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ABSTRACT

Diffusion large language models (dLLMs) are promising alternatives to autore-
gressive large language models (AR-LLMs), as they potentially allow higher
inference throughput. Reinforcement learning (RL) is a crucial component for
dLLM:s to achieve comparable performance with AR-LLMs on important tasks,
such as reasoning. However, RL algorithms that are well-suited for dLLMs’ unique
characteristics have yet to be developed. This paper proposes Distribution Match-
ing Policy Optimization (DMPO), a principled and theoretically grounded RL
fine-tuning method specifically designed to enhance the reasoning capabilities of
dLLMs by matching the dLLM policy distribution to the optimal, reward-tilted
one through cross-entropy optimization. We identify a key challenge in the imple-
mentation with a small training batch size and propose several effective solutions
through a novel weight baseline subtraction technique. DMPO exhibits superior
performance on multiple reasoning benchmarks without supervised fine-tuning,
with an accuracy improvement of up to over previously SOTA baselines
and over the base model, underscoring the effectiveness of the distribution
matching framework.

1 INTRODUCTION

Autoregressive large language models (AR-LLMs) have demonstrated remarkable capabilities in
addressing sophisticated reasoning tasks, such as solving challenging math questions and completing
coding tasks (Jaech et al.| {2024} |Anthropic, |2025; |Guo et al.,|2025a; |[Novikov et al., 2025} |Kimi Team!
et al.}2025). While these models form their amazing capabilities from pretraining on massive text
corpora, the main powerhouse behind the success is scaling the post-training phase with reinforcement
learning (RL) techniques, such as Proximal Policy Optimization (PPO, Schulman et al.|(2017)) and
Group Relative Policy Optimization (GRPO, [Shao et al.| (2024)), which enhance model abilities
through exploration of reward functions and go beyond static datasets. While possessing extraordinary
competence, AR-LLMs are known to be expensive for inference due to their sequential, fixed left-to-
right generation order, which currently prohibits large-scale deployment.

With the aim of addressing such issues, diffusion large language models (dLLMs) have been inves-
tigated as an alternative to the AR models. Unlike their counterparts, dLLMs iteratively refine a
sequence from a masked state, allowing for any-order generation, and have shown promising perfor-
mance in text generation tasks. dLLMs, such as LLaDA (Nie et al., 2025b) and Dream (Ye et al.,
2025)), have demonstrated competitive performances on many tasks compared to similar-size AR
baselines. Recently, commercial models such as Mercury (Inception Labs et al.,|2025) and Gemini
Diffusion (DeepMind)) have demonstrated the capability to achieve a magnitude higher inference
throughput without sacrificing generation quality, suggesting dLLLM as a promising future direction
for language modeling. However, one question that remains largely unanswered is how to transfer
the success of RL on LLM to dLLM, thereby further scaling up the model’s skills.

Designing RL algorithms for dLLMs faces two major challenges. Due to the bidirectional nature of
dLLMs, estimating the log probability of the generated sequences is more expensive than for AR
models, making it less favorable to naively adapt LLM post-training algorithms like GRPO to dLLMs,
as they heavily rely on such estimation. The GRPO-style algorithms also do not leverage dLLM’s
unique characteristic of having a forward noising process, as they are backward-only algorithms
when using generated rollouts. Moreover, existing RL frameworks for enhancing LLM reasoning
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Figure 1: Performance on reasoning benchmarks evaluated with generation length 256. DMPO
consistently achieves the best performance across dLLMs, outperforming d1

capabilities overly focus on reward maximization (Guo et al., 2025a; [Liu et al.,[2025c; Zheng et al.,
2025a). By targeting only the reward mode, these approaches do not properly utilize dLLM’s potential
in generating more diverse responses than LLMs due to the random-order nature (Gong et al., 2025).

To jointly address these challenges, we propose Distribution Matching Policy Optimization
(DMPO), a principled and efficient RL fine-tuning method specifically designed for dLLMs. DMPO
is designed based on a novel framework theoretically grounded in stochastic optimal control (SOC),
which shifts away from the conventional reward maximization paradigm and targets a new goal
of matching the entire reward-tilted policy distribution. This enables the model to explore diverse,
high-quality reasoning paths and responses during training, addressing concerns about over-focusing
on absolute reward values and modes. Moreover, DMPO training leverages importance sampling and
a novel weighted denoising cross-entropy (WDCE) loss, which enjoys the key advantage of operating
in an off-policy manner, allowing the use of replay buffers for improved sample efficiency. More
importantly, WDCE is a forward-only objective that relies solely on the obtained clean samples and
the inexpensive, forward-noising process unique to diffusion LLMs. DMPO largely discards the
dependence on rollout trajectories, enabling it to potentially enjoy more speed-up than other dLLM
RL algorithms when employed with fast inference techniques.

Contributions. The core contributions of this paper are summarized as follows: (I) We propose
a novel RL learning framework for dLL.Ms that targets distribution matching rather than reward
maximization (Sec. 3.1). (II) We propose Distribution Matching Policy Optimization (DMPO), a
principled, theoretically-grounded fine-tuning strategy for enhancing dLLM’s reasoning capabilities,
supported by importance sampling and weighted denoising cross-entropy (Sec. 3.2). (III) We identify
a special challenge that occurred for WDCE due to the use of a limited training batch size, and
propose two novel techniques to address it: weight baseline subtraction (Sec. 3.3) and weighted
direct discriminative optimization (Sec. 3.4). (IV) DMPO exhibits superior performances on multiple
reasoning benchmarks without supervised fine-tuning (SFT), with an accuracy improvement up to

over previously SOTA baselines and over the base model, being top-performing across

bi-directional dLLMs (Sec. 4).

2 PRELIMINARIES

2.1 MASKED DIFFUSION MODELS FOR LANGUAGE MODELING

The masked (discrete) diffusion models (MDM) (Lou et al., 2024; |Ou et al., 2025} |Sahoo et al.}
2024;[Shi et al., 2024} Zheng et al.,[20251) is a novel method for learning high-dimensional categorical
distributions with application to text (Nie et al., 2025b), images (Chang et al., 2022; Bai et al.| [2025),
DNAs (Hayes et al.,[2025), etc. Essentially, it learns the one-dimensional conditional distributions
of the data given any subset of observed dimensions. Suppose the data are finite-length sequences
with vocabulary V = {1, 2, ..., V'}. Include the mask token M into the V and let V = {1, 2, ..., V, M}.

The MDM takes a partially masked sequence € = (x1,...,2p) € VD as an input, and outputs
my(x) € RP*V whose (d, u)-th entry 7wy ()., is set to 1,,—,, if 74 # M, and if 24 = M, is trained
to approximate the conditional probability

« Pr (X4=u|Xuym =xum), where xym = (z4:xq # M).
~Pdata

By definition, we assume each row of my(x) is a valid probability vector. The probability of a
unmasked sequence € VP under the MDM 7ty is defined through random-order autoregressive
(AR) generation: choosing a uniformly random order of the D positions, and autoregressively
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sampling each position conditional on the previously sampled ones. Formally,
D
po(x) = Eg po(x;0), where o ~ Unif(Sp) and py(x;0) = H 7o (Toy|To_,)- )
d=1

Here, Sp is the set of all permutations of {1, ..., D}; w(2+,|To_,) means input & with all positions
except o<q = {01, ...,04—1} masked into the MDM and take the output at position (o4, o, ).

The standard way to train a masked discrete diffusion model given i.i.d. samples from pqag, 1S to
minimize the denoising cross-entropy (DCE) loss E,, . (z) Lo(x), which involves the following
definition of the (negative) evidence lower bound (ELBO) L:

—logpg(x) = —logEy py(x;0) < —Eq log po(x; o) (Jensen’s inequality)

|| ~
= Em~unif{1,...|2|} {m E,.. Gz Z —logmg(Z)az, | = Lo(z), (2)
d:Ed=M

where the transition distribution g, (-|) means to sample a uniformly random subset of {1, ..., |z|}
of size m and mask the corresponding entries in @, and |x| is the length of &. The proof of the last
equation can be found in|Uria et al.[|(2016);|Ou et al.[ (2025).

