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ABSTRACT

Synthesizing relational databases has started to receive more attention from re-
searchers, practitioners, and industry. The task is more difficult than synthesizing
a single table due to the added complexity of relationships between tables. For the
same reason, benchmarking methods for synthesizing relational databases intro-
duces new challenges. Our work is motivated by a lack of an empirical evaluation
of state-of-the-art methods and by gaps in the understanding of how such an eval-
uation should be done. We review related work on relational database synthesis,
common benchmarking datasets, and approaches to measuring the fidelity and
utility of synthetic data. We combine the best practices, a novel robust detection
metric and relational deep learning utility, a novel approach to evaluating utility
with graph neural networks, into a benchmarking tool. We use it to compare 6
open source methods over 8 real-world databases, with a total of 39 tables. The
open-source SyntheRela benchmark is available on GitHub, alongside a public
leaderboard.
� Data & Code: github.com/martinjurkovic/syntherela

Leaderboard: huggingface.co/spaces/SyntheRela/leaderboard

1 INTRODUCTION

Synthesizing relational databases - generating relational databases that preserve the characteristics
of the original databases - is an emerging field. It promises several benefits, from protecting privacy
to addressing data scarcity, while preserving the complexity and dependencies present in the original
databases. This makes it attractive for healthcare (Appenzeller et al., 2022), finance (Assefa et al.,
2020), and education (Bonnéry et al., 2019), where accessing and utilizing data can be challenging
due to privacy concerns, data scarcity, or biases (Ntoutsi et al., 2020; Rajpurkar et al., 2022).

The foundations of synthesizing relational databases were laid by the Synthetic Data Vault (Patki
et al., 2016). Recently several deep learning methods have been proposed (Gueye et al., 2023; Li
& Tay, 2023; Mami et al., 2022; Xu et al., 2023; Canale et al., 2022; Solatorio & Dupriez, 2023;
Pang et al., 2024; Hudovernik, 2024). The field has also received attention from the industry, with
several commercial tools now available and with Google, Amazon, and Microsoft integrating them
into their cloud services (Gretel.ai, 2024).

While there are several packages for evaluating the quality of synthetic tabular data, only the SD-
Metrics package (Patki et al., 2016) provides some support for the evaluation of synthetic relational
databases. As such, the field lacks not only an empirical comparison of available methods but also
an understanding of how such an evaluation should be done. We address this gap with an evaluation
methodology that combines established evaluation metrics (Section 2.2), best practices, sampling
procedures, and real-world relational databases (Section B.2.1). We also propose a detection-based
metric C2ST-Agg specialized for relational databases and propose a novel approach to evaluating
the utility of synthetic relational databases with relational deep learning utility.

We implement the methodology in SyntheRela, a benchmark and evaluation tool that is available as
an open source package and can be easily extended with new metrics and datasets (see Appendix B).
Finally, we use the benchmark to evaluate current state-of-the-art methods (Section 2.1) over several
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relational databases (Section B.2.1). This is the first comprehensive evaluation and comparison of
methods for the synthesis of relational databases and provides valuable insights into their ability
to synthesize relational aspects of the data (Section 4). The code is publicly available alongside a
public leaderboard.

2 RELATED WORK

2.1 METHODS FOR SYNTHESIZING RELATIONAL DATABASES

In this work, we focus on relational databases — a collection of tables linked by primary and foreign
keys. We distinguish this from synthesizing tabular data (a single table), which is a special case and
an even more active field (Borisov et al., 2022; Hansen et al., 2023; Qian et al., 2023b). Here we
briefly summarize the methods. A detailed description can be found in Appendix A.

The Synthetic Data Vault (SDV) uses Gaussian copulas and predefined distributions. Row
Conditional-TGAN (RC-TGAN) (Gueye et al., 2023) and Incremental Relational Generator
(IRG) (Li & Tay, 2023) are based on GANs. The Realistic Relational and Tabular Transformer
(REaLTabFormer) (Solatorio & Dupriez, 2023) and Composite Generative Models (Canale et al.,
2022) are based on transformers. The work of Mami et al. (2022) is based on graph variational
autoencoders, while Xu et al. (2023) propose a framework for synthesizing many-to-many datasets
using random graphs. Pang et al. (2024) propose ClavaDDPM, a method based on classifier-guided
diffusion models. Hudovernik (2024) proposes RGCLD, a method based on graph neural networks
(GNNs) and conditional diffusion models. Recently, Tiwald et al. (2025) propose TabularARGN - a
framework for tabular and relational data synthesis based on autoregressive tabular models.

2.2 METRICS FOR EVALUATING SYNTHETIC DATA

The two main aspects for evaluating the quality of synthetic tabular data and relational databases
are fidelity and utility. Fidelity measures the degree of similarity between synthetic and real data in
terms of its properties, whereas utility measures how well the synthetic data can replace real data
when the data are part of some tasks, for example, for predictive modeling (Hansen et al., 2023).

We further divide fidelity metrics into statistical, distance-based, and detection-based metrics.
Utility of synthetic data is typically assessed with train-on-synthetic evaluate-on-real methods
(Beaulieu-Jones et al., 2019).

Another dimension of evaluation metrics for relational data is granularity. The most common are
single-column metrics that evaluate the marginal distributions, two-column metrics that evaluate bi-
variate distributions1, single-table metrics that evaluate tables, and multi-table metrics that evaluate
the relational aspects.

Statistical fidelity methods are typically used to assess marginal distributions, sometimes bivariate
distributions. The most commonly used methods are the Kolmogorov-Smirnov test and the X 2 test
for numerical and categorical variables, respectively. For relational data, cardinality shape similarity
is used, where for each parent row the number of child rows is calculated. This yields a numerical
distribution for both real and synthetic data, on which a Kolmogorov-Smirnov test is performed.

Similar to statistical fidelity, distance-based fidelity is typically used to assess the quality of
marginal distributions. However, some distance metrics also assess entire tables. Commonly used
distance-based methods are total variation distance, Kullback-Leibler divergence, Jensen-Shannon
distance, Wasserstein distance, maximum mean discrepancy, and pairwise correlation difference. To
evaluate inter-table relationships Pang et al. (2024) use k-hop similarity, where they compute corre-
lations between tables at distance k 2. Unlike statistical methods, reports of distance-based fidelity
do not include hypothesis testing or any other quantification of uncertainty. This is an issue both
when evaluating a method and when comparing two methods. In the former, a method can achieve
a seemingly high distance that is in a high probability region when taking into account the sampling

1In this work we group two-column (bivariate) metrics under single-table metrics.
2e.g., 0-hop refers to columns within the same table, while 1-hop refers to columns in tables directly con-

nected via a foreign key.

2



Published as a workshop paper at SynthData ICLR 2025

distribution. In the latter, a seemingly large difference between the two methods can be explained
away by the variance of the sampling distribution.

The basic idea of detection-based fidelity is to learn a model that can discriminate between real and
synthetic data. The detection-based metric can be interpreted as a null-hypothesis test for comparing
two distributions (two sample testing) with classification accuracy as a proxy Kim et al. (2021). The
classifier serves as a map from high-dimensional data to a one-dimensional test statistic. In machine
learning literature, this is referred to as a classifier two sample test (C2ST) (Lopez-Paz & Oquab,
2017). If the model can achieve better-than-random predictive performance, this indicates that there
are some patterns that identify synthetic data. Zein & Urvoy (2022) show that using discriminative
models can highlight the differences between real and synthetic tabular data.

