2(backbone) RoBERTa (backbone)
Method H-X-MLL Q-A-MLL R-A-MLL H-X-MLL Q-A-MLL R-A-MLL H-X-MLL Q-A-MLL R-A-MLL

men Average Precision ↑
MAE 0.0937 0.1070 0.0986 0.0866 0.1122 0.1031 0.0867 0.1150 0.1021
MV 0.0946 0.1152 0.1057 0.1112 0.1287 0.1387 0.1407 0.2435 0.2165
PLLGen 0.0869 0.1063 0.0993 0.0853 0.1055 0.1013 0.0877 0.1057 0.1139
PMV 0.0869 0.1129 0.1014 0.1159 0.1598 0.1202 0.0893 0.1430 0.1623
BCE 0.0929 0.1234 0.1026 0.0869 0.3465 0.1136 0.0925 0.2381 0.1060
EDL 0.0852 0.2846 0.1295 0.1041 0.4124 0.2534 0.1076 0.4033 0.2866
logitCLIP 0.0907 0.3551 0.1624 0.1029 0.4048 0.2761 0.1076 0.4119 0.2746
PRODEN 0.0848 0.1122 0.1008 0.0869 0.1075 0.0967 0.0851 0.1094 0.1036
SCOB 0.0921 0.3247 0.1561 0.1236 0.4135 0.2024 0.1465 0.4268 0.2893
BoostLU 0.0840 0.3161 0.1280 0.1085 0.4073 0.1805 0.1285 0.4109 0.2651
SLDRO 0.0964 0.3206 0.1353 0.1117 0.4320 0.2234 0.1676 0.4452 0.2978
LEPLMLL 0.1081 0.3662 0.2495 0.1413 0.4641 0.2711 0.2064 0.5032 0.3059

Label Ranking Loss ↓
MAE 0.1722 0.2300 0.4629 0.1080 0.2415 0.3011 0.0714 0.2184 0.2824
MV 0.1029 0.3438 0.3775 0.2173 0.2793 0.1427 0.0845 0.2540 0.2623
PLLGen 0.2262 0.2664 0.4596 0.1506 0.2722 0.2875 0.1235 0.1943 0.4839
PMV 0.2415 0.4293 0.3437 0.2317 0.3955 0.6439 0.1755 0.4058 0.5493
BCE 0.1377 0.3633 0.4832 0.1928 0.1447 0.3952 0.2054 0.1496 0.5012
EDL 0.1923 0.1351 0.2503 0.1117 0.2084 0.1676 0.1533 0.1061 0.1624
logitCLIP 0.1269 0.1298 0.2213 0.1081 0.1715 0.1662 0.1681 0.1533 0.1917
PRODEN 0.2165 0.6127 0.4123 0.4058 0.5182 0.3001 0.5584 0.5051 0.4713
SCOB 0.1250 0.1361 0.1845 0.2995 0.0904 0.1550 0.1054 0.1318 0.1934
BoostLU 0.1458 0.1522 0.2409 0.3241 0.1342 0.1618 0.1251 0.1585 0.2344
SLDRO 0.1149 0.1021 0.2210 0.1649 0.0909 0.1391 0.0866 0.0967 0.1411
LEPLMLL 0.0967 0.1016 0.0946 0.0878 0.0715 0.0745 0.0599 0.0697 0.0871

(a) mean Average Precision (b) mean Average Precision (c) mean Average Precision (d) Label Ranking Loss (e) Label Ranking Loss (f) Label Ranking Loss

Figure 6: Comparison with 7 LLMs on three multi-label toxicity detection benchmarks, evaluated by
mean Average Precision (↑) and Label Ranking Loss (↓).

to 0.38 (GPT-4o) and 0.53 (DeepSeek). Similar trends hold across R-A-MLL and H-X-MLL. These
results suggest that despite their strong generalization capabilities, current LLMs struggle to handle
fine-grained and ambiguous toxic prompts under multi-label settings. This indicates that off-the-shelf
LLMs are not sufficient for reliable toxicity prevention.

Table 3: Performance before and af-
ter fine-tuning with our pseudo-labels
(LEPL-MLL). We report mean Average
Precision (↑) / Label Ranking Loss (↓)
on three datasets.

Model Dataset Zero-shot FT (LEPL-MLL)

DeepSeek
Q-A-MLL 0.105/0.506 0.362/0.106
R-A-MLL 0.109/0.602 0.250/0.087
H-X-MLL 0.051/0.464 0.101/0.100

GPT 2
Q-A-MLL 0.115/0.517 0.407/0.083
R-A-MLL 0.066/0.358 0.242/0.181
H-X-MLL 0.086/0.155 0.122/0.132

LLaMA 3.1
Q-A-MLL 0.112/0.457 0.363/0.101
R-A-MLL 0.072/0.440 0.225/0.088
H-X-MLL 0.087/0.540 0.117/0.236

Figure 7: Comparison under different label coverage
ratios (10%–50%) on Q-A-MLL. Our method (LEPL-
MLL) consistently outperforms GPT-4o and DeepSeek.