When applying to text data, the MDM is also referred to as the diffusion large language model
(dLLM) (Nie et al.,2025b; |Ye et al., [2025}; Inception Labs et al., 2025 |Song et al., 2025). For the
purpose of reasoning, we typically write = (g, 0), where q is the prompt (or query, which is always
assumed to contain no mask state) and o is the response (or output). We use 75 (o|q) € RV
to denote the policy model output of the dLLM given a prompt g and a partially masked response
o. The conditional sequence probability of a clean model o given a prompt g, denoted as py(0|q),
is similarly defined through where we now use notations py(o|q; o) and 7y(0,,|q, 05_,) to
emphasize the dependence on the prompt g. The negative ELBO will be written as Ly(o|q).

2.2 REINFORCEMENT LEARNING FOR ENHANCING REASONING

We first present the Group Relative Policy Optimization (GRPO, Shao et al.|(2024)) method for
LLMs, which is the basis of most of the existing RL. methods for dLLMs. Given a pretrained LLM

with policy 7o that samples from the distribution p.cf(0|g) = H‘dcil Tret(04d]|q, 0<4), @ reward
function r : (g, 0) — R, a set of prompts D, and a regularization parameter o > 0, each step of the

GRPO aims to solve the following problem: sample g ~ D, o(1:) - Do.,4 (0lq), and maximize

G
1 1
E<— -
{G;ow

where the advantage are A; = r(gq,0) — mean(r(g, 0(1:¥))), the per-token probability ratios
(@) _  mo(0g,00))

are sz — 7"“ (‘Z?‘q’;g)i),

probability ratios between my and 7. The clipping threshold € prevents overly large policy updates.

o]

(]

[Inin (p((;)Al-,clip(p((;))lieAi) — aKL(pg(o(i)|q)||pmf(o(i)|q))] }, 3)
d=1

and the KL regularization term is estimated similarly by the per-token
o

While [(3)] works well for LLMs, it is not directly applicable to dLLMs due to mismatch between
the dLLM policy (model output) my(o|q) and the sequence likelihood pg(o|q): unlike in LLMs
where these two quantities are easily connected through the chain rule, it is generally non-trivial to
compute the per-token probability given the dLLM model output, and only ELBO[(2)|is available
as a surrogate. To tackle this issue, diffu-GRPO (Zhao et al.| [2025a) proposed to

and partially masks the prompt g, and feed this sequence into the model to obtain
the approximate probability ps(04|q). Next, the sequence probability pg(o|q) is approximated by
mean-field decomposition: py(o|g) ~ H110:|1 po(04]q). Such approximations do not capture the
correlation between different positions in the response, which produces imprecision. A similar
technique is employed in coupled-GRPO (cGRPO) for code generation tasks in|Gong et al.| (2025)).

'As suggested by |Liu et al.| (2025c), we list here the version without normalization by standard deviation.
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3 DISTRIBUTION MATCHING POLICY OPTIMIZATION

3.1 FROM REWARD MAXIMIZATION TO DISTRIBUTION MATCHING

To incentivize the reasoning capabilities of large language models,
reward-maximizing reinforcement learning finetuning algorithms,
such as TRPO (Schulman et al.| 2015), PPO (Schulman et al., [2017),
and GRPO (Shao et al., 2024), are often employed, with an addi-
tional entropy regularization term that penalizes the deviation of the
model from the pretrained one. This process amounts to solving the
following optimization problem, 00

X Eq o [Ey, (ol (@ 0)] — 0 KLpo 1) [per (1a))] - 4

Density

However, existing techniques over-focus on finding and optimizing Figure 2: Illustration of rela-
the reward mode and adopt many heuristic techniques to accelerate tive entropy (mode-seeking)
the mode searching process, neglecting the exploration of the entire and  cross-entropy — (mass-
distribution landscape, and often result in model mode collapse or covering) for fitting a target
reward hacking, causing the model to produce undesirable responses P« (G is the set of Gaussian
(Weng}, 2024). A simple fix to this issue and to encourage diverse ~distributions).

model responses is to enforce the optimality of the target policy

distribution during the training. It can be shown that the optimal sequence distribution that solves the
problem[(4)]is the following reward-tilted distribution:

1

p.(0|q) = %Pref(dq)er(q’o)/a, where Z(q) = Zpref(0|q)e7'(q’°)/"‘. (5)

That is to say, we want to use the optimal sequential distribution p,(o|q) as the supervision signal
throughout the learning process, so that we can learn a dLLM policy 7y which produces a sequence
distribution py matching p.. We can thus obtain a policy that not only explores the dominant reward
mode, but is guaranteed to sample other high-reward trajectories with a likelihood proportional to the
reward value. This motivates us to consider the following task of policy distribution matching,

Policy Distribution Matching Learning: Given a pretrained dLLM policy 7.t (0|q) that samples
from a distribution p,.f(0|q), a reward function r : (q,0) — R, a set of prompts D, and
temperature « > 0, learn a dLLM policy my(0|q) to produce the desired optimal sequence
distribution p. (0|q) in[(5)|by optimizing the following objective:

minBq~p F(po(-a), p-(-a))- ©)

Here, 7 is a class of functionals such that argmin,, 7 (p, p«) = p«. Note that the original entropy-
regularized entropy optimization problem is equivalent to choosing F to be the reverse KL between
pand ps, i.e., F(pg, p«) = KL(pp|lp.) = Ey, [log £2]. While this objective in theory can also lead
to the same optimal distribution with the desired property, it is widely known that reverse KL is
mode-seeking, i.e., it tends to match the most dominant mode in p, while potentially neglecting other
modes, which may lead to reward hacking.

To address this issue, we consider a series of new objectives F with more desirable convergence
guarantees that steadily lead to optimization towards the desired sequence distribution, and propose
Distribution Matching Policy Optimization (DMPO) (Alg. IJ), which targets matching the entire
reward-tilted policy distribution. In we introduce weighted denoising cross-entropy
(WDCE), a scalable implementation of the forward KL using importance sampling. In
and [3.4] we discuss an important failure case of forward KL with small training batch size, and
propose a series of novel techniques such as weight baseline subtraction and weighted
direct discriminative optimization to address it.

3.2 WEIGHTED DENOISING CROSS-ENTROPY

Unlike the reverse KL objective considered by many existing works, which are known to be prone
to mode seeking and collapse, one alternative choice is to use the forward KL divergence (or cross-
entropy, CE) for the functional, i.e., F(pg, p.) = KL(p«||pg), which tends to cover all the modes
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Algorithm 1 Distribution Matching Policy Optimization (DMPO)

Require: Training dataset D, number of prompts per batch B, number of rollouts per prompt IV,
frequency for sampling buffer F', model policy 7rg.

1: for step =0,1,2,... do

2 if step mod F' = 0 then > Prepare the buffer using the current policy, denoted .
3: Sample B prompts {q()}1<;<p from the dataset D.

