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ABSTRACT

Aligning distributions by minimizing optimal transport distances has been shown to
be effective in a variety of machine learning settings, including generative modeling
and domain adaptation. Computing optimal transport distances over large numbers
of data points is intractable, so mini-batch-based optimal transport must be used,
but it risks computing inaccurate distances between two distributions when the
randomly sampled pairs of mini-batches are not optimal pairs. In this work, we
propose a geometric mini-batch sampling scheme which orders the mini-batches
using pyramid-based encodings. By building geometrically consistent batches,
Pyramid Mini-Batching significantly improves the quality of optimal transport
approximations and downstream alignments with minimal computational overhead.
We perform experiments over the Discrete Optimal Transport benchmark to demon-
strate the effectiveness of this strategy over multiple established optimal transport
settings and see that our approach improves estimates of OT distances by nearly
30% for single pass estimation, and when attempting to minimize optimal transport
distance is ten times more effective than with random mini-batch sampling.

1 INTRODUCTION

Optimal transport costs, especially Wasserstein distances, have proven to be a useful measure of the
distance between distributions in a variety of settings. In addition to providing a geometrically mean-
ingful distance measure, Wasserstein distances also produce stable measures for distributions that lack
mutual support, as is often the case in domain adaptation or generative modeling settings (Arjovsky
et al., 2017), which learn to minimize the distance measured on mini-batches to align or generate
distributions. Given n data points, solving for exact Wasserstein distances requires O(n3log(n))
computations, which is not tractable for large n. Many approaches have been proposed to efficiently
estimate Wasserstein distances, with mini-batch training being one of the most straightforward.

A general limitation of learning alignments with mini-batch optimal transport approaches is that the
quality of learned alignment is strongly influenced by the ability of a mini-batch to fully capture
the meaningful diversity of the sampled distributions. Even if the distance within mini-batches
can be efficiently computed, the approximation is restricted by the mini-batch size. For example,
when learning to align model features between two distributions that contain the 1K label space of
ImageNet, a random batch of 256 samples from both distributions would inevitably assign couplings
between samples that represent different labels. Aligning examples of mismatched classes can lead
to detrimental performance on downstream classification tasks, and with a random mini-batching
approach the only way to overcome this is to increase the size of the mini-batch, which results in a
significant increase in the computation time.

Our approach overcomes this limitation by building batches that are geometrically consistent with
their accompanying batch from the other distribution. Instead of computing optimal transport on
random mini-batches, our approach constructs mini-batches considering the coupling over the whole
set of data points before splitting them into mini-batches. We exploit the locality properties of
tree-based hashing structures to efficiently sample near-corresponding pairs for each mini-batch set.
We encode every data point into a multi-resolution pyramid structure and extract the implied coupling
of data points from the structure. Mini-batches are constructed so that correspondences fall into the
same mini-batch. Pyramid encoding and coupling inference adds little to the overall run-time, but
significantly improves accuracy and reduces bias for small batch sizes making it particularly well-
suited for large-scale learning. Our key insight is that estimated coupling from pyramid encodings
are used to seed the mini-batches in near-linear time.
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Figure 1: Unlike baseline optimal transport with randomly sampled mini-batches, our approach first
jointly encodes the entire source and target datasets according to our Pyramid Matching structure and
subsequently extracts mini-batches according to this structure. Exact Optimal Transport solvers can
then be used on these mini-batches to either create a global transport plan or minimize an OT loss.

We note that our approach is complementary to and can be combined with existing efficient mini-batch
optimal transport methods. While existing methods focus on how to approximate the distance within
the sampled mini-batches, our approach improves the construction of mini-batches by considering
global data structure.

Our results shows that by using multi-resolution encodings to guide the creation of mini-batches we
can substantially improve the model’s ability to align representations according to optimal transport
distances. Over synthetic and real-world problem settings, we demonstrate the ability of our approach
to produce more accurate estimates of optimal transport distance and drastically improve the ability
to learn with respect to optimal transport distances.

To summarize, we (1) propose a geometric sampling approach for mini-batch optimal transport,
(2) propose a multi-resolution encoding strategy that works well over disjoint high-dimensional
domains, and (3) show our method outperforms popular alternatives on the challenging task of
minimizing Wasserstein distance in complex domains.

