
LEMAT-GENBENCH: Bridging the gap between
crystal generation and materials discovery

Anonymous Author(s)
Affiliation
Address
email

Abstract

Generative machine learning models hold great promise for accelerating materials1

discovery, particularly through the inverse design of inorganic crystals—enabling2

an unprecedented exploration of chemical space. Yet, the lack of standardized3

benchmarks makes it difficult to evaluate, compare and further develop these ML4

models meaningfully. In this benchmark paper, we introduce LEMAT-GENBENCH,5

a unified framework for assessing generative models of crystalline materials. In6

particular, we propose a set of evaluation metrics alongside a set of tasks (uncon-7

ditional, conditional, and limited-budget crystal generation), designed to better8

inform model developers as well as downstream, practical applications. To support9

it, we release an open-source evaluation suite and a public leaderboard on Hugging10

Face with verified submissions. Altogether, LEMAT-GENBENCH aims to guide11

model development and bridge the gap between generative modeling and practical12

materials discovery.13

1 Introduction14

The discovery process of inorganic crystalline materials has traditionally relied on an Edisonian cycle15

of expert intuition and experimental validation [Schmidt et al., 2019], occasionally aided by quantum16

simulations such as density functional theory (DFT) [Kohn et al., 1996, Sholl and Steckel, 2009].17

While first-principle simulations provide valuable insights into structure and stability, they remain18

computationally expensive and require predefined atomic configurations, which are non-trivial to19

generate for novel crystal structures. Machine Learning (ML) models [Deringer et al., 2019, Unke20

et al., 2021], particularly those based on geometric graph neural networks [Duval et al., 2023], offer21

faster alternatives to DFT, enabling scalable evaluation of candidate structures. Yet, like DFT, they are22

limited to assessing pre-defined inputs and are not designed to explore and propose novel materials.23

This has motivated a growing wave of generative ML models for materials discovery [Zeni et al.,24

2023, Mila AI4Science et al., 2023, Levy et al., 2025a, Kazeev et al., 2025]. These models—ranging25

from variational autoencoders (VAEs) [Kingma and Welling, 2013] and diffusion models [Song26

et al., 2021] to GFlowNets [Bengio et al., 2023] and large language models (LLMs) [Brown et al.,27

2020]—aim to learn the distribution of valid crystal structures and sample from it, ideally guided by28

target properties. This inverse design paradigm promises to unlock previously inaccessible regions of29

chemical space and accelerate the discovery of practically relevant materials.30

The rapid development of generative models for crystal structures has revealed a critical challenge: the31

absence of standardized evaluation protocols rooted in applications. Studies vary widely in how they32

assess stability, define novelty, or validate structures; using different reference datasets, fingerprinting33

methods, energy estimators [Batatia et al., 2023, Unke et al., 2021], relaxation procedures, energy34

thresholds, etc. Without shared benchmarks, it remains difficult to disentangle genuine model35

improvements from differences in evaluation design. While standardized benchmarks like Matbench36

[Dunn et al., 2020] have transformed property prediction by enabling systematic model comparison,37
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no analogous infrastructure exists for the evaluation of generative models of crystal structures. This38

gap makes progress difficult to quantify, comparisons unfair, and leaves the community without39

shared reference standards for scientific advancement.40

To this end, we introduce LEMAT-GENBENCH, a benchmarking framework aimed at standardizing41

the evaluation of generative models of inorganic crystal structures. LEMAT-GENBENCH provides:42

• Standardized evaluation metrics: A unified suite centered on the (conditional)43

(Meta)Stable, Unique, Novel (M.S.U.N.) rate, plus validity, diversity, efficiency and multi-44

objective metrics;45

• Diverse evaluation tasks: Benchmarks spanning unconditional, property-conditioned,46

and limited-budget generation, designed to better reflect practical downstream discovery47

scenarios;48

• Open evaluation infrastructure: A public Python toolkit and Hugging Face leaderboard49

with evaluations of 10 contemporary generative models.50

By establishing shared protocols and rigorous evaluation standards, LEMAT-GENBENCH aims to51

enable more systematic, fair, and transparent model comparisons. The framework is designed to52

evolve with advancing methodologies while supporting both research and practical applications in53

AI-driven materials.54

2 The State of Generative Modeling for Crystal Structures55

The field of generative modeling for inorganic crystals has rapidly diversified, with a growing56

number of architectures, representations, and conditioning strategies being proposed. A taxonomy57

is illustrated in Figure 2. While these methods share the goal of automating candidate generation58

for materials discovery, they differ significantly in how they represent crystals, enforce physical59

constraints, and guide sampling toward desired properties. In what follows, we provide a structured60

overview of current modeling approaches (Section 2.1), followed by an analysis of existing evaluation61

practices and their limitations (Section 2.2). Together, these point to the need for standardized62

benchmarks and motivate the framework we introduce in this work.63

2.1 Modeling Approaches Overview64

Generative modeling for inorganic crystals has emerged as a promising strategy for inverse design,65

enabling the proposal of candidate structures with desired stability, symmetry, or functional properties.66

These ML models are typically trained on large datasets of relaxed crystal structures and generate67

new candidates either unconditionally or conditioned on specific targets. Over the past few years,68

a range of architectural paradigms have been explored. Figure 2 provides a visual illustration. We69

briefly discuss the prominent family of models below.70

Latent-variable models such as variational autoencoders (VAEs) were among the earliest approaches71

[Noh et al., 2019, Hoffmann et al., 2019, Court et al., 2020]. These methods encode crystal represen-72

tations into a continuous latent space to enable interpolation and sampling, but struggle with decoding73

to valid atomic configurations, especially when relying on voxel grids or density maps [Hoffmann74

et al., 2019, Zhao et al., 2023].75

GAN-based methods attempt to generate crystal fingerprints or coordinate-based representations via76

adversarial training [Kim et al., 2020, Zhao et al., 2021]. While conceptually appealing, these models77

suffer from training instability and limited diversity, and typically do not scale well to 3D periodic78

systems Zhao et al. [2021].79

Diffusion models have become the dominant paradigm, leveraging score-based denoising to gradually80

transform noise into periodic atomic structures [Xie et al., 2021, Jiao et al., 2023, Zeni et al., 2025].81

By jointly modeling atom types, fractional coordinates, and lattice parameters—often with SE(3)-82

equivariant or symmetry-aware networks—these models learn to generate valid and plausible crystals.83

Recent variants incorporate explicit symmetry conditioning [Jiao et al., 2024, Levy et al., 2025a] or84

textual guidance from pretrained language models [Das et al., 2025, Park et al., 2025].85

Flow-based models offer a related but computationally faster alternative. Flow matching methods86

learn continuous velocity fields to map between base distributions and the data manifold in one pass87
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[Lipman et al., 2023]. Crystal-specific variants such as FlowMM [Miller et al., 2024] and FlowLLM88

[Sriram et al., 2024] combine geometric inductive biases with learned base distributions informed89

by large language models [Gruver et al., 2024]. ADiT [Joshi et al., 2025] further generalizes this90

approach to generate both crystals and molecules in a shared latent space.91

Sequential generation strategies like reinforcement learning (RL) [Zamaraeva et al., 2023, Govin-92

darajan et al., 2024] and Generative Flow Networks (GFlowNets) [Mila AI4Science et al., 2023,93

Cipcigan et al., 2024] decompose generation into stepwise actions guided by a reward. These meth-94

ods allow the introduction of hard constraints, flexible conditioning (e.g., on Wyckoff positions or95

energy-based rewards) and encourage diverse generation through reward-proportional sampling.96

Large language models (LLMs) have recently been adapted to crystal generation by tokenizing CIF97

formats or leveraging textual prompts. Models such as CrystalLLM [Gruver et al., 2024], WyFormer98

[Kazeev et al., 2024], and PLaID [Xu et al., 2025] have demonstrated strong performance using99

autoregressive decoding and reinforcement learning. Some also enable multimodal conditioning (e.g.,100

with PXRD or synthesis data) [Johansen et al., 2025, Moro et al., 2025], suggesting new directions101

for generative systems grounded in experimental context.102

Taken together, these methods reflect an increasingly diverse and dynamic modeling landscape.103

However, despite architectural progress, evaluating and comparing generative models remains a major104

open challenge—due to the lack of standardized tasks, metrics, and data splits.105

2.2 Evaluation Metrics and Benchmarking Efforts106

Evaluating generative models for crystal structures is inherently more complicated than supervised107

tasks like property prediction, where objective metrics such as RMSE or MAE are well established.108

It requires assessing both structural plausibility and functional utility without ground-truth references,109

leading to wide variation in evaluation protocols and limited comparability across works.110

Most studies focus on generating structures that are valid and stable. Validity is typically assessed111

via heuristic filters such as charge neutrality, interatomic distances, or CIF readability [Xie et al.,112

2021]. However, these checks vary across papers, serve different purposes (either as hard pre-filters113

or as indicative sanity checks) and are not always consistent with real-world data. For example, many114

Materials Project entries fail certain validity tests. Stability is usually evaluated through formation115

energy (Ef ) and energy above the convex hull (Ehull), either via DFT or machine-learned interatomic116

potentials (MLIPs) [Batatia et al., 2023]. However, threshold choices (e.g., Ehull < 0 vs. < 0.1117

eV/atom), relaxation strategies, and reference datasets vary, making comparisons difficult. MLIPs118

scale well but tend to underestimate Ef [Fu et al., 2022, Nong et al., 2025], and few works quantify119

this uncertainty or reconcile MLIP-based scores with DFT-based hulls.120

Building upon stability, the S.U.N. framework (Stable, Unique, Novel) [Zeni et al., 2025] has emerged121

as a composite diagnostic, but lacks a consensus implementation. Uniqueness and novelty rely on122

structure-based fingerprints (e.g., StructureMatcher [Ong et al., 2013]), whose results depend on the123

reference set, tolerance thresholds, and whether novelty is computed over all samples or only the stable124

ones. Most works adopt one scheme without benchmarking alternatives or accounting for disorder125

and symmetry equivalence [Siron et al., 2025], limiting the comparability of reported S.U.N. scores.126