4: for 1 < ¢ < B (in parallel, with gradient computation disabled) do

5 Sample IV orders and generate /N rollouts {0(17") }1<n<n conditional on prompt q'".
6 Evaluate reward and compute weights w(o(™ |q(); o(#)) according to[(10)}

7 Compute the weight baseline according to [(13)} [(14)} or[(15)} and obtain the real

weights wreal(o(i’") \q(i); a(i’")) according to (12)I

8: For each 0(»™), sample a mask assignment and obtain o(»™).
9: Feed all pairs of (¢, 6*™)) into 74 and compute the WDCE loss|(11)| then update 6.
return 7y

of the optimal distribution and can retain the response diversity. The CE loss is also widely used in
another domain known as stochastic optimal control (SOC) (Domingo-Enrich et al., [2024;2025)),
which is also closely connected with our work. This amounts to solving the following task,

P (0|Q)}
po(olq) |’
However, objective is not directly amenable to practical implementation, as we do not have
access to real samples from the p,, nor can we exactly compute log p, due to the presence of the
unknown partition function Z(q). To bypass this issue, we draw inspiration from the recent work
masked diffusion neural sampler (MDNS, |Zhu et al.|(2025g)), which proposes a training framework
for learning a masked diffusion neural sampler with stochastic optimal control and cross-entropy
minimization. While targeting a different task, the core of MDNS resides in solving the same
distribution matching problem with cross-entropy loss, and it proposes a practically implementable
and scalable variant of named weighted denoising cross-entropy (WDCE) loss. The central
idea is to introduce a reference policy and leverage importance sampling, so that we can treat i.i.d.
samples as importance-weighted samples from p,.. Taking advantage of this approach, we now derive
WDCE for the purpose of dLLM policy learning.

minEqp By, (o]q) [log N

First, given the relationship between the policy output and sequence distribution of the masked dLLM
it is clear that we can match the correct target sequence distribution p,(0|q) as long as we train
po(0|q; o) to match the order-specific ones, i.e., p.(0|g; o), given by

1
p«(olg; o) = mpref(OIq; o)er(@e)/e, 8)

Leveraging this fact, given any prompt g, we can express the cross-entropy loss as follows:

KL(p«(-1q)lpa(-|@)) = Ep, (0)q)[— log po(0|q)] + const
= II'30' IE10,‘(0|q;0') [_ Inge(O|‘I)] + const

p«(olg; o)
=E;E, o) ——————
o Lp, (olg;o) po(olg; o)

where p, is the sequence probability under a reference policy model v that does not involve gradient
computation, and in practice, one often chooses v < 6 := stopgrad(#) to be a copy of the policy
model detached from the computation graph, and periodically synchronizes with the current model

policy pg, which is also commonly referred to as pg_, in the literature. The importance weight

widaie) = B

correctness of the objective, and log pp(0|q) is an intractable sequence log probability under the
current dLLM policy. We discuss the computation of these two components in parallel below.

[—log pe(0|q)] + const, )

old
captures the mismatch between p, and p, and ensures the mathematical

Importance weight w(o|g; o). We simplify it with the pretrained model and the reward:

1 re ; r(a,0 , re 5 .
Prei(0lg a)e @ o exp (r(q °) + lo pif(dq a)) =: ¢fleleio) (10
Z(q) pv(olg;o) o pu(0lg; o)

w(olg; o) =
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Recall that the order-specific probability of a sequence is computed via[(T)] To ensure that the sample
distribution after importance sampling is valid and normalized, we keep track of the log weights
¢(o|q; o), and taking softmax among those corresponding to the same prompt g to compute the real
weight w(o|q; o). This is equivalent to estimating the unknown partition function Z(q) using an
empirical estimator of the following expectation:

pref(o‘q;o-) ( )
Z2(q) =Es E, (olg:c Do\ = er(@0) /e ,
(q) pv(0|g;o) po(o|q; o)

The need to estimate partition functions is common in RL algorithms for LLM, such as in GflowNet
(Bengio et al., |2021; |Kimi Team et al., 2025)). In contrast to these approaches that learn such functions
independently, our estimation approach is training-free and more efficient.

Sequence log probability log p, (0|q). Unlike the case of LLM, the exact sequence log probability
is intractable due to the presence of expectation over the random order o. However, similar to
the training of dLLM, we can leverage the negative ELBO[(2)|as a surrogate. Combined with the
importance weight w(o|g; o), we introduce the weighted denoising cross-entropy (WDCE) loss
for dLLM policy distribution matching:

min EE E w(o|q; o E — E —logmy(0 o . (1)
i e & Lulolg >memf{1mo}[m#m(ao)d:Z g mo(@lahans| b (

0q4=M

Notably, this loss highly resembles the DCE loss used in pre-training and the supervised fine-tuning
(SFT) phase of dLLM. One major difference is that instead of using i.i.d. samples from p., we
use importance sampling to weight samples from p, and obtain a valid training objective with
theoretical guarantees. WDCE differs significantly from other popular RL training techniques such
as PPO/GRPO in two key aspects.

WDCE is an off-policy loss. The WDCE loss remains valid as the model parameter 6 gets updated,
since both the sampling policy p,, and the important sampling target policy p, are independent of the
current model policy py. This allows us to save generated rollouts in a replay buffer and reuse them
for multiple training updates, without worrying excessively about numerical instability, leading to
improved sample efficiency. On the other hand, for on-policy methods, to use a replay buffer, one
would need to estimate importance weights with respect to the current model policy py(o|g; o), i.e.,

%. Different from the case of LLM, where such estimation can be done in one model forward

pass, an accurate estimation in dLLM per training update is expensive, rendering the on-policy
method less efficient. Moreover, for large models, where rollout generation and sequence likelihood
estimation are typically handled by different implementations (such as vVLLM and FSDP), this could
lead to more nuanced, hard-to-detect biases that secretly undermine the algorithm’s performance
(Yao et al.} 2025)). With WDCE, we are largely free of such concerns.

WDCE is a forward loss. Unlike the GRPO-style of algorithms that typically require keeping track
of the entire rollout trajectories, WDCE leverages the forward noising process in training, which is
a characteristic unique to diffusion LLMs. Once we obtain the final samples and their associated
weights, we can discard the trajectories and perform training using the cheap forward process by
randomly masking the data. This implies that the training speed when using WDCE largely depends
on the model inference speed. With the advances of dLLM efficient inference techniques such as
fast decoding algorithms and KV-cache techniques (Ma et al., [2025} |Hu et al., [2025 [Wu et al., [2025
Liu et al.| 2025b)), WDCE could also enjoy a great boost in efficiency. This method also effectively
utilizes dLLM’s potential in surpassing LLMs in inference throughput, distinguishing it from other
RL baselines that merely adapt LLM algorithms to dLLM. We defer a more detailed discussion of

such properties to

@
[App. B.1}

&)
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Figure 3: Demonstration of the effect of weight baseline. The and blue curves represent the
probability pg(o|q) and after update, and the magenta arrows represent the weights. (a) When

batch size is large, distribution mode coverage is good. Though bad responses have positive weights,
the correct ones will have larger weights to force the distribution updates towards the right direction.
(b) When batch size is small, some modes (e.g., the good one in the middle) may not be sampled.
Without weight baseline subtraction, the dominant positive weights of the bad responses lead to
wrong update directions. (c) With weight baseline subtraction, the bad responses will appropriately
be penalized, leading to the desired update direction.

3.3 EFFECTIVE TRAINING WITH NEGATIVE GRADIENT INSERTION

While theoretically, minimizing the WDCE loss [(TT)] probably leads to convergence of the model
sequence distribution to p.(0|q), this could face practicality issues in real implementation due to
the often limited number of rollouts generated per prompt. Ideally, we would want to promote the
likelihood of “good” responses while decreasing those of “bad” responses. However, with WDCE,
any response o will be associated with a positive weight w(o|q; o) due to the softmax operation,
which may lead to ineffective learning in the low-batch-size scenario.

We note that this issue does not arise when the batch size is sufficiently large for the following reason.
When having a large batch of diverse responses that make up a good coverage of the sample space,
despite having all positive weights, since the model cannot increase likelihood on all responses (as
it is a probability distribution that sums up to 1), the “bad” responses will be automatically and
implicitly penalized due to not having larger weights than the “good” responses.

When the batch size is small, the scenario is different as is illustrated in [Fig. 3] In such a case,
the model will tend to promote both ‘“good” and ‘“bad’ responses due to the positive weights,
and potentially penalize the likelihood of other unseen responses to maintain a valid probability
distribution. This could be detrimental to achieving distribution matching, as these unseen responses
may have high reward values and correspond to an undiscovered distribution mode.