2 WASSERSTEIN DISTANCE : REVIEW

We begin with a discussion of the Wasserstein distance and common ways of computing it (or
approximations of it). We consider the case of optimal transport on Rd. Assume datasets X and Y
are subsets of Rd and µ and υ are probability measures on X and Y , respectively. For simplicity, we
assume that both datasets are of size N . If Π(µ, υ) := π :

∫
π(x, y)dx = υ(y),

∫
π(x, y)dy = µ(x)

is the transportation plan between µ and υ, the Wasserstein distance is defined as follows:

Wp(µ, υ) =

(
min

π∈Π(µ,υ)
Eπ(x,y)‖x− y‖p)

)1/p

(1)

where π transports a point in distribution µ to another point in distribution υ . As our work is suited
for the discrete optimal transport setting, we can further assume that we have discrete measures of
the form µ = Σni=1µiδxi

and υ = Σni=1υiδyi where δx and δy are the Dirac masses at point x and y,
respectively. Letting cij = ||xi − yj ||p, c forms a rectangular grid of resolution n × n in R2. The
amount of mass transported from xi to yj can be represented by πij . Thus the Wasserstein distance
in the discrete optimal transport setting can be represented as follows:

Wp = min
(
Σni=1Σnj=1cijπij

)1/p
subject to Σnj=1πij = µi∀i = 1, ..., n

Σni=1πij = υj∀j = 1, ..., n

πij ≥ 0.

Network simplex and interior point methods are common efficient solvers for Wasserstein distance,
both of which have a computational complexity of at least O(N3log(N)), which becomes intractable
as N grows beyond a few thousand points.

Mini-Batch Optimal Transport As machine learning applications often deal with settings where
N is greater than 100,000 data points, mini-batch optimal transport has become a popular approach

2



Under review as a conference paper at ICLR 2022

Figure 2: Visualization of how a batch of various sizes (2, 5, 8) may be extracted with our Pyramid
Mini-Batching (PMB) approach. The source distribution is mapped on the lefthand side of the figure,
and the target distribution is mapped on the righthand side of the figure. The center panel illustrates
the order in which nodes are visited when building a batch according to this structure, up until 8 data
points are selected. Points selected at the same step of tree traversal share the same color and nodes
which did not contribute any pairs are represented as black. We first select all available pairings from
a leaf node, then all of its sibling nodes, and subsequently the parent node. After exhausting the
parent node, we then transition to a leaf node of one its siblings and repeat the procedure until we’ve
constructed a batch of the desired size.

for dealing with the intractability of this problem (Fatras et al., 2019; Sommerfeld et al., 2019; Feydy
et al., 2019). We let xm denote a batch of m samples from X and let Xm

k denote a set of k such
batches. As such the mini-batch Wasserstein estimation can be defined as following:

Wm
p = k−1

∑
xm,ym∈(X m

k ,Ym
k )

Wp(x
m, ym)

The above stated mini-batch Wasserstein estimate is not a valid distance metric, as Wm
p (X,X) 6= 0,

and it also produces biased gradients which may not lead to the optimal minimum. Furthermore, the
quality of the mini-batch Wasserstein estimate is dependent on the batch size, which is practically
limited by the O(N3logN) computational cost of evaluating large mini-batches. Our approach is
primarily designed to address this limitation by allowing for more accurate estimation of Wasserstein
distances over small batch sizes.

Pyramid Match Kernels Pyramid Match Kernels (Grauman & Darrell, 2005) have been shown
to be an effective method for quickly estimating Wasserstein-1 (or equivalently “Earth mover’s”)
distance. Pyramid Match Kernels operate by embedding a point set X into a high-dimensional
multi-resolution histogram ΨX , which is used for performing implicit couplings between different
point sets.

In order to build the histogram, ΨX , the feature space of Rd is hierarchically divided into bins and
the histogram reflects the number of points from X which map into each bin. The histogram contains
L hierarchical layers, where each bin at layer l is sub-divided into k bins at layer l + 1. Thus the
multi-resolution histogram Ψ(·) can be represented as the concatenation of L histograms at each layer
Ψ(·) = [H0, H1, ...,HL−1]. As each bin in layers l > 0 is a subdivision of a bin in layer l − 1, bin
relationships between layers can be modeled as parent-child relationships. Pyramid Match Kernels
rely on the parent-child relationship between bins and the fact that the maximum distance between
points in parent bin will be greater than the maximum distance between points in a child bin to rapidly
compute a Wasserstein distance approximation. The number of matches present in a particular bin
is the minimum of the number of points present in this bin in either distribution and the number of
new matches present in a bin is this number minus the number of matches present in all of the bins
children. In this setting each bin has a fixed cost with parents having a greater cost than their children
and the total cost can be computed in O(nL) time.
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Algorithm 1: PMBatchExtract
Data: Ψ(A),Ψ(B), n
Result: batchA, batchB, n
batchA = ∅, batchB = ∅ ;
for ψ(A), ψ(B) ∈ (Ψ(A).children,Ψ(B).children) do

