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Abstract

This study investigates the feasibility of au-001
tomating clinical coding in Russian, a language002
with limited biomedical resources. We present003
a new dataset for ICD coding, which includes004
diagnosis fields from electronic health records005
(EHRs) annotated with over 10,000 entities006
and more than 1,500 unique ICD codes. This007
dataset serves as a benchmark for several state-008
of-the-art models, including BERT, LLaMA009
with LoRA, and RAG, with additional exper-010
iments examining transfer learning across do-011
mains (from PubMed abstracts to medical di-012
agnosis) and terminologies (from UMLS con-013
cepts to ICD codes). We then apply the best-014
performing model to label an in-house EHR015
dataset containing patient histories from 2017016
to 2021. Our experiments, conducted on a care-017
fully curated test set, demonstrate that training018
with the automated predicted codes leads to a019
significant improvement in accuracy compared020
to manually annotated data from physicians.021
We believe our findings offer valuable insights022
into the potential for automating clinical cod-023
ing in resource-limited languages like Russian,024
which could enhance clinical efficiency and025
data accuracy in these contexts.026

1 Introduction027

The explosion of medical data driven by technology028

and digitalization presents a unique opportunity029

to enhance healthcare quality. With the adoption030

and implementation of electronic health records031

(EHRs), accurate and timely data utilization is cru-032

cial for effective treatment and disease manage-033

ment. Central to this process is the assignment034

of International Classification of Diseases (ICD)035

codes, which is essential for medical documen-036

tation, billing (Sonabend et al., 2020), insurance037

(Park et al., 2000), and research (Bai et al., 2018;038

Lu et al., 2022; Shang et al., 2019).039

Although ICD code assignment is crucial for040

EHRs, it poses significant challenges. Human041

Figure 1: Examples of ICD code assignments by anno-
tators: each entity in green is annotated with its ICD
code above and its English translation (in yellow).

coders must navigate a wide array of medical ter- 042

minology, subjective interpretations, and time pres- 043

sures, all while staying updated with constantly 044

changing classification standards (Burns et al., 045

2012; O’Malley et al., 2005; Cheng et al., 2009). 046

Coding errors can lead to misdiagnosis, ineffective 047

treatment, diminished trust in the healthcare sys- 048

tem, and negative public health outcomes. Further- 049

more, errors in manual coding in the ICD system, 050

result in financial repercussions, accounting for 051

6.8% of the total payments (Manchikanti, 2002). 052

Despite extensive research on ICD coding us- 053

ing neural networks (Li and Yu, 2020; Zhou et al., 054

2021; Yuan et al., 2022a; Baksi et al., 2024; Boyle 055

et al., 2023; Mullenbach et al., 2018a; Cao et al., 056

2020; Yuan et al., 2022a; Yang et al., 2022; Huang 057

et al., 2022), significant challenges persist for non- 058

English languages. These include low inter-coder 059

agreement, limited labeled data, variability in clini- 060

cal notes, the hierarchy of ICD codes, and reliance 061

on incomplete input data. To address these issues, 062

we introduce a novel dataset for automatic ICD 063

coding in Russian. 064

Previous studies have primarily focused on 065

English-language datasets, specifically MIMIC- 066

III/IV (Goldberger et al., 2000; Johnson et al., 067

2023). Despite being one of the top ten languages 068

in terms of concept name count within the Unified 069

Medical Language System (UMLS) (Bodenreider, 070

2004) biomedical metathesaurus, Russian remains 071

underdeveloped in the clinical domain. The Rus- 072
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sian segment of the UMLS comprises only 1.96%073

of the vocabulary and 1.62% of the source counts074

found in the English UMLS (NIH). Recent cor-075

pora, such as RuCCoN (Nesterov et al., 2022a) and076

NEREL-BIO (Loukachevitch et al., 2023), focus077

on concepts within the Russian UMLS.078

In this work, we explore two closely related079

tasks: ICD coding and Diagnosis Prediction (DP).080

As seen in Fig. 2, the tasks take non-overlapping081

input and complement each other: ICD coding nor-082

malizes a free-form doctor’s diagnosis conclusion083

into a set of relevant ICD codes while the DP task084

is to directly predict ICD-agreed diagnoses from085

EHRs in one pass without relying on the doctor’s086

textual diagnosis conclusion. Although we formu-087

late ICD coding as an entity normalization task088

and DP as multilabel classification, both tasks are089

sometimes referred to as ICD coding. Unlike prior090

classification-based ICD coding research (Li and091

Yu, 2020; Vu et al., 2020; Wang et al., 2024), we092

explore a more challenging scenario in which a di-093

agnostic model, acting as an independent medical094

expert, predicts diagnoses from patient data only095

without relying on the doctor’s diagnosis conclu-096

sion. Thus, we term the classification task diag-097

nosis prediction as it better reflect the problem’s098

nature and does not create a confusion with linking-099

based ICD coding (Lavergne et al., 2016; Névéol100

et al., 2017; Coutinho and Martins, 2022).101

For ICD coding, we present RuCCoD (Russian102

ICD Coding Dataset), a novel dataset in Russian1,103

labeled by medical professionals based on concepts104

from the ICD-10 CM (Clinical Modification) sys-105

tem (Sec. 3.1). Second, we establish a compre-106

hensive benchmark for state-of-the-art models, in-107

cluding a BERT-based (Devlin et al., 2019) pipeline108

for information extraction, a LLaMa-based (Tou-109

vron et al., 2023) model with Parameter Efficient110

Fine-Tuning (PEFT) and with retrieval-augmented111

generation (RAG). Furthermore, we evaluate trans-112

fer learning of models trained on UMLS concepts113

and similar biomedical datasets (PubMed abstracts114

(Loukachevitch et al., 2023), clinical notes (Nes-115

terov et al., 2022a). The results suggest that the116

ICD’s fine-grained hierarchical structure hinders117

generalization from other clinical sources (Sec. 4).118

For diagnosis prediction, we perform a set of119

experiments on RuCCoD-DP, a large in-house120

dataset of 865k EHRs from 164k patients. When121

training a diagnostic model, we experiment with122

1We will release this dataset upon acceptance.

Figure 2: Schematic description of ICD coding (in blue)
and diagnosis prediction tasks (in yellow). Diagnosis
prediction uses prior EHR data and current visit details,
excluding the doctor’s conclusion, which is used for
ICD coding to generate AI-assigned ICD codes. Both
original and AI ICD code lists are then used as targets
to train different diagnosis prediction models.

ICD codes assigned by doctors during patient ap- 123

pointments, as well as the AI-assigned ICD codes 124

(Sec. 5), that is, diagnoses assigned by automat- 125

ically linking an EHR diagnosis conclusion with 126

a top-performing ICD coding model on RuCCoD 127

(see Fig. 2). Our experiments have revealed that 128

pre-training on automatically assigned ICD codes 129

gives a huge weighted F1-score growth of 28% 130

for diagnosis prediction compared to physician- 131

assigned ICD codes indicating the difficulty of ICD- 132

guided diagnosis formalization for physicians and 133

great potential of AI-aided diagnosing. Our work 134

provides a foundation and guidance for ICD-related 135

research in low-resource clinical languages. 136

2 ICD-Related Tasks 137

Task: ICD coding is akin to Entity Linking (EL), 138

where the objective is to assign a set of unique ICD 139

codes to the latest patient appointment based on 140

textual diagnosis conclusion written by a doctor. 141

The task aims to help a physician normalize diag- 142

nosed diseases to a set of codes from the complex 143

formal ICD hierarchy. We model the ICD Coding 144

as an information extraction pipeline with three 145

components: (1) Nested Entity Recognition (NER) 146

and (2) EL followed by (3) EHR-level code ag- 147

gregation. Step (3) minimizes NER influence on 148

pipeline metrics by omitting NER spans. The ap- 149

proach aligns with real-world ICD applications, 150

where the primary objective is accurate assignment 151

of ICD codes (i.e., disease recognition), and impre- 152
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cise NER outputs are not impactful.153

ICD Coding: EHR-level Code Aggregation154

Given an EHR, we perform EL on NER pre-155

dictions. Let Lp = (cp1, c
p
2, . . . , c

p
n) and Lt =156

(ct1, c
t
2, . . . , c

t
m) denote the lists of predicted and157

ground truth ICD codes, respectively. In standard158

EL, each list may contain duplicated disease men-159

tions (i.e., cti = ctj for i ̸= j). We remove dupli-160

cates from both lists resulting in unique code sets161

Sp and St such that cpi ̸= cpj and cti ̸= ctj ,∀i ̸= j.162

Finally, micro-averaged classification metrics are163

computed from True Positives (TP ), False Pos-164

itives (FP ) and False Negatives (FN ): TP =165

Sp ∩ St; FP = Sp \ St; FN = St \ Sp.166

Diagnosis Prediction is a multi-label classifica-167

tion task that outputs likely diagnoses (ICD codes)168

for the current doctor appointment from a patient’s169

past medical history, including complaints, test170

and examination results from previous appoint-171

ments. In our study, each EHR contains a doc-172

tor’s diagnosis conclusion. A major challenge for173

ICD-grounded applications is that this conclusion174

is a free-form text, and its normalization to ICD175

might introduce sensitive errors. Conversely, auto-176

matic Diagnosis Prediction is constrained to output177

ICD-compliant diagnoses by task design.178

ICD Coding vs. Diagnosis Prediction While179

ICD Coding only observes the current appoint-180

ment’s diagnosis conclusion written by a doctor,181

the goal of Diagnosis Prediction is to actually write182

the diagnosis conclusion (i.e., make an AI diagno-183

sis conclusion). Here, the motivation is to offer a184

doctor an independent, AI-driven opinion, poten-185

tially beneficial for decision-making in complex186

cases. Hence, the two tasks are complementary187

by design, using non-overlaping EHR parts: ICD188

Coding leverages the latest diagnosis while Diag-189

nosis Prediction observes an entire patient’s history190

except for the latest diagnosis conclusion.191

3 ICD Datasets192

3.1 RuCCoD: ICD Coding Dataset193

For ICD coding, we release RuCCoD, the first194

dataset of Russian EHRs with disease entities man-195

ually linked to ICD-10. In this section, we describe196

the data collection and annotation pipeline and pro-197

vide important statistics.198

Data Collection As a source for RuCCoD, we199

utilize diagnosis conclusions from the records of a200

Train Test
# of records 3000 500
# of assigned entities 8769 1557
# of unique ICD codes 1455 548
Avg. # of codes per record 3 3

Table 1: Statistics for the RuCCoD training and testing
sets on ICD coding of diagnosis.