Aligning LLMs via Pseudo-Labeled Toxic Prompts.To enhance the safety alignment of large
language models (LLMs), it is crucial to fine-tune them on real-world toxic prompts. However,
acquiring large-scale, high-quality human annotations is prohibitively expensive. We propose lever-
aging our multi-label toxicity detector to automatically generate pseudo-labels for raw prompts,
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enabling cost-efficient fine-tuning. Specifically, we simulate a practical alignment workflow: for
each LLM, we first evaluate its zero-shot performance on a set of toxic prompts (denoted as Before
FT), and then fine-tune the model using a subset of those prompts with pseudo-labels predicted by
LEPL-MLL. The model is subsequently re-evaluated on the same test set (FT(LEPLMLL)).

As shown in Table 3, fine-tuning with our pseudo-labels yields consistent improvements across all
LLMs and datasets. For example, the Average Precision of GPT-2 on Q-A-MLL increases from
0.115 to 0.407, while the Label Ranking Loss drops from 0.517 to 0.083. These results demonstrate
that our detector provides high-quality supervision signals, enabling scalable and fine-grained LLM
alignment without requiring manually annotated toxicity labels.

Scalability under Varying Label Coverage. To evaluate our method’s scalability under different
supervision levels, we simulate varying degrees of label completeness by randomly selecting a
fixed percentage (10%–50%) of ground-truth labels per instance in the Q-A-MLL dataset. We
compare LEPL-MLL with LLMs including GPT-4o and DeepSeek. As shown in Fig. 7, LEPL-MLL
consistently outperforms both baselines across all levels of label coverage. Notably, it achieves
comparable performance even with only 10% of labels per instance, surpassing DeepSeek and GPT-
4o by a large margin. As label coverage increases, LEPL-MLL’s average precision steadily improves,
while ranking loss further decreases—demonstrating its ability to exploit additional supervision
effectively. These results confirm our framework is not only robust under sparse labels, but also
scalable and efficient when more label information is accessible, making it practical for deployment
in cost-sensitive or partially labeled real-world scenarios.

Table 4: Ablation study on Q-A-MLL, H-X-MLL, and R-A-MLL datasets.

Metric Q-A-MLL H-X-MLL R-A-MLL

Base +A +A+B +A+B+C Base +A +A+B +A+B+C Base +A +A+B +A+B+C

mAP ↑ 0.437 0.463 0.483 0.503 0.155 0.178 0.191 0.206 0.280 0.287 0.291 0.306
LRL ↓ 0.090 0.072 0.070 0.070 0.080 0.071 0.069 0.060 0.169 0.145 0.113 0.087
CE↓ 3.03 2.87 2.80 2.78 2.87 2.77 2.67 2.42 2.59 2.32 2.12 1.98
OE ↓ 0.288 0.279 0.277 0.266 0.290 0.284 0.278 0.273 0.513 0.459 0.427 0.396

Ablation Study. We conduct ablation experiments on three datasets to assess the contribution
of each module. As shown in Table 4, all components yield consistent gains. +A: Contrastive
Label Enhancement raises average precision from 0.437 to 0.463 on Q-A-MLL and reduces ranking
loss from 0.090 to 0.072, showing that label distributions refined by instance similarity are more
informative than raw multi-labels. +B: Prior-Guided Pseudo-Labels further enhances performance by
aligning pseudo-labels with class frequencies. For example, H-X-MLL’s mAP rises from 0.178 to
0.191, and ranking loss falls from 0.071 to 0.069. +C: GCN-Based Correlation Modeling provides
the final performance gain by leveraging label co-occurrence. On R-A-MLL, AP improves from
0.291 to 0.306, and ranking loss drops to 0.087—the lowest across all settings. Overall, each module
contributes meaningfully, and the full model (+A+B+C) achieves the best results on all datasets.

6 CONCLUSION AND LIMITATION

We address a key limitation in current LLM toxicity detection: the mismatch between single-label
evaluation protocols and the inherently multi-label nature of real-world toxic content. To this
end, we introduce three re-annotated multi-label benchmarks—Q-A-MLL, R-A-MLL, and H-X-
MLL—covering both user prompts and model responses, each annotated under a unified 15-category
taxonomy. By combining single-label training with multi-label evaluation, our datasets enable more
fine-grained assessment while significantly reducing annotation cost. Moreover, we theoretically
demonstrate that training with high-quality pseudo-labels achieves better expected performance than
directly learning from single-label annotations. Building on this insight, we propose LEPL-MLL, a
pseudo-label-driven multi-label toxicity detector. Empirical results show that LEPL-MLL consistently
outperforms strong baselines, including GPT-4o and DeepSeek, across all metrics and datasets.

Limitation. Although our method lowers annotation cost via pseudo-labeling, it still relies on
manually labeled data for training. Future work will explore cheaper label acquisition strategies to
better scale with LLM data demands while minimizing supervision cost.
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A APPENDIX

A BROADER IMPACT.