The most common detection-based metric is logistic detection (LD) (Gueye et al., 2023; Solatorio
& Dupriez, 2023; Li & Tay, 2023; Pang et al., 2024), where a logistic regression model is used
for discrimination. An extended version of LD known as parent-child logistic detection (P-C LD)
is used to evaluate relational databases. P-C LD applies LD to denormalized pairs of synthetic
parent and child tables, assessing the preservation of parent-child relationships. A serious issue with
denormalization is that it may introduce correlation between rows, breaking the iid assumption. This
results in an over-performance of the discrimintative model and in underestimating the quality of the
method for synthesizing relational data. It also makes it impossible to set a detection threshold for
testing fidelity (for example, accuracy would be greater than 50% even if both datasets were from
the same data generating process). For these reasons, we do not consider P-C detection.

Note that logistic regression is unable to capture interactions between columns unless these inter-
actions are explicitly included as features. This implies a lenient evaluation of the state-of-the-art
methods (we demonstrate this empirically in Appendix C.3). Tree-based ensemble models are a
better alternative, which is also suggested by the findings of Zein & Urvoy (2022) for tabular data.

The utility of synthetic data is most commonly measured with machine learning efficacy (ML-E)
- comparing the hold-out performance of a predictive model trained on the original data with a
predictive model trained on synthetic data (Canale et al., 2022; Li & Tay, 2023; Mami et al., 2022;
Solatorio & Dupriez, 2023; Pang et al., 2024). Patki et al. (2016) measured utility with a user study
and Hansen et al. (2023) with the ability to retain model or feature importance ranking (measured
with rank correlation) in the train-on-synthetic evaluate-on-real paradigm. Note that all of these
studies evaluated utility on a single table, even those that investigated synthetic relational databases.

3 EVALUATING SYNTHETIC RELATIONAL DATABASES

3.1 MULTI-TABLE FIDELITY USING AGGREGATION

We first address the lenient evaluation by replacing logistic regression commonly used in related
work with tree-based methods (Borisov et al., 2023; Zein & Urvoy, 2022).

Our next observation is that current fidelity metrics fail to thoroughly evaluate relationships between
tables: (i) cardinality similarity assesses only the cardinality of foreign key relationships, (ii) k-hop
similarity evaluates only linear relationships between columns in related tables, and (iii) denormal-
ization breaks the iid assumption required for C2ST, leading to unreliable fidelity assessments.

To address these limitations, we introduce a classifier two-sample test with aggregation (C2ST-Agg).
Instead of denormalizing tables, we preserve the multi-table structure by augmenting both real and
synthetic parent tables with aggregated features derived from their child tables. Aggregation is
an established technique in the field of relational reasoning (Getoor et al., 2007; Džeroski, 2010)
and C2ST-Agg can be thought of as a propositionalization (Kramer et al., 2001) approach to the
C2ST on relational databases. By summarizing child-table columns and relationship cardinality
through aggregation functions (e.g., mean, count, max), C2ST-Agg maintains the iid assumption
while enhancing classifier-based fidelity assessment. Our approach addresses the issues of current
fidelity metrics: it accounts both for relationship cardinality (i) and high-level interactions across all
columns in related tables (ii), while maintaining the iid assumption for each table (iii). In practice,
users can select aggregation functions based on the specific aspects of relational data they wish
to evaluate. We provide general guidelines for choosing these aggregations, along with a detailed
explanation of the C2ST-Agg metric, in Appendix B.1.1
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3.2 RELATIONAL DEEP LEARNING UTILITY

Recently, relational deep learning has emerged as an alternative to traditional ML methods by trans-
forming relational databases into graphs (Fey et al., 2023; Papamarkou et al., 2024) and utilizing
graph neural networks (GNNs). Subsequently, Robinson et al. (2024) proposed RelBench, a bench-
mark for relational deep learning. The authors of RelBench show that the performance of a GNN
pipeline is comparable to a traditional ML pipeline approach done by a data scientist.

To omit the creation of feature engineering pipelines to transform relational databases into a single
table and then train ML models, we incorporate the graph approach of RelBench into SyntheRela.
We use the RelBench GNN pipeline to fit GraphSage models (Hamilton et al., 2017) on real and syn-
thetic data, respectively, and then evaluate them on the test set consisting entirely of real data. This
allows us to compare the performance for any relational database with a time component, without the
need for manual data processing or feature engineering steps, which might introduce bias or noise.
Notably, this is the only approach to relational utility that includes the whole relational database,
ensuring a more comprehensive evaluation. We call this approach relational deep learning utility
(RDL-utility).

4 BENCHMARKING AND RESULTS

We combine our findings into a synthetic relational database benchmark, including single column,
single-table, and multi-table fidelity metrics, alongside our novel approach to evaluating the utility
of relational synthetic data, GNN-utility.

We compare the following methods for synthesizing relational data: SDV, RC-TGAN, REaLTab-
Former, ClavaDDPM, RGCLD, and TabularARGN. Other related work does not have an API or
available source code or we were not able to run the source code.

We include 6 datasets that feature in related work (AirBnB, Rossmann, Walmart, Biodegradabil-
ity, MovieLens), the Cora dataset by McCallum et al. (2000), a popular dataset in graph repre-
sentation learning, and the F1 dataset from the relational deep learning benchmark Robinson et al.
(2024) for a total of 8 benchmark datasets. The datasets vary in types of relationships and number
of tables and columns, which are summarized in Table 1 (see Appendix B.2 for details).

Table 1: Summary of the 8 benchmark datasets. The number of columns represents the number
of non-id columns. The collection is diverse and covers all types of relational structures.

Dataset Name # Tables # Rows # Columns # Relationships Hierarchy Type
Rossmann 2 59,085 16 1 Linear
AirBnB 2 57,217 20 1 Linear
Walmart 3 15,317 17 2 Multi Child
Cora 3 57,353 2 3 Multi Child
Biodegradability 5 21,895 6 5 Multi Child & Parent
IMDB MovieLens 7 1,249,411 14 6 Multi Child & Parent
Berka 8 757,722 37 8 Multi Child & Parent
F1 9 74,063 33 13 Multi Child & Parent

We evaluate all three levels of synthetic relational databases, with a focus on multi-table evaluation
(see Appendix B.1 for all benchmark metrics). Most methods are non-deterministic, so we report
results for three different replications. However, all results are stable across replications. Four of
the methods are capable of synthesizing all of the datasets, irrespective of their relational structure.
REALTABFORMER is only capable of generating databases with linear structure, and ClavaDDPM
is unable to model datasets with two or more foreign keys between a pair of tables (Biodegredability
and CORA).

For single-column metrics, we report the complement of the Kolmogorov-Smirnov statistic and the
Total Variation Distance (the complement to KS/TV distance between two distributions P and Q is
1−DKS/TV(P ||Q)). For single-table metrics, we report the complements of the KS and TV distances
between column pair correlations. For multi-table metrics, we report the average cardinality shape
similarity and the k-hop (k > 1) correlations between tables. At all levels, we report the C2ST
using XGBoost Chen & Guestrin (2016) as the discriminative model. We use 5-fold stratified cross-
validation to estimate detection accuracy. For C2ST-Agg, we augment the rows with (a) counts of
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child rows for each row in each parent table, (b) the mean values of the numeric columns in the child
table corresponding to the parent row; and (c) the number of unique categories in related rows.

4.1 SINGLE TABLE PERFORMANCE

We first evaluate the fidelity of individual tables. We focus on the detection metric and how well
column pairs (bivariate distributions) are modeled. Table 2 summarizes the results. On the datasets
that it is able to generate, the diffusion-based ClavaDDPM performs best, followed by the other
diffusion-based method, RGCLD.

Table 2: Single-table results. For each dataset and metric we report the average detection accuracy
(C2ST - lower is better) and column pair trends (Pairs - higher is better) across all tables for three
independent samples. SDV exceeds the time limit for sampling on IMDB (TLE) and ”-” denotes a
method is unable to generate the dataset. The best result is bolded and the second-best underlined.