ba, bb, n← PMBatchExtract(ψ(A), ψ(B), n);
batchA.extend(ba), batchB.extend(bb) ;
if n == 0 then

return batchA, batchB, n
end

end
if n 6= 0 then

t = min(n,Ψ(A).cnt,Ψ(B).cnt);
ba = Ψ(A).indices.pop(t);
bb = Ψ(B).indices.pop(t);
batchA.extend(ba),batchB.extend(bb), n = n− t;

end

The fast approximations provided by Pyramid Match Kernels and related works (Indyk & Thaper,
2003; Grauman & Darrell, 2005; Lazebnik et al., 2006; Grauman & Darrell, 2006; Backurs et al.,
2020) have been shown to be useful in a variety of settings including image retrieval and object
classification. However, these approaches do not readily lend themselves to serving as a useful loss
function and as such they have not been explored for for learning alignments, which is of growing
interest in the machine learning community.

3 PYRAMID MINI-BATCHING

A major limitation of learning alignments with mini-batch optimal transport approaches is that the
quality of learned alignment is strongly influenced by the ability of a mini-batch of size n to fully
capture the meaningful diversity of the sampled distributions. While meaningful diversity is best
defined in relation to a downstream task, a reasonable example might be capturing all the classes
present in a distribution. Optimal transport estimations which rely on random mini-batches are bound
to produce sub-optimal couplings and the subsequent quality of the learned alignments is limited by
the relationship of the diversity of the dataset and the size of the mini-batches. Our approach aims to
overcome this limitation by ensuring that batch xm captures the diversity of batch ym and vice versa.

3.1 APPROXIMATE COUPLINGS FOR MINIBATCH SAMPLING

Following this intuition, we present Pyramid Mini-Batching (PMB) as a means of building batches
better suited for estimating and learning with Wasserstein distances. Using the tree structure from
Pyramid Match Kernels, we can quickly construct paired batches from empirical distributions with
large numbers of samples. Given n samples from two distributions that we wish to align, X,Y , we
first encode each distribution according to our hierarchical pyramid structure ΨX ,ΨY . This can be
done in O(ndL) time and with O(nL) memory, as we must store which index is mapped into each
node.

Using ΨX and ΨY , we can extract a batch of size n by a depth-first traversal of the tree until we have
extracted n approximate pairings which share a local neighborhood. Starting at the root node, for
each node we randomly select a non-empty child of the node. If no non-empty children nodes exist
we up to n of the available approximate couplings up from the current node. If we have not yet filled
a batch of size n, we move the siblings of the current node and finally parents of the current node.
Couplings at a specific node can be attained by randomly sampling min(Hj

l (X), Hj
l (Y )) indices

from bin (i, j) in X and Y and adding these indices to the respective batches. Mini-batches can be
constructed in this manner O(nL) time. Algorithm 1 details how to construct a batch of size n from
a Pyramid encoding of the two distributions Ψ(A),Ψ(B) and Figure 2 illustrates this process. The
Wasserstein distance of each batch (N ) can be computed in O(N3logN) with n/N batches required
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Algorithm 2: PMBuildIntNode
Data: A′, B′, k
Result: Ψ
if |A′| == 0 then

return ∅
children = ∅;
centers = GetClusters(A′, k);
assignmentsA = AssignClusters(A′, centers);
assignmentsB = AssignClusters(B′, centers);
for i ∈ 0→ k do

ψ = PMBuildIntNode(B′[assignmentsB [i]], A′[assignmentsA[i]], k);
// We swap which distribution is used to build clusters
children.insert(ψ);

Ψ = node(centers, children)

for a complete pass over the distributions the complexity of this step is O(nN2logN). We see that for
most settings O(nN2logN) >> O(ndL) and our Pyramid mini-batching adds little to the overall
run-time of our approach.