Additional metrics like distribution similarity (e.g., MMD, EMD) and diversity are frequently127

used. However, distribution similarity often rewards memorization rather than novelty—misaligned128

with discovery goals—while diversity lacks a standardized metric definition or visualizations across129

studies.130

Crucially, most benchmarks focus on unconditional generation, where models sample stable crystals131

broadly from a learned distribution, neglecting the more practically relevant conditional generation132

tasks, where models must satisfy target properties under practical constraints. Even rarer are limited-133

budget settings, where only a fixed number of candidates can be evaluated (i.e. have a ground-truth134

property), despite being closer to practical applications. Efficiency metrics like training time, memory135

usage, and inference cost are also under-reported, though increasingly important as model sizes grow.136

These limitations motivate LEMAT-GENBENCH: a unified, extensible benchmark that proposes a list137

of standardized metrics and tasks, enabling reproducible model comparison through public tools and138

a live leaderboard.139
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3 Benchmark Methodology140

We define three benchmark scenarios representing key tasks in crystal generation: unconditional141

generation, conditional generation, and conditional generation with limited oracle1 budget. These142

scenarios correspond to different levels of supervision and real-world applicability, forming the core143

of LEMAT-GENBENCH.144

Unconditional generation trains generative models to produce stable and chemically viable crys-145

talline materials, learning a general-purpose prior over crystalline structures. Once trained, models146

can be fine-tuned for specific discovery tasks—mirroring workflows in LLMs [Brown et al., 2020,147

Achiam et al., 2023], diffusion-based image generators [Ramesh et al., 2022], and protein design148

[Madani et al., 2023]. We propose computing standardized metrics on fixed numbers of generated149

structures, assessing models’ ability to produce realistic, stable, diverse, novel, and unique materials.150

Conditional generation evaluates property-conditioned generation with inexpensive oracle calls,151

without strong resource restrictions (time, compute, oracle queries, labeled data). This benchmark152

evaluates whether models can produce useful crystals for target applications by optimizing multiple153

properties (e.g., bandgap, bulk modulus, magnetic density) and accounting for chemical space154

constraints while maintaining chemically meaningful structures.155

Conditional generation with limited budget improves upon the previous scenario by considering156

expensive oracle calls (e.g., laboratory experiments, high-level quantum calculations) where only157

small numbers of evaluations are feasible. Here, often starting from pre-trained models, we evaluate158

sample efficiency in optimizing target properties under oracle budget constraints while maintaining159

unconditional generation quality (validity, stability, novelty, diversity). These tasks are detailed next.160

3.1 Unconditional Generation161

To evaluate unconditional generation, a representative number of structures (e.g., 10k) are sampled162

from the trained model and evaluated using the following metrics, whose formal definitions are163

provided in Appendix B.164

Validity. We define a validity metric, building on Xie et al. [2021], that serves as both a sanity check165

and a pre-filtering step to exclude malformed or nonphysical structures. These are designed to catch166

common failure modes and reduce computational overhead. We group them into two levels: hard167

constraints, which must be satisfied to proceed, and soft constraints, which are informative but not168

disqualifying. Hard checks include CIF readability, minimum interatomic distances (>0.5 Å), and169

density bounds (0.01-25 g/cm3). Soft checks include reasonable lattice parameters, a space group170

compatible with the composition and the lattice parameters, and charge neutrality (via oxidation state171

plausibility analysis, with a tolerance threshold). Structures failing hard constraints are discarded;172

violations of soft checks are logged. All results are aggregated into a single validity score for173

transparency and comparison. While submitters may pre-filter their structures, the standardized174

criteria ensure consistency across evaluations.175

Stability. Thermodynamic stability is a key proxy for real-world material feasibility, typically176

assessed via the energy above the convex hull, Ehull = Etot − Emin
hull . We consider structures with177

Ehull ≤ 0 as stable, and ≤ 0.1 eV/atom as metastable, hoping to harmonize common practices.178

While formation energy (Ef = Etot −
∑

i niµi) has been widely used, it introduces biases—e.g.,179

favoring strongly bonded crystals containing electronegative elements—and is not a reliable proxy for180

stability. To enable open access scalable evaluation, we compute Ehull using an ensemble of MLIPs181

(MACE-MP [Batatia et al., 2023], UMA [Wood et al., 2025], and Orb-v3 [Rhodes et al., 2025]),182

comparing predicted formation energies to the DFT-based convex hull from LeMat-Bulk [Siron et al.,183

2025]. While this introduces systematic approximations [Nong et al., 2025], aggregating multiple184

MLIPs provides robustness and uncertainty estimates. We report the mean and standard deviation of185

Ehull across models. We further evaluate structure quality via a relaxation check, computing the root186

mean square deviation (RMSD) between initial and relaxed atomic positions (averaged over each187

MLIP). Low RMSD indicates proximity to a local minimum. Note that we report only direct S.U.N.188

scores as participants are encouraged to submit relaxed structures. This combined protocol balances189

scalability with physical realism and improves comparability across submissions.190

1An oracle is a function that returns a material property score—whether from an ML model, DFT simulation,
or other evaluation method. Oracles vary in computational cost and accuracy.
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Novelty, Uniqueness and Diversity. Exploration capabilities of generative models are assessed191

through novelty, uniqueness, and diversity metrics. Novelty measures the fraction of generated192

crystals not found in a reference dataset, using structural fingerprints, to identify previously unseen193

materials. Again, we use LeMat-Bulk [Siron et al., 2025] as reference database—as it represents the194

most extensive set of known crystal structures—and apply the MatterGen-adapted StructureMatcher195

[Zeni et al., 2025] as our default—as it handles symmetry, disorder, and known edge cases reliably.196

To ensure scalability, we restrict comparisons to structures of matching composition, and implement197

the Short-BAWL fingerprint [Siron et al., 2025] to support scalable comparison across large model198

output. Uniqueness quantifies non-redundancy among generated structures using the same finger-199

printing approach. Diversity captures the spread of generated samples across crystal sizes, space200

groups, elemental compositions, and structural descriptors. We compute per-feature Shannon entropy201

aggregating results into a single diversity score with visualization tools in the LEMAT-GENBENCH202

codebase. Note that novelty, an approximate metric, should be treated with caution. Structural identity203

does not always imply functional equivalence, and the boundary between new and known materials204

is inherently fuzzy. Still, standardizing fingerprint methods, reference datasets, and thresholds is205

critical for enabling meaningful comparisons and tracking progress. Lastly, note that we also compute206

Novelty on valid, stable and unique structures, which offers different information compared to doing207

it on the whole set of generated structures.208

(M.)S.U.N. rate. We aggregate core evaluation criteria into a single, standardized metric: the S.U.N.209

rate, measuring the fraction of generated structures that are Stable, Unique, and Novel. This serves as210

our primary benchmark for unconditional generation in LEMAT-GENBENCH, with each component211

precisely defined using fixed thresholds, reference datasets, and fingerprinting methods. To account212

for synthesizable but metastable materials, we also report the M.S.U.N. rate, relaxing stability to213

Ehull ≤ 0.1 eV/atom. This metric sets a practical upper bound on generative performance and214

provides a consistent, interpretable measure to compare models.215

Model efficiency. Beyond output quality, we also report efficiency metrics related to training and216

inference. Specifically, authors must provide: (i) training compute in FLOPs and time (CPU/GPU217

days), (ii) inference time to generate 10k relaxed structures on a reference CPU/GPU (e.g. Nvidia218

A100)2, and (iii) peak memory usage during inference, together with number of model parameters.219

Reporting these values will inform model cost and scalability, and support analysis of tradeoffs220

between performance (e.g., M.S.U.N. rate) and deployment feasibility.221

3.2 Conditional Generation222

Conditional generation (with inexpensive oracle call) achieves two important goals: it allows down-223

stream users to choose the best-performing model for their task, and gives developers freedom to224

innovate across all aspects of model development beyond just algorithms. In addition to the uncondi-225

tional generation metrics, we focus on whether generated crystals exhibit desired properties for the226

intended application. We detail these additional metrics below.227

Property targeting metrics. We evaluate how well models optimize target crystal properties—228

whether maximizing/minimizing a quantity (e.g., bulk modulus) or targeting a specific range (e.g.,229

bandgap ≈ 2.6 eV). For extremal tasks, we report top-k values (for k = 1, 10, 100) with mean and230

standard deviation. For range-targeting tasks, we compute the success rate: the fraction of generated231

structures satisfying the property threshold or interval. While intuitive and useful, these metrics232

can be gamed through brute-force sampling and filtering. To address this, we report Conditional233

(M.)S.U.N. rate, which evaluates the fraction of stable, unique, and novel structures that satisfy the234

property constraint. We recommend reporting both top-k scores over the valid (M.)S.U.N. subset235

and overall success rate to fairly assess generation quality and learning efficiency, ensuring complete236

evaluation of inverse design tasks.237

Multi-objective optimization metrics. Realistic scenarios demand materials that meet multiple238

property requirements, so models must be evaluated on their ability to optimize these jointly (e.g.,239

bulk modulus, bandgap, HOMO–LUMO, density). To do so, we use hypervolume indicators (HVI)240

as our primary evaluation metric. It quantifies the volume of dominated objective space relative to a241

reference point, rewarding both high performance and spread of generated samples across conflicting242

2While inference cost is typically negligible compared to the cost of downstream validation (e.g., DFT or
experiments), standardized reporting of these metrics provides important context for practical usability and
future integration into closed-loop discovery pipelines.