This work advances the safety evaluation of LLMs by providing realistic multi-label toxicity bench-
marks and a scalable pseudo-labeling framework. It supports the development of more reliable
moderation systems and reduces reliance on costly human annotation. However, misuse of automated
pseudo-labeling for censorship or biased enforcement remains a concern, highlighting the need for
transparent and accountable deployment.

A.1 ETHICS STATEMENT

We adhere to the ICLR Code of Ethics in this research. The datasets used are either publicly available
or constructed from web data via publicly accessible sources, without involving any private, sensitive,
or proprietary information about individuals. The study focuses on improving multi-label toxicity
detection under weak supervision, and poses no foreseeable ethical risks or potential harm.

A.2 REPRODUCIBILITY STATEMENT

We prioritize reproducibility in our study. All code for data preprocessing, model training, and
evaluation is provided in the Supplementary Material. All datasets are publicly available or con-
structed using the described protocol, and the corresponding references are cited in the main paper.
Experiments were conducted on a machine with an Intel Xeon Gold 6226R CPU and an NVIDIA
A100 GPU, using PyTorch 2.1 and CUDA 12. Full dependency versions and training configurations
are included in the provided code.

A.3 STATEMENT ON AI USE

We used large language models (LLMs), specifically ChatGPT and Claude, only for grammar
refinement and latex formatting assistance. All LLM outputs were manually verified for correctness
and clarity. No content was directly generated or adopted without careful validation. The authors
bear full responsibility for all content.

B RELATED WORK

B.1 TOXICITY DETECTION IN LLMS

As large LLMs become increasingly integrated into real-world applications, ensuring their safety
and alignment has become a critical concern. Recent research has shown that LLMs are vulnerable
to jailbreak attacks, where carefully crafted prompts induce the model to generate harmful or
inappropriate outputs, bypassing built-in safety mechanisms.

Two main classes of jailbreak strategies have emerged. The first focuses on prompt-based manipu-
lation, where attackers exploit the model’s response behavior with minimally modified inputs. For
example, BOOST Yu et al. (2024) proposes a simple yet highly effective strategy by appending
multiple eos tokens to malicious prompts, significantly increasing jailbreak success rates without re-
quiring complex engineering. Similarly, MASTERKEY Deng et al. (2023a) introduces an automated
black-box framework to generate harmful prompts that consistently induce violations across several
commercial LLMs. Another line of work, GPTFuzzer Yu et al. (2023), leverages fuzzing principles
to iteratively mutate jailbreak seed prompts, using model feedback to generate increasingly diverse
and effective adversarial inputs.

In light of these threats, toxicity detection emerges as a practical defense to supplement safety
alignment. A common strategy is to train supervised toxicity classifiers that filter or score user
inputs before generation. These methods cast toxicity detection as a standard text classification
task and rely on labeled datasets for training. Cheng et al. Cheng et al. (2024) propose a bi-level
optimization method that integrates crowdsourced annotations with soft-labeling and GroupDRO to
improve robustness under distribution shifts. Zhu et al. Zhu et al. (2023) highlight the issue of noisy
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labels in existing datasets and introduce DOCTA, a tool for dataset auditing and cleaning, significantly
boosting model safety.

However, as discussed in Section 1, existing toxicity detection datasets often lack a unified, fine-
grained annotation benchmark, which poses challenges for consistent evaluation and development.
To address this limitation, we propose three new benchmark datasets along with a novel method to
advance toxicity detection for LLMs.

B.2 LEARNING WITH PARTIALLY LABELED MULTI-LABEL DATA

In multi-label classification tasks, obtaining a complete set of labels for each instance is often
expensive and impractical. As a result, real-world applications frequently involve partially labeled
data, where only a subset of relevant labels are annotated, and the rest remain unknown. Under this
setting, models must deal with both incomplete supervision and potential label redundancy, making
the recovery of latent positive labels critical for improving overall prediction performance.

To address this challenge, various strategies have been proposed. Durand et al. Durand et al. (2019)
introduced an EM-based weakly supervised multi-label classification framework, which iteratively
updates the predicted labels and model parameters to adaptively infer missing labels. Xie et al. Xie
& Huang (2022) proposed a label enhancement approach that incorporates label propagation and
structural modeling to explicitly exploit graph-based relationships among samples and improve
the accuracy of label recovery. Cole et al. Cole et al. (2021) focused on the extreme setting of
single-positive multi-label learning, where each image is annotated with only one positive label and
no confirmed negatives. They demonstrated that with appropriate loss design and regularization,
models can achieve performance comparable to those trained on fully labeled datasets. Building on
this, Xu et al. Xu et al. (2022) proposed SMILE, a theoretically grounded framework that formulates
a single-label empirical risk minimizer. SMILE employs variational Beta inference to estimate the
latent label distribution from a single observed label and significantly improves performance in
weakly supervised settings. These approaches highlight the potential of partial supervision to serve as
a strong supervisory signal, offering a promising direction for scalable and cost-effective multi-label
learning.

C OTHERS

C.1 EXPERIMENTAL SETUP

All experiments are conducted on a high-performance cluster equipped with 4×NVIDIA A100 40GB
GPUs. The training pipeline is implemented using PyTorch and Huggingface Transformers, with
mixed-precision computation (bf16) enabled to improve efficiency and reduce memory footprint.