Figure 3: Distribution of ICD code frequencies in the
RuCCoD train set.

major European city’s Medical Information System. 201

Before starting the annotation process, we imple- 202

mented a meticulous de-identification protocol to 203

protect data privacy. Medical professionals invited 204

to annotate the dataset first conducted a comprehen- 205

sive manual review of all diagnoses. Their task was 206

to identify and remove any personal or identifiable 207

information manually. This thorough process guar- 208

antees compliance with privacy regulations and 209

ensures the dataset is suitable for research use. 210

Annotation Process and Principles The label- 211

ing team consisted of three highly qualified ex- 212

perts with advanced education in different fields of 213

medicine, two of whom hold Ph.D. degrees, with 214

every annotation further validated by a fourth ex- 215

pert, a Ph.D. holder in medicine. Grounded in the 216

ICD-10 CM (Clinical Modification) system, the 217

team aimed to identify all nosological units in a 218

diagnosis conclusion and assign the most accurate 219

ICD code to each. An annotation example is shown 220

in Fig. 1. The dataset was randomly split into 3,000 221

training and 500 testing records. Each expert in- 222

dependently annotated 1,000 training records for 223

diverse labeling, while all three annotated the same 224

500 test records for consistency. An ICD code was 225

accepted if at least two annotators agreed. Annota- 226

tion guidelines are in Appx. A. 227

Inter-Annotator Agreement We assessed anno- 228

tation consistency among experts using the Inter- 229

Annotator Agreement (IAA) metric, defined as the 230
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Original Dataset Linked Dataset Manual Test Set

Number of records 865539 865539 494
Number of unique patients 164527 164527 450
Number of unique ICD codes 3546 3546 394
Avg. number of ICD codes per patient 3± 2 5± 2 4± 2
Avg. number of EHR records before current appointment (15, 36, 73) (15, 36, 73) (17, 36, 77)
Avg. length of EHR records per one appointment (77, 167, 316) (77, 167, 316) (86, 176, 320)
Patient’s age (59, 67, 74) (59, 67, 74) (60, 67, 75)
Percentage of male patients 69 69 71

Table 2: Statistics for the randomly split training and testing sets of RuCCoD-DP for diagnosis prediction. Values in
brackets show the 25th, 50th, and 75th percentiles.

ratio of accepted codes to the total unique codes231

assigned per record (Luo et al., 2019). Among ICD232

codes, the IAA value was 50%, indicating moder-233

ate agreement. Low intercode agreement among234

human annotators reflects both the subjectivity of235

manual ICD coding and the inherent complexity of236

the task. Our observation is well correlated with237

existing studies that have reported a fair to moder-238

ate agreement on terminal ICD codes, with Kappa239

values ranging from 27% to 42%, corresponding to240

agreement rates of 29.2% and 46.8%, respectively241

(Stausberg et al., 2008). The reported accuracy242

of coding exhibits significant variability, ranging243

from 53% to 98% (Campbell et al., 2001) and from244

41.8% to 88.87% (Hosseini et al., 2021). The ob-245

tained low IAA metric highlights both the chal-246

lenges and strengths of our annotation process.247

Dataset Statistics Statistics of train and test248

splits of the RuCCoD dataset are provided in Tab. 1.249

Despite the large number of ICD codes, especially250

in the training set, their distribution is uneven.251

Fig. 3 shows the distribution of ICD codes within252

the RuCCoD train set. While a small number of253

codes dominate the dataset, appearing from 50 to254

250 occurrences, most codes are rare, with 1,087255

codes occurring fewer than 5 times. This stark dis-256

parity underscores the challenges of dealing with257

real-world medical data, where frequent diagnoses258

are well-represented, but rare conditions remain259

significantly under-sampled.260

3.2 RuCCoD-DP: Diagnosis Prediction261

Dataset262

To explore AI-guided Diagnosis Prediction, we263

collect RuCCoD-DP (RuCCoD for Diagnosis264

Prediction), a corpus of real-world EHRs.265

Dataset Construction RuCCoD-DP includes266

doctor appointments from 2017 to 2021, divided267

into four parts: (i) patient complaints and anamne-268

sis, (ii) lab test results, (iii) appointment summary 269

(including assigned ICD codes), and (iv) appoint- 270

ment history. Although RuCCoD and RuCCoD-DP 271

share a common source, we ensure both sets to have 272

no overlapping appointments and patients. 273

Paired Human-AI ICD Codes ICD has a fine- 274

grained disease hierarchy introducing a significant 275

challenge even for a qualified doctor to formalize a 276

correctly diagnosed disease . For instance, a H10 277

Conjunctivitis disease group has 8 specifications in- 278

cluding: H10.0 mucopurulent, H10.1 acute atopic, 279

H10.2 other acute, and H10.3 unspecified acute 280

conjunctivitis. Thus, doctor-assigned ICD codes 281

in real-world EHRs can expose substantial errors 282

even if a general disease is diagnosed correctly. To 283

address the issue, we consider two ICD code sets 284

for each EHR: (i) real-world ICD codes originally 285

written by physicians within the EHR (doctor- 286

assigned codes); (ii) automatically assigned ICD 287

codes predicted by a neural model trained on RuC- 288

CoD (AI codes). AI codes (i.e., AI-assigned dis- 289

eases) are assigned to an EHRs by applying our 290

top-performing BERT-based NER+EL ICD Link- 291

ing pipeline (Tab. 3) to a doctor’s real-world di- 292

agnosis conclusion (see Fig. 2). Our pipeline ex- 293

tracts diseases (NER) and links (EL) them to ICD 294

codes and then the found diseases are assigned to 295

the given EHR labels for ICD Coding. Thus, AI 296

codes are designed to aid in the formalization of the 297

human-written diagnosis to the ICD code set while 298

relying only on the written conclusion of the physi- 299

cian. Notably, the two coding types rely on the 300

same underlying free-form diagnosis conclusions. 301

Original and Linked RuCCoD-DP We will re- 302

fer to RuCCoD-DP variations sharing the same 303

appointments yet different in ICD code assignment 304

method (either doctor-assigned or AI-based) as 305

original and linked datasets, respectively. In other 306

words, a single textual appointment entry has two 307

4



distinct labels sets. To prevent ICD codes distri-308

bution shift between original and linked data, we309

retained the ICD codes overlapping between these310

two sets. For each appointment sample, its textual311

input included the concatenation of chronologically312

sorted all prior appointments.313

Diagnosis Prediction Test Set The collection of314

two sets of labels allows exploration of whether315

manual or generated ICD labels are more reliable316

for model training. For a fair comparison of the la-317

beling approaches, we manually labeled a common318

test set from a subset of the original appointment319

dataset’s test set. We formed it by selecting a sub-320

set from the test part of the original appointment321

dataset. For annotation, we adopted the same an-322

notation methodology as for the RuCCoD dataset323

(Sec. 3.1). The IAA between the doctors was 50%324

for exact ICD codes and 74% for ICD groups. The325

final statistics for original, linked datasets as well326

as the common manual test is summarized in Tab. 2.327

4 ICD Coding Evaluation328

For ICD coding experiments, we experiment with329

the following approaches: 1) a fine-tuned BERT-330

based pipeline for information extraction, 2) a large331

language model (LLM) with Parameter-Efficient332

Fine-Tuning (PEFT), and 3) LLM with retrieval-333

augmented generation (RAG). All three systems334

use the same dictionary, with 17,762 pairs of codes335

and diagnoses (refered to as ICD dict) compiled336

from the Ministry of Health data. In addition, LLM-337

based systems used a train set as a dictionary as338

well. See the Appx. G for a list of the LLMs used.339

See related work in Appx. B.340

4.1 Models341

BERT-based IE Pipeline Our Information Ex-342

traction (IE) pipeline uses sequential NER and EL343

modules. The NER module, employing a softmax344

layer, extracts relevant entities, and the EL mod-345

ule then links these entities to ICD codes based346

on semantic similarity with ICD dictionary en-347

tries. For NER, we utilize the pre-trained Ru-348

BioBERT (Yalunin et al., 2022), and for EL, we349

employ the multilingual state-of-the-art models350

SapBERT (Liu et al., 2021a,b), CODER (Yuan351

et al., 2022b), and BERGAMOT (Sakhovskiy et al.,352

2024). We fine-tuned models on training EL sets353

via synonym marginalization proposed in BioSyn354

(Sung et al., 2020). For more details, see Appx G.355

LLMs with PEFT We explored the capabilities 356

of LLMs for clinical coding using PEFT with Low- 357

Rank Adaptation (LoRA) (Hu et al., 2021). The 358

pipeline included two steps: NER and EL, fol- 359

lowing the structure of BERT-based IE pipeline 360

described earlier. For NER stage, models were 361

fine-tuned on RuCCoD using task-specific prompts 362

(Appx. H). The predictions were validated by ex- 363

act string matching and Levenshtein distance with 364

a threshold ≤ 2 chosen empirically to optimize 365

the robustness of the spelling without overcorrect- 366

ing semantically distinct entities. For EL, a RAG 367

approach was implemented to link extracted enti- 368

ties to ICD codes. The retrieval component was 369

built using three strategies: (1) BGE embeddings 370

(Chen et al., 2024) on the ICD dict, (2) BGE em- 371

beddings on the ICD dict combined with RuCCoD 372

training entities, and (3) BERGAMOT embeddings 373

(Sakhovskiy et al., 2024) fine-tuned on RuCCoD 374

with the ICD dict. 375

We adopted the FAISS index (Douze et al., 2024) 376

to retrieve the top-15 most similar dictionary en- 377

tries for each entity extracted in the NER stage. The 378

final ICD code was assigned using an LLM to se- 379

lect the closest match from the retrieved candidates 380

(prompt in Appx. H). To address class imbalance, 381

diagnosis lists were shuffled during training, forc- 382

ing models to learn contextual code-discrimination. 383

Fine-tuning parameters followed standard LoRA 384

configurations (Tab. 4, Appx. G). 385

Zero-shot LLM with RAG As an ablation study, 386

we evaluated the same pipeline as in the PEFT 387

stage but without fine-tuning to isolate the LLMs’ 388

inherent capabilities. We used only the fine-tuned 389

BERGAMOT embeddings from strategy (3) for 390

retrieval, retaining the FAISS index and prompts 391

(Appx. H). The LLM selected ICD codes from 392

retrieved candidates if no direct match was found, 393

replicating the EL process from the PEFT stage. 394

This setup allowed us to quantify the contribution 395

of fine-tuning versus zero-shot inference. 396

4.2 Evaluation Methodology 397

On RuCCoD, our evaluation includes conventional 398

NER and EL as well as end-to-end document-level 399

code assignment with EHR-level code aggregation 400

(Sec. 2). To recall, document-level metrics is an 401

entity position-agnostic NER+EL task composition 402

with explicitly removed EHR-level ICD code dupli- 403

cates. For instance, a language model successfully 404

diagnoses a patient by assigning the correct ICD 405
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Model Precision Recall F-score Accuracy