5



targets. Pareto optimality and multi-objective quality-diversity (MOQD) score [Janmohamed et al.,243

2024] are also implemented and can be used as diagnosis tests.244

Constraint adherence metrics. Besides generating materials with multiple properties of interest,245

practitioners are interested in focusing on specific compositions (e.g., no rare earth materials),246

symmetries (e.g. non-centrosymmetric crystals), or other such characteristics. In such constraint-247

aware scenarios, we additionally report metrics like lattice, space group, and compositional fidelity248

to assess whether generated materials adhere to target symmetry or elemental design constraints.249

While these metrics can be applied in unconditional generation settings, conditional generation is250

application-specific. Therefore, we propose three benchmark tasks to stress-test generative models251

under realistic, goal-driven discovery settings. Each task is defined in Section 4, with targeted252

property values and structural constraints.253

3.3 Conditional Generation with Limited Budget254

In reality, access to labeled data and high-fidelity evaluations are often limited: only a few examples255

of materials with the desired property or a limited budget to annotate candidates will be available.256

In such cases, each high-fidelity label (e.g. DFT or experiment) is expensive, making sample-257

efficient and steerable generation essential. This setting mirrors realistic R&D workflows, where258

discovering optimal candidates under strict supervision constraints is a key challenge. This task259

evaluates how quickly and effectively conditional generative models can identify materials matching260

a target property, under limited supervision. Inspired by benchmarks in protein and drug design (e.g.,261

TDC Huang et al. [2022], FLIP Dallago et al. [2021]), we adopt a similar philosophy grounded in262

solid-state materials, tracking top-k values and success rates under query constraints. We define263

two complementary setups as follows. In both these cases, the target property will not be revealed to264

avoid any reward hacking from the community.265

• Offline learning. A fixed, small dataset (e.g., 1k labeled crystals) is provided to practitioners,266

with hidden property values computed by a black-box oracle. Generative models can leverage267

this data freely (e.g., training surrogates, learning property-conditioned latent spaces or268

designing heuristics) before generating candidates. The evaluation is conducted via the269

original oracle, using Conditional S.U.N. for top-k or success-based metrics.270

• Online learning . Practitioners are given access to a black-box oracle API (e.g., MLIP or271

DFT proxy), which they can query up to a fixed budget (e.g., 1k oracle calls). This setup272

should reflect realistic optimization workflows, where evaluating each sample incurs a cost273

and is therefore limited. Practitioners are free to choose what sample they want to label next,274

incorporating exploration strategies, uncertainty estimation, or adaptive learning to make275

the most of each query. We track Conditional S.U.N. evolution over query budgets.276

4 Towards an Open Benchmark Framework277

4.1 Leaderboard implementation278

To converge towards a community-wide benchmarking framework, we adopt several concrete steps279

hopefully accelerating progress in generative crystal modeling. Specifically, we provide a unique280

fully open-source implementation of the proposed evaluation metrics, both for unconditional and281

conditional evaluation tasks, with and without budget constraints, which can be used and updated by282

the community as the field evolves. These tools aim to standardize key evaluation components: (i)283

LeMat-Bulk as the reference dataset for S.U.N, (ii) an ensemble of MLIPs for robust formation energy284

and convex hull prediction, with uncertainty quantification (iii) validity checks split into hard (pre-285

filter) and soft (diagnostic) constraints, (iv) a unified diversity score, (v) resource efficiency reporting,286

(vi) multi-objective reporting, (viii) pre-relaxed structure submission and post-relaxation RMSD287

checks and (ix) structural equivalence via BAWL and StructureMatcher fingerprints. To further288

facilitate fair model comparisons, we also introduce a public leaderboard on Hugging Face. The289

submission process is as follows: (i) Authors submit 10k generated crystal structures for unconditional290

and/or conditional tracks; (ii) Authors may also submit their packaged model, granting a compliance291

badge (optional); (iii) Reference metrics are computed using our open reference implementation;292

(iv) Results are displayed with multiple views to support comparison across tasks and generation293

scenarios. The code is available here https://github.com/LeMaterial/lemat-genbench.294
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For conditional generation (with an inexpensive oracle), we define three benchmarking tasks, as295

indicated in Section 3.2. Remember that for this evaluation suite, we provide the oracle function that296

measures if generated candidates possess the target property, and that participants are allowed to use297

this oracle as they wish during training.298

1. Maximize density. The goal is to generate crystal structures with highest volumetric density.299

Since density is straightforward to compute from atomic positions and unit cell volume, this300

task requires no machine-learned potential. It serves as a useful sanity check for structural301

validity, as models may exploit the objective by tightly packing atoms—potentially violating302

physical or chemical plausibility.303

2. Target bandgap. This benchmark invites models to generate crystals with a bandgap of 2.6304

eV (relevant for optoelectronic [Xing et al., 2018, Alaghmandfard and Ghandi, 2022]). There305

are relatively large publicly-available bandgap datasets and several cheap proxy models,306

which gives plenty of freedom to participants. Because of the benchmark scale and the307

complications entailed, the evaluation of generated materials will be done using a select308

proxy (MLIP) instead of DFT. Its architecture and training data will be transparently shared309

and available to use.310

3. Stable magnets for sustainable electronics. This synthetic benchmark is targeted towards311

rare-earth-free magnetic materials, a task of high technological importance [Vishina et al.,312

2020, Xia et al., 2022, Kaba et al., 2023]. We would like crystals to exhibit high magnetic313

density (maximize it), a bandgap between 0.05–0.5 eV, and an Herfindahl–Hirschman Index314

(HHI) score (an estimate of supply chain risk based on materials availability and cost) lower315

or equal to 5. This involves multiple property optimization and constraints. The scoring316

function used to evaluate bandgap and magnetic density will also be released, to provide317

transparency to practitioners on the leaderboard evaluation.318

For conditional generation under limited oracle budget (Section 3.3), we release a list of crystal319

structures with ground-truth values of a concealed property. Participants operate in a black-box320

setting that simulates real-world conditions where only a small number of oracle queries (e.g., DFT or321

experiment) are available. The task setup is deliberately underspecified to discourage reward hacking.322

All in all, this evaluation framework and these benchmarking scenarios aim to provide clear, fair, and323

rigorous standards for evaluating generative models in crystal generation, while remaining flexible to324

evolving research needs and application contexts. It should enable more meaningful and fine-grained325

comparisons between crystal generative approaches, highlight promising research directions, and326

ultimately help bridge the gap between computational prediction and experimental realization. This327

infrastructure is particularly crucial as the field moves toward closed-loop discovery pipelines that328

integrate computational prediction, experimental validation, and synthesis planning. More details can329

be found in the LEMAT-GENBENCH codebase and on the Hugging Face leaderboard. Finally, let’s330

emphasize that, not unlike the rest of the field, this evaluation framework and benchmark has many331

limitations and areas for future development; nevertheless, we seek to provide a first step towards332

accelerating progress in materials generation through better model evaluation practices.333

4.2 Benchmarking workflow334

To ensure consistency, scalability, and physical soundness in evaluation, our benchmark pipeline335

consists of two main phases: (i) mandatory validity filtering and (ii) metric-specific preprocessing and336

evaluation. The full implementation is in Appendix C and the public codebase. For now, we focus on337

unconditional generation. Conditional benchmarks will be made public upon paper acceptance.338

Phase 1: Validity Filtering. All submitted structures undergo a standardized validity check before339

any downstream metric is computed. This includes hard constraints—such as CIF readability,340

minimum interatomic distance thresholds, and physical density bounds—and soft checks like charge341

neutrality and symmetry consistency. Structures that fail hard constraints are excluded from further342

analysis, ensuring that downstream metrics (e.g., energy above hull or diversity) are computed only343

on physically plausible samples. This filtering step reduces computational overhead and serves as a344

common sanity layer across models.345

Phase 2: Metric-Specific Preprocessing. Depending on the evaluation metrics selected, the system346

dynamically applies a set of modular pre-processors. For example:347
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• Stability pre-processors use an ensemble of MLIPs (ORB v3, MACE-MP, UMA) to relax348

structures, compute formation energies, and evaluate energy above hull.349

• Fingerprint-based metrics (e.g., novelty, uniqueness, S.U.N.) use either hash-based fin-350

gerprints (short-BAWL) or direct pairwise comparison via StructureMatcher. The351

FingerprintPreprocessor is applied only for fingerprint-based methods, and skipped352

when using StructureMatcher.353

• Distribution pre-processor (e.g., MMD, JS divergence) computes structural and composi-354

tional statistics to compare against the reference LeMat-Bulk dataset.355

Each preprocessor attaches computed features to the structure objects, enabling smooth integration356

with subsequent benchmarks. Benchmarks are executed independently with optimized memory357

management. Outputs are stored in a structured JSON format with full traceability and diagnostics.358

By decoupling filtering, preprocessing, and evaluation, the benchmark is modular, extensible, and359

robust to different modeling paradigms.360

4.3 Benchmarking Results and Discussion361

We evaluate ten generative models for crystalline materials using the LEMAT-GENBENCH benchmark.362

These include: ADiT [Joshi et al., 2025], Crystalformer [Cao et al., 2024], DiffCSP [Jiao et al.,363

2023], DiffCSP++ [Jiao et al., 2024], LLaMat2 [Mishra et al., 2024], MatterGen [Zeni et al., 2025],364

