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Abstract

Generative machine learning models hold great promise for accelerating materials
discovery, particularly through the inverse design of inorganic crystals—enabling
an unprecedented exploration of chemical space. Yet, the lack of standardized
benchmarks makes it difficult to evaluate, compare and further develop these ML
models meaningfully. In this benchmark paper, we introduce LEMAT-GENBENCH,
a unified framework for assessing generative models of crystalline materials. In
particular, we propose a set of evaluation metrics alongside a set of tasks (uncon-
ditional, conditional, and limited-budget crystal generation), designed to better
inform model developers as well as downstream, practical applications. To support
it, we release an open-source evaluation suite and a public leaderboard on Hugging
Face with verified submissions. Altogether, LEMAT-GENBENCH aims to guide
model development and bridge the gap between generative modeling and practical
materials discovery.

1 Introduction

The discovery process of inorganic crystalline materials has traditionally relied on an Edisonian cycle
of expert intuition and experimental validation [Schmidt et al.,[2019]], occasionally aided by quantum
simulations such as density functional theory (DFT) [Kohn et al., {1996, [Sholl and Steckel, |2009].
While first-principle simulations provide valuable insights into structure and stability, they remain
computationally expensive and require predefined atomic configurations, which are non-trivial to
generate for novel crystal structures. Machine Learning (ML) models [Deringer et al., 2019, |[Unke
et al.| 2021]], particularly those based on geometric graph neural networks [Duval et al.| 2023], offer
faster alternatives to DFT, enabling scalable evaluation of candidate structures. Yet, like DFT, they are
limited to assessing pre-defined inputs and are not designed to explore and propose novel materials.
This has motivated a growing wave of generative ML models for materials discovery [Zeni et al.,
2023, [Mila Al4Science et al.,[2023| [Levy et al., 20254, |[Kazeev et al.,[2025]]. These models—ranging
from variational autoencoders (VAEs) [Kingma and Welling 2013]] and diffusion models [Song
et al., | 2021]] to GFlowNets [Bengio et al., [2023]] and large language models (LLMs) [Brown et al.,
2020]—aim to learn the distribution of valid crystal structures and sample from it, ideally guided by
target properties. This inverse design paradigm promises to unlock previously inaccessible regions of
chemical space and accelerate the discovery of practically relevant materials.

The rapid development of generative models for crystal structures has revealed a critical challenge: the
absence of standardized evaluation protocols rooted in applications. Studies vary widely in how they
assess stability, define novelty, or validate structures; using different reference datasets, fingerprinting
methods, energy estimators [Batatia et al.| [2023| [Unke et al., 2021]], relaxation procedures, energy
thresholds, etc. Without shared benchmarks, it remains difficult to disentangle genuine model
improvements from differences in evaluation design. While standardized benchmarks like Matbench
[Dunn et al., 2020] have transformed property prediction by enabling systematic model comparison,
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no analogous infrastructure exists for the evaluation of generative models of crystal structures. This
gap makes progress difficult to quantify, comparisons unfair, and leaves the community without
shared reference standards for scientific advancement.

To this end, we introduce LEMAT-GENBENCH, a benchmarking framework aimed at standardizing
the evaluation of generative models of inorganic crystal structures. LEMAT-GENBENCH provides:

e Standardized evaluation metrics: A unified suite centered on the (conditional)
(Meta)Stable, Unique, Novel (M.S.U.N.) rate, plus validity, diversity, efficiency and multi-
objective metrics;

* Diverse evaluation tasks: Benchmarks spanning unconditional, property-conditioned,
and limited-budget generation, designed to better reflect practical downstream discovery
scenarios;

* Open evaluation infrastructure: A public Python toolkit and Hugging Face leaderboard
with evaluations of 10 contemporary generative models.

By establishing shared protocols and rigorous evaluation standards, LEMAT-GENBENCH aims to
enable more systematic, fair, and transparent model comparisons. The framework is designed to
evolve with advancing methodologies while supporting both research and practical applications in
Al-driven materials.

2 The State of Generative Modeling for Crystal Structures

The field of generative modeling for inorganic crystals has rapidly diversified, with a growing
number of architectures, representations, and conditioning strategies being proposed. A taxonomy
is illustrated in Figure 2] While these methods share the goal of automating candidate generation
for materials discovery, they differ significantly in how they represent crystals, enforce physical
constraints, and guide sampling toward desired properties. In what follows, we provide a structured
overview of current modeling approaches (Section[2.T), followed by an analysis of existing evaluation
practices and their limitations (Section [2.Z). Together, these point to the need for standardized
benchmarks and motivate the framework we introduce in this work.

2.1 Modeling Approaches Overview

Generative modeling for inorganic crystals has emerged as a promising strategy for inverse design,
enabling the proposal of candidate structures with desired stability, symmetry, or functional properties.
These ML models are typically trained on large datasets of relaxed crystal structures and generate
new candidates either unconditionally or conditioned on specific targets. Over the past few years,
a range of architectural paradigms have been explored. Figure [2|provides a visual illustration. We
briefly discuss the prominent family of models below.

Latent-variable models such as variational autoencoders (VAEs) were among the earliest approaches
[Noh et al., 2019} Hoffmann et al., 2019, |Court et al., |2020]. These methods encode crystal represen-
tations into a continuous latent space to enable interpolation and sampling, but struggle with decoding
to valid atomic configurations, especially when relying on voxel grids or density maps [Hoffmann
et al.,|2019, |Zhao et al., [2023]].

GAN:-based methods attempt to generate crystal fingerprints or coordinate-based representations via
adversarial training [Kim et al.} 2020, [Zhao et al., 2021]]. While conceptually appealing, these models
suffer from training instability and limited diversity, and typically do not scale well to 3D periodic
systems |Zhao et al.|[2021].

Diffusion models have become the dominant paradigm, leveraging score-based denoising to gradually
transform noise into periodic atomic structures [Xie et al.,[2021] [Jiao et al., |2023| [Zeni et al.| [2025].
By jointly modeling atom types, fractional coordinates, and lattice parameters—often with SE(3)-
equivariant or symmetry-aware networks—these models learn to generate valid and plausible crystals.
Recent variants incorporate explicit symmetry conditioning [Jiao et al.l 2024} [Levy et al., 2025a]] or
textual guidance from pretrained language models [Das et al.| 2025| |Park et al., [2025]].

Flow-based models offer a related but computationally faster alternative. Flow matching methods
learn continuous velocity fields to map between base distributions and the data manifold in one pass
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[Lipman et al.,[2023]]. Crystal-specific variants such as FlowMM [Miller et al.||2024]] and FlowLLM
[Sriram et al., 2024] combine geometric inductive biases with learned base distributions informed
by large language models [|Gruver et al.|[2024]]. ADiT [Joshi et al., [2025] further generalizes this
approach to generate both crystals and molecules in a shared latent space.

Sequential generation strategies like reinforcement learning (RL) [Zamaraeva et al., 2023| |Govin-
darajan et al., 2024] and Generative Flow Networks (GFlowNets) [Mila Al4Science et al., 2023
Cipcigan et al.,2024]] decompose generation into stepwise actions guided by a reward. These meth-
ods allow the introduction of hard constraints, flexible conditioning (e.g., on Wyckoff positions or
energy-based rewards) and encourage diverse generation through reward-proportional sampling.

Large language models (LLMs) have recently been adapted to crystal generation by tokenizing CIF
formats or leveraging textual prompts. Models such as CrystalLLM [Gruver et al.| 2024]], WyFormer
[Kazeev et al., 2024]], and PLalID [Xu et al., |2025]] have demonstrated strong performance using
autoregressive decoding and reinforcement learning. Some also enable multimodal conditioning (e.g.,
with PXRD or synthesis data) [Johansen et al., 2025, |Moro et al., [2025]], suggesting new directions
for generative systems grounded in experimental context.

Taken together, these methods reflect an increasingly diverse and dynamic modeling landscape.
However, despite architectural progress, evaluating and comparing generative models remains a major
open challenge—due to the lack of standardized tasks, metrics, and data splits.

2.2 Evaluation Metrics and Benchmarking Efforts

Evaluating generative models for crystal structures is inherently more complicated than supervised
tasks like property prediction, where objective metrics such as RMSE or MAE are well established.
It requires assessing both structural plausibility and functional utility without ground-truth references,
leading to wide variation in evaluation protocols and limited comparability across works.

Most studies focus on generating structures that are valid and stable. Validity is typically assessed
via heuristic filters such as charge neutrality, interatomic distances, or CIF readability [Xie et al.,
2021[]. However, these checks vary across papers, serve different purposes (either as hard pre-filters
or as indicative sanity checks) and are not always consistent with real-world data. For example, many
Materials Project entries fail certain validity tests. Stability is usually evaluated through formation
energy (Ey) and energy above the convex hull (Epyy), either via DFT or machine-learned interatomic
potentials (MLIPs) [Batatia et al.l 2023[]. However, threshold choices (e.g., Eng < 0 vs. < 0.1
eV/atom), relaxation strategies, and reference datasets vary, making comparisons difficult. MLIPs
scale well but tend to underestimate 'y [Fu et al., 2022, Nong et al., 2025, and few works quantify
this uncertainty or reconcile MLIP-based scores with DFT-based hulls.