To address this issue, we inject negative gradient (Ren & Sutherland, 2025} [Deng et al.| 2025) by
designing a weight baseline and subtract it from the obtained weights to facilitate an effective
reinforcement on the good samples, i.e.,

wreal(o‘q;g) = w(o|q;0') - wbase(O|Q;U)~ (12)
This approach resembles that adopted by PPO/GRPO. However, distinct from these methods, we rate
responses based on the log weights ¢(o|g; o), whose larger values indicate a better alignment with
the target optimal distribution. As a consequence, we promote responses that are more likely to be
sampled from p, and penalize those that are less likely. Based on this perspective, we consider the
following three methods for choosing wpase(0|q; o).

Group weight baseline. When the dLLM policy is close to optimal, the original log weight
¢(o|g; o) should behave approximately like constants for a group of different responses
{O(n)}1§n§N, leading to nearly uniform weight value for {w(o(")|q; O'(n))}lgngjv after group
softmax. We can thus choose the baseline as 1 to encourage convergence to this optimal situation:

Whase (0™ |g; ™) = 1, Vn. (13)
Individual weight baseline. We can also consider the individual weight value of each response.

For samples with smaller log weights, a stronger penalization is more desirable. A natural, adaptive
way of designing penalization strength is to use softmax over the log weights with negative reward:

let {_(o|g; o) := — 22t log %, and define
| Nexp(?_ (0™ |g: o™
wbase(o(n) |q; o_(n)) _ GXp( (O |q7 o )) n. (14)

- Y exp(l_(0®[g; o))’
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Table 1: Model performances on reasoning benchmarks. best and second best results are high-
lighted. DMPO consistently outperforms other baselines across different generation length.

Task GSMSK MATHS00 Countdown Sudoku
Sequence Length 128 256 512 128 256 512 128 256 512 128 256 512
Dream-Instruct (7B) 56.63 73.39 76.65 31.00 36.60 36.40 22.66 28.52 27.34 1445 1641 11.77
LLaDA-Instruct (8B) 71.87 79.76  83.62 2820 35.00 3880 2344 1445 1484 1294 6.10 7.37
LLaDA-1.5 (8B) 73.09 80.97 84.38 26.80 33.80 40.00 26.17 16.41 23.83 15.19 13.04 8.98

d1-LLaDA 75.28 81.40 84.38 30.00 36.60 40.80 34.38 26.56 30.47 21.97 11.04  8.69

67.40 81.73 84.23 2140 32.80 3840 30.08 42,58 37.11 2417 24.17  21.97
DMPO-LLaDA (Ours) 74.83 8241 85.22 30.00 3820 4280 67.19 80.86 8281 3276 2456 19.97

80.06 84.00 84.09 31.80 40.00 4120 54.69 67.19 77.34 2520 25.73 23.78

77.56  82.71 84.61 30.20 36.60 41.00 59.77 79.30 83.20 25.34 24.51 23.34

Note that this whase(0]g; ) now corresponds to a bad target distribution given by p._(0|q) o
Pret(0|q)e"(4°)/® which is tilted by the negative reward. The minus sign in the loss before
Whase (0]@; ) means we want to drive the dLLM policy away from this bad distribution.

Model weight baseline. Finally, we can determine whether to promote or penalize specific re-
sponses by comparing w(o|g; o) with the importance weight under the current model policy pg(0|q).
This pushes the model further towards the optimal one p.(0|q). Note that this does not incur ad-
ditional computation overhead as we can estimate log pz(o|q) using negative ELBO which is
pg(olg;o)

pelolao)’ and define

already computed in the WDCE loss. Let ¢y(0|q; o) := log

N exp(lp(0t™|g; ™))
Mg:- g™) = ’
wbase(o |q,o‘ ) - Ek eXp(Kg(o(k)|q;a'(k)))’ vn. (15)

We remark that the group weight and model weight baselines [(13)]and [(I5)]can also be interpreted as
an approximate variance reduction. See for discussion.

3.4 WEIGHTED DIRECT DISCRIMINATIVE OPTIMIZATION

To explore the full potential of the distribution matching framework in[(6)} we also investigate other
choices for the potential F other than the cross-entropy. One particularly interesting objective is the
following direct discriminative optimization (DDO) loss,

FoaC1a):p-(10) = = By oy 05 (10 242D ) B, g towor (106 20290 ) 16

where o (t) = 1/(1 + e~*). The global optimum of is also p.(+|q), thus being a valid functional
for distribution matching learning. For a more detailed justification, see

This is inspired by Zheng et al.|(2025¢), which proposes a GAN-like (Goodfellow et al.||2014) training
loss for the SFT of vision models. One interesting trait of this objective is its natural incorporation of
negative gradients for bad samples due to the GAN nature, as is shown in the analysis therein:

VoFolla) (o) = 00 (<105 249D (1u(ola)  p.(0la)) Vo os ofola).

o
From the expression, as the first term is always non-negative, and the middle term py(o|q) — p«(0|q)
applies a penalty for bad response o, thus providing a gradient direction for increasing py(0|q).
Leveraging this property, we adapt it for RL finetuning of dLLM and introduce the weighted direct
discriminative optimization (WDDO) loss, again through importance sampling to represent p. (0|q),

: 1q) = — wiola: o ozo (1oe 2D L 1owo (100 P20l
Fioatla)p- () =B B |uwlolaio)logo (1og 2400 ) 4 oo (~10g 2421 )

where w(o|q; o) is the importance weight defined in
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Figure 4: Reward dynamics during training. DMPO consistently produces higher rewards than d1.
4 EXPERIMENTS

Model and baselines. We apply DMPO to LLaDA-8B-Instruct (Nie et al.,|2025b)), a state-of-the-art
open-sourced, native masked dLLM that has not been post-trained with RL techniques. To clearly
demonstrate the potential of DMPO, we follow an R1-Zero-like training recipe (Guo et al.,[2025a;
Liu et al.}2025¢) and directly apply DMPO to the LLaDA model without first performing SFT on
curated datasets. We refer to the model obtained via this pipeline as DMPO-LLaDA. We benchmark
our method against a series of top-performing dLLM base models of comparable model size, such as
Dream-Instruct (7B, Ye et al.[(2025)), LLaDA-Instruct (8B, Nie et al.|(2025b)), and LLaDA-1.5 (8B,
Zhu et al.| (2025a)). Our main RL baseline is d1 (Zhao et al.| 2025a)), a state-of-the-art RL finetuning
approach developed for dLLMs that combines both SFT and diffu-GRPO (an adapted version of

GRPO).
In the main result table (Tab. T),

UK 2]
BEY

Experimental setups. We perform experiments on 4 different reasoning benchmarks: GSM8k
(Cobbe et al.L|2021), MATHS00 (Lightman et al., 2023} Hendrycks et al., 2021}, Sudoku (Arell, 2025),
and Countdown (Pan et al.,[2025)). For all pretrained dLLM models, we evaluate the latest available
checkpoints for each task. For d1 and cGRPO, we reproduce their results exactly following the
provided guidelines. To ensure a fair comparison, we train DMPO-LLaDA on the same datasets
as d1 for each task with rollouts generated using a fixed sequence length of 256. All evaluations
are conducted with zero-shot prompting using three different generation lengths: 128, 256, and 512,
following a similar practice as in[Zhao et al.| (2025a)). See[App. C|for more details of experiments.