PLaID++ [Xu et al., 2025], SymmCD [Levy et al., 2025b], WyFormer [Kazeev et al., 2025], and365

WyFormer-DFT [Kazeev et al., 2025]. All models except MatterGen were trained on the MP-20366

dataset; most rely on diffusion or autoregressive backbones, while PLaID++ additionally leverages367

reinforcement learning. For each model, we evaluate 1,000 structures either obtained from the authors368

or sourced from public repositories [Kazeev et al., 2025]. A detailed breakdown of data sources is369

provided in Table 4.370

Importantly, all evaluations are conducted on the submitted structures without re-relaxation. While371

this simplifies benchmarking and ensures reproducibility, it likely underestimates metrics such as372

S.U.N. and M.S.U.N. We encourage future submissions to include relaxed structures to better reflect373

thermodynamic viability. Post-relaxation metrics will be supported in future benchmark versions and374

are currently available for indicative analysis.375

Model Valid ↑ Unique ↑ Novel ↑ Energy-based ↓ Stable ↑ SUN ↑ MSUN ↑

Ef Ehull Relax-RMSD

ADiT 812 806 252 −2.29± 3.81 2.11± 4.42 0.39± 0.39 19 2 5
Crystalformer 577 572 247 −1.72± 9.74 2.73± 5.96 0.59± 0.86 13 4 5
DiffCSP 732 729 475 −2.35± 3.73 1.77± 4.22 0.52± 0.62 17 11 18
DiffCSP++ 748 747 482 −4.40± 7.77 2.59± 5.58 0.66± 0.78 20 10 15
LLaMat2 779 769 286 −1.12± 4.71 2.57± 5.67 0.49± 0.62 21 6 11
MatterGen 739 738 499 −2.22± 2.81 1.73± 4.18 0.33± 0.40 19 10 42
PLaID++ 960 848 228 −2.32± 2.99 3.45± 6.16 0.11± 0.24 25 3 26
SymmCD 561 560 343 −1.16± 8.28 2.82± 5.50 0.76± 0.96 9 3 3
WyFormer 798 798 530 −3.56± 8.38 2.05± 5.34 0.72± 0.79 16 6 6
WyFormer-DFT 839 834 569 −4.75± 7.72 2.14± 5.66 0.38± 0.61 15 9 25

Table 1: Core benchmark metrics for 10 generative crystal models evaluated on 1,000 generated
structures each. Arrows indicate optimization direction. Bold indicates best performance, underlined
indicates second-best.

Key takeaways. Table 1 and Table 2 highlight the diversity of model behavior across evaluation376

axes. No single model dominates all metrics—emphasizing the need for multi-faceted benchmarking.377

MatterGen achieves the highest M.S.U.N. rate (42), indicating strong potential to discover metastable,378

novel, and unique structures. DiffCSP leads in S.U.N. (11), showing strong performance on truly379

stable materials. PLaID++ attains the highest validity (960) and uniqueness (848), and generates the380

most stable structures (25), but yields lower novelty and moderate S.U.N., likely reflecting its more381

constrained generative distribution. Energy-based metrics reveal interesting contrasts. WyFormer-382

DFT and DiffCSP++ achieve the lowest formation energies, while MatterGen leads on mean energy383

above hull (1.73 eV), likely aided by symmetry-aware structure matching and better coverage of384

stable regions. Relaxation RMSD values—serving as a proxy for energetic smoothness—are lowest385

for PLaID++ and MatterGen, indicating generation of structures close to local minima. Notably,386

distribution similarity metrics (JS, MMD) often trade off with novelty and diversity. SymmCD387

8



shows the best distribution match (JS: 0.236), but has low S.U.N./M.S.U.N. and diversity, suggesting388

overfitting to the training distribution. In contrast, models like WyFormer and MatterGen deviate more389

from the training set but achieve better novelty and metastability scores. WyFormer-DFT stands out390

for balancing high novelty (569), strong uniqueness (834), and competitive energy metrics—validating391

the utility of DFT-relaxed generation. Diversity metrics further confirm this heterogeneity: LLaMat2392

and WyFormer variants show strong performance across structure size, space group, and elemental393

spread. Models with higher diversity also show higher JS/FID, suggesting that broader chemical394

exploration comes at the cost of fidelity to training distribution.395

These results underscore the importance of standardized, multi-dimensional evaluation in generative396

materials modeling. Depending on downstream goals—exploration, safety, performance, or real-397

ism—different models may be preferable. This highlights the utility of tools like LEMAT-GENBENCH398

in guiding model selection, evaluation, and improvement.399

Model Distribution Diversity HHI

JS ↓ MMD ↓ FID ↓ ElemDiv ↑ SGDiv ↑ SizeDiv ↑ SiteDiv ↑ Prod ↓ Res ↓

ADiT 0.522 0.003 1.848 0.703 0.022 0.270 14.221 3.428 2.661
Crystalformer 0.273 0.003 2.489 0.695 0.313 0.322 17.385 3.830 2.785
DiffCSP 0.464 0.007 1.796 0.695 0.104 0.279 14.277 3.420 2.628
DiffCSP++ 0.243 0.005 2.387 0.686 0.391 0.307 20.007 3.535 2.692
LLaMat2 0.329 0.003 1.431 0.703 0.187 0.269 9.153 3.994 2.988
MatterGen 0.439 0.006 1.798 0.644 0.126 0.276 12.109 3.525 2.650
PLaID++ 0.446 0.035 3.008 0.652 0.204 0.238 5.948 5.246 3.394
SymmCD 0.236 0.006 1.879 0.703 0.378 0.320 18.088 3.549 2.692
WyFormer 0.238 0.008 1.436 0.695 0.370 0.309 21.638 3.601 2.701
WyFormer-DFT 0.271 0.011 2.129 0.712 0.387 0.302 21.900 3.495 2.666

Table 2: Distribution similarity, diversity, and supply-chain risk metrics for generative crystal models.
Lower values are better for distribution (JS, MMD, FID) and HHI metrics, while higher values
indicate better diversity across elemental composition, space groups, crystal sizes, and atomic sites.

5 Conclusions and Outlook400

Generative models for crystalline materials are rapidly reshaping the landscape of computational401

discovery, but their evaluation remains inconsistent and fragmented. LEMAT-GENBENCH addresses402

this gap by providing a unified, extensible framework for benchmarking generative models of403

inorganic crystals. It standardizes a core set of metrics centered on stability, uniqueness, and novelty404

(S.U.N.), together with validity, diversity, and efficiency. These metrics are complemented by a405

suite of evaluation tasks beyond unconditional generation, including conditional and limited-budget406

settings, bringing assessment practices closer to real-world discovery scenarios.407

We release an open-source evaluation toolkit and public leaderboard enabling model comparisons un-408

der consistent protocols. Baseline results from 10 recent models demonstrate LEMAT-GENBENCH’s409

value in diagnosing performance trade-offs and revealing model patterns. Our results show no single410

model dominates all metrics. By aligning model evaluation with realistic constraints and application411

needs, LEMAT-GENBENCH aims to guide development of more capable, reliable, and scientifically412

useful generative models. We see this as a first step toward closing the loop between computational413

generation and experimental validation.414

Limitations and Future Directions. This release focuses on unconditional generation evaluation,415

with conditional generation benchmarks and expanded model implementations planned for future416

updates. Key challenges remain. Data quality is a persistent bottleneck: widely used datasets often417

lack compositional diversity, structural metadata, or negative examples necessary for robust training.418

Property-conditioned generation is further hindered by unreliable surrogate models and inconsistent419

conditioning protocols. Most generative models assume idealized, defect-free crystals, overlooking420

critical phenomena like disorder, doping, and non-stoichiometry that shape real-world functionality.421

Moreover, stability assessment relies on ensembles of MLIPs, which—despite averaging—can422

deviate systematically from DFT, especially near stability thresholds. Finally, although we assess423

thermodynamic plausibility, our framework does not yet capture kinetic barriers, synthesis feasibility,424

or real-world constraints. Bridging these gaps—especially toward synthesis-aware and experimentally425

grounded pipelines—will require tighter integration between data, modeling, and validation across426

disciplines. Environmental and sustainability considerations are discussed in Appendix D.427
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Supplementary Material654

Box 1: Key Terms in Generative Modeling

Generative Model: A machine learning model that learns a data distribution p(x) (or a
conditional distribution p(x|z) or p(x|c)) and can generate new samples x′ ∼ p(x) that
resemble the training data.

Latent Space: A lower-dimensional representation space z ∈ Rd learned by models such as
VAEs or GANs, where semantic attributes of the data are often encoded.

Prior Distribution: A predefined distribution (e.g., Gaussian) over the latent variables,
typically denoted as p(z), from which samples are drawn during generation.

Decoder / Generator: A neural network (often denoted G(z)) that maps latent codes z to
data samples x.

Reconstruction Loss: A metric used in training autoencoders and VAEs that measures how
well the generated sample x̂ matches the original input x:

Lrecon = ∥x̂− x∥2 or − log p(x|z).

KL Divergence: A measure of how much one probability distribution differs from another.
Commonly used in VAEs to regularize the encoder:

LKL = DKL(q(z|x)∥p(z)).

Mode Collapse: A failure mode in GANs where the generator produces samples with limited
diversity, collapsing to a few modes of the data distribution.

Conditional Generation: Generation of samples x based on specified properties or con-
straints c, e.g., p(x|c), enabling property-guided design.

Inverse Design: The process of searching the input space (e.g., structure, composition) that
maps to a desired target property, often using a generative model or an optimization loop in
latent space.

Diffusion Models: A class of generative models that learn to reverse a stochastic diffusion
process. Data x0 is gradually perturbed into noise via:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I).

and a neural network is trained to denoise xt to recover x0 through a learned reverse process
pθ(xt−1|xt).