Building upon stability, the S.U.N. framework (Stable, Unique, Novel) [Zeni et al.| 2025]] has emerged
as a composite diagnostic, but lacks a consensus implementation. Uniqueness and novelty rely on
structure-based fingerprints (e.g., StructureMatcher [Ong et al., 2013]]), whose results depend on the
reference set, tolerance thresholds, and whether novelty is computed over all samples or only the stable
ones. Most works adopt one scheme without benchmarking alternatives or accounting for disorder
and symmetry equivalence [[Siron et al., 2025, limiting the comparability of reported S.U.N. scores.
Additional metrics like distribution similarity (e.g., MMD, EMD) and diversity are frequently
used. However, distribution similarity often rewards memorization rather than novelty—misaligned
with discovery goals—while diversity lacks a standardized metric definition or visualizations across
studies.

Crucially, most benchmarks focus on unconditional generation, where models sample stable crystals
broadly from a learned distribution, neglecting the more practically relevant conditional generation
tasks, where models must satisfy target properties under practical constraints. Even rarer are limited-
budget settings, where only a fixed number of candidates can be evaluated (i.e. have a ground-truth
property), despite being closer to practical applications. Efficiency metrics like training time, memory
usage, and inference cost are also under-reported, though increasingly important as model sizes grow.

These limitations motivate LEMAT-GENBENCH: a unified, extensible benchmark that proposes a list
of standardized metrics and tasks, enabling reproducible model comparison through public tools and
a live leaderboard.
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3 Benchmark Methodology

We define three benchmark scenarios representing key tasks in crystal generation: unconditional
generation, conditional generation, and conditional generation with limited oraclep_-] budget. These
scenarios correspond to different levels of supervision and real-world applicability, forming the core
of LEMAT-GENBENCH.

Unconditional generation trains generative models to produce stable and chemically viable crys-
talline materials, learning a general-purpose prior over crystalline structures. Once trained, models
can be fine-tuned for specific discovery tasks—mirroring workflows in LLMs [[Brown et al., 2020,
Achiam et al.| 2023]], diffusion-based image generators [Ramesh et al.,|2022], and protein design
[Madani et al., [2023]]. We propose computing standardized metrics on fixed numbers of generated
structures, assessing models’ ability to produce realistic, stable, diverse, novel, and unique materials.

Conditional generation evaluates property-conditioned generation with inexpensive oracle calls,
without strong resource restrictions (time, compute, oracle queries, labeled data). This benchmark
evaluates whether models can produce useful crystals for target applications by optimizing multiple
properties (e.g., bandgap, bulk modulus, magnetic density) and accounting for chemical space
constraints while maintaining chemically meaningful structures.

Conditional generation with limited budget improves upon the previous scenario by considering
expensive oracle calls (e.g., laboratory experiments, high-level quantum calculations) where only
small numbers of evaluations are feasible. Here, often starting from pre-trained models, we evaluate
sample efficiency in optimizing target properties under oracle budget constraints while maintaining
unconditional generation quality (validity, stability, novelty, diversity). These tasks are detailed next.

3.1 Unconditional Generation

To evaluate unconditional generation, a representative number of structures (e.g., 10k) are sampled
from the trained model and evaluated using the following metrics, whose formal definitions are
provided in Appendix [B]

Validity. We define a validity metric, building on Xie et al.|[2021]], that serves as both a sanity check
and a pre-filtering step to exclude malformed or nonphysical structures. These are designed to catch
common failure modes and reduce computational overhead. We group them into two levels: hard
constraints, which must be satisfied to proceed, and soft constraints, which are informative but not
disqualifying. Hard checks include CIF readability, minimum interatomic distances (>0.5 A), and
density bounds (0.01-25 g/cm?). Soft checks include reasonable lattice parameters, a space group
compatible with the composition and the lattice parameters, and charge neutrality (via oxidation state
plausibility analysis, with a tolerance threshold). Structures failing hard constraints are discarded;
violations of soft checks are logged. All results are aggregated into a single validity score for
transparency and comparison. While submitters may pre-filter their structures, the standardized
criteria ensure consistency across evaluations.

Stability. Thermodynamic stability is a key proxy for real-world material feasibility, typically
assessed via the energy above the convex hull, By, = Eyo — E]ﬁ}{{‘. We consider structures with
Epy < 0 as stable, and < 0.1 eV/atom as metastable, hoping to harmonize common practices.
While formation energy (Ey = FEiy — > ; nip;) has been widely used, it introduces biases—e.g.,
favoring strongly bonded crystals containing electronegative elements—and is not a reliable proxy for
stability. To enable open access scalable evaluation, we compute Ejy) using an ensemble of MLIPs
(MACE-MP [Batatia et al.| [2023]], UMA [[Wood et al., 2025]], and Orb-v3 [Rhodes et al., [2025])),
comparing predicted formation energies to the DFT-based convex hull from LeMat-Bulk [Siron et al.|
2025]. While this introduces systematic approximations [Nong et al.l 2025]], aggregating multiple
MLIPs provides robustness and uncertainty estimates. We report the mean and standard deviation of
FEqun across models. We further evaluate structure quality via a relaxation check, computing the root
mean square deviation (RMSD) between initial and relaxed atomic positions (averaged over each
MLIP). Low RMSD indicates proximity to a local minimum. Note that we report only direct S.U.N.
scores as participants are encouraged to submit relaxed structures. This combined protocol balances
scalability with physical realism and improves comparability across submissions.

!An oracle is a function that returns a material property score—whether from an ML model, DFT simulation,
or other evaluation method. Oracles vary in computational cost and accuracy.
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Novelty, Uniqueness and Diversity. Exploration capabilities of generative models are assessed
through novelty, uniqueness, and diversity metrics. Novelty measures the fraction of generated
crystals not found in a reference dataset, using structural fingerprints, to identify previously unseen
materials. Again, we use LeMat-Bulk [Siron et al.,2025] as reference database—as it represents the
most extensive set of known crystal structures—and apply the MatterGen-adapted StructureMatcher
[Zeni et al.| [2025] as our default—as it handles symmetry, disorder, and known edge cases reliably.
To ensure scalability, we restrict comparisons to structures of matching composition, and implement
the Short-BAWL fingerprint [Siron et al.|[2025]] to support scalable comparison across large model
output. Uniqueness quantifies non-redundancy among generated structures using the same finger-
printing approach. Diversity captures the spread of generated samples across crystal sizes, space
groups, elemental compositions, and structural descriptors. We compute per-feature Shannon entropy
aggregating results into a single diversity score with visualization tools in the LEMAT-GENBENCH
codebase. Note that novelty, an approximate metric, should be treated with caution. Structural identity
does not always imply functional equivalence, and the boundary between new and known materials
is inherently fuzzy. Still, standardizing fingerprint methods, reference datasets, and thresholds is
critical for enabling meaningful comparisons and tracking progress. Lastly, note that we also compute
Novelty on valid, stable and unique structures, which offers different information compared to doing
it on the whole set of generated structures.

(ML)S.U.N. rate. We aggregate core evaluation criteria into a single, standardized metric: the S.U.N.
rate, measuring the fraction of generated structures that are Stable, Unique, and Novel. This serves as
our primary benchmark for unconditional generation in LEMAT-GENBENCH, with each component
precisely defined using fixed thresholds, reference datasets, and fingerprinting methods. To account
for synthesizable but metastable materials, we also report the M.S.U.N. rate, relaxing stability to
Epa < 0.1 eV/atom. This metric sets a practical upper bound on generative performance and
provides a consistent, interpretable measure to compare models.

Model efficiency. Beyond output quality, we also report efficiency metrics related to training and
inference. Specifically, authors must provide: (i) training compute in FLOPs and time (CPU/GPU
days), (ii) inference time to generate 10k relaxed structures on a reference CPU/GPU (e.g. Nvidia
A100)] and (iii) peak memory usage during inference, together with number of model parameters.
Reporting these values will inform model cost and scalability, and support analysis of tradeoffs
between performance (e.g., M.S.U.N. rate) and deployment feasibility.

3.2 Conditional Generation

Conditional generation (with inexpensive oracle call) achieves two important goals: it allows down-
stream users to choose the best-performing model for their task, and gives developers freedom to
innovate across all aspects of model development beyond just algorithms. In addition to the uncondi-
tional generation metrics, we focus on whether generated crystals exhibit desired properties for the
intended application. We detail these additional metrics below.