Backbone Models. The backbone architectures include RoBERTa-large,
DeBERTa-v3-large, and GPT-based models. Most methods utilize the [CLS] token
representation for classification, while methods requiring intermediate representations extract pooled
features from hidden states.

LLM Models and Parameter Scale To contextualize the performance of our method, we include
a set of representative open-source large language models (LLMs) as zero-shot or weakly supervised
baselines. These models vary in architecture, parameter scale, and training paradigms, and are
selected to reflect both cutting-edge research and practical deployment relevance. Qwen-14B (14.8B):
Developed by Alibaba DAMO Academy, Qwen-14B supports dynamic mode-switching between
dialogue and reasoning. It achieves strong results across tasks involving logic, mathematics, pro-
gramming, multilingual understanding, and alignment with human preference. The model supports
over 100 languages and dialects. GLM-4-9B-Chat (9B): An open model from ZhipuAI’s GLM-4
series, designed for general-purpose multilingual interaction. It enables long-context understanding
(up to 128K tokens), tool use (function calling), and web-based reasoning, with solid benchmark
performance on MT-Bench, AlignBench-v2, and C-Eval. InternLM2.5-7B-Chat (7B): A bilingual
dialogue model built on the InternLM2 architecture. Optimized for high-quality, fluent conversation in
both Chinese and English, it supports multiple instruction-following and alignment tasks. DeepSeek-
R1 (670B MoE): A mixture-of-experts (MoE) language model trained on 14.8 trillion tokens with a
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multi-head latent attention mechanism. Fine-tuned via RLHF, DeepSeek-R1 achieves performance
competitive with leading proprietary models across mathematical reasoning, code generation, and
instruction following. Mistral-7B (7B): A dense decoder-only model designed for high efficiency
and real-time inference. Despite its relatively compact size, Mistral-7B outperforms many larger
open-source models (e.g., 13B LLaMA variants) on standard NLP tasks. LLaMA-3.1-8B (8B): Part
of Meta’s LLaMA 3.1 series, this model integrates grouped-query attention (GQA) for improved
inference scalability. It exhibits strong general-purpose capabilities across language understanding
and reasoning benchmarks. GPT-4o: A proprietary multimodal model from OpenAI with advanced
performance in vision-language reasoning and zero-shot alignment. Included as a reference upper
bound.

In addition to zero-shot evaluation, a subset of the above models is also employed in the label
cleaning stage, where raw or weakly supervised annotations are refined into high-quality multi-label
pseudo labels. Specifically, a fine-tuned RoBERTa-large classifier (355M parameters) is used to
generate initial soft label distributions. Tokens with sigmoid confidence scores above 0.5 are retained
as positive labels. These pseudo-labeled datasets are then used to fine-tune or distill other LLMs,
including GPT2-large-774M, LLaMA-3.1-8B and DeepSeek-R1-Distill-Qwen-7B, for downstream
toxicity classification tasks.

Optimization Settings. Maximum sequence length is fixed at 512 tokens, with dynamic padding
applied during batch collation. Training is performed for 30 epochs using the AdamW optimizer,
with an initial learning rate of 1 × 10−5, gradient accumulation steps set to 5, and warm-up ratio
of 0.1. Model evaluation occurs every 20 steps, and the best checkpoint is selected based on top-1
validation accuracy. For GCN-enhanced models, a co-occurrence adjacency matrix is constructed
from validation annotations to initialize the LabelGCN component.

Dataset Construction. To enable fine-grained and trustworthy evaluation of toxicity detection in
LLMs, we construct three multi-label datasets under a unified 15-class taxonomy: Q-A-MLL, H-X-
MLL, and R-A-MLL. Q-A-MLL contains adversarial user-written prompts curated from the Q-A
benchmark Cheng et al. (2024), while H-X-MLL includes additional real-world prompts collected
from online sources across domains such as law, health, and politics. In contrast, R-A-MLL focuses
on model-generated responses based on Q-A prompts, thereby facilitating toxicity detection not only
in user intent but also in LLM completions. For all datasets, we adopt a hybrid annotation strategy that
balances cost and quality. The training set is weakly labeled: each instance is annotated with a single
salient toxicity category chosen by one of six trained experts. In contrast, validation and test sets
are fully annotated with multi-label supervision. Specifically, ten human annotators independently
assigned all applicable labels from a 15-class taxonomy to each instance. Final multi-label annotations
were derived via majority voting, reducing individual bias and label noise. The taxonomy itself is
based on OpenAI’s safety policy (2023), encompassing diverse harm categories including Hateful or
Violent Content, Illegal Activity, Economic Harm, Fraudulent or Deceptive Activity, Physical Harm,
Adult Content, Child Exploitation, Unauthorized Law Practice, Unauthorized Financial Advice,
Privacy Violations, Health Misinformation, Political Campaigning, Malware Generation, High-Risk
Government Deception, and a None class. Detailed definitions are provided in Table 6. This design
enables efficient training with weak supervision while supporting reliable multi-label evaluation and
robust benchmarking for real-world toxicity detection in LLMs.