DMPO incentivizes superior reasoning capabilities. We report in the performance of

DMPO together with that of the base model LLaDA-Instruct (8B), , the models
obtained by d1 post-training strategies, and other pretrained dLLM models. DMPO
consistently outperforms both the LLaDA-Instruct baseline and the d1 models, achieving

the best performance among the listed state-of-the-art dLLMs. Notably, DMPO achieves excellent
gains over the LLaDA-Instruct baseline, with an accuracy improvement of an average of +2.40% on

GSMSK, +3.00% on MATH500, on Countdown, +16.96% on Sudoku. DMPO also
demonstrates superior performance over d1, the current SOTA RL baseline for dLLM, especially
on planning tasks, with an increase of on Countdown and on Sudoku. This

underscores the overall effectiveness of DMPO for enhancing model reasoning capabilities.

DMPO consistently achieves higher rewards. In we present the reward dynamics of
DMPO across training steps and compare with that of d1. DMPO consistently achieves higher reward
values after an initial warm-up phase and ultimately discovers responses with higher rewards than d1,
possibly because it continuously explores the reward distribution landscape throughout training. In
the first 1, 000 steps, DMPO often produces lower reward values than d1, potentially due to the lack
of an SFT phase before RL scaling. Moreover, we observe that the performance of DMPO does not
saturate after 4, 000 gradient steps, suggesting its greater potential than GRPO-type algorithms.

Weight baseline subtraction is crucial for small batch size training. We test the different choices
presented for negative gradient insertion in and [3.4) when training on the Sudoku dataset
with a small batch size, and the result is visualized in As shown by the curves, without weight
baseline subtraction, the model does not improve as training progresses. All the proposed weight
baselines in[(13)} [(T4)] and [(T5)]effectively increase the reward value during training. Weighted DDO
achieves the fastest reward increase during the initial 1k steps but suffers from instability afterwards.
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Figure 5: Effects of negative gra- Figure 6: Comparison of training dynamics on Countdown. F'is
dient insertion on Sudoku. the frequency of sampling the buffer.

by performing SFT of LLaDA-Instruct (8B) on slk (Muennighoff et al] [2023), a dataset of 1k
examples of high-quality reasoning questions with distilled reasoning traces from Gemini Thinking.
LLaDA-1.5 is obtained by performing DPO on 350K preference pairs covering a wide range of topics
such as writing and reasoning. We then apply DMPO to these base models to obtain DMPO-LLaDA-
SFT and DMPO-LLaDA-1.5, with performance reported in DMPO continues to deliver
performance gains for post-trained models, with consistent and significant accuracy improvements
over base models, especially at generation lengths of 128 and 256 for the math reasoning datasets,
with +4.78% and +2.60% on GSM8K, +1.80% and +3.40% on MATH500 compared with d1.
This underscores that DMPO is a powerful method that integrates smoothly with existing solutions.

DMPO enables efficient and fast training. Due to its off-policy and forward nature, DMPO
achieves considerable training acceleration compared with GRPO-type methods. In[Fig. 6] we com-
pare head-to-head the training dynamics of diffu-GRPO, DMPO with random-order autoregressive
(ROAR) sampler, and DMPO with Fast-dLLM (an approximate KV-cache mechanism enabled,
confidence-based heuristic sampler for dLLMs, from (2023)) on Countdown under the
same amount of training compute (measured in PF-days, where 1 PF-day = 8.64 x 10? floating
point operations). Due to its off-policy nature, DMPO enables heavy reuse of each sampled buffer of
rollouts and achieves a sample efficiency 2 ~ 3 X that of diffu-GRPO. Regarding training-compute
efficiency, as a forward-loss-based algorithm, DMPO enjoys a flexible choice of rollout sampler.
With fast-dLLM, DMPO gains an acceleration of up to 8 X per rollout sampling, and achieves the
same level of reward as d1 with only 31% of the training budget (1.8 PF-days v.s. 5.78 PF-days).
This empirical evidence emphasizes that DMPO is not only an effective algorithm but also highly
sample- and compute-efficient.

DMPO exhibits stable training despite highly stale data. As is evident from[Figs. 4and [} DMPO
enjoys a largely stable dynamics despite using up to 24x stale data (which means 24 parameter
updates on the same batch of rollouts), without suffering from high variance of importance sampling.
While this seems to contradict the general belief that on-policy learning beats off-policy learning for
LLM RL, we argue that this is not the case because the off-policy in DMPO is inherently different
from that used in diffu-GRPO or GRPO. Note that the latter considers the importance weight of the
form 7%, which inevitably diverges as the number of parameter updates on 6 increases. However,

Told
DMPO uses importance weight of the form pp e which is independent of the current policy model
7o and remains stable over a long horizon of training, enabling the use of a low buffer sampling
frequency and highly stale rollouts without sacrificing performances. Moreover, DMPO adopts
sequence-level importance sampling, in contrast to the foken-level importance sampling used in
diffu-GRPO or cGRPO, thereby providing an additional layer of stability. This advantage is also
discussed in depth in Group Sequence Policy Optimization (GSPO, [Zheng et al] (20254)), which

similarly considers sequence-level importance sampling.

Additional experimental results and discussion can be found in[App. C.3
5 CONCLUSION

This paper proposed Distribution Matching Policy Optimization (DMPO), a novel RL fine-tuning
framework for dLLMs. DMPO leverages the unique characteristics of dLLMs via importance
sampling and a WDCE loss, enabling off-policy training and forward-only computation that naturally
exploit dLLM inference capabilities. The main limitation of this work is that we focus on a single
pretrained dLLM and four elementary reasoning benchmarks, and DMPO’s performance on other
pretrained dLLMs and tasks in different domains remains unknown. Our work opens several
promising directions for future research, such as investigating the distribution matching framework
for other sequence models and studying the design of more effective weight baseline techniques.
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A RELATED WORK

Here, we focus on the literature for discrete diffusion models, as well as the methods for fine-tuning
MDMs, dLLMs, and LLMs. We also briefly review several GRPO-style algorithms for domains
outside of LLMs.

Discrete Diffusion Models.  Diffusion models have been top-performing approaches for generating
various data modalities (Zhu et al.| 2025f; [Esser et al., [2024; Zhu et al.| 2025b; [Rojas et al.,|2025bj
Zheng et al.| 2025¢e; (Chen et al.| [2025a; |Ren et al.,|2025c). Discrete diffusion models (Austin et al.,
2021} |Campbell et al., 2022; Lou et al.} 2024; Zhang et al.,[2025b), a natural extension of diffusion
models to finite state spaces, have emerged as powerful approaches for generating categorical,
sequence data, with applications to text (Nie et al.,[2025ajb; [Ye et al., [2025)), images (Chang et al.}
2022; Bai et al., [2025; [Shi et al., [2025), and biological sequences (Tang et al., [2025a}; |Chen et al.,
2025b). One of the most effective variants of discrete diffusion models is masked diffusion models
(MDM) (Sahoo et al., 2024} |Ou et al., 2025 Shi et al., [2024)) and its variants (Arriola et al., [2025;
Sahoo et al., [2025; |Chao et al., 2025)). Recently, continuous latents have also been introduced into the
modeling of discrete data (Zhang et al.,2025a;|Zhou et al., 2025 Zheng et al., |2025c), resulting in
improved and more appealing performance.

One particularly important line of development for discrete diffusion models centers on their inference
techniques, with the aim of improving generation quality (Nisonoff et al.l 2025} Rojas et al., |2025a};
Kim et al.l 2025} Besnier et al.,|2025) and accelerating sampling speed (Ren et al., 2025b; |Ben-Hamu
et al.l[2025;|Wu et al.|[2025 [Hong et al.,[2025). Besides these training-free approaches, learning-based
approaches, such as few-step distillation, have also achieved decent success for discrete diffusion
models (Deschenaux & Gulcehre, |2025} [Karimi Monsefi et al., 2025} [Zheng et al., 2025bj Zhu et al.,
2025dke). DMPO is closely tied to the literature on fast inference, as it can benefit from it by enjoying
a similar training speed acceleration due to its forward nature.