Property targeting metrics. We evaluate how well models optimize target crystal properties—
whether maximizing/minimizing a quantity (e.g., bulk modulus) or targeting a specific range (e.g.,
bandgap ~ 2.6 eV). For extremal tasks, we report top-k values (for £ = 1, 10, 100) with mean and
standard deviation. For range-targeting tasks, we compute the success rate: the fraction of generated
structures satisfying the property threshold or interval. While intuitive and useful, these metrics
can be gamed through brute-force sampling and filtering. To address this, we report Conditional
(M.)S.U.N. rate, which evaluates the fraction of stable, unique, and novel structures that satisfy the
property constraint. We recommend reporting both top-k scores over the valid (M.)S.U.N. subset
and overall success rate to fairly assess generation quality and learning efficiency, ensuring complete
evaluation of inverse design tasks.

Multi-objective optimization metrics. Realistic scenarios demand materials that meet multiple
property requirements, so models must be evaluated on their ability to optimize these jointly (e.g.,
bulk modulus, bandgap, HOMO-LUMO, density). To do so, we use hypervolume indicators (HVI)
as our primary evaluation metric. It quantifies the volume of dominated objective space relative to a
reference point, rewarding both high performance and spread of generated samples across conflicting

“While inference cost is typically negligible compared to the cost of downstream validation (e.g., DFT or
experiments), standardized reporting of these metrics provides important context for practical usability and
future integration into closed-loop discovery pipelines.



243
244

245
246
247
248
249
250
251
252
253

254

255
256
257
258
259

261
262
263
264
265

266
267

269
270

271
272
273
274
275
276

277

294

targets. Pareto optimality and multi-objective quality-diversity (MOQD) score [Janmohamed et al.|
2024] are also implemented and can be used as diagnosis tests.

Constraint adherence metrics. Besides generating materials with multiple properties of interest,
practitioners are interested in focusing on specific compositions (e.g., no rare earth materials),
symmetries (e.g. non-centrosymmetric crystals), or other such characteristics. In such constraint-
aware scenarios, we additionally report metrics like lattice, space group, and compositional fidelity
to assess whether generated materials adhere to target symmetry or elemental design constraints.
While these metrics can be applied in unconditional generation settings, conditional generation is
application-specific. Therefore, we propose three benchmark tasks to stress-test generative models
under realistic, goal-driven discovery settings. Each task is defined in Section [ with targeted
property values and structural constraints.

3.3 Conditional Generation with Limited Budget

In reality, access to labeled data and high-fidelity evaluations are often limited: only a few examples
of materials with the desired property or a limited budget to annotate candidates will be available.
In such cases, each high-fidelity label (e.g. DFT or experiment) is expensive, making sample-
efficient and steerable generation essential. This setting mirrors realistic R& D workflows, where
discovering optimal candidates under strict supervision constraints is a key challenge. This task
evaluates how quickly and effectively conditional generative models can identify materials matching
a target property, under limited supervision. Inspired by benchmarks in protein and drug design (e.g.,
TDC |Huang et al.| [2022]], FLIP Dallago et al.|[2021]]), we adopt a similar philosophy grounded in
solid-state materials, tracking top-k values and success rates under query constraints. We define
two complementary setups as follows. In both these cases, the target property will not be revealed to
avoid any reward hacking from the community.

 Offline learning. A fixed, small dataset (e.g., 1k labeled crystals) is provided to practitioners,
with hidden property values computed by a black-box oracle. Generative models can leverage
this data freely (e.g., training surrogates, learning property-conditioned latent spaces or
designing heuristics) before generating candidates. The evaluation is conducted via the
original oracle, using Conditional S.U.N. for top-k or success-based metrics.

* Online learning . Practitioners are given access to a black-box oracle API (e.g., MLIP or
DFT proxy), which they can query up to a fixed budget (e.g., 1k oracle calls). This setup
should reflect realistic optimization workflows, where evaluating each sample incurs a cost
and is therefore limited. Practitioners are free to choose what sample they want to label next,
incorporating exploration strategies, uncertainty estimation, or adaptive learning to make
the most of each query. We track Conditional S.U.N. evolution over query budgets.

4 Towards an Open Benchmark Framework

4.1 Leaderboard implementation

To converge towards a community-wide benchmarking framework, we adopt several concrete steps
hopefully accelerating progress in generative crystal modeling. Specifically, we provide a unique
fully open-source implementation of the proposed evaluation metrics, both for unconditional and
conditional evaluation tasks, with and without budget constraints, which can be used and updated by
the community as the field evolves. These tools aim to standardize key evaluation components: (i)
LeMat-Bulk as the reference dataset for S.U.N, (ii) an ensemble of MLIPs for robust formation energy
and convex hull prediction, with uncertainty quantification (iii) validity checks split into hard (pre-
filter) and soft (diagnostic) constraints, (iv) a unified diversity score, (v) resource efficiency reporting,
(vi) multi-objective reporting, (viii) pre-relaxed structure submission and post-relaxation RMSD
checks and (ix) structural equivalence via BAWL and StructureMatcher fingerprints. To further
facilitate fair model comparisons, we also introduce a public leaderboard on Hugging Face. The
submission process is as follows: (i) Authors submit 10k generated crystal structures for unconditional
and/or conditional tracks; (ii) Authors may also submit their packaged model, granting a compliance
badge (optional); (iii) Reference metrics are computed using our open reference implementation;
(iv) Results are displayed with multiple views to support comparison across tasks and generation
scenarios. The code is available here https://github.com/LeMaterial/lemat-genbench.
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For conditional generation (with an inexpensive oracle), we define three benchmarking tasks, as
indicated in Section [3.2] Remember that for this evaluation suite, we provide the oracle function that
measures if generated candidates possess the target property, and that participants are allowed to use
this oracle as they wish during training.

1. Maximize density. The goal is to generate crystal structures with highest volumetric density.
Since density is straightforward to compute from atomic positions and unit cell volume, this
task requires no machine-learned potential. It serves as a useful sanity check for structural
validity, as models may exploit the objective by tightly packing atoms—potentially violating
physical or chemical plausibility.

2. Target bandgap. This benchmark invites models to generate crystals with a bandgap of 2.6
eV (relevant for optoelectronic [Xing et al., 2018} |/Alaghmandfard and Ghandi, 2022]). There
are relatively large publicly-available bandgap datasets and several cheap proxy models,
which gives plenty of freedom to participants. Because of the benchmark scale and the
complications entailed, the evaluation of generated materials will be done using a select
proxy (MLIP) instead of DFT. Its architecture and training data will be transparently shared
and available to use.

3. Stable magnets for sustainable electronics. This synthetic benchmark is targeted towards
rare-earth-free magnetic materials, a task of high technological importance [Vishina et al.,
2020, [ Xia et al., [2022] [Kaba et al.,|2023]]. We would like crystals to exhibit high magnetic
density (maximize it), a bandgap between 0.05-0.5 eV, and an Herfindahl-Hirschman Index
(HHI) score (an estimate of supply chain risk based on materials availability and cost) lower
or equal to 5. This involves multiple property optimization and constraints. The scoring
function used to evaluate bandgap and magnetic density will also be released, to provide
transparency to practitioners on the leaderboard evaluation.

For conditional generation under limited oracle budget (Section [3.3)), we release a list of crystal
structures with ground-truth values of a concealed property. Participants operate in a black-box
setting that simulates real-world conditions where only a small number of oracle queries (e.g., DFT or
experiment) are available. The task setup is deliberately underspecified to discourage reward hacking.

All in all, this evaluation framework and these benchmarking scenarios aim to provide clear, fair, and
rigorous standards for evaluating generative models in crystal generation, while remaining flexible to
evolving research needs and application contexts. It should enable more meaningful and fine-grained
comparisons between crystal generative approaches, highlight promising research directions, and
ultimately help bridge the gap between computational prediction and experimental realization. This
infrastructure is particularly crucial as the field moves toward closed-loop discovery pipelines that
integrate computational prediction, experimental validation, and synthesis planning. More details can
be found in the LEMAT-GENBENCH codebase and on the Hugging Face leaderboard. Finally, let’s
emphasize that, not unlike the rest of the field, this evaluation framework and benchmark has many
limitations and areas for future development; nevertheless, we seek to provide a first step towards
accelerating progress in materials generation through better model evaluation practices.

4.2 Benchmarking workflow

To ensure consistency, scalability, and physical soundness in evaluation, our benchmark pipeline
consists of two main phases: (i) mandatory validity filtering and (ii) metric-specific preprocessing and
evaluation. The full implementation is in Appendix [C|and the public codebase. For now, we focus on
unconditional generation. Conditional benchmarks will be made public upon paper acceptance.

Phase 1: Validity Filtering. All submitted structures undergo a standardized validity check before
any downstream metric is computed. This includes hard constraints—such as CIF readability,
minimum interatomic distance thresholds, and physical density bounds—and soft checks like charge
neutrality and symmetry consistency. Structures that fail hard constraints are excluded from further
analysis, ensuring that downstream metrics (e.g., energy above hull or diversity) are computed only
on physically plausible samples. This filtering step reduces computational overhead and serves as a
common sanity layer across models.