Dataset Metric TabularARGN RGCLD ClavaDDPM RCTGAN REALTABF. SDV

Airbnb C2ST (↓) 0.64± 3e-3 0.70± 0.06 0.78± 6e-4 0.88± 3e-3 0.84± 0.08 ≈ 1
Pairs (↑) 0.93± 0.01 0.89± 0.01 0.88± 2e-3 0.79± 5e-3 0.54± 0.02 0.49± 1e-3

Rossmann C2ST (↓) 0.56± 0.01 0.69± 0.07 0.67± 2e-3 0.88± 0.01 0.75± 0.01 0.97± 4e-3
Pairs (↑) 0.91± 1e-3 0.90± 0.01 0.85± 0.01 0.84± 0.01 0.85± 0.02 0.68± 4e-3

Walmart C2ST (↓) 0.84± 0.01 0.67± 0.03 0.54± 0.03 0.76± 0.01 0.71± 0.02 0.87± 0.01
Pairs (↑) 0.84± 4e-3 0.92± 0.02 0.94± 2e-3 0.87± 4e-3 0.83± 0.01 0.88± 4e-3

Berka C2ST (↓) 0.72± 3e-3 0.64± 0.04 0.54± 2e-3 0.68± 0.01 - 0.82± 0.01
Pairs (↑) 0.70± 4e-3 0.74± 0.03 0.89± 0.02 0.74± 5e-3 0.64± 2e-3

F1 C2ST (↓) 0.82± 0.01 0.70± 0.02 0.71± 0.01 0.81± 0.01 - 0.90± 4e-3
Pairs (↑) 0.81± 0.01 0.92± 0.01 0.85± 9e-4 0.90± 5e-4 0.73± 3e-3

IMDB C2ST (↓) 0.51± 4e-3 0.55± 0.04 0.50± 1e-3 0.55± 2e-3 - TLEPairs (↑) 0.98± 2e-3 0.94± 0.04 0.99± 2e-3 0.82± 6e-4

Biodegradability C2ST (↓) 0.59± 3e-3 0.63± 0.04 - 0.58± 3e-3 - 0.69± 2e-3
Pairs (↑) 0.75± 0.01 0.91± 0.09 0.85± 0.04 0.98± 0.01

Cora C2ST (↓) 0.51± 0.01 0.53± 0.02 - 0.49± 2e-3 - 0.75± 3e-3

The rankings of methods for single column metrics are similar to those of single tables. As ex-
pected, the methods model individual columns better. See Appendix C.1 for details. Interestingly,
TabularARGN performs best on modeling marginal distributions, indicating their discretization ap-
proach is a robust preprocessing step.

4.2 MULTI-TABLE PERFORMANCE

Multi-table metrics examine how well the relationship cardinality and the relationships between
different tables are preserved. Cardinality shape similarity examines only the former, while k-HOP
similarity evaluates the latter; C2ST-Agg examines both. We report the results in Table 3. As with
single table fidelity, the diffusion-based methods perform best.

An important advantage of detection with aggregation is that for the most part it uses same features as
when evaluating individual tables (with the exception of the aggregation attributes). This allows us
to directly compare single and multi-table performance to see how well the methods model relational
data. We examine the difference between single-table and multi-table detection-based fidelity. For
most methods, we observe a significant drop in fidelity when adding aggregations. Figure 1 shows
how C2ST detection accuracy increases when incorporating aggregations (i.e. information about
relationships between tables). We investigate this further using explainability methods and show
how these can be used to ”debug” generative methods in Appendix C.2.

4.3 RELATIONAL DEEP LEARNING UTILITY PERFORMANCE

Table 4 summarizes the RDL-utility results (Section 3.2). The evaluation is performed on four
datasets which contain a temporal feature, which is necessary for defining train and test splits. De-
tails of the tasks are provided in the Appendix D. The utility scores follow the same trend as the
multi-table results, with models achieving high fidelity also performing best in utility tasks. Com-
parison with naive baselines demonstrates that the models can learn from synthetic databases.
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Figure 1: Comparing single and multi-table performance. While there is an overall trend in
improvement of both single-table and multi-table fidelity, most methods still exhibit a significant
gap between single-table and multi-table fidelity.

Table 3: Multi-table results. For each dataset and metric we report the average detection accuracy
for C2ST-Agg (lower is better), cardinality similarity (higher is better) and k-hop correlation similar-
ity (higher is better) across all tables for three independent samples. ”-” denotes a method is unable
to generate the dataset, and TLE timeout. The best result is bolded and second-best underlined.

Dataset Metric TabularARGN RGCLD ClavaDDPM RCTGAN REALTABF. SDV

Airbnb
C2ST-Agg (↓) 0.63± 0.02 0.80± 0.09 ≈ 1 0.98± 1e-3 0.99± 4e-4 ≈ 1
Cardinality (↑) 0.99± 0.01 0.99± 2e-3 ≈ 1 0.95± 0.01 0.76± 0.01 0.26± 5e-4

1-HOP (↑) 0.80± 0.01 0.84± 0.05 0.87± 2e-3 0.69± 0.01 0.34± 0.10 0.25± 5e-4

Rossmann
C2ST-Agg (↓) 0.60± 0.01 0.76± 0.01 0.86± 1e-3 0.86± 0.02 0.86± 0.02 0.98± 4e-3
Cardinality (↑) 0.94± 0.03 0.99± 0.01 0.99± 0.01 0.83± 0.03 0.42± 0.18 0.99± 3e-3

1-HOP (↑) 0.93± 0.01 0.88± 0.01 0.83± 0.01 0.87± 3e-3 0.80± 0.01 0.74± 0.01

Walmart
C2ST-Agg (↓) 0.95± 0.03 0.89± 0.02 0.73± 0.05 0.95± 0.03 0.90± 0.02 0.89± 0.03
Cardinality (↑) 0.66± 0.03 0.95± 0.01 0.93± 0.04 0.88± 0.03 0.86± 0.08 0.86± 0.02

1-HOP (↑) 0.75± 0.03 0.82± 0.05 0.86± 0.03 0.79± 3e-3 0.75± 3e-3 0.77± 0.02

Berka

C2ST-Agg (↓) 0.81± 0.03 0.73± 0.04 0.69± 0.01 0.77± 0.04

-

0.77± 2e-3
Cardinality (↑) 0.85± 0.01 ≈ 1 0.96± 0.01 0.81± 0.02 0.81± 0.01

1-HOP (↑) 0.73± 0.01 0.81± 0.03 0.88± 0.03 0.79± 0.02 0.59± 0.01
2-HOP (↑) 0.66± 0.01 0.74± 0.03 0.84± 0.04 0.78± 0.02 0.23± 4e-3
3-HOP (↑) 0.59± 0.01 0.65± 0.09 0.81± 0.04 0.79± 0.01 0.58± 0.01

F1

C2ST-Agg (↓) 0.96± 0.02 0.74± 0.05 0.83± 4e-3 0.91± 0.01

-

0.95± 4e-3
Cardinality (↑) 0.58± 0.06 ≈ 1 0.88± 0.05 0.57± 0.03 0.72± 2e-3

1-HOP (↑) 0.77± 4e-3 0.88± 0.03 0.79± 5e-4 0.79± 0.01 0.68± 3e-3
2-HOP (↑) 0.76± 0.01 0.88± 0.03 0.84± 2e-3 0.83± 0.01 0.77± 4e-3

IMDB
C2ST-Agg (↓) 0.74± 0.03 0.65± 0.10 0.65± 0.01 0.82± 0.03

- TLECardinality (↑) 0.81± 0.01 ≈ 1 0.99± 6e-4 0.80± 0.02
1-HOP (↑) 0.89± 0.01 0.86± 0.09 0.92± 0.02 0.82± 3e-3