Fine-tuning general discrete diffusion models. Earlier works on fine-tuning discrete diffusion
models primarily focus on applications in biological and chemical domains, e.g., SVDD (?), DDPP
(Rector-Brooks et al.l [2025), DRAKES (Wang et al., |2025a), SEPO (Zekri & Boullél 2025)), and
TR2-D2 (Tang et al., 2025b)). Although these methods work well for their respective tasks, they are
not directly applicable to dLLMs due to the unique challenges posed by the language domain, such
as large model size, high dimensionality, and the need to maintain linguistic coherence and diversity.

Fine-tuning diffusion LLMs. Recently, numerous works have proposed RL algorithms for fine-
tuning dLLMs, with most existing works being adaptations of the GRPO algorithm (Shao et al.,
2024) for AR LLMs. For example, [Zhao et al.| (2025a)) proposed Diffu-GRPO that estimates the
per-token response log probabilities via masking all except the required response positions, and
partially masking the prompt to get the model output, while their sequence log probability is estimated
by mean-field approximation. |Gong et al.| (2025) introduced Coupled GRPO that modified the Diffu-
GRPO method by not partially masking the prompt, and using complementary pairs of masks to
mask the same response that fully uses the model output, which we also adopt in our experiments.
Yang et al.|(2025) proposed UniGRPO, which involves a structured noise strategy and a modified
log-likelihood approximation (both per-token and sequence).

Concurrent with our work, TraceRL (Wang et al.}
2025b) improves dLLM RL training by minimizing a training-inference gap. wd1l (Tang et al.,2025c)
introduces additional regularization to the old policy, alongside the regularization applied to the
reference model policy, which resembles the case discussed in[App. B.2] We highlight that all these
methods are GRPO-style algorithms that require estimating per-token response log probabilities,
which are typically intractable and challenging for dLLMs. In contrast, our method offers the
advantage of being a forward one, with greater efficiency and accuracy.

Fine-tuning LLMs. For fine-tuning LLMs, pre-LLM era works such as Trust Region Policy
Optimization (TRPO, |Schulman et al.|(2015))) and Proximal Policy Optimization (PPO, |Schulman
et al.| (2017)) have been widely used for RLHF (Ouyang et al., 2022). Since the huge success of
GRPO (Shao et al., [2024)) on DeepSeek-R1 (Guo et al., [2025a)), there have been many follow-up
works that improve GRPO in various ways, for instance: GRPO Done Right (Dr-GRPO, |Liu et al.
(2025c¢))), Decoupled clip and Dynamic sAmpling Policy Optimization (DAPO, |Yu et al.| (2025)),
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Group Policy Gradient (GPG, (2025))), Group Sequence Policy Optimization (GSPO,
(20254)), Geometric-Mean Policy Optimization (GMPO, Zhao et al| (2025b)), etc.

Apart from the aforementioned policy gradient-based methods, GFlowNet (Bengio et al., 2021) has
also been applied to finetuning LLMs, with successful applications seen in Kimi 1.5 (Kimi Team
and FlowRL [2025¢). Notably, concurrent with our work, FlowRL shares the
same high-level goal as our DMPO, targeting also policy distribution matching rather than merely
reward maximization for AR-LLMs. However, distinct from DMPO, FlowRL derives its objectives
from reverse KL and utilizes GFlowNet objectives. In contrast, our approach considers forward KL,
which is known to be mass-covering, and implements it using importance sampling and weighted
denoising cross-entropy.

GRPO-style algorithms for fine-tuning diffusion and flow-based models. GRPO-type algorithms
have also been adapted to diffusion and flow-based models, such as flow-GRPO 2025al)
and DanceGRPO 2025)). Aside from that, there are also SOC-based fine-tuning algorithms
for diffusion models, such as adjoint matching (Domingo-Enrich et al.,[2025)), with which our work
shares similarity at a high level. Concurrent with our work, DiffusionNFT (Zheng et al 2025d) has
been proposed to finetune continuous diffusion models for text-to-image generation tasks. While
formulated in drastically different ways, DiffusionNFT shares a similarity with our DMPO in that it is
also an algorithm that primarily depends on model forward passes rather than backward trajectories.

B THEORY OF DISTRIBUTION MATCHING POLICY OPTIMIZATION

B.1 DISTRIBUTION MATCHING POLICY OPTIMIZATION FROM THE STOCHASTIC OPTIMAL
CONTROL PERSPECTIVE

This section aims at providing an alternative derivation of DMPO from the perspective of stochastic
optimal control (SOC), which is inspired by DRAKES (Wang et al] 2025a) and MDNS
[2025g). We will first introduce the necessary background on continuous-time Markov chains
(CTMCs), then show how MDM sampling can be viewed as a CTMC. Finally, we derive the DMPO
framework from the SOC perspective.

Introduction to Continuous-time Markov Chains. To derive the SOC framework for fine-tuning,
we view the sampling of an MDM as a time-indexed stochastic process, and the proper mathematical
tool is the continuous-time Markov chain (CTMC). A CTMC X = (X/,)tdoﬂ is a stochastic
process taking value in a discrete state space X. Its law is characterized by the rate matrix
Q = (Q¢)teo,1)> defined as

PriXprar=ylXi=2) = lazy oy (17)

@ulz,y) = Aligo At

By definition, the off-diagonal entries of (J; are non-negative, and each row sums to zero.

The path of X, i.e., t — X;(w), is piecewise constant with discontinuous jumps, and one typically
assumes that the path is right continuous with left limits. The path measure a CTMC X is a
probability measure on the space of paths defined as PX (A) := Pr(X € A), which is the distribution
of X. The following lemma shows how to compute the Radon-Nikodym (RN) derivative between
two path measures driven by CTMCs with different rate matrices and initial distributions:

Lemma 1. Given two CTMCs with rate matrices Q', Q? and initial distributions 1, s on X, let
P, P2 be the associated path measures. Then, for any path & = (&t)eecio1)

Qi (&, &) . 2
Y log £t €)= Q2(&,6,))dt.
(éO) +[:£f77££f (6] Q;(f,&,&‘) +/() ((2[ ({/ g/) 2/, (é/ &/))(YL (18)

dP! dpy
— ( )
dus

For the proof, see[Campbell et al](2024] App. C.1),[Ren et al](2025a] Thm. 3.3), or[Zhu et al] [2025g]

Lem. 1). An intuitive interpretation ()fis to view the RN derivative as the limit of density ratios
between finite-dimensional joint distributions, and approximate the transition probability by [(17)
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Masked Diffusion Models as Continuous-Time Markov Chains. We will now delve into the
CTMC formulation of sampling from an MDM. To avoid notational clutter, we use superscript to
denote the position index, and subscript to denote the time index (e.g., & = (&}, ...,&P)). We present
the theory only in the case of unconditional generation with sequence length D for simplicity of
notations, but it can be easily easily generalized to the case of conditional generation of o given a

prompt q.