Phase 2: Metric-Specific Preprocessing. Depending on the evaluation metrics selected, the system
dynamically applies a set of modular pre-processors. For example:
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* Stability pre-processors use an ensemble of MLIPs (ORB v3, MACE-MP, UMA) to relax
structures, compute formation energies, and evaluate energy above hull.

* Fingerprint-based metrics (e.g., novelty, uniqueness, S.U.N.) use either hash-based fin-
gerprints (short-BAWL) or direct pairwise comparison via StructureMatcher. The
FingerprintPreprocessor is applied only for fingerprint-based methods, and skipped
when using StructureMatcher.

* Distribution pre-processor (e.g., MMD, JS divergence) computes structural and composi-
tional statistics to compare against the reference LeMat-Bulk dataset.

Each preprocessor attaches computed features to the structure objects, enabling smooth integration
with subsequent benchmarks. Benchmarks are executed independently with optimized memory
management. Outputs are stored in a structured JSON format with full traceability and diagnostics.

By decoupling filtering, preprocessing, and evaluation, the benchmark is modular, extensible, and
robust to different modeling paradigms.

4.3 Benchmarking Results and Discussion

We evaluate ten generative models for crystalline materials using the LEMAT-GENBENCH benchmark.
These include: ADIT [Joshi et al., [2025]], Crystalformer [Cao et al., [2024]], DiffCSP [Jiao et al.,
2023, DiffCSP++ [J1ao et al., [2024]], LLaMat2 [Mishra et al., [2024], MatterGen [Zeni et al., [ 2025],
PLaID++ [Xu et al.| 2025]], SymmCD [Levy et al., [2025b], WyFormer [Kazeev et al.| [2025]], and
WyFormer-DFT [Kazeev et al., 2025]. All models except MatterGen were trained on the MP-20
dataset; most rely on diffusion or autoregressive backbones, while PLalD++ additionally leverages
reinforcement learning. For each model, we evaluate 1,000 structures either obtained from the authors
or sourced from public repositories [Kazeev et al.,[2025]]. A detailed breakdown of data sources is
provided in Table 4]

Importantly, all evaluations are conducted on the submitted structures without re-relaxation. While
this simplifies benchmarking and ensures reproducibility, it likely underestimates metrics such as
S.U.N. and M.S.U.N. We encourage future submissions to include relaxed structures to better reflect
thermodynamic viability. Post-relaxation metrics will be supported in future benchmark versions and
are currently available for indicative analysis.

Model Valid T  Unique T  Novel 1 Energy-based | Stablet SUN{T MSUNT
Ef Ehull Relax-RMSD
ADIT 812 806 252 —2.29 +3.81 2.11+4.42 0.39+0.39 19 2 5
Crystalformer 577 572 247 —1.72+9.74 2.73 +5.96 0.59 +0.86 13 4 5
DiffCSP 732 729 475 —2.35+3.73 1.77 +4.22 0.52 +0.62 17 11 18
DiffCSP++ 748 747 482 —4.40 +7.77 2.59 +5.58 0.66 £0.78 20 10 15
LLaMat2 779 769 286 —1.12+4.71 2.57 +5.67 0.49 +0.62 21 6 11
MatterGen 739 738 499 —2.22 4+ 2.81 1.73 +4.18 0.33 +0.40 19 10 42
PLaID++ 960 848 228 —2.32+2.99 3.45 +6.16 0.11 +o0.24 25 3 26
SymmCD 561 560 343 —1.16 £8.28 2.82 +5.50 0.76 £ 0.96 9 3 3
‘WyFormer 798 798 530 —3.56 +£8.38 2.05+£5.34 0.72+0.79 16 6 6
‘WyFormer-DFT 839 834 569 —4.75+7.72 2.14 +5.66 0.38 +o0.61 15 9 25

Table 1: Core benchmark metrics for 10 generative crystal models evaluated on 1,000 generated
structures each. Arrows indicate optimization direction. Bold indicates best performance, underlined
indicates second-best.

Key takeaways. Table [T|and Table[2]highlight the diversity of model behavior across evaluation
axes. No single model dominates all metrics—emphasizing the need for multi-faceted benchmarking.
MatterGen achieves the highest M.S.U.N. rate (42), indicating strong potential to discover metastable,
novel, and unique structures. DiffCSP leads in S.U.N. (11), showing strong performance on truly
stable materials. PLalD++ attains the highest validity (960) and uniqueness (848), and generates the
most stable structures (25), but yields lower novelty and moderate S.U.N., likely reflecting its more
constrained generative distribution. Energy-based metrics reveal interesting contrasts. WyFormer-
DFT and DiffCSP++ achieve the lowest formation energies, while MatterGen leads on mean energy
above hull (1.73 eV), likely aided by symmetry-aware structure matching and better coverage of
stable regions. Relaxation RMSD values—serving as a proxy for energetic smoothness—are lowest
for PLalD++ and MatterGen, indicating generation of structures close to local minima. Notably,
distribution similarity metrics (JS, MMD) often trade off with novelty and diversity. SymmCD
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shows the best distribution match (JS: 0.236), but has low S.U.N./M.S.U.N. and diversity, suggesting
overfitting to the training distribution. In contrast, models like WyFormer and MatterGen deviate more
from the training set but achieve better novelty and metastability scores. WyFormer-DFT stands out
for balancing high novelty (569), strong uniqueness (834), and competitive energy metrics—validating
the utility of DFT-relaxed generation. Diversity metrics further confirm this heterogeneity: LLaMat2
and WyFormer variants show strong performance across structure size, space group, and elemental
spread. Models with higher diversity also show higher JS/FID, suggesting that broader chemical
exploration comes at the cost of fidelity to training distribution.

These results underscore the importance of standardized, multi-dimensional evaluation in generative
materials modeling. Depending on downstream goals—exploration, safety, performance, or real-
ism—different models may be preferable. This highlights the utility of tools like LEMAT-GENBENCH
in guiding model selection, evaluation, and improvement.

Distribution Diversity HHI

Model

JS{ MMD| FID] ElemDivt SGDivt  SizeDivtT  SiteDivT Prod] Res/|
ADIT 0.522 0.003 1.848 0.703 0.022 0.270 14.221 3.428 2.661
Crystalformer 0.273 0.003 2.489 0.695 0.313 0.322 17.385 3.830 2.785
DiffCSP 0.464 0.007 1.796 0.695 0.104 0.279 14.277 3.420 2.628
DiffCSP++ 0.243 0.005 2.387 0.686 0.391 0.307 20.007 3.535 2.692
LLaMat2 0.329 0.003 1.431 0.703 0.187 0.269 9.153 3.994 2.988
MatterGen 0.439 0.006 1.798 0.644 0.126 0.276 12.109 3.525 2.650
PLaID++ 0.446 0.035 3.008 0.652 0.204 0.238 5.948 5.246 3.394
SymmCD 0.236 0.006 1.879 0.703 0.378 0.320 18.088 3.549 2.692
WyFormer 0.238 0.008 1.436 0.695 0.370 0.309 21.638 3.601 2.701
WyFormer-DFT ~ 0.271 0.011 2.129 0.712 0.387 0.302 21.900 3.495 2.666

Table 2: Distribution similarity, diversity, and supply-chain risk metrics for generative crystal models.
Lower values are better for distribution (JS, MMD, FID) and HHI metrics, while higher values
indicate better diversity across elemental composition, space groups, crystal sizes, and atomic sites.

5 Conclusions and Outlook

Generative models for crystalline materials are rapidly reshaping the landscape of computational
discovery, but their evaluation remains inconsistent and fragmented. LEMAT-GENBENCH addresses
this gap by providing a unified, extensible framework for benchmarking generative models of
inorganic crystals. It standardizes a core set of metrics centered on stability, uniqueness, and novelty
(S.U.N.), together with validity, diversity, and efficiency. These metrics are complemented by a
suite of evaluation tasks beyond unconditional generation, including conditional and limited-budget
settings, bringing assessment practices closer to real-world discovery scenarios.

We release an open-source evaluation toolkit and public leaderboard enabling model comparisons un-
der consistent protocols. Baseline results from 10 recent models demonstrate LEMAT-GENBENCH’s
value in diagnosing performance trade-offs and revealing model patterns. Our results show no single
model dominates all metrics. By aligning model evaluation with realistic constraints and application
needs, LEMAT-GENBENCH aims to guide development of more capable, reliable, and scientifically
useful generative models. We see this as a first step toward closing the loop between computational
generation and experimental validation.