Biodegradability

C2ST-Agg (↓) 0.89± 4e-3 0.71± 0.07

-

0.84± 0.06

-

0.98± 1e-3
Cardinality (↑) 0.80± 4e-3 0.98± 2e-4 0.85± 0.01 0.61± 0.01

1-HOP (↑) 0.61± 0.01 0.78± 0.08 0.76± 0.03 0.49± 0.01
2-HOP (↑) 0.61± 0.01 0.75± 0.07 0.77± 0.03 0.48± 0.04

Cora
C2ST-Agg (↓) 0.69± 0.01 0.62± 0.03

-
0.74± 0.01

-
≈ 1

Cardinality (↑) 0.96± 2e-3 ≈ 1 0.90± 0.04 0.69± 0.01
1-HOP (↑) 0.80± 0.01 0.64± 0.05 0.68± 1e-3 0.05± 2e-3

Table 4: RDL-utility results. We include 5 datasets that have a temporal feature. We report ROC-
AUC (higher is better) for classification and MAE (lower is better) for regression tasks. We report
the naive baseline scores (mean or majority class) in parenthesis. ”-” denotes that the utility pipeline
could not be used due to poorly generated time columns. The best and second results are highlighted.

Dataset ORIGINAL TabularARGN RGCLD CLAVADDPM RCTGAN REALTABF. SDV

Rossmann MAE 156 (324) 278± 4 195± 8 196± 2 217± 2 292± 21 3, 356± 39
Walmart MAE 9531 (14.7k) 13, 844± 40 13, 165± 264 12,985± 414 13, 681± 194 14, 275± 180 13, 830± 131
AirBnB AUC 0.62 (0.5) 0.61± 0.02 0.60± 0.02 0.61± 0.02 0.54± 0.02 - 0.58± 0.00
Berka AUC 0.73 (0.5) 0.59± 0.23 0.60± 0.01 0.52± 0.16 - - -

F1 AUC 0.76 (0.5) 0.40± 0.09 0.74± 0.03 0.54± 0.02 0.47± 0.05 - 0.48± 0.05
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5 CONCLUSION

We surveyed methods for synthesizing relational databases and provided a critical review of ap-
proaches to evaluating the fidelity and utility of synthetic data. We integrated our findings into
SyntheRela, the first benchmark tailored to evaluating synthetic relational databases.

We propose a robust detection-based metric for evaluating multi-table fidelity C2ST-Agg and a novel
approach to evaluating the utility of synthetic relational databases, RDL-utility.

The best methods generate marginal distributions well, which is in line with SOTA single-table meth-
ods. Diffusion-based approaches, in particular, perform well on single-table fidelity. However, most
methods experience a decline in performance when evaluated on multi-table fidelity, highlighting the
added complexity of modeling relational databases. While no method perfectly preserves inter-table
relationships, most outperform naive baselines and achieve model performance scores comparable
to those trained on the original database. This suggests that despite not achieving perfect fidelity,
i.e., being indistinguishable from real data, these synthetic data remain valuable for downstream
machine learning tasks.

We hope our benchmark will provide valuable insights to synthetic data users and serve as a basis
for comparison of novel synthetic relational database generation methods.
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Stefan Kramer, Nada Lavrač, and Peter Flach. Propositionalization approaches to relational data
mining. Relational data mining, pp. 262–291, 2001.

Jiayu Li and YC Tay. Irg: Generating synthetic relational databases using gans. arXiv preprint
arXiv:2312.15187, 2023.

David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. In International Con-
ference on Learning Representations, 2017. URL https://openreview.net/forum?
id=SJkXfE5xx.

Ciro Antonio Mami, Andrea Coser, Eric Medvet, Alexander T. P. Boudewijn, Marco Volpe, Michael
Whitworth, Borut Svara, Gabriele Sgroi, Daniele Panfilo, and Sebastiano Saccani. Generating
realistic synthetic relational data through graph variational autoencoders, 2022.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3:127–163, 2000.

Anna Montoya, LizSellier, Meghan O’Connell, Wendy Kan, and alokgupta. Airbnb
new user bookings, 2015. URL https://kaggle.com/competitions/
airbnb-recruiting-new-user-bookings.

Mostly.ai. Mostlyai. https://mostly.ai/. Accessed on January 10th, 2025.

Jan Motl and Oliver Schulte. The ctu prague relational learning repository, 2024. URL https:
//arxiv.org/abs/1511.03086.

Eirini Ntoutsi, Pavlos Fafalios, Ujwal Gadiraju, Vasileios Iosifidis, Wolfgang Nejdl, Maria-Esther
Vidal, Salvatore Ruggieri, Franco Turini, Symeon Papadopoulos, Emmanouil Krasanakis, et al.
Bias in data-driven artificial intelligence systems—an introductory survey. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 10(3):e1356, 2020.

Wei Pang, Masoumeh Shafieinejad, Lucy Liu, and Xi He. Clavaddpm: Multi-relational data synthe-
sis with cluster-guided diffusion models. arXiv preprint arXiv:2405.17724, 2024.

Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue
Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, Vasileios Maroulas, Nina Mi-
olane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane,
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APPENDIX

A A SURVEY OF SYNTHETIC RELATIONAL DATABASE GENERATION
METHODS

The Synthetic Data Vault (SDV) (Patki et al., 2016) introduced the first learning-based method
for generating relational databases. The method is based on the Hierarchical Modeling Algorithm
(HMA) synthesizer, which is a multivariate version of the Gaussian Copula method. The method
converts all columns to a predefined set of distributions and selects the best-fitting one. To learn
dependencies, columns are converted to a standard normal before calculating the covariances. Tables
are modeled with a recursive conditional parameter aggregation technique, which incorporates child
table covariance and column distribution information into the parent table. The method requires the
relational structure or metadata, which has since become a common practice.

The work of Mami et al. (2022) leverages the graph representation of relational database using
Graph Variational Autoencoders. They focus on the case of one primary table connected by
an identifier to an arbitrary number of secondary tables. The approach begins by transforming
categorical, datetime, and numeric attributes into a normalised numeric format using an invertible
function. Subsequently, all tables’ attributes are merged into a single table, where rows from each
table are vertically concatenated. This merged table, along with an adjacency matrix based on
foreign key relations, forms a homogeneous graph representation of the dataset. Message passing is
then applied to this graph representation using gated recurrent units (GRU). Following the message
passing phase, the data is processed through a variational autoencoder, which encodes the joined
table and random samples are taken from its latent space. These samples are then decoded back to
the data space.

Composite Generative Models (Canale et al., 2022) propose a generative framework based on
codecs for modeling complex data structures, such as relational databases. They define a codec as a
quadruplet: C = (E,D,S,L), consisting of an encoder E producing embeddings and intermediate con-
texts, a decoder D for distribution representation, a sampler S and loss function L. The authors define
the following codecs: Categorical and Numerical Codecs for individual columns, while composite
data types are encoded using Struct and List Codecs, allowing for relational database synthesis.
They also propose a specific implementation using causal transformers as generative models.

The Row Conditional-TGAN (RC-TGAN) (Gueye et al., 2023) extends the conditional tabular
GAN model (Xu et al., 2019) to relational databases. RC-TGAN incorporates data from parent
rows into the child table GAN model, allowing it to synthesise data conditionally on the connected
parent table rows. The ability for conditional synthesis allows the method to handle various rela-
tionship schemas without additional processing. They enhance RC-TGAN to capture the influence
of grandparent rows on their grandchild rows, preserving this connection even when the relation-
ship information is not transferred by the parent table rows. Database synthesis is based on the row
conditional generator of RC-TGAN model trained for each table. First, all parent tables are synthe-
sised, followed by sampling the tables for which parents are already sampled. This allows using the
synthesised parent rows as features when synthesizing child table rows.