Supervised with various corpora for NER and EL

BERT, NER: NEREL-BIO + RuCCoD, EL: RuCCoD 0.512 0.529 0.520 0.352
BERT, NER: RuCCoN + RuCCoD, EL: RuCCoD 0.471 0.543 0.504 0.337
BERT, NER: RuCCoD, EL: RuCCoD 0.510 0.542 0.525 0.356

LLM with RAG (zero-shot with dictionaries)

LLaMA3-8b-Instruct, NEREL-BIO 0.059 0.053 0.056 0.029
LLaMA3-8b-Instruct, RuCCoN 0.164 0.15 0.157 0.085
LLaMA3-8b-Instruct, ICD dict. 0.379 0.363 0.371 0.228
LLaMA3-8b-Instruct, ICD dict. + RuCCoD 0.465 0.451 0.458 0.297

LLM with tuning

Phi3_5_mini, ICD dict. 0.394 0.39 0.392 0.244
Phi3_5_mini, ICD dict. + RuCCoD 0.483 0.477 0.48 0.316
Phi3_5_mini, ICD dict. + BERGAMOT 0.454 0.448 0.451 0.291

Table 3: Entity-level code assignment metrics on RuCCoD’s test set. The best results are highlighted in bold. We
also refer to Appx. D, E, F on more experiments with different LMs, corpora, and terminologies.

code when it finds at least one of three mentions of406

the corresponding ICD disease within an EHR. For407

all three tasks, we report accuracy and the micro-408

averaged precision, recall, F1-score.409

For EL, we use a retrieval-based approach (Liu410

et al., 2024; Yuan et al., 2022b; Sakhovskiy et al.,411

2024) and evaluate retrieval accuracy: acc@k = 1412

if a correct ICD code is retrieved at rank ≤ k. We413

consider two evaluation scenarios: (i) strict score414

assessing exact match between a predicted ground415

truth codes; (ii) relaxed score with each code being416

truncated to higher-level disease group (e.g., H10.0417

mucopurulent is truncated to H10 Conjunctivitis).418

4.3 Results419

4.3.1 Transfer Learning420

First, we performed cross-domain experiments on421

EL to see how variability in entities and terminol-422

ogy affects the performance. Since UMLS includes423

the ICD system, we automatically map UMLS424

CUIs to ICD codes for evaluation. Cross-domain425

transfer results with entity linking models on RuC-426

CoD, RuCCoN, NEREL-BIO and their union are427

presented in detail in Appx. D. The evaluation has428

revealed the following key observations.429

Maleficent Cross-Domain Vocabulary Extension430

While extension of ICD vocabulary consistently431

gives a slightly improved acc@1 in a zero-shot set-432

ting, additional synonyms introduce severe noise433

in a supervised setting. Specifically, a significant434

drop of 8.1%, 8.4%, and 14.3% acc@1 is observed435

for SapBERT, CODER, and BERGAMOT, respec- 436

tively. Even in an unsupervised setting, vocabulary 437

extension drops acc@5 by 5.2% and 6.8% for Sap- 438

BERT and BERGAMOT, respectively. 439

Complicated Cross-Terminology Transfer 440

Both training on RuCCoN and NEREL-BIO as 441

well as merge of these corpora with RuCCoD do 442

not lead to improvement over zero-shot coding. 443

The finding indicates that training on either 444

datasets does not easily transfer to our dataset 445

as well as the specificity and high complexity of 446

hierarchical ICD coding within the EL task. 447

Complexity of Fine-Grained ICD Coding The 448

15% gap in acc@1 between strict and relaxed evalu- 449

ations shows the challenging nature of semantically 450

similar diseases within the same therapeutic group. 451

Transfer learning for NER is Feasible A NER 452

model trained on the disease-related entities from 453

NEREL-BIO gained an F1 score of 0.62 on RuC- 454

CoD’s test set. The model trained on a combined 455

dataset of NEREL-BIO and RuCCoD achieved 456

scores of 0.72. Similar results were observed with 457

RuCCoN. We also evaluated BINDER, which uses 458

a RuBioBERT backbone and treats NER as a rep- 459

resentation learning problem by maximizing simi- 460

larity between vector representations (Zhang et al.). 461

However, BINDER’s performance was 1.5% lower 462

than RuBioBERT’s, which gained the best F1 score 463

of 0.77 with a softmax classifier. NER transfer for 464

disease entities is significantly better than for entity 465
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Figure 4: Comparison of weighted F1 scores on the
manual diagnosis prediction test set for models trained
on original and linked datasets at different training steps.

Figure 5: F1 score distribution for top and bottom 10%
frequent ICD codes in the common test set.

linking (EL), with the best results obtained from466

RuCCoD (full results in Appx. C).467

4.3.2 End-to-end ICD coding468

In the next experiments, we evaluated an end-to-469

end ICD coding quality on raw texts, in which470

models were fine-tuned on either RuCCoN or471

NEREL-BIO or utilized entity dictionaries from472

these datasets, are presented in Tab. 3. As seen473

from the results, training on datasets from other do-474

mains gives limited performance and the best ICD475

coding results are observed for models trained with476

ICD data from RuCCoD data on all three set-ups.477

Extended RAG results are in Appx. E. Fine-478

tuning LLMs improves performance across all479

tasks, exceeding LLM + RAG results in zero-shot480

settings. Use of RuCCoD significantly enhances481

metrics compared to approaches that rely solely on482

the ICD dictionary or embeddings. Llama3-Med42-483

8B and Phi3_5_mini are the most effective models484

after PEFT tuning (see Appx. F).485

5 Diagnosis Prediction Evaluation486

5.1 Experimental Set-up487

Model We chose the Longformer architec-488

ture (Beltagy et al., 2020) due to its strong perfor-489

mance in clinical tasks (Edin et al., 2023). Our 490

Longformer model is initialized from a BERT 491

model pre-trained using private EHRs from mul- 492

tiple clinics and further pre-trained on extended 493

sequences. Training details are in Appx. G. 494

Evaluation To address the imbalanced long-tail 495

ICD code distribution in the Diagnosis Prediction 496

task, we adopt the weighted F1 score for overall 497

evaluation, as it has proven effective used in previ- 498

ous research on the problem (Johnson and Khosh- 499

goftaar, 2019; Blanco et al., 2020). The weight of 500

each class is calculated as the proportion of EHRs 501

sharing the given ICD code in the union of both 502

training datasets. Per-class F1 scores were also 503

measured to explore performance variations across 504

frequent and rare ICD codes. In our experiments, 505

we evaluate the quality of the models trained on 506

original and linked datasets on the manual test set. 507

5.2 Results 508

5.2.1 Diagnosis Prediction Learning 509

To predict ICD codes from doctor’s appointments, 510

we fine-tuned two Longformer models, one using 511

the original dataset and the other using the linked 512

dataset. The weighted F1-scores for the two models 513

against the training count are shown in Fig. 4. 514

AI-based ICD Coding Improves Diagnosing 515

As seen from Fig. 4, AI-guided ICD coding (linked 516

data) significantly outperforms manual coding 517

(original data) with the peak weighted F1-score 518

of 0.48. The latter quickly reaches its F1-score 519

plateau at 0.2. The huge performance gap of 0.28 520

highlights the effectiveness of automatic data anno- 521

tation for model training. Yet, the finding reveals 522

the complexity of ICD-agreed diagnosis prediction 523

task for professional physicians indicating the ne- 524

cessity of AI-driven assistance. 525

5.3 Diagnosing Stability to Disease Frequency 526

Next, we study the diagnosis prediction model’s 527

ability to generalize to both frequent and rare dis- 528

ease when trained on original and linked datasets. 529

Frequency-Based ICD Test Set Split The test 530

dataset was split into two parts: the 10% most 531

frequent ICD codes and the 10% least frequent ICD 532

codes, with a minimum frequency threshold of 15 533

instances in the manual test set for the less frequent 534

group. The stratification approach is designed to 535

align with the distribution of real-world diagnoses 536

assigned and carefully verified by clinicians. 537

7



Figure 6: Dependency between differences in the num-
ber of codes in original and linked train sets and corre-
sponding F1 scores differences on the common test.

Figure 7: The relationship between transitions from
I25.2 and F1 improvements: numbers on the arrows
indicate transition frequency, while node color intensity
represents the magnitude of F1 metric change.