Limitations and Future Directions. This release focuses on unconditional generation evaluation,
with conditional generation benchmarks and expanded model implementations planned for future
updates. Key challenges remain. Data quality is a persistent bottleneck: widely used datasets often
lack compositional diversity, structural metadata, or negative examples necessary for robust training.
Property-conditioned generation is further hindered by unreliable surrogate models and inconsistent
conditioning protocols. Most generative models assume idealized, defect-free crystals, overlooking
critical phenomena like disorder, doping, and non-stoichiometry that shape real-world functionality.
Moreover, stability assessment relies on ensembles of MLIPs, which—despite averaging—can
deviate systematically from DFT, especially near stability thresholds. Finally, although we assess
thermodynamic plausibility, our framework does not yet capture kinetic barriers, synthesis feasibility,
or real-world constraints. Bridging these gaps—especially toward synthesis-aware and experimentally
grounded pipelines—will require tighter integration between data, modeling, and validation across
disciplines. Environmental and sustainability considerations are discussed in Appendix [D}
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Supplementary Material

Box 1: Key Terms in Generative Modeling

Generative Model: A machine learning model that learns a data distribution p(x) (or a
conditional distribution p(x|z) or p(x|c)) and can generate new samples X’ ~ p(x) that
resemble the training data.

Latent Space: A lower-dimensional representation space z € R learned by models such as
VAEs or GANs, where semantic attributes of the data are often encoded.

Prior Distribution: A predefined distribution (e.g., Gaussian) over the latent variables,
typically denoted as p(z), from which samples are drawn during generation.

Decoder / Generator: A neural network (often denoted G(z)) that maps latent codes z to
data samples x.

Reconstruction Loss: A metric used in training autoencoders and VAEs that measures how
well the generated sample X matches the original input x:

Lirecon = ||X — x||? or —logp(x|z).

KL Divergence: A measure of how much one probability distribution differs from another.
Commonly used in VAESs to regularize the encoder:

Lx1. = Dxi(q(z]x)|p(z)).

Mode Collapse: A failure mode in GANs where the generator produces samples with limited
diversity, collapsing to a few modes of the data distribution.

Conditional Generation: Generation of samples x based on specified properties or con-
straints c, e.g., p(x|c), enabling property-guided design.

Inverse Design: The process of searching the input space (e.g., structure, composition) that
maps to a desired target property, often using a generative model or an optimization loop in
latent space.

Diffusion Models: A class of generative models that learn to reverse a stochastic diffusion
process. Data x is gradually perturbed into noise via:

q(x¢[x0) = N (x¢; /auxo, (1 — ay)I).
and a neural network is trained to denoise x; to recover x through a learned reverse process
Do (Xt—l |Xt)-

Score-Based Models: Closely related to diffusion models, they learn the score function
V« log p(x) and use Langevin dynamics or ODE solvers to sample from the data distribution.

det

of!
ox

K
logp(x) = logp(z) + Y _ log
k=1

Flow Matching: A recent generative approach that avoids training score functions or simu-
lating diffusion. It directly learns a vector field vy (x, ¢) that maps noise to data through an
ODE:
dx
dt
This method can be trained via supervised learning on synthetic trajectories or velocity fields
between the base and target distributions.

= vy(x,1).
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Box 2: Key Terms in Crystallography & Materials Science

Crystal Lattice: A crystal structure is periodic in three dimensions. This periodicity is
described by the lattice, which is defined as

L= {llal + lyag + lla3|l1, ls,l3 € Z},
where a1, as, a3 are basis vectors of R3.

Unit Cell: A unit cell is the smallest unit that can be translated to define the whole lattice. In
three dimensions, it is always a parallelepiped.

Lattice Parameters: A lattice is typically defined in two ways: either as a set of three basis
vectors, or as a set of lattice parameters (a, b, ¢, «, 8, ), where a, b, ¢ are the lengths of edges
of the unit cell, and «, 3, 7y are the angles between them.

Symmetry: An object’s symmetry is given by the set of geometric transformations that map
the object onto itself, leaving it invariant.

Space Group: Crystals can be classified by their symmetries. They possess the translational
symmetry of their crystal lattices, and they may also have the point group symmetries of
rotations and reflections within a unit cell. The combination of translational and point group
symmetries can yield more transformations that a crystal can be symmetric to, including
screw and glide symmetries. The full set of symmetric transformations that leave a crystal
invariant defines the space group of the crystal. In three dimensions, there are 230 types of
space groups.

Wyckoff Position: Applying symmetry operations to a crystal may leave some atoms
unaffected: for example, a rotation about an axis leaves atoms on the axis in the same position.
The set of symmetry operations that do not move a position is that position’s site symmetry. A
Wyckoff position is a set of positions that all have the same site symmetries, or conjugate site
symmetries. For example, all points along a mirror plane may belong to the same Wyckoff
position, while a point at the origin of a unit cell may have its own Wyckoff position. Every
point in a crystal can be assigned a Wyckoff position.

Formation Energy: The formation energy of a crystal is the difference in energy between
the crystal and its constituent elements.

Energy above Convex Hull: The convex hull gives linear combinations of known phases
that represent the lowest-energy mixtures of materials; if a material has an energy above the
hull (B > 0), it is energetically favorable for it to decompose into a combination of stable
phases and is therefore thermodynamically unstable. For example, the convex hull of table
salt, NaCl, also includes pure stable Na, pure Cl, as well as NaCls. However, NayCl has a
higher formation energy than the combination of NaCl and pure Na, so it is unstable.

Metastable: Even if a crystal is not in its lowest possible energy state, it may still be
metastable, meaning that a potential energy barrier prevents it from easily transitioning to a
lower-energy state. A crystal having a low energy above the convex hull while also being at an
energy minimum may indicate that it is metastable. Metastable materials are still important:
for example, diamond is metastable, but does not readily convert to a lower energy state under
normal conditions.

Band Gap: The band gap is the difference in energy between the valence band and the
conduction band in a solid.

CIF: Crystallographic Information File, a string-based encoding of a crystal that includes
information such as atom positions, unit cell parameters, and chemical elements.
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Figure 1: An overview of the generative Al paradigm for candidate structure generation and opti-
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Figure 2: Overview of generative models for materials discovery discussed in this work. (a) Change
over time of major model architectures discussed herein, showing early dominance of VAEs and
the growth in prevalence of LLMs. (b) Treemap of target properties optimized across models;
box size reflects the proportion of papers mentioning each property. Space group, composition,
lattice parameters, and formation energy are the most common targets. (c) Pie charts illustrating
the dominant model types used for unconditional (left) and conditional (right) materials generation,
where the majority of conditional models can also do unconditional generation but not the other way
around. The methods are clustered according to the primary (and, if applicable, secondary) model
class. Colors match panel (a). Each model is annotated with its primary input data type; as the
majority of current models return structures in CIF file format, this is not illustrated. Abbreviations:
LLM = large language model; VAE = variational autoencoder; RL = reinforcement learning; NL
prompt = natural language prompt; PXRD = powder X-ray diffraction. “CIF prefix” typically includes
composition, space group, and lattice parameters; “Crystallographic file” refers to any file encoding
structure data (e.g., XYZ, PDB, CIF).
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A Desired Properties of a Crystal Generation Benchmark

Benchmarking plays a vital role in addressing this gap. Beyond enabling rigorous cross-model
comparisons, it helps define what “good models” should look like in this rapidly evolving space. They
offer reference points for assessing progress, provide structure for evaluating emerging methods, and
help researchers, especially newcomers, understand how to design generative models with real-world
impact.

Here, we list the desirable properties of the benchmark for crystal generation.

* End-to-end automation with standardized evaluation. For leaderboards and extensive
evaluations across increasing new models, evaluations must run automatically across mul-
tiple datasets. The benchmark should provide automated structure validation, stability
calculations using MLIPs, and property assessment without human intervention, enabling
continuous maintenance of the leaderboard and seamless evaluation for users.

» Expert validation of reference datasets and metrics. Manual curation by crystallographers
and materials scientists is essential to ensure the reference dataset (for instance, LeMat-
Bulk, in this case) is free from duplicates, unstable structures, and annotation errors. Expert
validation should also verify that evaluation metrics (fingerprinting, convex hull calculations)
accurately capture physical and chemical plausibility.

¢ Compatible with diverse model architectures. The benchmark must accommodate dif-
ferent generative paradigms (VAEs, diffusion models, GFlowNets, LLMs, flow matching)
and various crystal representations (CIF files, fractional coordinates, voxel grids, graph
structures). The evaluation framework should accept any valid crystal structure format (or
most of the widely used formats) as input.

» Usable with black-box generative systems. Many relevant systems are proprietary or use
complex multi-stage pipelines. The benchmark should operate solely on generated crystal
structures (the final CIF or structural files) without requiring access to model weights, latent
representations, or intermediate outputs.

* Probing capabilities beyond basic structure generation. Real-world materials discovery
requires more than generating valid crystals. The benchmark must evaluate conditional
generation (property-targeted design), multi-objective optimization, synthesis constraints,
and the ability to navigate complex structure-property relationships, not just unconditional
sampling.

* Cover diverse material systems and chemical spaces. Materials science spans inorganics,
organics, metals, semiconductors, and complex compounds across the periodic table. The
benchmark should evaluate performance across different crystal systems, space groups,
bonding types, and compositional complexity to assess true generalization capability.