The Incremental Relational Generator (IRG) (Li & Tay, 2023) uses GANs to incrementally fit
and sample the relational dataset. They first define a topologically ordered sequence of tables in the
dataset. Parent tables are modeled individually, while child tables undergo a three-step generation
process. First, a potential context table is constructed by combining data from all related tables
through join operations and aggregation. Then, the model predicts the number of child rows to be
generated for each parent row, which they call its degree. They then extend the context table with
corresponding degrees. Taking this table as context, they use a conditional synthetic tabular data
generation model to generate the child table.

The Realistic Relational and Tabular Transformer (REaLTabFormer) (Solatorio & Dupriez,
2023) focuses on synthesizing single parent relational data and employs a GPT-2 encoder with a
causal language model head to independently model the parent table. The encoder is frozen after
training and used to conditionally model the child tables. Each child table requires a new conditional
model, implemented as a sequence-to-sequence (Seq2Seq) transformer. The GPT-2 decoder with a
causal language model head is trained to synthesise observations from the child table, accommodat-
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ing arbitrary-length synthetic data conditioned on an input. While this method supports conditional
synthesis of child rows, only one level is supported by this method.

Xu et al. (2023) propose a method for modeling many-to-many (M2M) datasets via random graph
generation. They leverage a heterogeneous graph representation of the relational data and propose
a factorization for modeling the graph representation incrementally. First, the edges of the graph
are generated unconditionally using a random graph model. Second, one of the tables is generated
conditionally on the topology of edges. One way to achieve such conditioning is by using a node
embedding. Lastly, the remaining tables are generated using the conditional table model, which
requires the generation of each node of the table based on the currently generated tables and all
connections. They achieve this by using set embeddings to conditionally generate connected ta-
bles. The authors propose two variants using different conditional table models BayesM2M and
NeuralM2M.

Privacy-preserving graphical models with latent variables. (PrivLava) (Cai et al., 2023) synthe-
sizes relational databases with foreign key dependencies under differential privacy (DP). PrivLava
models each foreign key in a relational schema as a separate graphical model, incorporating latent
variables to capture inter-relational dependencies. Each entity in a child table associated with a par-
ent table is modeled using a latent variable that represents the characteristics of the relationship. The
approach handles foreign key relationships by treating them as a directed acyclic graph (DAG). It
incrementally models the tables following a topological order based on the graph edges, beginning
with root tables and then moving on to tables that depend on them. This ensures that each syn-
thetic row in child tables is conditionally generated based on latent features of related parent rows.
Gaussian oise is injected at various stages to achieve DP guarantees.

The Cluster Latent Variable guided Diffusion Probabilistic Models (ClavaDDPM) (Pang et al.,
2024) utilizes classifier-guided diffusion models, integrating clustering labels as intermediaries be-
tween tables connected by foreign-key relations. The authors first propose a model for generating
a single parent-child relationship. The connection between the tables is modeled by a latent vari-
able obtained using Gaussian Mixture Model clustering. ClavaDDPM learns a diffusion process on
the joint parent and latent variable distribution, followed by training a latent variable classifier on
the child table to guide the diffusion model for the child table. Additionally, it includes a model
to estimate child group sizes, to preserve relation cardinality. The authors then extend this to more
parent-child constraints through bottom-up modeling and address multi-parent scenarios by employ-
ing majority voting to mitigate potential clustering inconsistencies.

Hudovernik (2024) adapts the tabular latent diffusion-based model TabSyn (Zhang et al., 2024) for
conditional generation of relational databases. The method Relational Graph-Conditioned Latent
Diffusion (RGCLD) utilizes a heterogenous graph representation of a relational database. The rows
of each table are represented as nodes of a particular type, and the foreign keys between tables are
represented by edges connecting the nodes. The method trains a graph neural network for each table
to encode the relationships between connected tables. The embeddings of the GNN are used to guide
the diffusion process in the latent space. During sampling, the method generates tables sequentially
based on a topological order defined by the dataset’s schema.

Tiwald et al. (2025) propose TabularARGN, an auto-regressive model for generating synthetic
data for flat and sequential tables. TabularARGN is a shallow any-order auto-regressive network
architecture. The method homogenizes diverse datatypes by discretizing them and is trained by
minimizing the categorical cross-entropy loss across the discretized attributes. TabularARGN is
designed to generate tabular synthetic data by learning the full set of conditional probabilities across
features in a dataset. The sequential table TabularARGN model can handle sequences of arbitrary
lengths. TabularARGN’s sequential table model can utilize a flat table as context during training
and generation, enabling the synthesis of two-table setups, such as a flat table containing time-
independent information (e.g., bank customer data) and a sequential table containing time-dependent
data (the bank customer transaction histories). The method was open-sourced by the commercial
provider Mostly.ai, while the method is specialized for sequential data, they also support generating
multi-parent schemas. For these datasets, the method will retain the context for one of the parent
tables and retain the referential integrity for the rest3.

3For details on multi-table generation see https://mostly.ai/docs/generators/
configure/set-table-relationships/multi-table.
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B SYNTHETIC RELATIONAL DATABASE GENERATION BENCHMARK

We provide our work as a Python package SyntheRela. The main goal of the package is the eval-
uation of the quality of synthetic relational databases. We can compare multiple methods across
multiple databases with the Benchmark class or evaluate a single method on a single database with
the Report class. All of the results of the benchmark are saved as JSON files and then parsed by
our package for results summarization and visualization. The package is open source under the MIT
license and can easily be extended with new methods, evaluation metrics, or databases.

B.1 EVALUATION METRICS

We list the evaluation metrics for data fidelity and utility currently supported in our benchmark
in Table 5, based on the granularity of the data they evaluate. For single column fidelity, we use
the Kolmogorov-Smirnov and X 2 statistical tests, total variation, Hellinger, Jensen-Shannon, and
Wasserstein distances, alongside a single column C2ST. We include column pair correlation similar-
ity, maximum mean discrepancy, pairwise correlation difference, and C2ST for single table fidelity.
We evaluate multi-table fidelity with cardinality shape similarity and k-hop correlation similarity
alongside C2ST-Agg. We also implement the Parent-Child C2ST for comparison with related work.
Single-column utility is generally covered by fidelity metrics and not evaluated in related work. For
single-table utility, we implement tabular machine learning utility metrics, and for multi-table utility,
we include RDL-utility.

Table 5: Evaluation metrics supported in the benchmark.

Single Column Single Table Multi Table
Statistical KS Test, X 2 Test Column pair correlations cardinality shape similarity
Distance Total Variation,

Hellinger,
Jensen-Shannon,
Wasserstein

Maximum Mean
Discrepancy,
Pairwise Correlation
Difference

k-hop correlation similarity

Detection C2ST C2ST C2ST-Agg,
Parent-Child C2ST

Utility / Tabular ML-Utility Relational DL-Utility

B.1.1 C2ST WITH AGGREGATION

Fidelity methods are concerned with measuring similarity between two databases with the same
schema but different data. Typically, these will be the real database DREAL and a synthetic database
DSYN, with the goal of detecting if, to what extent, and where the synthetic data differ from the real
data.

Let a relational database D be a collection of tables T = {T1, ..., Tn} and a schema S = (R,A),
where R ⊆ T × T are the relations between the tables and ATi

= {aTi
1 , . . . , aTi

l } ∈ A define the
tables’ attributes. Each table is a set T = {v1, ..., vnT

} consisting of elements vi called rows. Each
row v ∈ T has three components v = (pv,Kv, xv). A primary key pv that uniquely identifies the
row v; the set of foreign keys Kv = {pv′ : v′ ∈ T ′ and (T, T ′) ∈ R}, where pv′ is the primary key
of the row v′; and the set of values xv = {(a, x) : a ∈ AT } corresponding to attributes of table T .