Diagnosing Improvement is Frequency-Robust538

Fig. 5 presents the F1 scores spread for individ-539

ual ICD codes (diseases) grouped by frequency540

groups. The model trained on linked data outper-541

forms the one trained on original data for both rare542

and frequent codes. The ∼6x median F1 score im-543

provement for the bottom 10% codes (0.6 vs. 0.1)544

underscores the difficulty of manually assigning545

ICD codes for infrequent diseases. For frequent546

codes, the training on linked data gives about 0.3547

median F1 growth over original data (∼0.7 vs 0.4)548

with a significantly lower score deviation (indicated549

by smaller interquartile distance). Thus, pretrain-550

ing on automatically labeled data enhances diagno-551

sis prediction for both rare and common diseases,552

reducing variability for the latter.553

5.4 Disease-Wise Quality Shift Analysis554

Linked Data’s Improvement Stability Fig. 6555

shows how changes in appointment counts from556

original to linked data affect the diagnosing F1557

score. Notably, F1 scores generally improved for558

the majority of ICD codes regardless of appoint-559

ment counts increase or decrease. This suggests560

improved class balance in the linked dataset, al- 561

though the effect varies. 562

Case Study: Diagnosing Degradation In Fig. 6, 563

a sharp F1 score drop is observed for I25.2 Past 564

myocardial infarction. Apparently, the disease has 565

been mistakingly re-linked to other errounessly. We 566

studied the case by analyzing which ICD codes has 567

I25.2 been replaced with. Fig. 7 shows the most 568

frequent transition (I25.2 to I11.9, Hypertensive 569

heart disease) yielded minimal F1 improvement 570

(0.02), likely due to symptom overlap. E11.9 (Type 571

2 diabetes mellitus) had the highest gain (0.48) 572

due to clearer distinctions. I25.1 (Atherosclerotic 573

heart disease) and I20.9 (Angina pectoris) had sig- 574

nificant gains (0.38, 0.47), while I67.9 (Unspeci- 575

fied cerebrovascular disease) had a moderate gain 576

(0.21). From the results, clearly distinguishable di- 577

agnoses yield higher F1 scores compared to those 578

with symptom overlap. 579

6 Conclusion 580

In this paper, we presented the first models for 581

multi-label ICD-10 coding of electronic health 582

records (EHRs) in Russian. Our study focuses 583

on two key tasks: information extraction from the 584

diagnosis field of EHRs and diagnosis prediction 585

based on a patient’s medical history. The NLP 586

pipeline developed for the first task was utilized 587

to re-annotate EHRs in the training set for the sec- 588

ond task. The results demonstrate that fine-tuned 589

LMs significantly enhance performance in predict- 590

ing ICD codes from past medical history. Specif- 591

ically, the model trained on automatically linked 592

data exhibited faster learning and better general- 593

ization compared to the original dataset, achieving 594

higher weighted F1 scores early in training, while 595

the original model plateaued with minimal improve- 596

ments. Notably, the linked data model consistently 597

outperformed the original across both frequent and 598

rare ICD classes, achieving higher F1 scores with 599

reduced variability. This suggests that the linked 600

dataset enables effective handling of both common 601

and rare ICD codes. Overall, our findings highlight 602

the importance of a neural pipeline for automat- 603

ing ICD coding and improving the accuracy and 604

informativeness of medical text labeling. 605

Future research will focus on the integration of 606

additional external medical sources like knowledge 607

graphs to improve ICD code prediction. We plan 608

to study the generalization of LLMs on rare codes. 609
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Limitations610

Other biomedical corpora in Russian The611

most relevant corpora to our study are RuC-612

CoN (Nesterov et al., 2022b) and NEREL-BIO613

(Loukachevitch et al., 2023, 2024), which link en-614

tities from clinical records or PubMed abstracts to615

the Russian segment of UMLS. We conducted pre-616

liminary transfer learning experiments using these617

two corpora; however, a detailed analysis of the618

semantic differences among the three corpora has619

yet to be performed.620

Moderate Inter-Annotator Agreement Among621

ICD codes, the IAA value was 50%, indicating622

moderate agreement, while for ICD groups, the623

IAA increased to 74%, reflecting higher consis-624

tency at a group-wise level. This disparity suggests625

that annotators were generally aligned when cate-626

gorizing broader ICD groups but faced challenges627

in granular code assignment. This pattern mirrors628

trends observed in clinical practice, possibly due to629

ambiguities in documentation and coding guide-630

lines (cf. §3.1). While our terminal code IAA631

(50%) aligns with the upper bounds of reported632

expert agreement (29.2%–46.8%) (Stausberg et al.,633

2008), the residual variability underscores the need634

for standardized annotation protocols or ensemble635

approaches to mitigate subjectivity in fine-grained636

coding.637

Clinical Diversity While our dataset is substan-638

tial, it may not fully capture the diversity of clinical639

scenarios and patient demographics. A more varied640

dataset could improve the robustness and general-641

izability of the models. Clinical language can vary642

significantly across different medical specialties643

and institutions. This variability may impact the644

model’s ability to generalize across various clinical645

contexts.646

Data Imbalance The dataset may suffer from647

class imbalance, with certain ICD codes being un-648

derrepresented. This could affect the model’s abil-649

ity to generalize and accurately predict less com-650

mon diagnoses.651

Ethics Statement652

No Personal Patient Data in RuCCoD RuC-653

CoD does not contain any personally identifiable654

patient information. The dataset consists solely655

of diagnosis conclusions written by medical pro-656

fessionals, which were manually labeled based on657

the ICD-10 CM (Clinical Modification) system. 658

Prior to the annotation process, annotators were 659

instructed to ensure that no personal information 660

was included in the conclusions. Their task was 661

to identify and remove any personal or identifiable 662

information manually from these texts. Overall, no 663

patient-related information will be disclosed upon 664

the dataset’s release. 665

Private in-house EHR data in RuCCoD-DP Di- 666

agnosis prediction leverages prior EHR data along 667

with details from the current visit. As a source for 668

RuCCoD-DP, we utilize records from the Medical 669

Information System of a major European city. All 670

patients, prior to visiting a doctor, sign a special 671

consent form for the processing of their data. The 672

EHR data, which forms the foundation of RuCCoD, 673

is an in-house dataset that will not be released. 674

Human Annotations The dataset introduced in 675

this paper involved only new annotations. Dataset 676

annotation was conducted by annotators, and there 677

are no associated concerns (e.g. regarding compen- 678

sation). Each annotator received a compensation 679

of approximately $12 per hour for their contribu- 680

tions. An estimated 85 hours of annotation work 681

per expert resulted in a total payment of $1,020 682

per annotator. For context, the minimum monthly 683

wage in Russia for full-time employment is un- 684

der $200, highlighting the substantial effort and 685

investment in creating this high-quality resource. 686

All annotators were aware of potential annotation 687

usage for research purposes. As discussed in lim- 688

itations, we believe these new annotated datasets 689

serve as a starting point for the evaluation of LMs 690

on ICD coding in Russian. Our annotations, code, 691

and annotation guidelines will be released upon 692

acceptance of this paper. 693

Inference Costs Running the complete evalua- 694

tion experiment on a single V100 GPU takes ap- 695

proximately 7.5h and 11h for a decoder-only and 696

encoder-only LM, respectively, while the LLM 697

with RAG evaluation experiment on a single A100 698

GPU takes approximately 5.5h. 699

Potential Misuse The RuCCoD dataset, intended 700

for ICD coding in Russian, may be misused if not 701

handled correctly. Potential issues include inac- 702

curate applications leading to incorrect code as- 703

signments and overreliance on automated systems 704

without proper validation. To prevent these prob- 705

lems, it is crucial to provide clear guidelines and 706
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adequate training for doctors on using AI assis-707

tants, ensuring compliance with ethical and legal708

standards in research and healthcare.709

Transparency The RuCCoD and all associated710

annotation materials are being released under the711

CC BY 4.0 license. It should be noted that the712

dataset contains only diagnosis codes and no medi-713

cal histories or personal patient data. Furthermore,714

all diagnoses have been rigorously verified to en-715

sure complete anonymity, in accordance with the716

prevailing norms of open research practice. Our717

GitHub repository and HuggingFace dataset card718

will include comprehensive documentation on the719

codebase, the methodology for creating bench-720

marks, and the human annotation process. The721

source code for our experiments will be freely722

available at this anonymized repository: https:723

//github.com/auto-icd-coding/ruccod.724

Use of AI Assistants We utilize Grammarly to725

enhance and proofread the text of this paper, cor-726

recting grammatical, spelling, and stylistic errors,727

as well as rephrasing sentences. Consequently, cer-728

tain sections of our publication may be identified729

as AI-generated, AI-edited, or a combination of730

human and AI contributions.731
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A Appendix: Annotation guidelines. 1203

A.1 Task Overview 1204

The task is to review the diagnoses in the BRAT 1205

markup system, categorize them into separate en- 1206

tities corresponding to individual nosologic units, 1207

and assign each of the selected entities an identifier 1208

in the form of an ICD code from the provided clin- 1209

ical modification of the ICD-10-CM classifier. The 1210

purpose of the annotation is to assign the correct, 1211

most private (to the extent possible from the limited 1212

anamnesis cotext) identifier to each nosologic unit 1213

represented in the diagnosis. 1214

A.2 Data and resources 1215

Data. The documents you will be annotating are 1216

anonymized diagnoses. To facilitate and speed up 1217

the annotation process, most nosologic units are 1218

highlighted and pre-labeled with an ICD code. 1219

Vocabulary. Each phrase identified in the text 1220

as a nosological unit or not highlighted but being 1221

such must be associated with a code from the ICD- 1222

10. This markup will use the clinical modification 1223

of the ICD-10-CM, which includes about 17762 1224

different medical diagnoses. 1225

Additional Resources. Although the markup sys- 1226

tem is already loaded with the ICD-10, you can 1227

use the following additional resources to help you 1228

correctly identify the most appropriate ICD code: 1229

• The ICD Code Clinical Modification Version 1230

10 is a Russian-language web service for 1231

searching and determining the optimal ICD 1232

code, available at: www.mkb-10.com. Regis- 1233

tration is not required to access this resource. 1234

• Google - You can use Google if you are un- 1235

familiar with a clinical diagnosis or if you 1236

encounter a previously unknown abbreviation 1237

or acronym. 1238

• Wikipedia - You can also use Wikipedia to 1239

find additional information. 1240

A.3 Task Description 1241

For each selected or unselected piece of text cor- 1242

responding to a nosological unit, you need to as- 1243

14
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sign an ICD code. Example: “Atopic dermatitis1244