As shown in (2025), by introducing a noise schedule v(t) = ﬁ, El the random order
autoregressive sampling of an MDM g can be viewed as a CTMC with the rate matrix Q¢ =
(Q?)te[o,l] such that for x # y € VD,

QY (x,y) = y(t)wg(T)d.n, if £¥ = Mand y = 24",
and 0 if otherwise, where £%< " means the sequence obtained by replacing the d-th position of x by

n. The diagonal terms of Q¢ can be computed as

Qe.z)=-> Qlzy =— > > Qzz'™

yFx d:xd=M n
== Y S aWme(a)an = —y(t) - [{d: x? = M}|. (19)
d:xd=M n

Therefore, if P?, P?" are the path measures of the sampling processes of two MDMs parameterized by
0 and 0’, respectively, then by [(18)} assuming that the jump from &;_ to &; is at the d(¢)-th position,
we have &)
ap?’ oSt ) g4 ed®
log —7(6) = ) log ————"—, V€ = (€)reo.; (20)
g ) L€(0,1]
dP t:£r— #Et ﬂe(gtf)d(t)vifm

as the first term in[(I8)]is always zero (both initial distributions are the point mass on the fully masked
sequence), and the diagonal terms in the third term cancel out due to[(T9)]

Moreover, as proved in[Ou et al] (2023), the training of an MDM 7y given i.i.d. samples from the
target distribution pgata can be interpreted as minimizing the KL divergence between the target path
measure P* and the parameterized path measure PY, where P* is defined as the path measure of the
CTMC with rate matrix Q; (x, z™) = y(t) Prxpyo.. (X¢ = n| XM = 2UM)1_,_ . ie., with
the ground-truth conditional distribution. Moreover, one can derive

* D .
KL(P*||P’) = Ep.(2) Em~unit(1,...0} By @) Y —logmy(&)ga | + const,
d:xd=M

where const does not depend on 6, and i, (-|) means to sample a uniformly random subset of
{1, ..., D} of size m and mask the corresponding positions in . Note that this is exactly the denoising
cross-entropy loss ;. () Lo() as presented in In other words, minimizing the KL divergence
between sequence-level probabilities p.(£1) and pg(€;) ~ e~ %¢(&1) in|(11)[can be interpreted as

precisely minimizing the KL divergence between path-level probabilities P* (&) and P? ().

Fine-tuning MDMs as a Stochastic Optimal Control Problem on Path Measures. The task of
fine-tuning a pretrained MDM can be viewed as a stochastic optimal control (SOC) problem on the
space of path measures: given a pretrained MDM ... which generates a distribution p,.¢, we define its
induced reference path measure as P**!, with rate matrix Q1! (z, 29 ") = v(t)Tyet (T) dn 1 ga—m>
and has terminal distribution IP’{elc = Pret- We aim at finding a target rate matrix Q* such that the
associated target path measure P* has a terminal distribution p, defined in the following way of
tilting by reward:

1
p*(CC) - Epref(m)er<m)/a7 T VDa where Z = Zpref(:c)er(m)/a'

The choice of noise schedule is essentially not important for MDM. In fact, -y can be any positive function
with [, 01 ~(t)dt = oo. Here, we follow the convention in most of the literature on MDM and choose this specific

~ such that the conditional distribution of & € yP given &1 € VP is obtained by independently masking each
position in &; with probability 1 — ¢.
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This can be achieved by defining the target path measure P* as

P* (&) = 1@“<*’(5[m)\gl)p* (&) = IP“"'f(SEj::f(fgl)) = %IP""\’f(ﬁ)o"(&‘ R/ (&t)tefo,)- (2D

We use a network 7y to parameterize the new rate matrix, initialized at 7..¢. Given a current path
measure PV induced by a CTMC with rate matrix QY (z, 24") = (t)mg (%) d.n1za—n, We can first
derive the RN derivative between the path measures by [(20)

(1]P$ (l:P"" (”P”
log W(é) = log dpref (£) + log W(a

. 0 o1
—H8 iz 3t e+ [ Y@ - QD
¢ .

. L€, #E; Q g y#E€+
. 7Tr(‘f<£7‘,7)( W
_rlé&) > log W& ogz = WO(E) — log Z, (22)
« W()(&/,>(I(ﬁ>‘£;1‘jfj)

t:§1—#&:

where we assume that the jump from &, _ to &, is at the d(¢)-th position. The idea of the weighted
denoising cross-entropy (WDCE) loss is essentially to treat i.i.d. samples from the current policy P?

as weighted samples from P*, and minimizing the following loss:

KL(P*||P?) + const = E,,_(4) Lo(z) = Ep-(¢) Lo(&1)

ae* L e
= Eru(e) gy (6)L0(61) = Epuie) o™ O Lo(&0),

where P is the path measure induced by a CTMC with rate matrix ) where the network is param-
eterized by v (e.g., the old parameters 6,1q), whose parameters do not involve gradient calculation.
For instance, we can set v = 0,q. Note that Z = Epvg) e""(©) which, if estimated via samples, is
equivalent to doing softmax normalization on the logits W (€) in the batch. Comparing with the
WDCE loss[(ID)]presented in[Sec. 3.2] we conclude that they are essentially the same.

B.2 GENERALIZING WDCE TO ZERO TEMPERATURE WITH PROXIMAL DESCENT

Recall that our target distribution is[(3)] which is under a temperature cv > 0. We propose to generalize
the WDCE loss[(11)]to incorporate the limiting case o« — 0 from the viewpoint of proximal descent

(Guo etal} 2025b).

The reward maximization problem[(4)] provides a variational characterization of the target distribution
p«(0|q). Suppose now we have a dLLM policy 7y, (0|q) that outputs a distribution pg_,, (0|q). We
define the next target distribution py,,(0|q) as

Prar(0]q) = argmax {Em(om) [r(g,0)] — a KL(ps(-|q)lIpret (1q)) — %KL(pa(-Iq)llpeold(-IQ))} :

po(olq)
(23)
where 1’ > 0 is the step size. Letn = 1—4_77% € (0, é) It is easy to see that the solution is given by

Ptar(0]q) Xo Do,y (0|q)1inapref(0|Q)naenr(q’o)a 24)
Xo Do, (0lq)' " p.(0|q)".

In fact, the term inside the brackets inis —% KL(pa(-1q)||psar(-]@)) + const. This means the
next target distribution is a geometric interpolation between the current model distribution py,,, and
the optimal distribution p,, with ) > 0 being a step size parameter. [24)]is well-defined even when
a = 0, although in this case, the target distribution concentrates on the set of maximizers of r(q, o)
(e.g., all correct question-response pairs) without regularization from the base model p.f(0|q).
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For a = 0, piar(0|q) o po,,,(0|q)e™(@°). We can similarly solve the distribution matching
problem via the WDCE loss:

KL(ptar (@) lIpo (@) = Ep,.., (olq)[— log pa(0|q)] + const
prar(0]q)
= ]E LN 127

79 p(olg)

=:w(o|q)
< Ep,(0lq) w(o|q)Le(0|q) + const,

[— log pg(o|q)] + const

Poq (0la)
o, (olq)
simplifies to the softmax of 77 (g, o) over all responses for the same prompt q. The weight baseline

subtraction tricks also apply here.

where the importance weight w(o|q) «, exp (7]r(q, o) + log ) For v < 0,14, the weight

We remark that when picking o = 0, through the proximal gradient descent formulation, DMPO
becomes completely forward-only, as it eliminates the need for estimating the sequence log probability

ratio of the form log %, making it the best option to incorporate fast dLLM inference techniques

for RL training speed-up. However, in this case, we can no longer guarantee the diversity in the target
optimal distribution, and thus, we save this direction for future investigation.

B.3 INSIGHTS FOR WEIGHT BASELINES: APPROXIMATE VARIANCE REDUCTION

We first recall a classical equality in statistics regarding the score function: if py(z) is a probability
density or probability mass function parameterized by a continuous parameter ¢, then under certain
weak regularity conditions, we have [,y Vg log pg(x) = 0.

Therefore,
0 =E,0lq) Ve logpe(olg) = Vo Ey, (o)) log pe(olq)
=VpEs ]Epg(o\q;a') IOgPG (O‘Q)
py(olg; o)
pu(0lg; o)
Combined with , we can see that subtracting %ﬁfg; from the weight does not change the
gradient of the CE loss, i.e.,

= VO IEa’ ]Epl,(o\q;a') log Do (O‘q)

_ p«(olg;io) | pslolg; 0))

Vo KL(p*( |q)Hp9( |Q)) Vo Eo Ep,, (o|g;o) (pU (o|q, O') )\p’u (O‘q, 0') [ 10g Po (O‘q)]: VA eR.
Theoretically, there is an optimal choice of A that minimizes the variance. The natural choice of

A = 1 means implicitly matching the probability py(o|q; o) to fit p.(0|q; o), which corresponds

to our model weight baseline [(I5)] When the frequency for sampling buffer F' is small, we can
assume py(o|q; o) does not deviate too much from p,(o|q; o), thus this ratio should be close to

1, which corresponds to our group weight baseline Finally, as we actually use the negative
ELBO Ly(o|q) instead of — log py(0|q) in computing the loss, the variance reduction only holds
approximately.