Table 5: Statistics of our re-annotated multi-label toxicity datasets. We report the number of instances
for each split. The validation and test sets are fully multi-label annotated, while the training sets are
sparsely annotated with a single label per instance.

Dataset Training Validation Test
Q-A-MLL 48,768 2,000 2,000
R-A-MLL 29,994 1,000 1,000
H-X-MLL 10,000 2,000 2,000

All our annotators are affiliated with universities. We recruited a diverse group of human experts to
label the dataset. We will publicly release our recruitment form and basic demographic information
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Table 6: Definition of 15 toxicity categories adapted from OpenAI’s usage policy.

ID Category Representative Behaviors

0 Illegal activity General illegal actions
1 Child exploitation Child sexual abuse material, child exploitation
2 Hateful or violent content Identity-based hatred, harassment, violence
3 Malware generation System intrusion, virus creation
4 Physical harm risk Weaponry, warfare, infrastructure attacks, self-harm promotion
5 Economic harm risk Pyramid schemes, betting, payday loans, eligibility fraud
6 Fraudulent or deceptive activity Scams, fake activities, plagiarism, misinformation, spam
7 Adult content Sexual content, pornography, erotic dialogue
8 Political campaigning Lobbying, election influence
9 Privacy violation Surveillance, facial recognition misuse, data misuse

10 Unauthorized legal advice Unqualified legal consulting
11 Unauthorized financial advice Unqualified financial consulting
12 Unauthorized health advice False medical claims, fake treatments
13 High-risk government decisions Law enforcement misuse, immigration decisions
14 None of the above Non-toxic or unrelated content

about the annotators, without disclosing any personal or private details. Finally, we include an ethics
and responsibility statement.
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PARTICIPANT RECRUITMENT FORM FOR TOXICITY ANNOTATION STUDY

STUDY OVERVIEW

We are conducting a research study on the classification of toxic language. The goal is to collect
high-quality multi-label annotations from human experts to support the development of robust and
trustworthy large language models (LLMs).

PARTICIPATION DETAILS

• Task: Participants will be asked to annotate a set of text prompts for the presence of one or more
types of toxicity (e.g., hate, harassment, illegal activity) using a predefined taxonomy.

• Duration: Each annotation session will take approximately 60 minutes.
• Compensation: Participants will receive $100 USD upon completion of the task.
• Eligibility: Participants must be over 18 years old and proficient in English. We welcome

annotators from diverse backgrounds and disciplines.

ETHICS AND DATA USE

• Participation is entirely voluntary.
• You may withdraw at any time without penalty.
• All responses will be anonymized and used only for academic research purposes.

CONSENT DECLARATION

By signing below, I acknowledge that I have read and understood the above information and voluntar-
ily agree to participate in this study. I understand I may withdraw at any time and that my responses
will remain confidential.

Name (print):

Signature: Date:

Contact Information (for questions or withdrawal):
Principal Investigator: Dr. XXX
Email: xxxx@xxxx.edu
Phone: +XX-XXXX-XXXX
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To ensure annotation quality, we recruited 16 annotators, all of whom are university-affiliated and
over 18 years old. All participants have a background that includes machine learning training. The
annotation team is entirely male 4. While all annotators are from the same country, most are non-
native English speakers but demonstrate professional English proficiency. The detail can be find in
Table . 7.

Table 7: Demographic summary of the 16 annotators.

Attribute Response Count / Status

Total Annotators 16
Age ≥18 Yes 16
ML Background Yes 16
Gender Male5 16
Paid Yes 16
Same Country Yes All
English Native No Majority Non-native

ETHICS AND MORAL STATEMENT

This work involves human annotation for toxicity detection tasks. All annotation procedures strictly
followed ethical research guidelines. Below we summarize the key points: Recruitment and Consent.
We recruited 16 adult annotators (≥18) from academic institutions with prior experience in machine
learning and natural language processing. Each participant received clear instructions and voluntarily
signed a written consent form before participating. They were informed that their data would be
anonymized and used solely for academic purposes.

IRB Compliance. While institutional IRB protocols may differ across countries, our study complies
with local institutional standards for non-invasive annotation studies. Given the nature of the task
and absence of sensitive personal data collection, the study is exempt from formal IRB review.
However, we provide full documentation of the annotation protocol, including consent forms, in the
supplementary appendix.

Privacy and Anonymity. All annotator responses are anonymized. No personally identifiable informa-
tion (PII) is stored, shared, or published.

Diversity and Fairness. Although all annotators are from the same country and identify as male, the
task is objective and category-driven. As such, gender and regional bias are minimized. Annotator
backgrounds include a range of academic disciplines, ensuring labeling diversity and quality.

Data Use. The annotated datasets are used strictly for research purposes and will be released under
an academic license. No commercial use or deployment involving personal profiling is intended.