* Cover diverse materials design skills. Holistic evaluation requires assessing multiple
competencies: thermodynamic reasoning (stability prediction), chemical intuition (rea-
sonable bonding), crystallographic knowledge (symmetry constraints), and inverse design
capabilities (property-to-structure mapping).

* Cover a range of generation difficulty levels. To provide continuous improvement signals,
the benchmark should span from simple binary compounds to complex multi-component
systems, from high-symmetry to low-symmetry structures, and from well-studied to novel
chemical spaces.

» Impossible to completely solve with current models. The benchmark should include
challenging scenarios that push model limits: generating stable materials in unexplored
chemical spaces, satisfying multiple competing constraints simultaneously, and discovering
genuinely novel crystal structures that extend beyond training distributions.

* Bridge computational prediction with experimental reality. Unlike purely computational
benchmarks, crystal generation must ultimately connect to synthesizable materials. The
evaluation should incorporate synthesizability proxies, experimental validation pathways,
and metrics that correlate with real-world materials discovery success.
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B Evaluation metrics for materials generation

B.1 Unconditional Generation

Unconditional generation refers to the task of producing valid, stable crystal structures without
targeting specific properties or constraints. The following metrics assess the fundamental quality of
generated structures:

Fundamental Validity Metrics. These ensure the outputs are physically meaningful and chemically
plausible. In different terms, they serve as a sanity check both for model development and inference
time. Note that all metrics may not be relevant for every material system.

* Charge Neutrality: The total valence charge of all atoms must sum to zero:

N
D a=0 )
i=1

where ¢; is the nominal oxidation state of atom ¢ in the structure. For this to be calculated,
the oxidation states of every atom in the structure must first be assigned. Here, we have
developed a hierarchical structure for determining oxidation states and charge neutrality:

1. If all atoms are metals, each atom is assigned a nominal oxidation state of zero and the
structure is labeled as charge balanced.

2. If all atoms are not metals, the Pymatgen “get-oxi-state-decorated-structure" function
Ong et al.|[2013]] is used to assign oxidation states and determine charge balance.

3. However, the function used above can fail to find oxidation states for structures that
are not well optimized. It is still necessary to determine whether these structures
are charged balanced, particularly in the case of generative model benchmarks, when
many structures may be too far from typical structures for the Pymatgen functions to
analyze them. Here, we determine charge neutrality using a data driven approach from
LeMatBulk [Siron et al.| [2025]]. First, this workflow determines all the possible charge
balanced compositions of oxidation states based on the observed oxidation states in
LeMatBulk. If no charge balanced composition can be made using these oxidation
states, the structure is labeled invalid. The most likely oxidation state assignments for
this particular composition, each composition is assigned a score based on how probable
that particular oxidation state configuration is, as determined by the distribution of
oxidation states seen in LeMatBulk. This score is determined by multiplying all of the
probabilities for each individual oxidation state together and multiplying by the number
of elements for a normalization. If the probability is greater than 0.001, the structure
passes the validity test. Otherwise, to be charge balanced it requires a combination of
oxidation states which are extremely rare, and therefore, is not valid.

* Minimum Interatomic Distance: All interatomic distances d;; must exceed a cutoff value
dmin to prevent atomic overlap. We suggest adopting 0.7 A.

dij > dpin Vi 75] ()

Mass density and atomic number density : are within reasonable ranges. Mass density

is given by p = %, in (g/cm®). The latter is expressed in atoms/A®. We take upper

bounds of 25 g/cm? and 0.5 atoms/A3, respectively.

Valid crystallographic representation : a good proxy is to determine whether a structure
is CIF-readable using pymatgen.

Lattice Parameters : are within reasonable ranges. We take upper bounds of 100 Afor
a,b,c and 180 degrees for «, 3, -y respectively, and lower bounds of 1 Aand zero degrees for
a,b,c and a, 3, 7, respectively.
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Stability metrics. These assess the thermodynamic and energetic properties of generated structures:

* Formation Energy (Ey):

E; = Eio(compound) — an‘/iz‘ 3)

where FEyy is the total energy of the crystal, n; is the number of atoms of element ¢,
and p; is the chemical potential of the pure element. The result is normalized per atom:

B alom — ;—fn We want it to be as small (and negative) as possible.
The chemical potentials y; are derived from the LeMaterial-Bulk dataset by taking the mini-
mum energy among all single-element structures for each element: p; = mingeg, (E,(K]fr)m>

where S; is the set of all single-element structures containing element 3.

Multi-MLIP Ensemble Implementation: The formation energy metric supports ensem-
ble statistics across multiple MLIPs (ORB, MACE, UMA). For each structure, ensemble
statistics are computed as:

1 NwLip *)
Es) = E “4)
Ep) Ny kz::l !
Nwiip
1 (k) 2
_ E® _(E ) 5
o5, =\ Fo g 2 (B — () 5)

k=1

where E}k) is the formation energy predicted by the k-th MLIP. The im-
plementation extracts pre-computed ensemble statistics from structure properties
(formation_energy_mean, formation_energy_std) or calculates them from individual
MLIP results (formation_energy_orb, formation_energy_mace, etc.). A minimum
of 2 MLIPs is required for ensemble statistics.

Energy Above Convex Hull (Fypyy):
B = Bt — Epii? (6)

Structures with Ep, < 0 are considered stable, while values below approximately 0.1
eV/atom are often deemed metastable. We take LeMat-Bulk [Siron et al.,[2024] as reference
point for calculating the convex hull.

The convex hull is constructed by filtering the LeMat-Bulk dataset to include only com-
pounds containing elements present in the target composition, creating PDEntry objects,
and using Pymatgen’s PhaseDiagram.get_decomp_and_e_above_hull () method. The
implementation handles charged species by extracting neutral elements before phase diagram
construction. Multi-MLIP ensemble statistics follow the same formulation as formation

. _ 1 Nwmrip k . . .. .
energy: (Epu) = N D opon® B with corresponding standard deviation calculations.

Relaxation Stability: Use an ensemble of Machine Learning Interatomic Potentials to relax
the generated structures (each one is done independently). Then, compute the Root Mean
Square Deviation (RMSD) between pre- and post-relaxation atomic positions:

N
1 .
RMSD = , | = 21 ipit — pretax |2 @)

Low RMSD indicates minimal distortion and structural robustness under optimization.
The implementation calculates individual RMSD values for each MLIP relaxation, then
computes ensemble statistics: (RMSD) = ngﬂ“’ RMSD® where RMSD*)
is the relaxation RMSD from the k-th MLIP. The metric extracts pre-computed val-
ues from structure properties (relaxation_rmsd_mean, relaxation_rmsd_std) or
calculates ensemble statistics from individual MLIP results (relaxation_rmsd_orb,
relaxation_rmsd_mace, etc.). Lower values indicate better structural stability under
relaxation.
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Novelty, Uniqueness, and Diversity Metrics. These evaluate how effectively a model explores the
chemical space:

 Novelty (NV): Evaluates the fraction of generated structures that are not present in a reference
dataset of known materials. The novelty score is defined as:

{reG|z¢T}
|Gl

where G is the set of generated structures and 7' is the reference dataset (LeMat-Bulk).

The implementation supports two comparison methods: BAWL fingerprinting using crys-
tallographic hash strings with Weisfeiler-Lehman graph kernels, and structure matching
using Pymatgen’s symmetry-aware structural comparison algorithms. For BAWL, novelty is
determined by checking if the generated structure’s fingerprint exists in the pre-computed
reference fingerprint set. For structure matching, each generated structure is compared
against reference structures with overlapping elemental compositions using space group
analysis and atomic position matching with configurable tolerances. In our paper, we report
results using the structure matcher approach for more robust structural comparison against
the LeMat-Bulk reference dataset.

N ®)

* Uniqueness (/): Measures the fraction of unique structures within the generated set to
assess internal diversity. The uniqueness score is defined as:
_ |unique(G)|

U=—FF7°- 9
Tel &)

where unique(G) returns the set of unique structures based on their fingerprints.

The metric is implemented as a structure-level continuous scoring system rather than binary
classification. For BAWL fingerprinting, individual uniqueness scores are assigned as
u; = 1/¢;, where ¢; is the count of structures sharing the same fingerprint within the
generated set. This assigns a score of 1.0 to truly unique structures while proportionally
penalizing duplicated structures. For structure matching, the implementation uses pairwise
comparison with an ordered approach: structure ¢ is considered unique if it is not equivalent
to any structure j where j < ¢, ensuring deterministic selection of the first occurrence as

. . . .. G
the unique representative. The overall uniqueness metric is computed as U = ﬁ Z‘zzll Uj.

Both BAWL fingerprinting and structure matching methods are supported, with structure
matching used for paper results.