Algorithm 1 describes how we add aggregations to the target table. For each child table, we add
CountRows, a count of the number of child rows corresponding to a parent row. For each attribute
(i.e. column) in each child table, we compute an aggregation attribute (mean, count, etc.). The
aggregation attributes are added to the target table. In practice, different aggregation functions may
be applied, as long as they maintain the i.i.d. assumption of the data. In our benchmark, we use
column means for numerical columns and the number of distinct categories in categorical columns
along with the child row count.

Our implementation allows us to directly control how many levels of aggregations we add (similarly
to k-hop correlation similarity (Pang et al., 2024)). Each level accounts for one application of
Algorithm 1. When aggregating for 1 level, only the information directly from the table’s children
is aggregated; at the second level, the aggregated grandchild columns are also added to the table.
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Algorithm 1 Relational Aggregation.
Require: relational database D with tables T and relational schema S = {R, {AT1 . . . ATn}}
Require: target table T
1: aggregationAttributes← [ ]
2: for each Ci ∈ {C : (C, T ) ∈ R} do
3: Add CountRows(Ci, T ) to aggregationAttributes ▷ Count number of child rows for each row in T .
4: for each aCi

j ∈ ACi do ▷ Iterate through child table columns.
5: Add Agg(Ci, a

Ci
j , T ) to aggregationAttributes ▷ Compute aggregation (e.g., mean, distinct...).

6: end for
7: end for
8: for each v ∈ T do
9: for each a ∈ aggregationAttributes do

10: Add (a.name,a.value) to v ▷ Append computed aggregation attributes.
11: end for
12: end for
13: return Ti ▷ Return table with aggregations applied.

In our benchmark, we choose to add only one level of aggregation, as most methods struggle to
preserve the relationships at distance k = 1.

It has been shown that the accuracy-based approach to two-sample testing is consistent and controls
for Type I error and (asymptotically) Type II error (see Kim et al. (2021) for theoretical results
and a summary of empirical results). In practice, we are also interested in finite sample behavior.
Experiment-based recommendations show that the approach should have an advantage in power
when the data are well-structured or we have a lot of data, or when it is difficult to specify a test
statistic, which is very common for high-dimensional data. Therefore, the large, higher-dimensional
and structured nature of relational data is a perfect fit for C2ST.

B.2 DATASETS

B.2.1 RELATIONAL DATABASES AND SAMPLING PROCEDURES

An important issue with evaluating relational data is that representative sampling is difficult (Buda
et al., 2013; Gemulla et al., 2008). If the dataset does not include a time component or if the
relationships are non-linear, the sampling becomes non-trivial and directly impacts the performance
of the generative method. Even if the data have a strict hierarchy between tables, the rows in a
child table are related via their parent, which breaks the assumption of iid sampling. This makes
splitting the dataset into a representative train and test set difficult. Consequently, the methods for
synthesizing relational databases are typically trained using the entire original dataset.

We organize the datasets used in related work based on the structure of their relational schema.
Datasets using only linear relationships (one parent and one child table) include AirBnB (Mon-
toya et al., 2015) and Rossmann Store Sales (FlorianKnauer, 2015). While this structure may be
sufficient for some practical applications, Gueye et al. (2023) and Xu et al. (2023) highlight the
need for methods supporting more complex, multiple-parent relational structures found in datasets
like MovieLens (Harper & Konstan, 2015) and World Development Indicators (World Bank, 2019).
Datasets including multiple child tables include Telstra Network Disruptions (Wendy Kan, 2015),
Walmart Recruiting - Store Sales Forecasting (Walmart, 2014), and Mutagenesis (Debnath et al.,
1991). Datasets with multiple children and parents include Coupon Purchase Prediction (Kato et al.,
2015), World Development Indicators (World Bank, 2019), MovieLens (Harper & Konstan, 2015),
Biodegradability (Blockeel et al., 1999) and Berka Berka et al. (2000).

B.2.2 BENCHMARK DATASETS

Table 1 summarizes the relational datasets used in our benchmark. Six datasets are from related work
and we add the Cora dataset by McCallum et al. (2000), which contains a simple yet challenging
relational schema, and F1 F1 (2021) from the RelBench benchmark. We include 2 datasets per
hierarchy type to progressively add complexity in generation. The datasets used in our evaluation
are diverse in terms of the number of columns, tables and relationships.
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The AirBnB (Airbnb, 2015) dataset includes user demographics, web session records, and summary
statistics. It provides data about users’ interactions with the platform, with the aim of predicting the
most likely country of the users’ next trip. See Figure 6a for schema.

The Berka (also known as the Financial dataset) Berka et al. (2000) dataset contains 606 successful
and 76 unsuccessful loans along with their information and transactions. The standard task is to
predict the loan outcome for finished loans (A vs B) at the time of the loan start. See Figure 9 for
schema.

The Biodegradability dataset (Blockeel et al., 1999) comprises a collection of chemical structures,
specifically 328 compounds, each labeled with its half-life for aerobic aqueous biodegradation. This
dataset is intended for regression analysis, aiming to predict the biodegradation half-live activity
based on the chemical features of the compounds. See Figure 10 for schema.

The Cora dataset (McCallum et al., 2000) is a widely-used benchmark dataset in the field of graph
representation learning. It consists of academic papers from various domains. The dataset consists
of 2708 scientific publications classified into one of seven classes and their contents. The citation
network consists of 5429 links. See Figure 7b for schema.

The F1 dataset (F1, 2021) contains Formula 1 racing data and statistics dating back to 1950. It
contains information on drivers, constructors, race results, and standings covering every season in
F1 history. See Figure 8 for schema.

The IMDB MovieLens dataset (Harper & Konstan, 2015) comprises information on movies, actors,
directors, and users’ film ratings. The dataset consists of seven tables, each containing at least one
additional feature besides the primary and foreign keys. See Figure 11 for schema.

The Rossmann Store Sales (FlorianKnauer, 2015) features historical sales data for 1115 Rossmann
stores. The dataset consists of two tables connected by a single foreign key. This makes it the
simplest type of relational dataset. The first table contains general information about the stores and
the second contains sales-related data. See Figure 6b for schema.

The Walmart dataset (Walmart, 2014) includes historical sales data for 45 Walmart stores across
various regions. It includes numerical, date-time and categorical features across three connected
tables store, features and depts. The dataset is from a Kaggle competition, with the task of predicting
department-wide sales. See Figure 7a for schema.

B.3 COMPARISON WITH EXISTING EVALUATION TOOLS

The most popular and comprehensive package for evaluating tabular synthetic data is Synthc-
ity (Qian et al., 2023a;b). It supports many statistical, privacy and detection-based (with several
different models) metrics.

The only package that supports multi table evaluation is SDMetrics (DataCebo, 2022). It includes
multi table metrics cardinality shape similarity and parent-child detection with logistic detection and
support vector classifier. The package is not easy to extend and limits the adaptation of metrics. We
re-implement detection metrics (discriminative detection, aggregation detection, and parent-child
detection) to be used with an arbitrary classifier supporting the Scikit-learn (Pedregosa et al., 2011;
Buitinck et al., 2013) classifier API. In SDMetrics, the results of different metrics are aggregated into
a single-value, which limits the comparison of individual metrics between the methods and datasets.
We re-implement the distance and statistical metrics so that each statistic, p-value, and confidence
interval is easy to access.

Our benchmark package can be easily extended with new methods, metrics, and datasets. The
process for adding custom metrics and new datasets is described in https://github.com/
martinjurkovic/syntherela/blob/main/docs/ADDING_A_METRIC.md.