Score-Based Models: Closely related to diffusion models, they learn the score function
∇x log p(x) and use Langevin dynamics or ODE solvers to sample from the data distribution.

log p(x) = log p(z) +

K∑
k=1

log

∣∣∣∣det ∂f−1
k

∂x

∣∣∣∣ .
Flow Matching: A recent generative approach that avoids training score functions or simu-
lating diffusion. It directly learns a vector field vθ(x, t) that maps noise to data through an
ODE:

dx

dt
= vθ(x, t).

This method can be trained via supervised learning on synthetic trajectories or velocity fields
between the base and target distributions.

655
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Box 2: Key Terms in Crystallography & Materials Science

Crystal Lattice: A crystal structure is periodic in three dimensions. This periodicity is
described by the lattice, which is defined as

L = {l1a1 + l2a2 + l1a3|l1, l2, l3 ∈ Z},

where a1, a2, a3 are basis vectors of R3.

Unit Cell: A unit cell is the smallest unit that can be translated to define the whole lattice. In
three dimensions, it is always a parallelepiped.

Lattice Parameters: A lattice is typically defined in two ways: either as a set of three basis
vectors, or as a set of lattice parameters (a, b, c, α, β, γ), where a, b, c are the lengths of edges
of the unit cell, and α, β, γ are the angles between them.

Symmetry: An object’s symmetry is given by the set of geometric transformations that map
the object onto itself, leaving it invariant.

Space Group: Crystals can be classified by their symmetries. They possess the translational
symmetry of their crystal lattices, and they may also have the point group symmetries of
rotations and reflections within a unit cell. The combination of translational and point group
symmetries can yield more transformations that a crystal can be symmetric to, including
screw and glide symmetries. The full set of symmetric transformations that leave a crystal
invariant defines the space group of the crystal. In three dimensions, there are 230 types of
space groups.

Wyckoff Position: Applying symmetry operations to a crystal may leave some atoms
unaffected: for example, a rotation about an axis leaves atoms on the axis in the same position.
The set of symmetry operations that do not move a position is that position’s site symmetry. A
Wyckoff position is a set of positions that all have the same site symmetries, or conjugate site
symmetries. For example, all points along a mirror plane may belong to the same Wyckoff
position, while a point at the origin of a unit cell may have its own Wyckoff position. Every
point in a crystal can be assigned a Wyckoff position.

Formation Energy: The formation energy of a crystal is the difference in energy between
the crystal and its constituent elements.

Energy above Convex Hull: The convex hull gives linear combinations of known phases
that represent the lowest-energy mixtures of materials; if a material has an energy above the
hull (Ehull > 0), it is energetically favorable for it to decompose into a combination of stable
phases and is therefore thermodynamically unstable. For example, the convex hull of table
salt, NaCl, also includes pure stable Na, pure Cl, as well as NaCl3. However, Na2Cl has a
higher formation energy than the combination of NaCl and pure Na, so it is unstable.

Metastable: Even if a crystal is not in its lowest possible energy state, it may still be
metastable, meaning that a potential energy barrier prevents it from easily transitioning to a
lower-energy state. A crystal having a low energy above the convex hull while also being at an
energy minimum may indicate that it is metastable. Metastable materials are still important:
for example, diamond is metastable, but does not readily convert to a lower energy state under
normal conditions.

Band Gap: The band gap is the difference in energy between the valence band and the
conduction band in a solid.

CIF: Crystallographic Information File, a string-based encoding of a crystal that includes
information such as atom positions, unit cell parameters, and chemical elements.

656

16



Figure 1: An overview of the generative AI paradigm for candidate structure generation and opti-
mization that underpins much of the work reviewed herein.

Figure 2: Overview of generative models for materials discovery discussed in this work. (a) Change
over time of major model architectures discussed herein, showing early dominance of VAEs and
the growth in prevalence of LLMs. (b) Treemap of target properties optimized across models;
box size reflects the proportion of papers mentioning each property. Space group, composition,
lattice parameters, and formation energy are the most common targets. (c) Pie charts illustrating
the dominant model types used for unconditional (left) and conditional (right) materials generation,
where the majority of conditional models can also do unconditional generation but not the other way
around. The methods are clustered according to the primary (and, if applicable, secondary) model
class. Colors match panel (a). Each model is annotated with its primary input data type; as the
majority of current models return structures in CIF file format, this is not illustrated. Abbreviations:
LLM = large language model; VAE = variational autoencoder; RL = reinforcement learning; NL
prompt = natural language prompt; PXRD = powder X-ray diffraction. “CIF prefix” typically includes
composition, space group, and lattice parameters; “Crystallographic file” refers to any file encoding
structure data (e.g., XYZ, PDB, CIF).
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A Desired Properties of a Crystal Generation Benchmark657

Benchmarking plays a vital role in addressing this gap. Beyond enabling rigorous cross-model658

comparisons, it helps define what “good models” should look like in this rapidly evolving space. They659

offer reference points for assessing progress, provide structure for evaluating emerging methods, and660

help researchers, especially newcomers, understand how to design generative models with real-world661

impact.662

Here, we list the desirable properties of the benchmark for crystal generation.663

• End-to-end automation with standardized evaluation. For leaderboards and extensive664

evaluations across increasing new models, evaluations must run automatically across mul-665

tiple datasets. The benchmark should provide automated structure validation, stability666

calculations using MLIPs, and property assessment without human intervention, enabling667

continuous maintenance of the leaderboard and seamless evaluation for users.668

• Expert validation of reference datasets and metrics. Manual curation by crystallographers669

and materials scientists is essential to ensure the reference dataset (for instance, LeMat-670

Bulk, in this case) is free from duplicates, unstable structures, and annotation errors. Expert671

validation should also verify that evaluation metrics (fingerprinting, convex hull calculations)672

accurately capture physical and chemical plausibility.673

• Compatible with diverse model architectures. The benchmark must accommodate dif-674

ferent generative paradigms (VAEs, diffusion models, GFlowNets, LLMs, flow matching)675

and various crystal representations (CIF files, fractional coordinates, voxel grids, graph676

structures). The evaluation framework should accept any valid crystal structure format (or677

most of the widely used formats) as input.678

• Usable with black-box generative systems. Many relevant systems are proprietary or use679

complex multi-stage pipelines. The benchmark should operate solely on generated crystal680

structures (the final CIF or structural files) without requiring access to model weights, latent681

representations, or intermediate outputs.682

• Probing capabilities beyond basic structure generation. Real-world materials discovery683

requires more than generating valid crystals. The benchmark must evaluate conditional684

generation (property-targeted design), multi-objective optimization, synthesis constraints,685

and the ability to navigate complex structure-property relationships, not just unconditional686

sampling.687

• Cover diverse material systems and chemical spaces. Materials science spans inorganics,688

organics, metals, semiconductors, and complex compounds across the periodic table. The689

benchmark should evaluate performance across different crystal systems, space groups,690

bonding types, and compositional complexity to assess true generalization capability.691

• Cover diverse materials design skills. Holistic evaluation requires assessing multiple692

competencies: thermodynamic reasoning (stability prediction), chemical intuition (rea-693

sonable bonding), crystallographic knowledge (symmetry constraints), and inverse design694

capabilities (property-to-structure mapping).695

• Cover a range of generation difficulty levels. To provide continuous improvement signals,696

the benchmark should span from simple binary compounds to complex multi-component697

systems, from high-symmetry to low-symmetry structures, and from well-studied to novel698

chemical spaces.699

• Impossible to completely solve with current models. The benchmark should include700

challenging scenarios that push model limits: generating stable materials in unexplored701

chemical spaces, satisfying multiple competing constraints simultaneously, and discovering702

genuinely novel crystal structures that extend beyond training distributions.703

• Bridge computational prediction with experimental reality. Unlike purely computational704

benchmarks, crystal generation must ultimately connect to synthesizable materials. The705

evaluation should incorporate synthesizability proxies, experimental validation pathways,706

and metrics that correlate with real-world materials discovery success.707
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B Evaluation metrics for materials generation708

B.1 Unconditional Generation709

Unconditional generation refers to the task of producing valid, stable crystal structures without710

targeting specific properties or constraints. The following metrics assess the fundamental quality of711

generated structures:712

Fundamental Validity Metrics. These ensure the outputs are physically meaningful and chemically713

plausible. In different terms, they serve as a sanity check both for model development and inference714

time. Note that all metrics may not be relevant for every material system.715

• Charge Neutrality: The total valence charge of all atoms must sum to zero:716

N∑
i=1

qi = 0 (1)

where qi is the nominal oxidation state of atom i in the structure. For this to be calculated,717

the oxidation states of every atom in the structure must first be assigned. Here, we have718

developed a hierarchical structure for determining oxidation states and charge neutrality:719

1. If all atoms are metals, each atom is assigned a nominal oxidation state of zero and the720

structure is labeled as charge balanced.721

2. If all atoms are not metals, the Pymatgen “get-oxi-state-decorated-structure" function722

Ong et al. [2013] is used to assign oxidation states and determine charge balance.723

3. However, the function used above can fail to find oxidation states for structures that724

are not well optimized. It is still necessary to determine whether these structures725

are charged balanced, particularly in the case of generative model benchmarks, when726

many structures may be too far from typical structures for the Pymatgen functions to727

analyze them. Here, we determine charge neutrality using a data driven approach from728

LeMatBulk Siron et al. [2025]. First, this workflow determines all the possible charge729

balanced compositions of oxidation states based on the observed oxidation states in730