in partial remission disseminated form”. The se-1245

lected text fragment “Atopic dermatitis in partial1246

remission” should be associated with the diagnosis1247

"Other atopic dermatitis" (L20.8). Make sure that1248

no text fragment representing a nosological unit is1249

left without an assigned ICD code, thus ensuring1250

the completeness of the markup.1251

However, each nosologic unit should correspond1252

to only one code. However, in many cases, the se-1253

lected nosologic units may correspond to more than1254

one ICD code, in which case you should follow the1255

following rules:1256

• 1. Select an ICD code that maximizes the1257

specificity of the diagnosis up to subsection1258

X.00.1259

• 2. If the nosological unit includes modifiers1260

such as “mild”, “severe”, “acute”, “chronic”,1261

indication of degree, stage, etc., the modifier1262

should be taken into account when searching1263

for the appropriate ICD code. However, it1264

is often the case that the classifier will only1265

have a more general diagnosis that does not1266

include the above modifier. In this case, se-1267

lect the optimal ICD code by ignoring the1268

modifier. However, modifiers that are insepa-1269

rable in meaning from the underlying concept1270

should always be considered when selecting1271

the optimal ICD code (e.g., “Acute myocardial1272

ischemia”).1273

The following rules should also be followed1274

when marking up:1275

• If the selected nosological unit is written in1276

the plural and the corresponding ICD code1277

exists in the classifier in the plural, you should1278

select it. Otherwise, you should search for the1279

ICD code in the singular.1280

• Sometimes in the classifier there are diagnoses1281

that at first glance seem to be absolutely iden-1282

tical, which can be differentiated only by the1283

context of the electronic medical record.1284

A.4 Annotation Tool1285

The annotation process is conducted us-1286

ing a specialized web service called brat1287

(https://brat.nlplab.org/). You will be provided1288

with a customized login and password. All1289

necessary information from clinical diagnoses and1290

preliminary markup with ICD codes are entered1291

into the annotation tool. Each document in the brat1292

web service leads to a separate clinical diagnosis.1293

Each selected text fragment is a nosological unit1294

to be associated with the corresponding ICD code. 1295

In order to call the ICD code selection menu, you 1296

need to highlight the section of text you are go- 1297

ing to mark up or double-click on the green label 1298

“icd_code” located above the selected text frag- 1299

ment. If you think that a section of the diagnosis 1300

is selected incorrectly or redundantly, you need to 1301

correct or delete the corresponding selection. 1302

The window may or may not have a pre-selected 1303

ICD code on the Ref line. If specified, compare 1304

the correctness of the ICD code specified in the 1305

“Ref” line with the selected text fragment specified 1306

in the “Text” field. If the ICD code is correct, press 1307

the “OK” button and move to the next selected text 1308

fragment. If the ICD-code is not specified or is 1309

specified incorrectly, double-click the “Ref” line 1310

in the “Normalization” field, and the ICD-code 1311

search window will open. In the opened window 1312

check the correctness of the diagnosis selection for 1313

search in the “Query” line and click on the “Search 1314

ICD_codes” button. The system will search in the 1315

ICD codes classifier and list them. If the system 1316

does not find the codes by the specified text frag- 1317

ment, try to change it. 1318

Select the appropriate ICD code and its decoding 1319

from the list and press the “OK” button (or double- 1320

click on the required ICD code). The system will 1321

save your selection and return to the previous win- 1322

dow, where you should also click on the “OK” but- 1323

ton. The system will remember your selection and 1324

you can proceed to annotate the next selected text 1325

section. 1326

If you did not find a suitable ICD code in the 1327

list of ICD codes found by the system, you can try 1328

to change the search phrase in the “Query” field, 1329

by which the search is performed, and perform the 1330

search again. In most cases, the correct selection 1331

of the search phrase allows one to find the most 1332

appropriate ICD code in the classifier. 1333

If the built-in search system does not yield re- 1334

sults, you can switch to the external directory of 1335

ICD codes specified in A2. To do this, click on 1336

the magnifying glass icon in the “Normalization” 1337

field. You can also go to the Google search engine 1338

and Wikipedia web encyclopedia by clicking on 1339

the corresponding link in the “Search” field. 1340

If even after changing the search phrase and 1341

searching in external resources you cannot find 1342

a suitable ICD code, return to the previous menu 1343

by clicking on the “cancel” button and delete the 1344

identifier located in the ID line in the “Normaliza- 1345

tion” field in the opened window. The same should 1346
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be done if a text section that is not a nosological1347

unit is selected. Deleting the identifier will clear1348

the “Ref” line; this will serve as an indicator that1349

the selected text fragment could not be matched1350

with a suitable ICD code.1351

B Related Work1352

In describing our work, we encountered persistent1353

terminological ambiguity arising from overlapping1354

nomenclature for distinct task formulations. For in-1355

stance, the term “ICD coding” is broadly applied to1356

both (1) multi-label classification of medical texts1357

(e.g., assigning ICD codes to discharge summaries)1358

(Li and Yu, 2020; Vu et al., 2020; Wang et al., 2024)1359

and (2) entity linking, where discrete clinical di-1360

agnoses are mapped to specific codes (Lavergne1361

et al., 2016; Névéol et al., 2017; Coutinho and Mar-1362

tins, 2022). This conflation obscures fundamental1363

differences: the former treats coding as document-1364

level prediction to capture all relevant codes for1365

a patient’s condition, while the latter focuses on1366

precise alignment of clinical entities (e.g., distin-1367

guishing “acute myocardial infarction” from its1368

subtypes) through semantic matching, addressing1369

challenges like synonymy or hierarchical code re-1370

lationships. To resolve this ambiguity, in our work1371

we propose explicit terminology: “ICD coding”1372

refers to multi-label classification of medical texts,1373

whereas “Medical entity linking” denotes entity-1374

level code assignment.1375

ICD coding ICD coding has traditionally relied1376

on established machine learning techniques. Early1377

approaches employed methods such as Support1378

Vector Machines (SVM) with TF-IDF features to1379

represent clinical notes (Perotte et al., 2014). Fea-1380

ture engineering, including gradient boosting for1381

large datasets, also played a significant role in en-1382

hancing ICD coding accuracy (Diao et al., 2021).1383

Regular expression-based mapping and adaptive1384

data processing further improved efficiency in spe-1385

cific healthcare settings (Zhou et al., 2020).1386

The advent of neural networks marked a1387

paradigm shift in ICD coding. Recurrent Neural1388

Networks (RNNs), including LSTMs and GRUs,1389

were utilized to encode EHR data and capture1390

temporal dependencies within clinical notes (Choi1391

et al., 2016; Baumel et al., 2018). Convolutional1392

Neural Networks (CNNs) offered alternative archi-1393

tectures for extracting features from clinical text,1394

with models like CAML demonstrating their effec-1395

tiveness (Mullenbach et al., 2018b). Subsequent1396

advancements introduced multi-filter CNNs (Li and 1397

Yu, 2020) and squeeze-and-excitation networks in 1398

CNN (Liu et al., 2021c) to enhance feature extrac- 1399

tion. Addressing the challenge of imbalanced code 1400

distribution, researchers introduced focal loss (Liu 1401

et al., 2021c) and self-distillation mechanisms to 1402

improve prediction accuracy for rare codes (Zhou 1403

et al., 2021). Other models, like HA-GRUs used the 1404

charachter-level information (Baumel et al., 2018). 1405

Ensemble models used CNN, LSTM, and decision 1406

trees to improve accuracy (Xu et al., 2018). 1407

A crucial line of research has focused on inte- 1408

grating external medical knowledge and the in- 1409

herent hierarchical structure of ICD codes. Ap- 1410

proaches have incorporated medical definitions 1411

(Shi et al., 2017), Wikipedia data for rare dis- 1412

eases (Bai and Vucetic, 2019) and medical ontolo- 1413

gies (Bao et al., 2021) to enrich term embeddings. 1414

Tree-of-sequences LSTMs (Xie and Xing, 2018) 1415

and graph neural networks (Cao et al., 2020; Xie 1416

et al., 2019) were developed to capture relation- 1417

ships between codes, either through hierarchical 1418

structures or co-occurrence patterns. Models like 1419

KG-MultiResCNN leveraged external knowledge 1420

for relations understanding (Boukhers et al., 2023). 1421

Weak supervision was used to overcome the lack of 1422

training data (Dong et al., 2021; Gao et al., 2022). 1423

Furthermore, domain-specific pre-trained language 1424

models (PLMs) such as BioBERT (Lee et al., 2019), 1425

ClinicalBERT (Alsentzer et al., 2019), and Pub- 1426

MedBERT (Gu et al., 2021) have shown promise 1427

in improving performance on various biomedical 1428

tasks. However, adapting these models to the large- 1429

scale, multi-label nature of ICD coding presents 1430

unique challenges, particularly regarding long in- 1431

put sequences (Pascual et al., 2021; Ji et al., 2021). 1432

Recent efforts, such as BERT-XML (Zhang et al., 1433

2020b), have addressed this through input splitting 1434

and label attention mechanisms. Read, Attend, and 1435

Code (RAC) was proposed by Kim and Ganapathi 1436

(Kim and Ganapathi, 2021) and achieved state-of- 1437

the-art results. Despite these developments, chal- 1438

lenges remain in handling semi-structured text and 1439

variability of notes (Lu et al., 2023). 1440

Recent studies have increasingly focused on 1441

leveraging attention mechanisms and improving 1442

the interaction between clinical note representa- 1443

tions and ICD code representations. Models such 1444

as LAAT (Vu et al., 2020) and EffectiveCAN (Liu 1445

et al., 2021c) have incorporated refined label-aware 1446

attention mechanisms. However, the effective ap- 1447

plication of PLMs to ICD coding requires careful 1448
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consideration of input length constraints and the1449