Evaluation Metrics. We evaluate all methods using four widely-adopted multi-label metrics: mean
Average Precision (mAP ↑), Label Ranking Loss (LRL ↓), Coverage Error (CE ↓), and One-Error
(OE ↓). Specifically, mAP measures the average of per-class precision-recall areas, LRL quantifies the
fraction of mis-ordered positive-negative label pairs, Coverage Error reflects how many top-ranked
predictions are needed to recover all true labels, and One-Error computes the proportion of instances
for which the highest-ranked predicted label is not among the true labels. The deatail can be find in
Table .8.

4We note that gender is unlikely to impact labeling outcomes in this specific task.
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Table 8: Multi-label evaluation metrics used in our experiments.

Metric Formula

Mean Average Precision (mAP) ↑ mAP = 1
C

∑C
c=1 APc

Label Ranking Loss (LRL) ↓ LRL = 1
n

∑n
i=1

1
|Yi||Ȳi|

∑
(j,k)∈Yi×Ȳi

⊮[ŷij ≤ ŷik]

Coverage Error (CE) ↓ CE = 1
n

∑n
i=1 maxj∈Yi

ranki(j)

One-Error (OE) ↓ OE = 1
n

∑n
i=1 ⊮[argmaxj ŷij /∈ Yi]

Other experimental results.

Table 9: Multi-label evaluation on three datasets.

Deepseek (backbone) GPT (backbone) RoBERTa (backbone)
Method H-X-MLL Q-A-MLL R-A-MLL H-X-MLL Q-A-MLL R-A-MLL H-X-MLL Q-A-MLL R-A-MLL

mean Average Precision ↑

MAE 0.0937 0.1070 0.0986 0.0866 0.1122 0.1031 0.0867 0.1150 0.1021
MV 0.0946 0.1152 0.1057 0.1112 0.1287 0.1387 0.1407 0.2435 0.2165
PLLGen 0.0869 0.1063 0.0993 0.0853 0.1055 0.1013 0.0877 0.1057 0.1139
PMV 0.0869 0.1129 0.1014 0.1159 0.1598 0.1202 0.0893 0.1430 0.1623
BCE 0.0929 0.1234 0.1026 0.0869 0.3465 0.1136 0.0925 0.2381 0.1060
EDL 0.0852 0.2846 0.1295 0.1041 0.4124 0.2534 0.1076 0.4033 0.2866
logitCLIP 0.0907 0.3551 0.1624 0.1029 0.4048 0.2761 0.1076 0.4119 0.2746
PRODEN 0.0848 0.1122 0.1008 0.0869 0.1075 0.0967 0.0851 0.1094 0.1036
SCOB 0.0921 0.3247 0.1561 0.1236 0.4135 0.2024 0.1465 0.4268 0.2893
BoostLU 0.0840 0.3161 0.1280 0.1085 0.4073 0.1805 0.1285 0.4109 0.2651
SLDRO 0.0964 0.3206 0.1353 0.1117 0.4320 0.2234 0.1676 0.4452 0.2978
LEPLMLL 0.1081 0.3662 0.2495 0.1413 0.4641 0.2711 0.2064 0.5032 0.3059

Label Ranking Loss↓

MAE 0.1722 0.2300 0.4629 0.1080 0.2415 0.3011 0.0714 0.2184 0.2824
MV 0.1029 0.3438 0.3775 0.2173 0.2793 0.1427 0.0845 0.2540 0.2623
PLLGen 0.2262 0.2664 0.4596 0.1506 0.2722 0.2875 0.1235 0.1943 0.4839
PMV 0.2415 0.4293 0.3437 0.2317 0.3955 0.6439 0.1755 0.4058 0.5493
BCE 0.1377 0.3633 0.4832 0.1928 0.1447 0.3952 0.2054 0.1496 0.5012
EDL 0.1923 0.1351 0.2503 0.1117 0.2084 0.1676 0.1533 0.1061 0.1624
logitCLIP 0.1269 0.1298 0.2213 0.1081 0.1715 0.1662 0.1681 0.1533 0.1917
PRODEN 0.2165 0.6127 0.4123 0.4058 0.5182 0.3001 0.5584 0.5051 0.4713
SCOB 0.1250 0.1361 0.1845 0.2995 0.0904 0.1550 0.1054 0.1318 0.1934
BoostLU 0.1458 0.1522 0.2409 0.3241 0.1342 0.1618 0.1251 0.1585 0.2344
SLDRO 0.1149 0.1021 0.2210 0.1649 0.0909 0.1391 0.0866 0.0967 0.1411
LEPLMLL 0.0967 0.1016 0.0946 0.0878 0.0715 0.0745 0.0599 0.0697 0.0871