LeMatBulk. If no charge balanced composition can be made using these oxidation731

states, the structure is labeled invalid. The most likely oxidation state assignments for732

this particular composition, each composition is assigned a score based on how probable733

that particular oxidation state configuration is, as determined by the distribution of734

oxidation states seen in LeMatBulk. This score is determined by multiplying all of the735

probabilities for each individual oxidation state together and multiplying by the number736

of elements for a normalization. If the probability is greater than 0.001, the structure737

passes the validity test. Otherwise, to be charge balanced it requires a combination of738

oxidation states which are extremely rare, and therefore, is not valid.739

• Minimum Interatomic Distance: All interatomic distances dij must exceed a cutoff value740

dmin to prevent atomic overlap. We suggest adopting 0.7 Å.741

dij > dmin ∀ i ̸= j (2)

Mass density and atomic number density : are within reasonable ranges. Mass density742

is given by ρ = Mtotal
Vcell

, in (g/cm3). The latter is expressed in atoms/Å3. We take upper743

bounds of 25 g/cm³ and 0.5 atoms/Å3, respectively.744

745

Valid crystallographic representation : a good proxy is to determine whether a structure746

is CIF-readable using pymatgen.747

748

Lattice Parameters : are within reasonable ranges. We take upper bounds of 100 Åfor749

a,b,c and 180 degrees for α, β, γ respectively, and lower bounds of 1 Åand zero degrees for750

a,b,c and α, β, γ, respectively.751

752
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Stability metrics. These assess the thermodynamic and energetic properties of generated structures:753

•••• Formation Energy (Ef ):754

Ef = Etot(compound)−
∑
i

niµi (3)

where Etot is the total energy of the crystal, ni is the number of atoms of element i,755

and µi is the chemical potential of the pure element. The result is normalized per atom:756

Eper atom
f =

Ef∑
i ni

. We want it to be as small (and negative) as possible.757

The chemical potentials µi are derived from the LeMaterial-Bulk dataset by taking the mini-758

mum energy among all single-element structures for each element: µi = mink∈Si

(
E

(k)
norm

)
759

where Si is the set of all single-element structures containing element i.760

Multi-MLIP Ensemble Implementation: The formation energy metric supports ensem-761

ble statistics across multiple MLIPs (ORB, MACE, UMA). For each structure, ensemble762

statistics are computed as:763

⟨Ef ⟩ =
1

NMLIP

NMLIP∑
k=1

E
(k)
f (4)

σEf
=

√√√√ 1

NMLIP − 1

NMLIP∑
k=1

(
E

(k)
f − ⟨Ef ⟩

)2

(5)

where E
(k)
f is the formation energy predicted by the k-th MLIP. The im-764

plementation extracts pre-computed ensemble statistics from structure properties765

(formation_energy_mean, formation_energy_std) or calculates them from individual766

MLIP results (formation_energy_orb, formation_energy_mace, etc.). A minimum767

of 2 MLIPs is required for ensemble statistics.768

• Energy Above Convex Hull (Ehull):769

Ehull = Etot − Emin
hull (6)

Structures with Ehull ≤ 0 are considered stable, while values below approximately 0.1770

eV/atom are often deemed metastable. We take LeMat-Bulk [Siron et al., 2024] as reference771

point for calculating the convex hull.772

The convex hull is constructed by filtering the LeMat-Bulk dataset to include only com-773

pounds containing elements present in the target composition, creating PDEntry objects,774

and using Pymatgen’s PhaseDiagram.get_decomp_and_e_above_hull() method. The775

implementation handles charged species by extracting neutral elements before phase diagram776

construction. Multi-MLIP ensemble statistics follow the same formulation as formation777

energy: ⟨Ehull⟩ = 1
NMLIP

∑NMLIP
k=1 E

(k)
hull with corresponding standard deviation calculations.778

• Relaxation Stability: Use an ensemble of Machine Learning Interatomic Potentials to relax779

the generated structures (each one is done independently). Then, compute the Root Mean780

Square Deviation (RMSD) between pre- and post-relaxation atomic positions:781

RMSD =

√√√√ 1

N

N∑
i=1

∥rinit
i − rrelax

i ∥2 (7)

Low RMSD indicates minimal distortion and structural robustness under optimization.782

The implementation calculates individual RMSD values for each MLIP relaxation, then783

computes ensemble statistics: ⟨RMSD⟩ = 1
NMLIP

∑NMLIP
k=1 RMSD(k) where RMSD(k)

784

is the relaxation RMSD from the k-th MLIP. The metric extracts pre-computed val-785

ues from structure properties (relaxation_rmsd_mean, relaxation_rmsd_std) or786

calculates ensemble statistics from individual MLIP results (relaxation_rmsd_orb,787

relaxation_rmsd_mace, etc.). Lower values indicate better structural stability under788

relaxation.789
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Novelty, Uniqueness, and Diversity Metrics. These evaluate how effectively a model explores the790

chemical space:791

• Novelty (N ): Evaluates the fraction of generated structures that are not present in a reference792

dataset of known materials. The novelty score is defined as:793

N =
|{x ∈ G | x /∈ T}|

|G|
(8)

where G is the set of generated structures and T is the reference dataset (LeMat-Bulk).794

The implementation supports two comparison methods: BAWL fingerprinting using crys-795

tallographic hash strings with Weisfeiler-Lehman graph kernels, and structure matching796

using Pymatgen’s symmetry-aware structural comparison algorithms. For BAWL, novelty is797

determined by checking if the generated structure’s fingerprint exists in the pre-computed798

reference fingerprint set. For structure matching, each generated structure is compared799

against reference structures with overlapping elemental compositions using space group800

analysis and atomic position matching with configurable tolerances. In our paper, we report801

results using the structure matcher approach for more robust structural comparison against802

the LeMat-Bulk reference dataset.803

• Uniqueness (U): Measures the fraction of unique structures within the generated set to804

assess internal diversity. The uniqueness score is defined as:805

U =
|unique(G)|

|G|
(9)

where unique(G) returns the set of unique structures based on their fingerprints.806

The metric is implemented as a structure-level continuous scoring system rather than binary807

classification. For BAWL fingerprinting, individual uniqueness scores are assigned as808

ui = 1/ci, where ci is the count of structures sharing the same fingerprint within the809

generated set. This assigns a score of 1.0 to truly unique structures while proportionally810

penalizing duplicated structures. For structure matching, the implementation uses pairwise811

comparison with an ordered approach: structure i is considered unique if it is not equivalent812

to any structure j where j < i, ensuring deterministic selection of the first occurrence as813

the unique representative. The overall uniqueness metric is computed as U = 1
|G|

∑|G|
i=1 ui.814

Both BAWL fingerprinting and structure matching methods are supported, with structure815

matching used for paper results.816

• S.U.N. and M.S.U.N. Rates: Proportion of generated structures that are simultaneously817

Stable (or Metastable), Unique, and Novel:818

S.U.N. Rate =
|{x ∈ G | Ehull(x) ≤ 0, x /∈ T, x is unique}|

|G|
(10)

819

M.S.U.N. Rate =
|{x ∈ G | 0 < Ehull(x) ≤ τ, x /∈ T, x is unique}|

|G|
(11)

where τ is a metastability threshold (commonly 0.08-0.1 eV/atom, though this varies across820

studies [Miller et al., 2024, Gruver et al., 2024, Zeni et al., 2025]).821

The implementation follows a hierarchical computation order: Stability → Uniqueness →822

Novelty. First, structures are classified as stable (Ehull ≤ 0) or metastable (0 < Ehull ≤ τ )823

using energy above hull values computed by the Multi-MLIP stability preprocessor. Then,824

uniqueness is evaluated within each stability class separately using the chosen comparison825

method. Finally, novelty is assessed for unique structures from each stability class. This826

hierarchical approach provides detailed metrics at each evaluation stage: stability counts,827

unique-within-stable/metastable counts, and final SUN/MSUN counts. The Multi-MLIP828

preprocessor assigns ensemble stability properties (e.g., e_above_hull_mean) to structure829

objects, enabling robust stability classification across multiple MLIPs (ORB, MACE, UMA).830

We set τ to 0.1 eV/atom for assembling results.831

• Diversity: plot the Distribution analysis of space groups, elemental compositions, and832

lattice parameters in comparison to reference datasets. But also:833
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– Composition, Space Group, Lattice and Atomic Site Entropy: Suppose you generated834

N structures, and you count the frequency fi of each element i (e.g., O, Fe, Zn. . . )835

across all structures. Normalize to get a probability distribution: pi = fi∑
j fj

. Then836

compute Shannon entropy: H = −
∑

i pi log pi and the Vendi Score [Friedman and837

Dieng, 2022], which is the exponential of the Shannon Entropy. The above example is838

for composition entropy, but this methodology is also applied to the other criteria listed839

above in our diversity benchmark.840

Distribution-Level Metrics. When trying to measure how well the distribution of generated841

structures matches the real material distribution, we can use:842

• Jensen-Shannon Distance [Fuglede and Topsoe, 2004]:843

JSD(P,Q) =

√
1

2
DKL(P ||M) +

1

2
DKL(Q||M) (12)

where P and Q are distributions of generated and real samples, M is the average of the two844

distributions ( 12 (P +Q)), and DKL is the Kullback Leibler divergence.845

• Maximum Mean Discrepancy (MMD) [Tolstikhin et al., 2016]:846

MMD2(P,Q) = Ex,x′ [k(x, x′)] + Ey,y′ [k(y, y′)]− 2Ex,y[k(x, y)] (13)

where P and Q are distributions of generated and real samples, and k is a kernel function.847

• Fréchet Distance Metrics [Heusel et al., 2017, Preuer et al., 2018]: Adaptations like Fréchet848