development of robust mechanisms for capturing1450

long-range dependencies. Also, the models need to1451

better understand relationships between different1452

sections of clinical notes (Lu et al., 2023).1453

Diagnosis prediction Diagnosis prediction us-1454

ing structured EHR data has been extensively stud-1455

ied with deep learning approaches. NECHO (Koo,1456

2024) improves next-visit diagnosis prediction by1457

centering learning on medical codes and incorporat-1458

ing hierarchical regularization to capture structured1459

dependencies in EHR data. DPSS (Zhang et al.,1460

2020a) enhances predictive robustness by modeling1461

patient records as sequences of unordered clinical1462

events, preserving temporal patterns while mitigat-1463

ing biases introduced by the artificial ordering of1464

medical records. The importance of patient history1465

in EHR-based diagnosis prediction demonstrates1466

that historical records alone can achieve 76.6% ac-1467

curacy, which increases to 93.3% when structured1468

physical examination and laboratory data are inte-1469

grated (Fukuzawa et al., 2024). At the population1470

level, applying a Bi-GRU model trained on struc-1471

tured EHR data with SNOMED embeddings to pre-1472

dict chronic disease onset demonstrates the utility1473

of structured clinical histories in early disease iden-1474

tification (Grout et al., 2024). To optimize the use1475

of structured medical codes for diagnosis predic-1476

tion, MERA (Ma et al., 2025) introduces hierarchi-1477

cal contrastive learning and ranking mechanisms1478

to refine diagnosis classification within large ICD1479

code spaces. These studies collectively illustrate1480

the evolution of EHR-based diagnosis prediction1481

from sequence modeling to hierarchical represen-1482

tation learning, highlighting the role of structured1483

clinical history in improving predictive accuracy.1484

RAG LLMs face challenges as standalone sys-1485

tems for high-precision tasks such as ICD-linking,1486

primarily due to their limited accuracy in extract-1487

ing detailed, domain-specific information. Ma1488

et al.(Ma et al., 2023) demonstrated that while1489

LLMs lag behind fine-tuned SLMs in informa-1490

tion extraction tasks, they excel in understand-1491

ing and reorganizing semantic content, making1492

them effective at reranking retrieved information.1493

To overcome the limitations of accuracy and do-1494

main specificity, recent approaches have incorpo-1495

rated Retrieval-Augmented Generation (RAG) tech-1496

niques. RAG combines the structured knowledge1497

of external databases for retrieval with the semantic1498

reasoning strengths of LLMs for reranking, result-1499

ing in improved precision and overall task perfor- 1500

mance. 1501

Klang et al. (Klang et al., 2024) demonstrated 1502

the effectiveness of RAG in enhancing LLMs 1503

for ICD-10-CM medical coding. Their study re- 1504

vealed that RAG-enhanced LLMs outperform hu- 1505

man coders in accuracy and specificity, emphasiz- 1506

ing the potential of retrieval mechanisms in im- 1507

proving clinical documentation. Similarly, Kwan 1508

(Kwan, 2024) proposed a two-stage Retrieve-Rank 1509

system for medical coding, achieving a perfect 1510

match rate for ICD-10-CM codes and significantly 1511

surpassing vanilla LLMs. The MedCodER frame- 1512

work (Baksi et al., 2024) leverages a pipeline of 1513

extraction, retrieval, and reranking, to improve au- 1514

tomation and interpretability in ICD-10 coding. It 1515

demonstrates SOTA performance on ACI-BENCH 1516

by integrating LLMs with semantic search and 1517

evidence-based reasoning. Boyle et al. (Boyle 1518

et al., 2023) presented a zero-shot ICD coding 1519

approach using LLMs and a tree-search strategy, 1520

achieving a SOTA on the CodiEsp dataset, par- 1521

ticularly excelling in rare code prediction without 1522

task-specific training. Abdulnazar et al. (Abdul- 1523

nazar et al., 2024) applied GPT-4 for clinical text 1524

cleansing to enhance MCN. By combining text 1525

standardization with RAG, their method improved 1526

mapping precision to SNOMED CT in the German 1527

language. 1528

C BERT-based NER Results 1529

Tab. 5 presents evaluation results for NER task on 1530

the RuCCoD dataset. In the context of NER, Ru- 1531

BioBERT employs a softmax activation function 1532

in its output layer. BINDER utilizes RuBioBERT 1533

backbone and approaches NER as a representa- 1534

tion learning problem by maximizing the similar- 1535

ity between the vector representations of an en- 1536

tity mention and its corresponding type (Zhang 1537

et al.). RuBioBERT achieves the highest F1-score 1538

of 0.756 when trained on the RuCCoD, suggest- 1539

ing that this dataset is particularly effective for the 1540

model. BINDER trained on RuCCoD achieves an 1541

F1-score of 0.71, slightly lower than RuBioBERT 1542

trained on the same dataset. 1543

D Entity Linking Results 1544

Since there are many datasets for entity linking 1545

in the biomedical domain, including corpora in 1546

Russian, we explored whether these corpora can 1547

be helpful for ICD coding. Additionally, we at- 1548
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Task Model or Approach LR # Epochs BS Scheduler WD

NER RuBioBERT 1e-5 20 32 Cosine (Loshchilov and Hutter, 2017) 0.01
EL BERGAMOT+BioSyn 2e-5 20 32 Adam (Kingma and Ba, 2015) 0.01

LLM tuning LoRA 5e-5 33 2 Linear with Warmup 0.01
ICD code prediction Longformer 5e-5 2 4 Linear with Warmup 0.01

Table 4: Models and training hyperparameters. LR stands for learning rate, BS for batch size, WD for weight decay

Model Train Data F1-score Precision Recall

RuBioBERT RuCCoD train 0.756 0.75 0.77
RuBioBERT BIO-NNE train 0.62 0.57 0.67
RuBioBERT RuCCoD + BioNNE train 0.72 0.75 0.70
BINDER + RuBioBERT RuCCoD train 0.71 0.72 0.71

Table 5: Evaluation results for NER task on RuCCoD dataset.

Train set SapBERT CODER BERGAMOT

@1 @5 @1 @5 @1 @5

Zero-shot evaluation, strict

ICD dict 0.3327 0.5712 0.2631 0.4687 0.3495 0.6170
ICD dict+UMLS synonyms 0.3546 0.5197 0.3237 0.4765 0.3559 0.5487

Supervised evaluation, strict

ICD 0.6132 0.8182 0.6202 0.8169 0.6415 0.8459
ICD+UMLS sumonyms 0.5326 0.7382 0.5358 0.7318 0.4984 0.7253
RuCCoN 0.3591 0.5345 0.3598 0.5732 0.3643 0.5313
RuCCoN+ICD 0.3952 0.5732 0.3888 0.6570 0.3817 0.5983
NEREL-BIO 0.3443 0.4913 0.3378 0.5274 0.3353 0.5113
NEREL-BIO+ICD 0.3804 0.5596 0.3804 0.6325 0.3598 0.5525

Zero-shot evaluation, relaxed

ICD dict 0.4842 0.6886 0.3752 0.6190 0.5035 0.7286
ICD dict+UMLS synonyms 0.5551 0.6867 0.5055 0.6293 0.5603 0.7073

Supervised evaluation, relaxed

ICD 0.7763 0.8839 0.7872 0.8743 0.7917 0.8943
ICD+UMLS sumonyms 0.7788 0.8616 0.7714 0.8860 0.7449 0.8738
RuCCoN 0.5235 0.6531 0.5429 0.7208 0.5132 0.6564
RuCCoN+ICD 0.5493 0.6602 0.5770 0.7485 0.5571 0.6873
NEREL-BIO 0.4803 0.6067 0.4958 0.6634 0.4778 0.6170
NEREL-BIO+ICD 0.5455 0.6447 0.5474 0.7292 0.5384 0.6505

Table 6: Cross-domain transfer results for biomedical linking models. Evaluation results for linking models trained
on RuCOD, RuCCoN, NEREL-BIO as well as their union. ICD+UMLS synonyms stands for ICD train set with the
vocabulary enriched with ICD disease name synonyms from the UMLS knowledge base. The best results for each
model and set-up are highlighted in bold.

tempted to enrich the ICD normalization vocabu-1549

lary with concept names from the Unified Medical1550

Language System (UMLS) metathesaurus which1551

includes the ICD-10 vocabulary. Specifically, for1552

each ICD code, we find its Concept Unique Identi- 1553

fier (CUI) in UMLS and retrieve all concept names 1554

that share the same CUI but are adopted from the 1555

source vocabularies different from ICD-10. We 1556
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employ the following Russian biomedical corpora1557

for experiments on cross-terminology transfer:1558

RuCCoN (Nesterov et al., 2022a) is a manu-1559

ally annotated corpus of clinical records in Rus-1560

sian. It contains 16,028 mentions linked to 2,4091561

unique concepts from the Russian subset of UMLS1562

metathesaurus (Bodenreider, 2004).1563

NEREL-BIO (Loukachevitch et al., 2023, 2024)1564

is a corpus of 756 PubMed abstracts in Russian1565

manually linked to 4,544 unique UMLS concepts.1566

The corpus is specifically focused on two main1567

problems: (i) entity nestedness and (ii) cross-1568

lingual Russian-to-English normalization for the1569

incomplete Russian UMLS terminology. In to-1570

tal, NEREL-BIO provides 23,641 entity mentions1571

manually linked to 4,544 unique UMLS concepts.1572

4,424 mentions have no concept name representa-1573

tion in the Russian UMLS subset and are linked1574

to 1,535 unique concepts present in the English1575

UMLS only.1576

We experiment with three state-of-the-art spe-1577

cialized biomedical entity linking models:1578

SapBERT is a metric learning framework that1579

learns from synonymous UMLS concept names by1580

generating hard triplets for pre-training (Liu et al.,1581

2021a,b).1582

CODER is a contrastive learning model inspired1583

by semantic matching methods that use both syn-1584

onyms and relations from the UMLS (Yuan et al.,1585

2022b) to learn concept representations.1586

BERGAMOT is an extension of SapBERT which1587

learns concept name-based and graph-based con-1588

cept representations simultaneously and introduces1589

a cross-modal alignment loss to transfer knowledge1590

from a graph encoder to a BERT-based language1591

encoder (Sakhovskiy et al., 2024). The graph en-1592

coder is discarded after the pretraining stage and1593

only a BERT encoder is used for inference.1594

For supervised entity linking, we adopt1595

BioSyn (Sung et al., 2020), a BERT-based frame-1596

work that iteratively updates entity representations1597

using synonym marginalization. For each dataset,1598

we trained BioSyn with default hyperparameters1599

for 20 epochs.1600

Relaxed EL Evaluation We assess two entity1601

linking set-ups: (i) strict evaluation which implies1602

an exact match between predicted and ground truth1603

codes and (ii) relaxed evaluation with all codes1604

being truncated to 3-symbols codes (corresponding1605

to the second level of hierarchy).1606

The results of cross-terminology entity linking1607

transfer presented in Tab. 8 reveal a few insightful 1608

findings related to linking ICD codes. 1609

Vocabulary Extension is not a Cure While ex- 1610

tension of ICD vocabulary consistently gives a 1611

slightly improved Accuracy@1 in a zero-shot set- 1612

ting, additional synonyms introduce severe noise in 1613

a supervised setting. Specifically, a significant drop 1614

of 8.1%, 8.4%, 14.3% Accuracy@1 is observed 1615

for SapBERT, CODER, and BERGAMOT, respec- 1616

tively. Even in an unsupervised setting, vocabulary 1617

extension drops Accuracy@5 by 5.2% and 6.8% 1618

for SapBERT and BERGAMOT, respectively. 1619

Complicated Cross-Terminology Transfer 1620

Both training on RuCCoN and NEREL-BIO as 1621

well merge of these corpora with RuCCoD do 1622

not lead to improvement over zero-shot coding. 1623

The finding indicates the specificity and high 1624

complexity of ICD coding within the entity linking 1625

task. 1626

Complexity of Fine-Grained ICD coding The 1627

high gap between the strict and supervised evalu- 1628

ation of around 15% Accuracy@1 indicates that 1629

distinguishing between semantically similar dis- 1630

eases sharing the same therapeutic group is a major 1631

challenge. 1632

E LLM with RAG results 1633

All LLM with RAG experiments were conducted 1634

with a temperature setting of 0 for all LLMs and 1635

a top-k value of 15 for the number of retrieved en- 1636

tities from similarity search. The LLMs used are 1637

specified in Appx. G. For the embedding model, 1638

we utilized BERGAMOT. To construct the vec- 1639

tor database, we used dictionaries extracted from 1640

NEREL-BIO, RUCCON, the ICD dictionary, and 1641

the ICD dictionary combined with RuCCoD. The 1642

results are presented in Tables 9 and 10 for strict 1643

evaluation, and in Tables 11 and 12 for relaxed 1644

evaluation. 1645

For the NER task, the ICD dict.+RuCCoD 1646

dataset yielded the best results. The Llama3.1:8b- 1647

instruct-fp16 model achieved the highest F-score 1648

(0.511), precision (0.580), recall (0.456), and ac- 1649

curacy (0.343). Qwen2.5-7B-Instruct and Llama3- 1650

Med42-8B followed with F-scores of 0.495 and 1651

0.491, respectively. In contrast, NEREL-BIO and 1652

RUCCON datasets showed significantly lower per- 1653

formance, with F-scores below 0.13 and accuracies 1654

under 0.07. 1655
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For NER+ICD Linking, the same dataset and1656