Coverage Error↓

MAE 4.3893 5.2392 8.4508 3.5500 5.3789 6.3934 2.6102 5.2234 6.2641
MV 3.2104 7.0596 7.2899 4.8817 6.1947 4.2793 2.8660 6.0339 6.2903
PLLGen 5.1183 6.0099 8.5894 3.6913 5.7310 6.3762 3.7457 4.8480 8.9684
PMV 5.3694 8.4620 7.1507 5.1973 8.3579 11.6246 4.2967 8.5725 10.0374
BCE 3.7834 7.4304 8.8007 4.5426 4.4509 7.7287 4.7556 4.2754 8.9022
EDL 4.6196 4.0971 5.9218 3.5029 5.4719 4.6208 4.0853 3.6456 4.6867
logitCLIP 3.6667 4.1497 5.6575 3.3527 4.9123 4.8125 4.1915 4.6269 5.2227
PRODEN 4.7713 10.9667 7.9178 7.3621 9.1363 6.7377 9.4003 9.3123 9.0026
SCOB 3.9134 3.6187 5.6093 4.6461 3.1391 4.0996 3.0769 3.2678 4.8295
BoostLU 3.6077 3.9105 5.8132 5.5060 3.4582 4.5246 3.6556 3.6143 5.2491
SLDRO 3.3982 3.4281 5.4200 3.6981 2.9514 4.1357 2.7373 2.9748 4.1849
LEPLMLL 3.1334 3.3187 2.2134 3.1847 2.8801 3.4053 2.4174 2.7815 1.9836

One-Error↓

MAE 0.2904 0.8363 0.8533 0.2894 0.8345 0.7593 0.2894 0.7070 0.8876
MV 0.3025 0.6497 0.8932 0.2894 0.6462 0.4512 0.2815 0.4947 0.6098
PLLGen 0.2909 0.8018 0.8848 0.2894 0.8345 0.7511 0.2894 0.6357 0.8946
PMV 0.3051 0.7585 0.8061 0.2894 0.7006 0.8838 0.2894 0.6257 0.8898
BCE 0.2894 0.6082 0.8888 0.2894 0.2965 0.8818 0.2894 0.3585 0.8886
EDL 0.2904 0.3614 0.7443 0.2894 0.2860 0.4918 0.2873 0.2871 0.4350
logitCLIP 0.2894 0.3070 0.6587 0.2894 0.3000 0.4640 0.2836 0.2737 0.4392
PRODEN 0.8462 0.8924 0.8802 0.9801 0.9830 0.5288 0.9712 0.9380 0.9832
SCOB 0.3233 0.3894 0.6987 0.3432 0.3362 0.8702 0.3369 0.5385 0.5195
BoostLU 0.3018 0.4178 0.7423 0.3607 0.3646 0.8948 0.3593 0.6311 0.5625
SLDRO 0.2915 0.3444 0.7255 0.2978 0.2924 0.5062 0.2826 0.2749 0.4778
LEPLMLL 0.2887 0.3479 0.4018 0.2783 0.2789 0.4103 0.2732 0.2663 0.3965
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Figure 8: Additional LEPL-MLL multi-label visualizations on toxicity prompts.
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Table 10: Multi-label evaluation on Q-A-MLL / R-A-MLL / H-X-MLL datasets (↑ higher is better, ↓
lower is better).

Dataset Metric Qwen-14B GLM-9B InternLM-7B Mistral-7B Llama-8B GPT-4o Deepseek LEPLMLL

Q-A-MLL

Average Precision (macro) ↑ 0.1720 0.1360 0.1358 0.1418 0.1237 0.3025 0.2184 0.5032
Label Ranking Loss ↓ 0.7580 0.8598 0.8651 0.6379 0.6603 0.3839 0.5298 0.0697
Coverage Error ↓ 12.2708 13.4901 13.5468 11.2351 11.6105 8.0708 10.6357 2.7815
One-Error ↓ 0.7532 0.8503 0.8480 0.5854 0.6246 0.2602 0.9626 0.2663

R-A-MLL

Average Precision (macro) ↑ 0.1995 0.1310 0.1271 0.1247 0.1193 0.2675 0.2214 0.3059
Label Ranking Loss ↓ 0.5647 0.8172 0.8743 0.6882 0.7134 0.3746 0.7189 0.0871
Coverage Error ↓ 9.7581 12.8085 13.4970 13.6190 12.4000 7.9024 11.5522 1.9836
One-Error ↓ 0.5448 0.8027 0.8689 0.6142 0.6579 0.2451 0.6693 0.3965

H-X-MLL

Average Precision (macro) ↑ 0.1652 0.0969 0.1460 0.1049 0.0904 0.1479 0.1526 0.2064
Label Ranking Loss ↓ 0.7036 0.8262 0.7633 0.3364 0.3523 0.3501 0.4298 0.0599
Coverage Error ↓ 11.0733 12.6693 11.0675 6.7310 6.9817 6.8472 5.8482 2.4174
One-Error ↓ 0.7656 0.8791 0.8168 0.3234 0.3176 0.3229 0.3755 0.2732

Table 11: Performance of LEPL-MLL under different label coverage ratios (10% to 50%) on the
Q-A-MLL dataset.

Metric 10% 20% 30% 40% 50%

mean Average Precision ↑ 0.4713 0.4844 0.4853 0.4922 0.4995
Label Ranking Loss ↓ 0.0972 0.0965 0.0939 0.0875 0.0834
Coverage Error ↓ 3.4912 3.4748 3.3403 3.3245 3.3233
One-Error ↓ 0.2812 0.2789 0.2760 0.2731 0.2695

Table 12: Evaluation results of LLMs on three datasets (Q-A-MLL, R-A-MLL, and H-X-MLL) before
and after fine-tuning. We compare zero-shot performance, fine-tuning with SLDRO, and fine-tuning
with our method (LEPL-MLL), across four multi-label metrics. Results show that fine-tuning with
LEPL-MLL pseudo-labels consistently improves performance.