3.2 INTERLEAVING-PMB FOR DISJOINT DISTRIBUTIONS

If distributions X and Y are completely disjoint, existing pyramid matching binning schemes will
offer no improvement over random batching. Figure 14 illustrates that for disjoint distributions the
encoding tree may only contain matching points at the global/(most course) level. We introduce
Interleaving-PMB as means of mitigating this issue. This approach generates two sets of sample
points PX and PY from X and Y respectively. At each level of the hierarchy, cluster centers are
determined by the available points in either PX or PY . Cluster assignments are then made for both
point sets based on the determined centers, and the source of the cluster centers will alternate at the
next level of the hierarchy. In the case where points from PX and PY are mapped to different bin at
the first layer, we derive no benefit from the tree structure because approximate couplings will not
be available until we reach the root (global) node. We treat this case as a degenerate case because
our Pyramid Mini-Batching would yield the same results as random batching. Our interleaving
strategy ensures, that higher order nodes will contain smaller sets for potential matches by clustering
based on either PX or PY at that level and mapping points from both distributions to these clusters.
An alternative approach is to simply concatenate the point sets PX and PY into PC , and perform
hierarchical clustering over the new point set. We refer to this approach as Joint-PMB.

4 EXPERIMENTS

We conduct experiments to develop a better understanding of the effectiveness of Pyramid Mini-
Batching approaches on solving discrete optimal transport alignment problems. PMB is designed
to be effective in transport settings involving a large number of samples and high-dimensional
domains. As such we evaluate our approach and various baselines in settings with varying levels of
dimensionality and dataset sizes. For the largest of these problems, we are unable to solve the exact
optimal transport problem and must rely on proxies such as visualization to evaluate how well our
approximations are behaving. The datasets we use in our experiments are as follows:

• DOTMark (Schrieber et al., 2016): Discrete Optimal Transport benchmark of 1-channel images
of various size. Unless otherwise stated our results are calculated over two images of the Classic
Images subset of size 64× 64.

• Synth: We create synthetic datasets by sampling from Guassian mixture models where we vary the
number of centers to create more challenging distribution matches. Centers are selected uniformly
at random from within the range [−10, 10] ∈ Rd, with d = 100 unless otherwise stated.
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Figure 3: We display the resulting couplings and Optimal Transport maps from 10 full runs of
Int-PMB-OT and Rand-OT for batch sizes 2, 8, and 10 over a 2D dataset with 10 points. For smaller
batch sizes Int-PMB-OT does a much better job at approximating Wasserstein distance and learning
OT maps that adhere to the underlying cluster structure. Both the accuracy of the estimate and sparsity
of the learned maps indicate that the smoothing caused by mini-batches is greatly mitigated by PMB
approaches.

• ImageNet: We align images from ImageNet to ImageNet-C. The latter provides several realistic
synthetic perturbations to the ImageNet validation dataset which often present challenges for
models trained without exposure to these perturbations.

In order to better understand the behavior of our Wasserstein approximations during optimization
we use the non-parametric formulation of gradient flows as described in Feydy et al. (2019). We
choose non-parametric gradient flows for these experiments because they represent the best-case of
what function can be learned to minimize the associated losses; in later experiments we show the
impact of our approach when learning parameters of a neural network. For a given target distribution
B, gradient flows are used to model the distribution A(t) which follows gradient descent at each
iteration to minimize the loss A(t) 7→ L(A(t), B). Starting from the initial set at time t = 0, we
simply integrate the ODE

Ȧ(t) = −N∇AL(A(t))

with a Euler scheme and evaluate the evolution of A(t) at time t = 1, 5, 50.

4.1 ESTIMATION

PMB in 2D Similar to Fatras et al. (2019), we illustrate the OT matrix between two empirical
distributions of 10 samples each in 2D in Figure 3. Our 2D distributions have cluster structure and
the ordering of our samples is based on their cluster assignment. We see how the cluster structure
is maintained by the PMB sampling and the overall error rate is considerably lower, indicating that
with smaller batch sizes PMB is able to better model the optimal transport plan than with random
mini-batching.