model led again, with Llama3.1:8b-instruct-fp161657

achieving an F-score of 0.268 and accuracy of1658

0.155. Qwen2.5-7B-Instruct and Llama3-Med42-1659

8B followed closely with F-scores around 0.245.1660

Performance on NEREL-BIO and RuCCon was1661

much lower, with F-scores under 0.022 and accura-1662

cies below 0.011.1663

For ICD Code assignment, Llama3.1:8b-instruct-1664

fp16 also performed best, with an F-score of 0.4581665

and accuracy of 0.297. Qwen2.5-7B-Instruct and1666

Llama3-Med42-8B also performed well, with F-1667

scores of 0.463 and 0.457. Again, NEREL-BIO and1668

RUCCON datasets exhibited weaker results, with1669

F-scores below 0.15 and accuracies under 0.09.1670

In summary, the ICD dict.+RuCCoD dataset con-1671

sistently outperformed others with Llama3.1:8b-1672

instruct-fp16 being the best model. Relaxed evalu-1673

ation settings produced similar trends.1674

F LLM with tuning results1675

The LLM tuning results are in Tab. 7.1676

For the NER task, Llama3-Med42-8B achieved1677

the highest F-score of 0.642, which corresponds to1678

the highest Precision and Recall among the mod-1679

els. Phi3_5_mini and Mistral-Nemo demonstrated1680

similar performance (F-scores of 0.627 and 0.614,1681

respectively), but slightly lag behind the leader.1682

The Qwen2.5-7B-Instruct model showed the low-1683

est scores across all metrics, with an F-score of1684

0.565 and an Accuracy of 0.393.1685

In the NER + ICD linking task, the use of1686

the RuCCoD or BERGAMOT approach signifi-1687

cantly improved the linking performance. For in-1688

stance, Phi3_5_mini achieved the highest F-score1689

of 0.333 when using RuCCoD, and Llama3-Med42-1690

8B reached an F-score of 0.299. Notably, for all1691

models, the use of RuCCoD proved to be more1692

beneficial than the BERGAMOT approach.1693

In the ICD code assignment task, results also1694

improved significantly with the use of the RuC-1695

CoD dataset. Once again, Phi3_5_mini emerged1696

as the top-performing model, attaining an F-score1697

of 0.480 when using RuCCoD. Llama3-Med42-1698

8B and Mistral-Nemo also demonstrated strong1699

results, with F-scores of 0.435 and 0.446, respec-1700

tively, when using RuCCoD. It is noteworthy that1701

the inclusion of RuCCoD consistently improved1702

Precision and Recall across all models.1703

Based on the presented results, it can be con-1704

cluded that for all tasks (NER, NER+Linking, and1705

ICD code assignment), the use of RuCCoD sig- 1706

nificantly enhances model performance compared 1707

to relying solely on the dictionary or embeddings. 1708

The top-performing models across all tasks are 1709

Llama3-Med42-8B and Phi3_5_mini, indicating 1710

their high efficiency in medical tasks following 1711

PEFT tuning. 1712

G Implementation Details 1713

Utilized LLMs: 1714

• Phi-3.5-mini-instruct (Phi) 1715

• Qwen2.5-7B-Instruct (Qwe) 1716

• Llama3-Med42-8B (Med) 1717

• Mistral-Nemo-Instruct-2407 (Mis) 1718

• llama3.1:8b-instruct-fp16 (Lla) 1719

Diagnosis prediction Each Longformer was 1720

trained for two epochs on separate NVidia A100 1721

GPUs, with the fine-tuning process taking approxi- 1722

mately one week per model. We provide hyperpa- 1723

rameters for these models training in Tab. 4. 1724

Hyperparameters A detailed overview, includ- 1725

ing parameter values and configurations, is pro- 1726

vided in Tab. 4. 1727

H Prompts 1728

The original prompts were in Russian. Below are 1729

their translations to English. 1730

NER prompt

You will be provided with a text
containing diagnoses. Extract the
diagnoses from this text. Do not
alter the spelling of the
diagnoses in the text. Respond
only in the format of a list: [’
diagnosis1 ’, ’diagnosis2 ’, ...]
Text: {text}

1731
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Model Precision Recall F-score Accuracy

NER

Llama3-Med42-8B, RuCCoD 0.642 0.642 0.642 0.473
Qwen2.5-7B-Instruct, RuCCoD 0.567 0.562 0.565 0.393
Phi3_5_mini, RuCCoD 0.632 0.623 0.627 0.457
Mistral-Nemo, RuCCoD 0.631 0.598 0.614 0.443

NER+Linking

Llama3-Med42-8B, ICD dict. 0.149 0.149 0.149 0.08
Llama3-Med42-8B, ICD dict. + RuCCoD 0.299 0.299 0.299 0.176
Llama3-Med42-8B, ICD dict. + BERGAMOT 0.286 0.286 0.286 0.167
Qwen2.5-7B-Instruct, ICD dict. 0.188 0.186 0.187 0.103
Qwen2.5-7B-Instruct, ICD dict. + RuCCoD 0.281 0.279 0.28 0.163
Qwen2.5-7B-Instruct, ICD dict. + BERGAMOT 0.2 0.198 0.199 0.11
Phi3_5_mini, ICD dict. 0.272 0.268 0.27 0.156
Phi3_5_mini, ICD dict. + RuCCoD 0.335 0.33 0.333 0.199
Phi3_5_mini, ICD dict. + BERGAMOT 0.322 0.317 0.32 0.19
Mistral-Nemo, ICD dict. 0.231 0.219 0.224 0.126
Mistral-Nemo, ICD dict. + RuCCoD 0.303 0.287 0.295 0.173
Mistral-Nemo, ICD dict. + BERGAMOT 0.267 0.253 0.26 0.149

Code assignment

Llama3-Med42-8B, ICD dict. 0.229 0.231 0.23 0.13
Llama3-Med42-8B, ICD dict. + RuCCoD 0.434 0.435 0.435 0.278
Llama3-Med42-8B, ICD dict. + BERGAMOT 0.403 0.405 0.404 0.253
Qwen2.5-7B-Instruct, ICD dict. 0.296 0.295 0.295 0.173
Qwen2.5-7B-Instruct, ICD dict. + RuCCoD 0.456 0.449 0.452 0.292
Qwen2.5-7B-Instruct, ICD dict. + BERGAMOT 0.305 0.303 0.304 0.179
Phi3_5_mini, ICD dict. 0.394 0.39 0.392 0.244
Phi3_5_mini, ICD dict. + RuCCoD 0.483 0.477 0.48 0.316
Phi3_5_mini, ICD dict. + BERGAMOT 0.454 0.448 0.451 0.291
Mistral-Nemo, ICD dict. 0.326 0.311 0.319 0.189
Mistral-Nemo, ICD dict. + RuCCoD 0.458 0.435 0.446 0.287
Mistral-Nemo, ICD dict. + BERGAMOT 0.394 0.372 0.383 0.237

Table 7: ICD coding results for finetuned LLMs on RuCCoD. The best results are highlighted in bold.

Diagnosis selection prompt

You will be given a reference
diagnosis and a list of diagnoses
from a database.
Your task is to determine which
diagnosis from the database best
matches the reference diagnosis.
Try to select the diagnosis
accurately , paying attention to
details. Choose the diagnosis with
the highest match in terms of

words and meaning.
You can only choose from the
diagnoses in the list.
Pay more attention to the
diagnoses at the beginning of the
list , as they are more likely to
be a better match.
It’s better to choose a shorter
diagnosis than one that includes
information not present in the
reference diagnosis.
In your response , write only the
diagnosis number and nothing else.
Reference diagnosis: {diagnosis}
List of diagnoses from a database:
{list}
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Model Precision Recall F-score Accuracy

NER

BioBERT, Biosyn, RuCCoD 0.649 0.655 0.653 0.485
BioBERT, RuCCoD 0.721 0.769 0.744 0.592
BioBERT, NEREL-BIO 0.588 0.675 0.628 0.458
BioBERT, NEREL-BIO, RuCCoD 0.689 0.713 0.701 0.54
BioBERT, RuCCoN 0.637 0.613 0.625 0.454
BioBERT, RuCCoN + RuCCoD 0.609 0.709 0.655 0.487

NER+Linking

BioBERT, Biosyn, RuCCoD 0.392 0.396 0.394 0.245
BioBERT, RuCCoD 0.427 0.455 0.441 0.283
BioBERT, NEREL-BIO 0.353 0.406 0.377 0.233
BioBERT, NEREL-BIO, RuCCoD 0.406 0.42 0.413 0.26
BioBERT, RuCCoN 0.387 0.372 0.379 0.234
BioBERT, RuCCoN + RuCCoD 0.351 0.409 0.378 0.233

Code assignment

BioBERT, Biosyn, RuCCoD 0.507 0.508 0.507 0.340
BioBERT, RuCCoD 0.51 0.542 0.525 0.356
BioBERT, NEREL-BIO 0.466 0.531 0.497 0.33
BioBERT, NEREL-BIO, RuCCoD 0.512 0.529 0.52 0.352
BioBERT, RuCCoN 0.508 0.485 0.496 0.33
BioBERT, RuCCoN + RuCCoD 0.471 0.543 0.504 0.337

Table 8: Evaluation results for entity-level tasks for BERT-based IE pipeline on RuCCoD corpus. The best results
are highlighted in bold.
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Model Precision Recall F-score Accuracy

NER: ICD dict.