B.4 LICENSE AND PRIVACY

We obtain the AirBnB, Biodegradability, Cora, IMDB MovieLens, Rossmann and Walmart datasets
from the public SDV relational demo datasets repository (https://docs.sdv.dev/sdv/
single-table-data/data-preparation/loading-data, accessed June 6th, 2024.).
The SDV project is licensed under the Business Source License 1.1 (https://github.com/
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sdv-dev/SDV?tab=License-1-ov-file#readme, which allows use for research pur-
poses. The Berka dataset was obtained from the CTU Relational Dataset Repository (Motl &
Schulte, 2024) an open-access repository of relational databases. The F1 dataset was obtained using
the official RelBench implementation Robinson et al. (2024). It is released under the CC-BY-4.0 li-
cense (https://github.com/f1db/f1db?tab=CC-BY-4.0-1-ov-file). We remove
all textual columns from the F1 dataset as relational generative methods are generally unable to
generate those. We manually check all of the datasets to ensure they do not include any personally
identifiable information. Some of the datasets contain processed columns, including aggregations of
numerical values and connected table rows (e.g., nb rows in {related table}). The authors of SDV
(Patki et al., 2016) confirmed that these aggregations are not part of the original datasets, so we post-
process all of the datasets to include only the columns found in their original form and update the
metadata accordingly. We adapt some of the metrics from the SDMetrics (DataCebo, 2022) (MIT
License) and Synthcity (Qian et al., 2023a;b) (Apache-2.0 License) synthetic data evaluation tools.

C ADDITIONAL EXPERIMENTS

C.1 SINGLE COLUMN PERFORMANCE

We evaluate the marginal distributions of individual columns by evaluating the column shapes and
using the detection metric. Results are summarized in Table 6. TabularARGN performs best on
modeling marginal distributions. We hypothesize this is a result of their preprocessing, which re-
moves outliers and discretizes all columns. The method is closely followed by ClavaDDPM, which
models individual tables best.

Table 6: Single Column Results. We report the detection accuracy for C2ST (lower is better), and
the KS/TV complement for column shapes (higher is better). For each dataset and metric, we report
the average across all tables for three independent samples. SDV exceeds the sampling time limit on
IMDB (TLE) and ”-” denotes a method is unable to generate the dataset. The best result is bolded
and the second-best underlined.

Dataset Metric TabularARGN RGCLD ClavaDDPM RCTGAN REALTABF. SDV

Airbnb C2ST (↓) 0.52± 2e-3 0.52± 0.01 0.55± 4e-4 0.56± 4e-4 0.62± 0.01 0.70± 5e-4
Shapes (↑) 0.96± 9e-4 0.96± 0.01 0.94± 1e-4 0.89± 3e-3 0.72± 0.02 0.59± 8e-4

Rossmann C2ST (↓) 0.51± 3e-3 0.53± 0.01 0.55± 1e-3 0.55± 4e-3 0.54± 3e-3 0.60± 2e-3
Shapes (↑) 0.97± 3e-3 0.96± 0.01 0.94± 1e-3 0.91± 7e-4 0.91± 0.01 0.81± 3e-3

Walmart C2ST (↓) 0.59± 0.01 0.59± 0.01 0.53± 0.01 0.64± 0.01 0.59± 0.01 0.67± 0.01
Shapes (↑) 0.89± 0.01 0.88± 0.02 0.92± 0.01 0.82± 0.01 0.82± 0.01 0.82± 2e-3

Berka C2ST (↓) 0.59± 5e-3 0.60± 0.02 0.47± 2e-3 0.57± 3e-3 - 0.71± 3e-3
Shapes (↑) 0.82± 4e-3 0.79± 0.04 0.92± 2e-3 0.82± 0.01 0.56± 0.01

F1 C2ST (↓) 0.62± 6e-4 0.58± 0.01 0.61± 3e-3 0.64± 4e-3 - 0.80± 4e-3
Shapes (↑) 0.85± 0.02 0.91± 0.03 0.85± 5e-3 0.90± 0.01 0.53± 0.01

IMDB C2ST (↓) 0.50± 2e-3 0.53± 0.03 0.50± 1e-3 0.54± 1e-3 - TLEShapes (↑) 0.98± 2e-3 0.94± 0.05 0.99± 8e-4 0.93± 2e-3

Biodegradability C2ST (↓) 0.55± 0.01 0.62± 0.03 - 0.58± 0.01 - 0.64± 0.01
Shapes (↑) 0.91± 2e-3 0.85± 0.06 0.91± 0.01 0.79± 0.01

Cora C2ST (↓) 0.51± 0.01 0.53± 0.02 - 0.49± 2e-3 - 0.75± 3e-3
Shapes (↑) 0.93± 2e-3 0.88± 0.03 0.96± 3e-3 0.50± 3e-3

C.2 INTERPRETABILITY FOR GENERATIVE METHOD DIAGNOSTICS

One benefit of using a machine learning model to evaluate fidelity is that we can use it to ”debug” our
generative method. By examining the features the discriminative model utilizes to distinguish the
synthetic data from the original and exploring the patterns it learns, we can discover which aspects
of the data the generative method fails to model well. ML interpretability with feature importance
reveals that methods struggle with preserving the relationships between columns across tables. Fig-
ure 2 shows an example of how aggregation attributes summarizing information about child table
rows are the most discriminative features. We further examine two such attributes in Figure 3. The
partial dependence plots of the first and fourth most important features from Figure 2 show how
subsets of both categorical (Fig. 3a) and numerical (Fig. 3b) features’ conditional distributions are
informative to the discriminative model. We include the interpretability method directly into our im-
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plementation of the detection metric, allowing users to immediately investigate where their method
is underperforming after evaluating the synthetic data.

(a) (b)

Figure 3: Partial dependence plots. Results are for the 1st and 4th most important feature from
Figure 2. With ideally generated synthetic data, features could not discriminate between synthetic
and original data and every partial dependence plot would be a horizontal line at 50% probability. We
can observe that (a) the synthetic data have too many unique actor cast numbers (higher probability
of being synthetic when feature value is larger than 4) and (b) the mean movie ratings in the original
data vary more than in the synthetic data, where they are more concentrated around 3.5.

C.3 SHORTCOMINGS OF LOGISTIC DETECTION

Figure 2: Feature importance for C2ST with
aggregation using XGBoost. Results are for the
best-performing method. The added features that
incorporate relational information (red) are the
most important for discriminating between real
and synthetic data.

As explained in Section 2.2 a significant lim-
itation of LD is its inability to capture interac-
tions between columns. It can thus assign a per-
fect fidelity score to a dataset that is completely
corrupted. In this section, we empirically show
this shortcoming. We conduct the experiment
by selecting a table from each dataset (with
the exception of CORA in which no table has
two columns, which are not primary or foreign
keys). We first select the table and split it in half
to simulate the original table and a perfectly
generated (by the underlying DGP) synthetic
table. We then copy the ”generated” table and
randomly shuffle values in each column, com-
pletely ruining the fidelity of the dataset while
keeping the marginal distributions intact. We
then evaluate the perfectly generated and shuf-
fled datasets using LD and C2ST using XG-
Boost. The results are visualized in Figure 4.

Notably LD assigns both versions of the dataset
the same score, labeling them indistinctive from
the original data. If the fidelity aspect of interest would be solely the marginal distributions, the LD
results would be more appropriate than those of C2ST using XGBoost (as marginals are identical
in both datasets). However, given that we are interested in single table fidelity, our experiment
showcases a fundamental shortcoming of LD as a measure of single table fidelity.
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Figure 4: Issues with logistic detection. For each dataset, we simulate a perfectly generated table
by splitting the original table in half. We copy one part of the table and shuffle the values in each
column and thus completely ruin the fidelity of the table. While the XGBoost classifier can almost
perfectly segment the corrupted rows, logistic regression assigns both of the datasets the same score.