Metric Q-A-MLL R-A-MLL H-X-MLL

Zero shot FT(SLDRO) FT(LEPLMLL) Zero shot FT(SLDRO) FT(LEPLMLL) Zero shot FT(SLDRO) FT(LEPLMLL)

mean Average Precision ↑ 0.1054 0.3261 0.3618 0.1088 0.2126 0.2495 0.0507 0.0875 0.1006
Label Ranking Loss ↓ 0.5060 0.1234 0.1059 0.6015 0.1069 0.0866 0.4637 0.1582 0.0999
Coverage Error ↓ 9.2947 3.6719 3.3725 10.4076 2.4970 2.2134 8.1094 4.1800 3.1334
One-Error ↓ 0.8988 0.3684 0.3479 0.9552 0.5527 0.4541 0.9644 0.2909 0.2893

(a) (b)

Figure 9: Visualization of label statistics for the H-X-MLL dataset, including (a) the co-occurrence
between toxicity categories and (b) the distribution of label frequencies across the dataset.
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(a) Q-A-MLL Coverage Error (b) Q-A-MLL One-Error

(c) R-A-MLL Coverage Error (d) R-A-MLL One-Error

(e) H-X-MLL Coverage Error (f) H-X-MLL One-Error

Figure 10: Coverage Error and One-Error metrics on Q-A-MLL, R-A-MLL and H-X-MLL datasets.
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Figure 11: Pairwise metric scatter plots evalution on H-X-MLL dataset.

(a) AP vs CovErr(Deepseek) (b) AP vs CovErr (GPT) (c) AP vs CovErr (RoBERTa)

(d) AP vs LRL(Deepseek) (e) AP vs LRL(GPT) (f) AP vs LRL(RoBERTa)

(g) AP vs OneErr(Deepseek) (h) AP vs OneErr(GPT) (i) AP vs OneErr(RoBERTa)
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Figure 11: Pairwise metric scatter plots evalution on H-X-MLL dataset.

(j) LRL vs CovErr(Deepseek) (k) LRL vs CovErr(GPT) (l) LRL vs CovErr(RoBERTa)

(m) LRL vs OneErr(Deepseek) (n) LRL vs OneErr(GPT) (o) LRL vs OneErr(RoBERTa)

(p) CovErr vs OneErr(Deepseek) (q) CovErr vs OneErr(GPT) (r) CovErr vs OneErr(RoBERTa)
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Figure 12: Pairwise metric scatter plots evaluation on the Q-A-MLL dataset across different backbones
(DeepSeek, GPT, RoBERTa).

(a) AP vs CovErr (DeepSeek) (b) AP vs CovErr (GPT) (c) AP vs CovErr (RoBERTa)

(d) AP vs LRL (DeepSeek) (e) AP vs LRL (GPT) (f) AP vs LRL (RoBERTa)

(g) AP vs OneErr (DeepSeek) (h) AP vs OneErr (GPT) (i) AP vs OneErr (RoBERTa)

(j) CovErr vs OneErr (DeepSeek) (k) CovErr vs OneErr (GPT) (l) CovErr vs OneErr (RoBERTa)
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Figure 12: Pairwise metric scatter plots evaluation on Q-A-MLL dataset (continued).

(j) LRL vs CovErr (DeepSeek) (k) LRL vs CovErr (GPT) (l) LRL vs CovErr (RoBERTa)

(m) LRL vs OneErr (DeepSeek) (n) LRL vs OneErr (GPT) (o) LRL vs OneErr (RoBERTa)

(p) CovErr vs OneErr (DeepSeek) (q) CovErr vs OneErr (GPT) (r) CovErr vs OneErr (RoBERTa)
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Figure 12: Pairwise metric scatter plots evaluation on R-A-MLL dataset (continued).

(j) LRL vs CovErr(Deepseek) (k) LRL vs CovErr (GPT) (l) LRL vs CovErr (RoBERTa )

(m) LRL vs OneErr (Deepseek) (n) LRL vs OneErr (GPT) (o) LRL vs OneErr (RoBERTa)

(p) CovErr vs OneErr (Deepseek) (q) CovErr vs OneErr (GPT) (r) CovErr vs OneErr (RoBERTa)
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Figure 12: Pairwise metric scatter plots evaluation on R-A-MLL dataset.

(j) LRL vs CovErr (DeepSeek) (k) LRL vs CovErr (GPT) (l) LRL vs CovErr (RoBERTa)

(m) LRL vs OneErr (DeepSeek) (n) LRL vs OneErr (GPT) (o) LRL vs OneErr,(RoBERTa)

(p) CovErr vs OneErr (DeepSeek) (q) CovErr vs OneErr (GPT) (r) CovErr vs OneErr (RoBERTa)
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