ImageNet to ImageNet-C We seek to align the features extracted from the penultimate layer of a
Resnet-50, however in this instance we are unable to directly solve the optimal transport problem
and thus rely of the predictive performance of the aligned distributions to assess how effective our
method is at this task. In this setting, we observe the how well the optimal couplings at each batch
size correspond to examples from the correct label space. X,Y ∈ R50k,1024. Results are shown in
Table 2. We see that batches PMB approaches contain on between significantly more accurate label
matches than random mini-batches. These results are most pronounced in the small batch regime, as
when batch size is 10 our approach produce 30x more label matches.
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Batch Sizes
Algorithm 10 100 1000

Rand 25639.1 18636.8 17690.5
INT-PMB-OT 19076.4 17987.6 14654.8

JOINT-PMB-OT 19210.4 17969.4 14616.7

Table 1: Across all batch sizes we see that our approach provides better estimates of Wasserstein-2
distance on the Classic Images from the DOTMark dataset. As mini-batch approaches are an upper-
bound to Wasserstein distance, our 20-30% reduction and estimate represents a tighter approximation.
Subsequent experiments illustrate how the benefit of better estimates are carried downstream into
alignments.

Batch Sizes
Algorithm 10 50 200 500 1000 2000 5000

Source-Acc 0.68
Target-Acc 0.53
Rand-OT 0.006 0.02 0.06 0.11 0.16 0.22 0.32

INT-PMB-OT 0.18 0.29 0.40 0.48 0.54 0.60 0.69
JOINT-PMB-OT 0.21 0.31 0.40 0.47 0.52 0.59 0.66

Table 2: Pyramid Mini-Batching dramatically increases the number of validly classified couplings.
This table shows what percentage of assigned couplings between the penultimate layer of a pretrained
ResNet-50 on ImageNet-Val and its derived ImageNet-C-Glass-Blur contain the same ground truth
labels for various batch sizes. Couplings between non-matching labels could have negative impacts
on downstream tasks and while increasing batch size helps to mitigate this, it comes with extra
computational costs. Our PMB methods of batch size 10 achieve similar correct classification
percentages as random batches of size 2000. For batch sizes of 2000, a classifier based on our
coupling approaches from the penultimate layer would out perform a pretrained model.

4.2 ALIGNMENT

DOTMark Extending the results from the DOTMark estimation task on Classic Images of size 64,
we also learn alignments between the samples in this benchmark. Using a batch size of 100, we are
able to reduce the Wasserstein distance between two images by 88% using random mini-batches.
Int-PMB and Joint-PMB are both able to reduce the original Wasserstein distance by 99% or offer 10x
reduction in comparison with random mini-batches. These drastic improvements in one-dimensional
alignments are further exemplified when we examine high dimensional spaces.

High Dimensional Alignment Following the high-dimensional setting described in the previous sec-
tion, we evaluate the ability of the various approaches to minimize Wasserstein distance by computing
gradient flows over various time scales and reporting the residual Wasserstein distance between X
and Ŷ . We see that our approach drastically outperforms random mini-batching approaches on this
task. By examining the results at various timesteps, we gather a sense of how the approaches compare
on a first pass t = 1 as well as how the approaches compare near the limits of their performance at
t = 50. Gains in performance of our approach magnify as the model is allow to continue optimizing
with results representing a 5x improvement in performance visible in Table 3

5 RELATED WORK

We refer readers to Peyré et al. (2019) for a detailed overview of various approaches used for large-
scale optimal transport. Here we focus our discussion on closely related approaches and alternatives
commonly used for alignment. The first methods of interest are mini-batch estimates that compute
exact optimal transport distance over a small subset of the data distribution, as used in (Courty et al.,
2017; Bhushan Damodaran et al., 2018; Fatras et al., 2019; Sommerfeld et al., 2019). This approach
has the benefit of being computable quickly for small N samples and the accuracy is independent of
feature dimensionality. Additionally, not including the entire distributions in the matches can also be
viewed as a form of regularization.
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Figure 4: Pyramid Mini-Batching approaches allow us to substantially (> %70) improve the align-
ments found via gradient flows. As we align distributions by intergrating over the gradient flows,
we evaluate how well the aligned distribution has minimized Wasserstein distance at different steps,
t = 1, 5, 50. We see that across all batch sizes and all stages of optimization our approach sig-
nificantly reduces the residual Wasserstein distance and better aligns the two distributions. These
experiments are carried out over our synthetic dataset where each distribution has 1000 cluster centers,
100-dimensional features, and 10k data points.