C.4 CLASSIFIER ACCURACY AS A DATA COPYING DIAGNOSTIC

We investigate how the accuracy of the discriminative model in classifier two sample testing can
be used to diagnose data copying in Figure 5. We also demonstrate how the classifier performance
commonly reported in LD (2 ·max(AUC, 1

2 )− 1) masks this issue.

Figure 5: Detecting data copying with C2ST. The left plot demonstrates how the error estimation
of LD (2 · max(AUC, 1

2 ) − 1) masks data copying, while C2ST with XGBoost detects it across
all datasets. In the right plot, we observe how copying only a fraction of the original data affects
discriminative model accuracy, with accuracy consistently decreasing as more data is duplicated.

As in the previous experiment, we simulate a perfect synthetic generating a dataset by splitting the
original table in half. However, instead of introducing corruption into the second half, we create an
exact copy of the original data (i.e., the first half). The commonly used LD implementation fails to
detect data copying and assigns the copied data a perfect score. In contrast, C2ST (with XGBoost)
accuracy successfully detects data copying as accuracy drops significantly below 50%. We then
examine the behaviour of C2ST when only a portion of the data is copied. We keep a portion of the
dataset as an identical copy and sample the rest of the values from the ”perfectly generated” half.
For most of the datasets, even when a relatively low percentage of the data is copied, the model
detects the duplication.
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D RELATIONAL DEEP LEARNING UTILITY

We incorporate the RelBench package into our benchmark to evaluate the utility of synthetic
databases. We incorporate 5 of our databases that have a temporal feature. We explain the tasks
for each of them below.

• Rossmann: We predict the number of sales for each store for each day.
• Walmart: We predict the weekly sales for each department of each store.
• AirBnB: We predict whether a user has already made a booking or not.
• Berka: We predict the binary status of the loan (successful or unsuccessful).
• F1: We predict whether a driver will qualify in the top-3 for a race in the next month. This

is one of the original RelBench predictive tasks4.

We use the GraphSage GNN model and train the model with the default RelBench hyperparameters.

E LIMITATIONS AND FUTURE WORK

Our work focused on fidelity and utility, but not privacy. While we do briefly touch upon one
aspect of privacy - data copying - we delegate the research of privacy metrics for synthetic relational
databases to future work. Finally, several aspects of synthetic data evaluation are limited by the
difficulty of representative sampling. More work needs to be done in understanding the limitations
and preparing new benchmark datasets or dataset generators.

F EXPERIMENTAL SETUP

F.1 COMPUTATIONAL RESOURCES

The generative methods were trained on NVIDIA 32GB V100S GPUs and H100 80GB GPUs. The
total number of GPU hours spent across all experiments is approximately 500. Results which do not
require a GPU were run on machines running AMD EPYC 7702P 64-Core Processor with 256GB
of RAM. All experiments were performed on an internal HPC cluster.

F.2 REPRODUCIBILITY

F.2.1 DATASETS AND DATA SPLITTING

Scripts for downloading the datasets and their metadata in the SDV format (Patki et al., 2016) are
available in the project repository, as well as the corresponding synthetic data samples for all meth-
ods to enable the reproduction of the benchmark results.

We opt not to split the datasets into train, test, and validation sets for generative model training.
When no temporal information is included and the structure is non-linear the representative sampling
in relational datasets is non-trivial. We delegate this to future work.

Due to computational limits (also reported by Solatorio & Dupriez (2023)), we subsample the Ross-
mann Store Sales, AirBnB, and Walmart datasets. Additionally, we subsample the Berka and F1
datasets for the purposes of obtaining a held-out test set for our utility experiments.

• Rossmann Store Sales: Subsampled on table historical, column Date by taking the rows
of a two month period from 2014-07-31 to 2014-09-30, similarly to Solatorio & Dupriez
(2023).

• AirBnB: Subsampled the dataset by only including the users who have less than 50 sessions
and then sampled 10k users, as done by Solatorio & Dupriez (2023).

• Walmart: Subsampled on tables departments and features on the column Date by taking
the rows from January 2012.

4https://relbench.stanford.edu/datasets/rel-f1#driver-top3
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• Berka: We use the data prior to 1998-01-01 and use the 1998 data as the test set.
• F1: We use the data prior to 2010-01-01 for training. This corresponds to the test set

timestamp in the official RelBench implementation 5.

F.2.2 EXPERIMENTAL DETAILS AND HYPERPARAMETERS

To provide some quantification of the variability from the non-deterministic nature of the methods,
we generated synthetic data for each of the methods for each of the datasets 3 times with different
fixed random seeds. We ran the benchmark for each replication.

Scripts for reproducing the generative model training and instructions for training commercial meth-
ods are included in the project repository.

It is possible that better performance could be achieved by investing more effort into parameter
tuning. However, due to our choice to not split the data, it was not clear how to optimize hyperpa-
rameters; therefore, we selected default hyperparameters for all methods (see Table 7).

5https://relbench.stanford.edu/datasets/rel-f1/
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Table 7: Hyperparameter specification.

model hyperparameter value

RCTGAN

embedding dim 128
generator dim (256, 256)
discriminator dim (256, 256)
generator lr 0.0002
generator decay 1e-06
discriminator lr 0.0002
discriminator decay 1e-06
batch size 500
discriminator steps 1
epochs 1000
pac 10
grand parent True
field transformers None
constraints None
rounding ”auto”
min value ”auto”
max value ”auto”

SDV

locales None
verbose True
table synthesizer ”GaussianCopulaSynthesizer”
enforce min max values True
enforce rounding True
numerical distributions {}
default distribution ”beta”

REALTABFORMER

epochs 100
batch size 8
train size 0.95
output max length 512
early stopping patience 5
early stopping threshold 0
mask rate 0
numeric nparts 1
numeric precision 4
numeric max len 10
evaluation strategy ”steps”
metric for best model ”loss”
gradient accumulation steps 4
remove unused columns True
logging steps 100
save steps 100
eval steps 100
load best model at end True
save total limit 6
optim ”adamw torch”

TabularARGN (API)

Configuration presets Accuracy
Max sample size 100%
Model size Large
Batch size Auto
Flexible generation Off
Value protection Off

CLAVADDPM

num clusters 50
parent scale 1.0
classifier scale 1.0
num timesteps 2000
batch size 4096
layers diffusion [512, 1024, 1024, 1024, 1024, 512]
iterations diffusion 200000
lr diffusion 0.0006
weight decay diffusion 1e-05
scheduler diffusion ”cosine”
layers classifier [128, 256, 512, 1024, 512, 256, 128]
iterations classifier 20000
lr classifier 0.0001
dim t 128

RGCLD

GNN hidden dim 128
GNN aggregation sum
GNN layers # Tables
GNN lr 0.008
GNN weight decay 1e− 5
GNN epochs 250
VAE layers 2
VAE token dim 4
VAE hidden dim 128
VAE δ 0.7
VAE (βmax, βmin) (0.01, 1e− 5)
VAE lr 1e− 3
VAE epochs 4000
Diff model dim 1024
Diff lr 0.001
Diff weight decay 1e− 6
Diff epochs 4000
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G DATASET SCHEMA

(a) AirBnB (b) Rossmann

Figure 6: Two table database diagrams.

(a) Walmart (b) Cora

Figure 7: Table database diagrams.
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Figure 8: F1 database diagram.
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Figure 9: Berka database diagram.
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Figure 10: Biodegradability database diagram.

Figure 11: IMDB MovieLens database diagram.
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