Llama3.1:8b-instruct 0.208 0.088 0.124 0.066
Llama3-Med42-8B 0.202 0.084 0.118 0.063
Phi-3.5-mini-instruct 0.211 0.093 0.129 0.069
Mistral-Nemo-Instruct-2407 0.198 0.072 0.105 0.055
Qwen2.5-7B-Instruct 0.206 0.087 0.122 0.065

NER: ICD dict. + RuCCoD

Llama3.1:8b-instruct 0.581 0.456 0.511 0.343
Llama3-Med42-8B 0.556 0.441 0.492 0.326
Phi-3.5-mini-instruct 0.543 0.450 0.492 0.326
Mistral-Nemo-Instruct-2407 0.541 0.372 0.441 0.283
Qwen2.5-7B-Instruct 0.566 0.440 0.495 0.329

NER+Linking: ICD dict.

Llama3.1:8b-instruct 0.071 0.067 0.069 0.036
Llama3-Med42-8B 0.058 0.063 0.060 0.031
Phi-3.5-mini-instruct 0.062 0.069 0.065 0.034
Mistral-Nemo-Instruct-2407 0.066 0.056 0.060 0.031
Qwen2.5-7B-Instruct 0.065 0.065 0.065 0.033

NER+Linking: ICD dict. + RuCCoD

Llama3.1:8b-instruct 0.272 0.264 0.268 0.155
Llama3-Med42-8B 0.235 0.261 0.247 0.141
Phi-3.5-mini-instruct 0.228 0.257 0.242 0.137
Mistral-Nemo-Instruct-2407 0.247 0.215 0.230 0.130
Qwen2.5-7B-Instruct 0.244 0.246 0.245 0.140

Code assignment: ICD dict.

Llama3.1:8b-instruct 0.379 0.363 0.371 0.228
Llama3-Med42-8B 0.310 0.345 0.327 0.195
Phi-3.5-mini-instruct 0.260 0.294 0.276 0.160
Mistral-Nemo-Instruct-2407 0.413 0.360 0.385 0.238
Qwen2.5-7B-Instruct 0.401 0.411 0.406 0.255

Code assignment: ICD dict. + RuCCoD

Llama3.1:8b-instruct 0.465 0.451 0.458 0.297
Llama3-Med42-8B 0.434 0.483 0.457 0.296
Phi-3.5-mini-instruct 0.409 0.458 0.432 0.276
Mistral-Nemo-Instruct-2407 0.462 0.401 0.429 0.273
Qwen2.5-7B-Instruct 0.461 0.465 0.463 0.301

Table 9: Evaluation results for NER, Code assignment, and end-to-end entity linking task on RuCCoD for
LLM+RAG pipeline.
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Model Precision Recall F-score Accuracy

NER: NEREL-BIO

Llama3.1:8b-instruct 0.100 0.042 0.059 0.030
Llama3-Med42-8B 0.104 0.043 0.060 0.031
Phi-3.5-mini-instruct 0.098 0.043 0.059 0.031
Mistral-Nemo-Instruct-2407 0.115 0.044 0.063 0.033
Qwen2.5-7B-Instruct 0.099 0.043 0.060 0.031

NER: RuCCoN

Llama3.1:8b-instruct 0.188 0.088 0.120 0.064
Llama3-Med42-8B 0.174 0.079 0.108 0.057
Phi-3.5-mini-instruct 0.172 0.085 0.114 0.060
Mistral-Nemo-Instruct-2407 0.197 0.082 0.116 0.061
Qwen2.5-7B-Instruct 0.185 0.091 0.122 0.065

NER+Linking: NEREL-BIO

Llama3.1:8b-instruct 0.023 0.020 0.021 0.011
Llama3-Med42-8B 0.018 0.019 0.018 0.009
Phi-3.5-mini-instruct 0.019 0.020 0.019 0.010
Mistral-Nemo-Instruct-2407 0.025 0.020 0.022 0.011
Qwen2.5-7B-Instruct 0.021 0.020 0.020 0.010

NER+Linking: RuCCoN

Llama3.1:8b-instruct 0.050 0.046 0.048 0.025
Llama3-Med42-8B 0.042 0.044 0.043 0.022
Phi-3.5-mini-instruct 0.038 0.041 0.040 0.020
Mistral-Nemo-Instruct-2407 0.053 0.044 0.048 0.025
Qwen2.5-7B-Instruct 0.048 0.046 0.047 0.024

Code assignment: NEREL-BIO

Llama3.1:8b-instruct 0.059 0.053 0.056 0.029
Llama3-Med42-8B 0.045 0.047 0.046 0.024
Phi-3.5-mini-instruct 0.046 0.049 0.047 0.024
Mistral-Nemo-Instruct-2407 0.062 0.051 0.056 0.029
Qwen2.5-7B-Instruct 0.058 0.056 0.057 0.029

Code assignment: RuCCoN

Llama3.1:8b-instruct 0.164 0.150 0.157 0.085
Llama3-Med42-8B 0.125 0.131 0.128 0.068
Phi-3.5-mini-instruct 0.125 0.134 0.129 0.069
Mistral-Nemo-Instruct-2407 0.156 0.129 0.141 0.076
Qwen2.5-7B-Instruct 0.156 0.152 0.154 0.084

Table 10: Evaluation results for NER, Code assignment, and end-to-end entity linking task on RuCCoD for
LLM+RAG pipeline using NEREL-BIO and RuCCoN for vectorstore.
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Model Precision Recall F-score Accuracy

NER: ICD dict.

Llama3.1:8b-instruct 0.208 0.088 0.124 0.066
Llama3-Med42-8B 0.202 0.084 0.118 0.063
Phi-3.5-mini-instruct 0.211 0.093 0.129 0.069
Mistral-Nemo-Instruct-2407 0.198 0.072 0.105 0.055
Qwen2.5-7B-Instruct 0.206 0.087 0.122 0.065

NER: ICD dict. + RuCCoD

Llama3.1:8b-instruct 0.581 0.456 0.511 0.343
Llama3-Med42-8B 0.556 0.441 0.492 0.326
Phi-3.5-mini-instruct 0.543 0.450 0.492 0.326
Mistral-Nemo-Instruct-2407 0.541 0.372 0.441 0.283
Qwen2.5-7B-Instruct 0.566 0.440 0.495 0.329

NER+Linking: ICD dict.

Llama3.1:8b-instruct 0.095 0.088 0.091 0.048
Llama3-Med42-8B 0.077 0.083 0.080 0.042
Phi-3.5-mini-instruct 0.083 0.092 0.087 0.046
Mistral-Nemo-Instruct-2407 0.083 0.070 0.076 0.040
Qwen2.5-7B-Instruct 0.087 0.086 0.087 0.045

NER+Linking: ICD dict. + RuCCoD

Llama3.1:8b-instruct 0.378 0.362 0.369 0.227
Llama3-Med42-8B 0.324 0.354 0.338 0.203
Phi-3.5-mini-instruct 0.323 0.357 0.339 0.204
Mistral-Nemo-Instruct-2407 0.342 0.295 0.317 0.188
Qwen2.5-7B-Instruct 0.343 0.340 0.342 0.206

Code assignment: ICD dict.

Llama3.1:8b-instruct 0.575 0.561 0.568 0.396
Llama3-Med42-8B 0.523 0.594 0.556 0.385
Phi-3.5-mini-instruct 0.437 0.510 0.471 0.308
Mistral-Nemo-Instruct-2407 0.598 0.533 0.564 0.392
Qwen2.5-7B-Instruct 0.595 0.618 0.607 0.435

Code assignment: ICD dict. + RuCCoD

Llama3.1:8b-instruct 0.701 0.684 0.692 0.529
Llama3-Med42-8B 0.644 0.720 0.680 0.515
Phi-3.5-mini-instruct 0.627 0.703 0.663 0.496
Mistral-Nemo-Instruct-2407 0.691 0.605 0.645 0.476
Qwen2.5-7B-Instruct 0.700 0.704 0.702 0.541

Table 11: Relaxed evaluation results for NER, Code assignment, and end-to-end entity linking task on RuCCoD for
LLM+RAG pipeline.
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Model Precision Recall F-score Accuracy

NER: NEREL-BIO

Llama3.1:8b-instruct-fp16 0.100 0.042 0.059 0.030
Llama3-Med42-8B 0.104 0.043 0.060 0.031
Phi-3.5-mini-instruct 0.098 0.043 0.059 0.031
Mistral-Nemo-Instruct-2407 0.115 0.044 0.063 0.033
Qwen2.5-7B-Instruct 0.099 0.043 0.060 0.031

NER: RuCCoN

Llama3.1:8b-instruct-fp16 0.188 0.088 0.120 0.064
Llama3-Med42-8B 0.174 0.079 0.108 0.057
Phi-3.5-mini-instruct 0.172 0.085 0.114 0.060
Mistral-Nemo-Instruct-2407 0.197 0.082 0.116 0.061
Qwen2.5-7B-Instruct 0.185 0.091 0.122 0.065

NER+Linking: NEREL-BIO

Llama3.1:8b-instruct 0.033 0.029 0.031 0.016
Llama3-Med42-8B 0.024 0.025 0.025 0.013
Phi-3.5-mini-instruct 0.026 0.028 0.027 0.014
Mistral-Nemo-Instruct-2407 0.033 0.027 0.030 0.015
Qwen2.5-7B-Instruct 0.030 0.029 0.030 0.015

NER+Linking: RuCCoN

Llama3.1:8b-instruct 0.076 0.069 0.072 0.038
Llama3-Med42-8B 0.061 0.063 0.062 0.032
Phi-3.5-mini-instruct 0.060 0.064 0.062 0.032
Mistral-Nemo-Instruct-2407 0.076 0.062 0.068 0.035
Qwen2.5-7B-Instruct 0.073 0.070 0.072 0.037

Code assignment: NEREL-BIO

Llama3.1:8b-instruct 0.114 0.107 0.110 0.058
Llama3-Med42-8B 0.088 0.096 0.092 0.048
Phi-3.5-mini-instruct 0.098 0.110 0.104 0.055
Mistral-Nemo-Instruct-2407 0.121 0.105 0.112 0.059
Qwen2.5-7B-Instruct 0.125 0.126 0.125 0.067

Code assignment: RuCCoN

Llama3.1:8b-instruct 0.295 0.282 0.288 0.168
Llama3-Med42-8B 0.254 0.275 0.264 0.152
Phi-3.5-mini-instruct 0.248 0.273 0.260 0.149
Mistral-Nemo-Instruct-2407 0.284 0.244 0.263 0.151
Qwen2.5-7B-Instruct 0.292 0.294 0.293 0.172

Table 12: Relaxed evaluation results for NER, Code assignment, and end-to-end entity linking task on RuCCoD for
LLM+RAG pipeline using NEREL-BIO and RuCCoN for vectorstore.
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