ChemNet Distance (FCD) compare the distributions of generated and reference structures:849

FD(G,T ) = ∥µG − µT ∥2 + Tr
(
ΣG +ΣT − 2(ΣGΣT )

1/2
)

(14)

where µ and Σ represent the mean and covariance of embeddings.850

Model Efficiency This measures how effectively a model learns from limited training data [Gao851

et al., 2022]:852

• Generic metrics: training dataset size, number of model parameters, number of epochs853

required for training, training time and associated computational infrastructure, inference854

time on 10k structures.855

• Learning Curve Analysis: Performance (e.g., S.U.N. rate, property prediction accuracy) as856

a function of the number of expensive function evaluations (e.g., DFT calculations) required857

for training, i.e., the number of labeled data points.858

Herfindahl-Hirschman Index (HHI) Metrics. The Herfindahl-Hirschman Index quantifies supply859

risk concentration for materials by measuring the concentration of element production sources and860

reserves. For a given crystal structure with composition, we compute:861

• Compound HHI Value: For a compound with chemical formula represented by composition862

C:863

HHIcompound =
∑
i

xi · HHIi (15)

where xi is the fractional composition of element i in the compound, and HHIi is the864

element-specific HHI value.865

• Production HHI: Measures supply risk based on concentration of element production866

sources (market concentration):867

HHIproduction =
∑
j

s2j × 10000 (16)

where sj is the market share of producer j for a given element.868
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• Reserve HHI: Measures long-term supply risk based on concentration of element reserves869

(geographic distribution):870

HHIreserve =
∑
k

r2k × 10000 (17)

where rk is the fraction of global reserves held by country/region k.871

• Scaling Convention: HHI values are typically scaled from the classical range [0, 10000] to872

a convenience range [0, 10]:873

HHIscaled =
HHIclassical

1000
(18)

• Combined HHI Score: The final benchmark score combines both production and reserve874

metrics using weighted averaging:875

HHIcombined = wprod · HHIproduction + wres · HHIreserve (19)
where wprod = 0.25 and wres = 0.75 by default, prioritizing long-term supply security over876

short-term market dynamics.877

• Missing Element Handling: Elements not found in the HHI lookup tables are assigned the878

maximum risk value (10000 unscaled / 10 scaled) to represent maximum supply uncertainty879

for rare or untracked elements.880

• Risk Categories: For the scaled [0, 10] range:881

Low Risk : HHIscaled ≤ 2.0 (20)
Moderate Risk : 2.0 < HHIscaled ≤ 5.0 (21)

High Risk : HHIscaled > 5.0 (22)

B.2 Conditional Generation882

Conditional generation involves producing crystal structures that satisfy specific constraints or exhibit883

targeted properties. Evaluating such models requires metrics that assess both adherence to conditions884

and overall structural quality.885

Property Targeting Metrics. These measure how well generated structures match specified target886

properties:887

• Top-k values: compute the mean and standard of top-k property values, for k = 1, 10, 100,888

that maximize or minimize an objective for generated material structures.889

• Property Proximity: The deviation between the target property value ptarget and the achieved890

value pgenerated:891

Error(p) = |pgenerated − ptarget| (23)
• Success Rate: Fraction of generated structures whose properties fall within an acceptable892

range around the target:893

Success Rate =
|{x ∈ G | |p(x)− ptarget| ≤ δ}|

|G|
(24)

where δ is the tolerance threshold.894

• Conditional S.U.N. Rate: Proportion of stable, unique, and novel structures that also meet895

the conditional property constraints. Additionally, we calculate the V.S.U.N. rate, which896

also includes whether the structures pass our validity benchmarks.897

Constraint Adherence Metrics. These evaluate how well generated structures conform to specified898

structural constraints:899

• Space Group Fidelity: For symmetry-conditioned generation, the proportion of structures900

that correctly exhibit the specified space group as defined by Pymatgen’s SpacegroupAna-901

lyzer.902

• Composition Fidelity: For composition-conditioned generation, the accuracy of incorporat-903

ing specified elements in the correct stoichiometries.904

• Wyckoff Position Accuracy: For models conditioning on crystallographic sites, the correct-905

ness of atom placement according to specified Wyckoff positions [Kazeev et al., 2025].906
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Multi-Objective Optimization Metrics. These assess models tasked with optimizing multiple907

properties simultaneously:908

• Pareto Optimality: Analysis of the non-dominated solutions in the multi-dimensional909

property space.910

• Hypervolume Indicator: The volume of the dominated portion of the objective space,911

relative to a reference point.912

• MOQD Score: Quality-diversity metric that rewards finding diverse sets of high-performing913

solutions across different feature dimensions [Janmohamed et al., 2024].914

B.3 Going further915

While our benchmark focuses on core objectives such as Conditional S.U.N, diversity, validity, we916

recognize the importance of additional evaluation axes that capture real-world utility. Metrics assess-917

ing out-of-distribution generalization—including extrapolation to unseen chemistries, scalability to918

larger systems, and rediscovery of held-out targets—are critical for assessing the robustness and true919

generative capabilities of models. Similarly, synthesizability assessment metrics such as synthetic920

accessibility scores, retrosynthetic success rates, or proximity to known materials offer insight into921

the practical feasibility of generated candidates. These aspects, though not included in this release,922

represent essential directions for future benchmarking and method development.923

Standardizing Convex Hull Computation and Stability To make stability a trustworthy bench-924

mark for generative crystal design, Ehull must be built with fully disclosed and identical DFT settings.925

Because Ehull measures the distance of a structure’s formation energy from the multiphase convex hull,926

its value changes with every additional phase; therefore, authors should always disclose the full DFT927

workflow (functional, U values, k-mesh, energy corrections) and the total number of DFT-relaxed928

formation energies that define the hull. Values derived from spaces with fewer than two competing929

phases should be flagged as unreliable. Machine-learning interatomic potentials are convenient for930

screening but systematically under-estimate Ehull [Nong et al., 2025], so MLIP-based hulls must be931

recalibrated with consistent first-principles data before being used for benchmarking. Additionally,932

Ehull reflects thermodynamic stability only at 0K and 0atm, so kinetic stability must be verified933

separately–for example, by ensuring that phonon spectra contain no imaginary modes. Finally, the934

common “≤ 0 meV” criterion should be applied cautiously: numerous compounds synthesized in the935

laboratory sit 50–150 meV per atom above the 0K hull, highlighting the need to augment databases936

with additional, consistently computed DFT polymorphs to improve phase-diagram fidelity and to937

contextualise what constitutes a realistically synthesizable region.938

Out-of-Distribution Generalization These metrics specifically target the model’s ability to gener-939

ate valid structures in previously unexplored regions:940

• Extrapolation Success: Performance on generating structures with elements, stoichiome-941

tries, or structure types not seen during training.942

• Size Generalization: Ability to generate larger or more complex structures than those in943

the training set.944

• Rediscovery Rate: Ability to generate known high-performance materials that were explic-945

itly excluded from training, demonstrating the model’s capacity to learn fundamental design946

principles rather than merely memorizing training examples.947

Synthesizability Assessment These metrics evaluate the practical realizability of generated struc-948

tures:949

• Synthetic Accessibility Score: Heuristic metrics adapted from drug discovery, such as950

SAscore [Seo et al., 2024], that estimate synthetic feasibility based on structural complexity951

or similarity to known materials.952

• Retrosynthesis Success Rate: The proportion of generated structures for which computa-953

tional retrosynthesis tools like AiZynthFinder [Guo and Schwaller, 2025] or ASKCOS [Gao954

et al., 2024] can identify plausible synthetic pathways.955
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• Proximity to Synthesized Materials: Distance in feature space or embedding space to the956

nearest experimentally synthesized structure.957

C Benchmark workflow and results958

The benchmark evaluation follows a structured two-phase workflow designed to ensure computational959

efficiency and meaningful comparison by operating only on structurally valid materials. The workflow960

enforces a mandatory validity filtering step followed by selective preprocessing and evaluation phases.961

C.1 Phase 1: Mandatory Validity Assessment and Filtering962

Input Processing: LEMAT-GENBENCH accepts input structures from multiple sources: (1) individ-963

ual CIF file paths in text format, (2) directories containing CIF files processed recursively, or (3) CSV964

files containing structures in various formats (JSON dictionaries, CIF strings, or pymatgen Structure965

objects).966

Validity Benchmark Execution: All input structures are subjected to the standardized validity967

criteria described in Section 3.1 (cf. Validity). The ValidityBenchmark applies these checks968

uniformly and reports aggregate validity rates, failure mode distributions, and structural property969

statistics.970

Validity Preprocessing: In parallel, the ValidityPreprocessor attaches validity metadata to each971

structure, assigns unique identifiers, and generates detailed validation reports to ensure traceability972

between submitted inputs and benchmark results.973

Critical Filtering Step: Only structures passing all validity checks are retained for downstream974

benchmarks. This step reduces computational overhead for expensive operations (e.g., MLIP calcula-975

tions) and ensures that evaluation metrics reflect realistic material properties rather than artifacts of976

invalid structures. Filtering outcomes are comprehensively logged for transparency.977

C.2 Phase 2: Selective Preprocessing and Benchmark Evaluation978

Preprocessor Configuration: Based on the selected benchmark families, the system au-979

tomatically determines required preprocessing steps. The configuration logic maps bench-980

mark requirements to preprocessors: fingerprint-based benchmarks (novelty, uniqueness,981

SUN) require FingerprintPreprocessor for BAWL/short-BAWL methods, distribution-982

based benchmarks require DistributionPreprocessor, and stability assessments require983