* S.U.N. and M.S.U.N. Rates: Proportion of generated structures that are simultaneously
Stable (or Metastable), Unique, and Novel:

{z € G| Eqyai(z) <0, z ¢ T, x is unique }|

S.U.N. Rate = 10
ate ] (10)
M.S.UN. Rate — {z € G |0 < Epu(z) |2‘7, x ¢ T, x is unique}| (11

where 7 is a metastability threshold (commonly 0.08-0.1 eV/atom, though this varies across
studies [Miller et al., 2024, \Gruver et al., 2024, |Zeni et al .| [2025]).

The implementation follows a hierarchical computation order: Stability — Uniqueness —
Novelty. First, structures are classified as stable (Ey,; < 0) or metastable (0 < Epyy < 7)
using energy above hull values computed by the Multi-MLIP stability preprocessor. Then,
uniqueness is evaluated within each stability class separately using the chosen comparison
method. Finally, novelty is assessed for unique structures from each stability class. This
hierarchical approach provides detailed metrics at each evaluation stage: stability counts,
unique-within-stable/metastable counts, and final SUN/MSUN counts. The Multi-MLIP
preprocessor assigns ensemble stability properties (e.g., e_above_hull_mean) to structure
objects, enabling robust stability classification across multiple MLIPs (ORB, MACE, UMA).
We set 7 to 0.1 eV/atom for assembling results.

* Diversity: plot the Distribution analysis of space groups, elemental compositions, and
lattice parameters in comparison to reference datasets. But also:
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— Composition, Space Group, Lattice and Atomic Site Entropy: Suppose you generated
N structures, and you count the frequency f; of each element ¢ (e.g., O, Fe, Zn...)

across all structures. Normalize to get a probability distribution: p; = Zf ¢ - Then
jJi

compute Shannon entropy: H = — ). p; log p; and the Vendi Score [Friedman and
Dieng, |2022]], which is the exponential of the Shannon Entropy. The above example is
for composition entropy, but this methodology is also applied to the other criteria listed
above in our diversity benchmark.

Distribution-Level Metrics. When trying to measure how well the distribution of generated
structures matches the real material distribution, we can use:

* Jensen-Shannon Distance [Fuglede and Topsoe, 2004]:

1 1
ISD(P, Q) = \/ S D1 (PIIM) + 5 Dycr (M) (12)
where P and () are distributions of generated and real samples, M is the average of the two
distributions (1 (P + Q)), and D, is the Kullback Leibler divergence.
* Maximum Mean Discrepancy (MMD) [Tolstikhin et al., [2016]:

MMD?(P, Q) = Eq.or [k(,2")] + Ey.y [k(y, )] = 2Eq y [k(z, )] (13)

where P and () are distributions of generated and real samples, and k is a kernel function.

* Fréchet Distance Metrics [Heusel et al., 2017, |Preuer et al.,|2018|): Adaptations like Fréchet
ChemNet Distance (FCD) compare the distributions of generated and reference structures:

FD(G,T) = ||uc — pr|® + Tt (EG - 2(2G2T)1/2) (14)
where 1 and X represent the mean and covariance of embeddings.

Model Efficiency This measures how effectively a model learns from limited training data [|Gao
et al.,[2022]:

* Generic metrics: training dataset size, number of model parameters, number of epochs
required for training, training time and associated computational infrastructure, inference
time on 10k structures.

* Learning Curve Analysis: Performance (e.g., S.U.N. rate, property prediction accuracy) as
a function of the number of expensive function evaluations (e.g., DFT calculations) required
for training, i.e., the number of labeled data points.

Herfindahl-Hirschman Index (HHI) Metrics. The Herfindahl-Hirschman Index quantifies supply
risk concentration for materials by measuring the concentration of element production sources and
reserves. For a given crystal structure with composition, we compute:

* Compound HHI Value: For a compound with chemical formula represented by composition
C:
HHIcompound = Z x; - HHI; (15)

K3

where x; is the fractional composition of element ¢ in the compound, and HHI; is the
element-specific HHI value.

* Production HHI: Measures supply risk based on concentration of element production
sources (market concentration):

HHIproduction = Z S? x 10000 (16)
J

where s; is the market share of producer j for a given element.
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* Reserve HHI: Measures long-term supply risk based on concentration of element reserves
(geographic distribution):

HHIegerve = Z Tz x 10000 a7
k

where 7y, is the fraction of global reserves held by country/region k.

* Scaling Convention: HHI values are typically scaled from the classical range [0, 10000] to

a convenience range [0, 10]:

HHLjagsic:
HHIscaled = % (18)

* Combined HHI Score: The final benchmark score combines both production and reserve
metrics using weighted averaging:

HHIcombined = Wprod * HHIproduction + Wres HHIreserve (19)

where wproq = 0.25 and wyes = 0.75 by default, prioritizing long-term supply security over
short-term market dynamics.

* Missing Element Handling: Elements not found in the HHI lookup tables are assigned the
maximum risk value (10000 unscaled / 10 scaled) to represent maximum supply uncertainty
for rare or untracked elements.

* Risk Categories: For the scaled [0, 10] range:

Low Risk : HHI ¢ eq < 2.0 (20)
Moderate Risk : 2.0 < HHI ¢ qeq < 5.0 21
High Risk : HHI¢ppeq > 5.0 (22)

B.2 Conditional Generation

Conditional generation involves producing crystal structures that satisfy specific constraints or exhibit
targeted properties. Evaluating such models requires metrics that assess both adherence to conditions
and overall structural quality.

Property Targeting Metrics. These measure how well generated structures match specified target
properties:

* Top-k values: compute the mean and standard of top-k property values, for k£ = 1, 10, 100,
that maximize or minimize an objective for generated material structures.
* Property Proximity: The deviation between the target property value piyrgec and the achieved
value Pgenerated-
EITOI'(p) = ‘pgenerated - ptarget| (23)
* Success Rate: Fraction of generated structures whose properties fall within an acceptable
range around the target:

I{l‘ €d ‘ Ip(x) _ptargel‘ < 5}|
G|

Success Rate =

(24)

where 9 is the tolerance threshold.

* Conditional S.U.N. Rate: Proportion of stable, unique, and novel structures that also meet
the conditional property constraints. Additionally, we calculate the V.S.U.N. rate, which
also includes whether the structures pass our validity benchmarks.

Constraint Adherence Metrics. These evaluate how well generated structures conform to specified
structural constraints:

* Space Group Fidelity: For symmetry-conditioned generation, the proportion of structures
that correctly exhibit the specified space group as defined by Pymatgen’s SpacegroupAna-
lyzer.

¢ Composition Fidelity: For composition-conditioned generation, the accuracy of incorporat-
ing specified elements in the correct stoichiometries.

* Wyckoff Position Accuracy: For models conditioning on crystallographic sites, the correct-
ness of atom placement according to specified Wyckoff positions [Kazeev et al., 2025].
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Multi-Objective Optimization Metrics. These assess models tasked with optimizing multiple
properties simultaneously:

* Pareto Optimality: Analysis of the non-dominated solutions in the multi-dimensional
property space.

* Hypervolume Indicator: The volume of the dominated portion of the objective space,
relative to a reference point.

* MOQD Score: Quality-diversity metric that rewards finding diverse sets of high-performing
solutions across different feature dimensions [[Janmohamed et al., 2024]).

B.3 Going further

While our benchmark focuses on core objectives such as Conditional S.U.N, diversity, validity, we
recognize the importance of additional evaluation axes that capture real-world utility. Metrics assess-
ing out-of-distribution generalization—including extrapolation to unseen chemistries, scalability to
larger systems, and rediscovery of held-out targets—are critical for assessing the robustness and true
generative capabilities of models. Similarly, synthesizability assessment metrics such as synthetic
accessibility scores, retrosynthetic success rates, or proximity to known materials offer insight into
the practical feasibility of generated candidates. These aspects, though not included in this release,
represent essential directions for future benchmarking and method development.

Standardizing Convex Hull Computation and Stability To make stability a trustworthy bench-
mark for generative crystal design, Fy,; must be built with fully disclosed and identical DFT settings.
Because Ey,;; measures the distance of a structure’s formation energy from the multiphase convex hull,
its value changes with every additional phase; therefore, authors should always disclose the full DFT
workflow (functional, U values, k-mesh, energy corrections) and the total number of DFT-relaxed
formation energies that define the hull. Values derived from spaces with fewer than two competing
phases should be flagged as unreliable. Machine-learning interatomic potentials are convenient for
screening but systematically under-estimate Ey,; [Nong et al.| [2025]], so MLIP-based hulls must be
recalibrated with consistent first-principles data before being used for benchmarking. Additionally,
FEp reflects thermodynamic stability only at OK and Oatm, so kinetic stability must be verified
separately—for example, by ensuring that phonon spectra contain no imaginary modes. Finally, the
common “< 0 meV” criterion should be applied cautiously: numerous compounds synthesized in the
laboratory sit 50-150 meV per atom above the OK hull, highlighting the need to augment databases
with additional, consistently computed DFT polymorphs to improve phase-diagram fidelity and to
contextualise what constitutes a realistically synthesizable region.