- 10 Centers 100 Centers 1k Centers
Algorithm (t=50) n=10 n=100 n=1000 n=10 n=100 n=1000 n=10 n=100 n=1000

WD-2 79.29 74.07 70.81
Rand 35.81 21.62 16.24 50.36 34.60 20.875 53.64 48.24 31.86

INT-PMB 19.36 14.13 4.50 22.18 12.71 4.27 37.65 18.63 8.82
JOINT-PMB 15.96 10.58 2.79 18.54 9.16 3.57 32.86 15.29 4.98

Table 3: Across datasets with different numbers of modalities and various batch sizes, PMB ap-
proaches improve learned alignments between (2x-5x) when compared to a random mini-batch
baseline. By aligning distributions according based on gradient flows at t = 50, we can get a
better sense of the limitations an approach will be able to fully align discrete distributions. We see
that the number of modes present in a dataset has an impact on how well Wasserstein-2 distance
can be minimized and that PMB approaches significant increase the ability to minimize this OT
distances. PMB batches of size 10 perform on par with random batches of size 1000 across all of
these experiments on synthetic datasets.

However, this approach may suffer if batches are not large enough to sufficiently capture the diversity
of the distributions. While batch size can be increased to account for this, eventually time and space
limitations will hamper this approach.

Sinkhorn Distance (Cuturi, 2013) adds entropic regularization to the optimal transport distance,
resulting in a formula that can be solved much more efficiently. However, its algorithmic complexity
is still O(n2 log n), and it adds a hyperparameter for the entropic regularization term which must
be tuned for the problem at hand. The Kantorovich-Rubinstein duality of the optimal transport
problem states that the maximum of the set of 1-Lipschitz continuous functions separating the two
distributions is equivalent to the solution of the optimal transport problem. However searching the set
of all 1-Lipschitz continuous functions is also intractable. In practice, this is estimated by clipping or
normalizing the gradients of distribution discriminator (Arjovsky et al., 2017; Gulrajani et al., 2017).

Sliced Wasserstein distances (Bonneel et al., 2015) are also able to estimate Wasserstein distance
in linear time with regards to sample size, making it an interesting competitor to our approach.
This approach randomly projects multidimensional points down into 1-d spaces where Wasserstein
distance can be computed in linear time. With sufficient random projections, this is an unbiased
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Figure 5: This figure illustrates the marginal impact of the added computational time of constructing
mini-batches to the quality of the learned alignment. Using the same experimental setting as Figure
4, we show that the dramatic improvement in alignment quality caused by our approach add little
to the overall run-time. We measure the residual Wasserstein distance after t = 1, 5, 50 steps on a
synthetic dataset where each distribution has 1000 cluster centers, 100-dimensional features, and 10k
data points.

estimate of optimal transport distance. However, it does not leverage the natural distribution of points
in these high dimensional spaces, and may produce less accurate estimates of optimal transport cost
than our approach. As illustrated in our experiments, our approach is able to more reliably minimize
the Wasserstein metric.

The effectiveness of optimal transport in aligning distributions is shown in domain adapta-
tion (Bhushan Damodaran et al., 2018; Lee et al., 2019) and generative modeling (Arjovsky et al.,
2017; Gulrajani et al., 2017). We have empirically shown that our new approach can show comparable
or superior results with respect to the scalability of sample size and input dimension. DeepJDOT
(Bhushan Damodaran et al., 2018) and WGAN (Arjovsky et al., 2017) minimize mapping functions
over the Wassertein objective like the experiments in this paper. Both of these approaches produced
significant improvements over contemporary approaches, and we show how this approximation can
equal or improve upon results produced by these methods, with the potential to scale better to on
larger datasets/sample sizes.

As discussed above, a variety of multiresolution histogram intersection schemes have been proposed
(Indyk & Thaper, 2003; Grauman & Darrell, 2005; Lazebnik et al., 2006) which inspired our work.
While visualization and assessment of worst-case (per-bin) coupling schemes were reported in
Grauman & Darrell (2006), it was not used for improving the approximate distance, and was not used
in a differentiable scheme for the purpose of aligning distributions.

6 CONCLUSION

By providing a fast mechanism to sample geometrically consistent batches between two distributions,
Pyramid Mini-Batching presents a compelling approach to learn distributional alignments. Pyramid
Mini-Batching produces improved estimates of Wasserstein distances and drastically improves upon
the quality of alignments. While this approach is presented in an Optimal Transport context, this
approach has potential applications in a variety of alignment settings. We present one mechanism
for using locality-sensitive tree structures to build compatible mini-batches, but several alternative
approaches could be developed; we hope than the promising results presented here can inspire more
work on sample selection for alignment and optimal transport problems. Future directions include
incorporating the above mentioned approaches into generative modeling and domain adaptation
pipelines.
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