MultiMLIPStabilityPreprocessor. All preprocessors attach their computed outputs as attributes984

within the properties dictionary of each pymatgen Structure object, enabling seamless data985

flow between preprocessing and benchmark evaluation phases while maintaining full traceability of986

computed features.987

Fingerprint Preprocessing: When fingerprint-based evaluation is required, the988

FingerprintPreprocessor computes structural fingerprints using the specified method989

(BAWL, short-BAWL [Siron et al., 2025], or PDD [Widdowson and Kurlin, 2021]). This990

preprocessor is bypassed entirely when structure-matcher is selected as the fingerprinting991

method, since structure-matcher performs direct pairwise structural comparison using pymatgen’s992

StructureMatcher algorithm rather than pre-computed fingerprints. The structure-matcher993

approach uses configurable tolerance thresholds (default: 0.1) to determine structural equivalence994

through lattice parameter matching, atomic position comparison, and symmetry analysis, providing995

more rigorous but computationally expensive structural comparison than hash-based fingerprinting996

methods.997

Distribution Preprocessing: For benchmarks requiring compositional or structural distribution998

analysis, the DistributionPreprocessor computes statistical descriptors needed for Maximum999

Mean Discrepancy (MMD) and Jensen-Shannon divergence calculations. This preprocessor extracts1000

compositional features, structural parameters, and other distributional characteristics required for1001

comparing generated structures against reference databases.1002

Multi-MLIP Preprocessing: The MultiMLIPStabilityPreprocessor performs the most compu-1003

tationally intensive preprocessing, utilizing multiple machine learning interatomic potentials (MLIPs)1004
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including ORB v3[Rhodes et al., 2025], MACE-MP[Batatia et al., 2023], and UMA[Wood et al.,1005

2025]. This preprocessor performs: (1) structure relaxation using configurable force convergence1006

criteria (default: 0.02 eV/Å), (2) formation energy calculations against reference states, (3) energy1007

above hull computations using convex hull analysis, and (4) MLIP embedding extraction for Fréchet1008

distance calculations.1009

Benchmark Execution: Following preprocessing, the system executes selected benchmarks on1010

the processed valid structures. Each benchmark operates independently with dedicated memory1011

management and error handling. The execution order is optimized to minimize memory conflicts,1012

with computationally expensive benchmarks (multi-MLIP stability) scheduled with aggressive mem-1013

ory cleanup between operations. The benchmark system generates comprehensive JSON output1014

containing: (1) run metadata including structure counts, benchmark configurations, and execution1015

timestamps, (2) validity filtering metadata tracking the transition from input structures to valid1016

structures, (3) detailed results for each benchmark family with appropriate statistical summaries, and1017

(4) preprocessor results and intermediate data for reproducibility and debugging. Further information1018

on metrics and their implementation is available in Appendix B.1019

Table 3: Model Evaluation Metrics
Model # Validity Unique ↑ Novel ↑ Energy-based Stability Metastability Distribution Diversity HHI

Structures Valid ↑ CN ↑ MinDist ↑ PhysPlau ↑ FormE (Std) ↓ Ehull (Std) ↓ RMSD (Std) ↓ Stable ↑ U-Stable ↑ SUN ↑ Metastable ↑ U-Meta ↑ MSUN ↑ JS ↓ MMD ↓ FID ↓ ElemDiv ↑ SGDiv ↑ SizeDiv ↑ SiteDiv ↑ Prod ↓ Res ↓

ADiT[Joshi et al., 2025] 1000 812 882 914 1000 806 252 −2.288 ± 3.807 2.111 ± 4.418 0.389 ± 0.393 19 18 2 108 107 5 0.522 0.003 1.848 0.703 0.022 0.270 14.221 3.428 2.661
Crystalformer[Cao et al., 2024] 1000 577 687 642 796 572 247 −1.722 ± 9.741 2.728 ± 5.962 0.587 ± 0.858 13 13 4 106 104 5 0.273 0.003 2.489 0.695 0.313 0.322 17.385 3.830 2.785
DiffCSP[Jiao et al., 2023] 1000 732 733 823 825 729 475 −2.353 ± 3.730 1.766 ± 4.224 0.519 ± 0.622 17 17 11 109 108 18 0.464 0.007 1.796 0.695 0.104 0.279 14.277 3.420 2.628
DiffCSP++[Jiao et al., 2024] 1000 748 748 858 858 747 482 −4.398 ± 7.771 2.591 ± 5.580 0.661 ± 0.776 20 20 10 87 86 15 0.243 0.005 2.387 0.686 0.391 0.307 20.007 3.535 2.692
LLaMat2[Mishra et al., 2024] 1000 779 873 885 997 769 286 −1.120 ± 4.707 2.572 ± 5.673 0.487 ± 0.617 21 21 6 125 122 11 0.329 0.003 1.431 0.703 0.187 0.269 9.153 3.994 2.988
MatterGen[Zeni et al., 2025] 1000 739 740 829 830 738 499 −2.218 ± 2.806 1.731 ± 4.184 0.334 ± 0.399 19 19 10 136 136 42 0.439 0.006 1.798 0.644 0.126 0.276 12.109 3.525 2.650
PLaID++[Xu et al., 2025] 1000 960 965 993 999 848 228 −2.325 ± 2.994 3.452 ± 6.161 0.114 ± 0.240 25 24 3 218 182 26 0.446 0.035 3.008 0.652 0.204 0.238 5.948 5.246 3.394
SymmCD[Levy et al., 2025b] 1000 561 737 642 861 560 343 −1.161 ± 8.279 2.816 ± 5.505 0.763 ± 0.965 9 9 3 64 64 3 0.236 0.006 1.879 0.703 0.378 0.320 18.088 3.549 2.692
WyFormer[Kazeev et al., 2025] 1000 798 810 987 1000 798 530 −3.565 ± 8.384 2.048 ± 5.338 0.722 ± 0.794 16 16 6 70 70 6 0.238 0.008 1.436 0.695 0.370 0.309 21.638 3.601 2.701
WyFormer-DFT[Kazeev et al., 2025] 1000 839 839 1000 999 834 569 −4.749 ± 7.717 2.141 ± 5.664 0.380 ± 0.609 15 15 9 128 124 25 0.271 0.011 2.129 0.712 0.387 0.302 21.900 3.495 2.666

Table 4: Training datasets and data sources used for the reported generative crystal structure models
Model Training Dataset Source of Submitted Structures
ADiT MP-20 Authors of [Joshi et al., 2025]
Crystalformer MP-20 Figshare of [Kazeev et al., 2025]3

DiffCSP MP-20 Figshare of [Kazeev et al., 2025]3

DiffCSP++ MP-20 Figshare of [Kazeev et al., 2025]3

LLaMat2 MP-20 Authors of [Mishra et al., 2024]
MatterGen MP-20 Figshare of [Kazeev et al., 2025]3

PLaID++ MP-20 Authors of [Xu et al., 2025]
SymmCD MP-20 Figshare of [Kazeev et al., 2025]3

WyFormer-DiffCSP++ MP-20 Authors of [Kazeev et al., 2025]
WyFormer-DiffCSP++-DFT MP-20 Authors of [Kazeev et al., 2025]

D Environmental and Sustainability Considerations1020

The application of generative models to materials discovery presents significant opportunities for1021

advancing environmental sustainability goals. As global challenges related to climate change,1022

resource depletion, and environmental degradation intensify, the need for novel materials with1023

reduced environmental footprints becomes increasingly urgent. Generative approaches can accelerate1024

the discovery of sustainable alternatives by explicitly incorporating environmental criteria into the1025

design process.1026

One promising direction involves the targeted generation of materials with reduced reliance on critical1027

or environmentally problematic elements. By conditioning generative models on compositional1028

constraints that exclude toxic, rare, or environmentally harmful elements, researchers can guide1029

exploration toward more sustainable regions of chemical space. Similarly, models can be trained to1030

prioritize earth-abundant elements and avoid those associated with problematic extraction practices1031

or geopolitical supply risks.1032

Energy-related applications represent another frontier where generative models could significantly1033

impact sustainability outcomes. The discovery of more efficient catalysts for renewable energy1034

3https://figshare.com/articles/dataset/Generated_crystals_for_WyFormer_DiffCSP_
DiffCSP_WyCryst_SymmCD_CrystalFormer_MiAD/29145101

26
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production, improved battery materials for energy storage, and novel photovoltaic materials could1035

accelerate the transition away from fossil fuels. By specifically targeting properties relevant to these1036

applications, generative models can focus computational and experimental resources on high-impact1037

sustainability domains.1038

Life-cycle considerations present a more complex but equally important target for integration with1039

generative approaches. Ideally, materials should be designed not only for performance but also for1040

recyclability, biodegradability, or other end-of-life scenarios that minimize environmental impact.1041

Incorporating such considerations into generative frameworks remains challenging due to the complex,1042

multi-faceted nature of life-cycle assessment, but represents a crucial direction for future research.1043

The computational efficiency of generative processes themselves also warrants consideration from a1044

sustainability perspective. As models grow in complexity and scale, their energy consumption and1045

carbon footprint increase accordingly. Developing more efficient architectures, training procedures,1046

and sampling approaches could reduce the environmental impact of the discovery process itself,1047

aligning computational means with environmental ends. This consideration becomes particularly1048

important as generative approaches scale to industrial applications and high-throughput discovery1049

platforms.1050

The ultimate success of generative approaches in advancing sustainability will depend not only on1051

technical capabilities but also on intentional alignment with environmental objectives. By explicitly1052

incorporating sustainability metrics into reward functions, objective functions, and evaluation criteria,1053

the materials community can ensure that generative models contribute to addressing environmen-1054

tal challenges rather than merely accelerating traditional discovery paradigms without regard for1055

sustainability implications.1056
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