Out-of-Distribution Generalization These metrics specifically target the model’s ability to gener-
ate valid structures in previously unexplored regions:

» Extrapolation Success: Performance on generating structures with elements, stoichiome-
tries, or structure types not seen during training.

* Size Generalization: Ability to generate larger or more complex structures than those in
the training set.

* Rediscovery Rate: Ability to generate known high-performance materials that were explic-
itly excluded from training, demonstrating the model’s capacity to learn fundamental design
principles rather than merely memorizing training examples.

Synthesizability Assessment These metrics evaluate the practical realizability of generated struc-
tures:

» Synthetic Accessibility Score: Heuristic metrics adapted from drug discovery, such as
SAscore [Seo et al., [2024], that estimate synthetic feasibility based on structural complexity
or similarity to known materials.

* Retrosynthesis Success Rate: The proportion of generated structures for which computa-
tional retrosynthesis tools like AiZynthFinder |Guo and Schwaller,2025]] or ASKCOS [Gaol
et al.l 2024]| can identify plausible synthetic pathways.
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* Proximity to Synthesized Materials: Distance in feature space or embedding space to the
nearest experimentally synthesized structure.

C Benchmark workflow and results

The benchmark evaluation follows a structured two-phase workflow designed to ensure computational
efficiency and meaningful comparison by operating only on structurally valid materials. The workflow
enforces a mandatory validity filtering step followed by selective preprocessing and evaluation phases.

C.1 Phase 1: Mandatory Validity Assessment and Filtering

Input Processing: LEMAT-GENBENCH accepts input structures from multiple sources: (1) individ-
ual CIF file paths in text format, (2) directories containing CIF files processed recursively, or (3) CSV
files containing structures in various formats (JSON dictionaries, CIF strings, or pymatgen Structure
objects).

Validity Benchmark Execution: All input structures are subjected to the standardized validity
criteria described in Section [3.1] (cf. Validity). The ValidityBenchmark applies these checks
uniformly and reports aggregate validity rates, failure mode distributions, and structural property
statistics.

Validity Preprocessing: In parallel, the ValidityPreprocessor attaches validity metadata to each
structure, assigns unique identifiers, and generates detailed validation reports to ensure traceability
between submitted inputs and benchmark results.

Critical Filtering Step: Only structures passing all validity checks are retained for downstream
benchmarks. This step reduces computational overhead for expensive operations (e.g., MLIP calcula-
tions) and ensures that evaluation metrics reflect realistic material properties rather than artifacts of
invalid structures. Filtering outcomes are comprehensively logged for transparency.

C.2 Phase 2: Selective Preprocessing and Benchmark Evaluation

Preprocessor Configuration: Based on the selected benchmark families, the system au-
tomatically determines required preprocessing steps. The configuration logic maps bench-
mark requirements to preprocessors: fingerprint-based benchmarks (novelty, uniqueness,
SUN) require FingerprintPreprocessor for BAWL/short-BAWL methods, distribution-
based benchmarks require DistributionPreprocessor, and stability assessments require
MultiMLIPStabilityPreprocessor. All preprocessors attach their computed outputs as attributes
within the properties dictionary of each pymatgen Structure object, enabling seamless data
flow between preprocessing and benchmark evaluation phases while maintaining full traceability of
computed features.

Fingerprint Preprocessing: When fingerprint-based evaluation is required, the
FingerprintPreprocessor computes structural fingerprints using the specified method
(BAWL, short-BAWL [Siron et al., [2025]], or PDD [Widdowson and Kurlin, 2021]]). This
preprocessor is bypassed entirely when structure-matcher is selected as the fingerprinting
method, since structure-matcher performs direct pairwise structural comparison using pymatgen’s
StructureMatcher algorithm rather than pre-computed fingerprints. The structure-matcher
approach uses configurable tolerance thresholds (default: 0.1) to determine structural equivalence
through lattice parameter matching, atomic position comparison, and symmetry analysis, providing
more rigorous but computationally expensive structural comparison than hash-based fingerprinting
methods.

Distribution Preprocessing: For benchmarks requiring compositional or structural distribution
analysis, the DistributionPreprocessor computes statistical descriptors needed for Maximum
Mean Discrepancy (MMD) and Jensen-Shannon divergence calculations. This preprocessor extracts
compositional features, structural parameters, and other distributional characteristics required for
comparing generated structures against reference databases.

Multi-MLIP Preprocessing: The MultiMLIPStabilityPreprocessor performs the most compu-
tationally intensive preprocessing, utilizing multiple machine learning interatomic potentials (MLIPs)
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including ORB v3[Rhodes et al., [2025]], MACE-MP|Batatia et al.| 2023]], and UMA[Wood et al.|
2025|). This preprocessor performs: (1) structure relaxation using configurable force convergence
criteria (default: 0.02 eV/A), (2) formation energy calculations against reference states, (3) energy
above hull computations using convex hull analysis, and (4) MLIP embedding extraction for Fréchet
distance calculations.

Benchmark Execution: Following preprocessing, the system executes selected benchmarks on
the processed valid structures. Each benchmark operates independently with dedicated memory
management and error handling. The execution order is optimized to minimize memory conflicts,
with computationally expensive benchmarks (multi-MLIP stability) scheduled with aggressive mem-
ory cleanup between operations. The benchmark system generates comprehensive JSON output
containing: (1) run metadata including structure counts, benchmark configurations, and execution
timestamps, (2) validity filtering metadata tracking the transition from input structures to valid
structures, (3) detailed results for each benchmark family with appropriate statistical summaries, and
(4) preprocessor results and intermediate data for reproducibility and debugging. Further information
on metrics and their implementation is available in Appendix [B]

Unique T Novel

Table 3: Model Evaluation Metrics

Table 4: Training datasets and data sources used for the reported generative crystal structure models

Model Training Dataset Source of Submitted Structures
ADIT MP-20 Authors of [Joshi et al., [2025]]
Crystalformer MP-20 Figshare of [Kazeev et al., 20251F]
DiffCSP MP-20 Figshare of [Kazeev et al., 2025
DiffCSP++ MP-20 Figshare of [Kazeev et al., 2025
LLaMat2 MP-20 Authors of [Mishra et al.| 2024
MatterGen MP-20 Figshare of [Kazeev et al., 2025
PLaID++ MP-20 Authors of [Xu et al., 2025]]
SymmCD MP-20 Figshare of [Kazeev et al., 202SE
WyFormer-DiffCSP++ MP-20 Authors of [Kazeev et al., [2025]]
WyFormer-DiffCSP++-DFT MP-20 Authors of [[Kazeev et al.,[2025]]

D Environmental and Sustainability Considerations

The application of generative models to materials discovery presents significant opportunities for
advancing environmental sustainability goals. As global challenges related to climate change,
resource depletion, and environmental degradation intensify, the need for novel materials with
reduced environmental footprints becomes increasingly urgent. Generative approaches can accelerate
the discovery of sustainable alternatives by explicitly incorporating environmental criteria into the
design process.

One promising direction involves the targeted generation of materials with reduced reliance on critical
or environmentally problematic elements. By conditioning generative models on compositional
constraints that exclude toxic, rare, or environmentally harmful elements, researchers can guide
exploration toward more sustainable regions of chemical space. Similarly, models can be trained to
prioritize earth-abundant elements and avoid those associated with problematic extraction practices
or geopolitical supply risks.

Energy-related applications represent another frontier where generative models could significantly
impact sustainability outcomes. The discovery of more efficient catalysts for renewable energy

*https://figshare.com/articles/dataset/Generated_crystals_for_WyFormer_DiffCSP_
DiffCSP_WyCryst_SymmCD_CrystalFormer_MiAD/29145101
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production, improved battery materials for energy storage, and novel photovoltaic materials could
accelerate the transition away from fossil fuels. By specifically targeting properties relevant to these
applications, generative models can focus computational and experimental resources on high-impact
sustainability domains.

Life-cycle considerations present a more complex but equally important target for integration with
generative approaches. Ideally, materials should be designed not only for performance but also for
recyclability, biodegradability, or other end-of-life scenarios that minimize environmental impact.
Incorporating such considerations into generative frameworks remains challenging due to the complex,
multi-faceted nature of life-cycle assessment, but represents a crucial direction for future research.

The computational efficiency of generative processes themselves also warrants consideration from a
sustainability perspective. As models grow in complexity and scale, their energy consumption and
carbon footprint increase accordingly. Developing more efficient architectures, training procedures,
and sampling approaches could reduce the environmental impact of the discovery process itself,
aligning computational means with environmental ends. This consideration becomes particularly
important as generative approaches scale to industrial applications and high-throughput discovery
platforms.

The ultimate success of generative approaches in advancing sustainability will depend not only on
technical capabilities but also on intentional alignment with environmental objectives. By explicitly
incorporating sustainability metrics into reward functions, objective functions, and evaluation criteria,
the materials community can ensure that generative models contribute to addressing environmen-
tal challenges rather than merely accelerating traditional discovery paradigms without regard for
sustainability implications.
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