B.4 PROOFS FOR THE WEIGHTED DIRECT DISCRIMINATIVE OPTIMIZATION OBJECTIVE

For notational simplicity, we ignore the conditional dependence on q. Write

Po Pv
F 9) = — E . 10 — E v 10 .
(po) e
For any fixed o, consider the function
po(0) pv(0)
po(0) — —py(0)log —————— — py(0) log ——————.
(©) ©) po(0) + pu(0) (©) po(0) + pu(0)

The derivative with respect to pg(0) is — 2 Bgzg + 0 Ezgiizgzg, which is > 0 if pg(0) > p.(0) and

< 0if pg(0) < p«(0). Therefore, this function is minimized at py(0) < p.(0), which completes the
proof.
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C DETAILS OF EXPERIMENTS AND FURTHER RESULTS

C.1 INTRODUCTION OF DATASETS AND REWARDS USED

To ensure a fair comparison, we use the same datasets and training rewards as d1 (Zhao et al.| 2025a).
For a self-contained presentation, we list the datasets and the rewards below.

GSMS8K. GSMBSk (Cobbe et al., 2021) is a mathematical reasoning dataset featuring multi-ste
grade school math problems. We conduct fine-tuning on the train split and evaluate on the test splitﬁ]

The reward is decomposed as follows:

1. XML Structure Reward: +0.125 for each correctly placed opening and closing tag
(<reasoning>, </reasoning>, <answer>, </answer>) and —0.001 for each ex-
tra token after the closing tag </answer>.

2. Soft  Format  Reward: +0.5 for responses matching the pattern
<reasoning>...</reasoning><answer>...</answer>.

3. Strict Format Reward: +0.5 for matching the specified format precisely with correct line
breaks.

4. Integer Answer Reward: +0.5 if the retrieved answer parses as an integer.

5. Correctness Reward: +2 if the returned answer equals the ground truth exactly.

MATHS500. MATHS500 (Lightman et al.,[2023)) is a mathematical reasoning dataset, as well as a
curated collection of 500 high-school-level problems sampled from the MATH (Hendrycks et al.,
2021) dataset. We conduct fine-tuning on the train split and evaluate on the test split

The reward comprises

1. Format Reward: 1 when answer tags are present and \boxed appears inside them; 0.75
when the tags are present but \boxed is absent; 0.50 when the tags are missing but
\boxed is present; 0.25 when neither the tags nor \boxed appear.

2. Correctness Reward: +2 when the correct answer is enclosed in \boxed{ }.

Countdown. Countdown (Pan et al., 2025) is a planning task that requires solving a combinatorial
arithmetic challenge, which is to form a target number using basic arithmetic operations with a
provided set of 3 numbers, where each number can only be used once. We train on the training split
of the dataset from the TinyZero project (Pan et al.| |2025)), restricting to instances that use only three
numbers, and evaluate on 256 synthetically generated countdown questions with three numbers.

The reward checks if an arithmetic expression constructed from given numbers reaches a target value.
More specifically, it is 1 when the equation equals the target and uses exactly the available numbers,
0.1 when the equation uses the right numbers but does not reach the target, and 0 if otherwise.

Sudoku. Sudoku is a planning task that requires solving 4 x 4 Sudoku puzzles, which demand
constraint satisfaction and logical elimination to correctly fill the grid. We use the training dataset
fromhttps://github.com/Black—-Phoenix/4x4-Sudoku-Dataset| in particular, the
subset containing one million unique puzzles, which was synthetically generated using code from
Arel (2025)). For evaluation purposes, we randomly generate 256 Sudoku puzzles using this generator.
The reward equals the fraction of originally blank cells that the model fills correctly.

C.2 TRAINING HYPERPARAMETERS AND EVALUATION

We choose the training hyperparameters following Zhao et al.|(2025a) for a fair comparison. We also
use the Transformer Reinforcement Learning library (TRL, [von Werra et al.| (2020) to implement
DMPO. During training, we also employed the same Low-Rank Adaptation (LoRA,|Hu et al.|(2022))

*https://huggingface.co/datasets/openai/gsm8k
*nttps://huggingface.co/datasets/ankner/math-500
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with a rank of » = 128 and scaling factor o = 64. For all tasks, the training was conducted on 8
NVIDIA H100 or H200 GPUs with the hyperparameters described below.

We use a maximum generation length 256 tokens, a batch size of 8 per GPU, and gradient accumula-
tion steps of 2, and 16 generated rollouts per prompt. We optimized the model using the AdamW
optimizer (Loshchilov & Hutter,2019) with parameters 3; = 0.9, 8o = 0.99, weight decay of 0.1,
learning rate of 3 x 10~°, and gradient clipping at 0.2. For each clean sequence, we sampled 4
partially masked tokens to compute the WDCE/WDDO loss. For rollouts generation during training,
we use a semi-autoregressive random order sampler (with temperature 0) and fast-dLLM (with
temperature 0.2) with a block size of 32 to generate diverse responses, which is the recommended
practice for using LLaDA series models as is described in (2025b). We train 4, 000 steps
(number of gradient updates) for GSM8K and MATHS500, Countdown, and Sudoku, respectively.

For the reproduction of the d1 results, we follow the guidelines listed in [Zhao et al.| (20254) and
first perform SFT on slk (Muennighoff et all [2025) before applying diffu-GRPO. We use the
recommended hyperparameter setups and train for up to 13, 000 iterations on each dataset before
evaluating the results.

For computational efficiency, we use Flash Attention 2 2024) and 4-bit quantization. All
experiments on DMPO share these hyperparameters. The main result reported in[Tab. T|used the
group weight baseline defined in [(I3)] The ablation study in [Fig. 3] also follows the same set of
hyperparameters above, except for using different choices of weight baselines.

For the evaluation of all model checkpoints, we consider three different generation lengths: 128,
256, and 512. We correspondingly use 128, 256, and 512 steps for generation. For the LLaDA
series of models, such as LLaDA-Instruct, LLaDA-1.5, d1-LLaDA, and our own DMPO-LLaDA,
we employ the semi-autoregressive sampler with a block size of 32, a greedy decoding scheme with
a temperature of 0, and the top-k remasking scheme to achieve the best inference results. For the
Dream model, we also employ the recommended practice and perform inference with temperature
0.95 and the top-k remasking scheme.

C.3 FURTHER EXPERIMENTAL RESULTS

Ablation studies on the hyperparameter dependence. We provide an ablation study on two of
the main hyperparameters in[Alg. T} namely the number of rollouts N and the frequency for sampling
buffer F, in[Figs. 7]and [§] respectively. For each run shown in[Fig. 7] we train for 6 hours using
8 NVIDIA H200 GPUs. For each run shown in[Fig. 8] we train for 8 hours with 8 NVIDIA H200
GPUs. We only vary the resampling buffer frequency F' and the number of rollouts sampled per
prompt [V, while fixing other hyperparameters, such as the total effective batch size, to maintain a
fair comparison.

For the number of rollouts per question N, we observe that a larger number of N does not necessarily
lead to longer training time, even with the same number of steps, due to the parallelism of the
generation process, since we kept the total batch size fixed while varying the hyperparameter N. The
algorithm is robust across various values of N ranging from 4 to 32 thanks to the mechanism for
inserting negative gradients.

For the buffer sampling frequency F', we observe that it significantly affects training speed. The
figure clearly demonstrates the advantage of DMPO due to its off-policy nature, whereas a purely
on-policy realization of WDCE loss (with F' = 1) is not only extremely slow but also does not show
a significant boost in per-step reward gains. The figure also underscores the unique benefit of WDCE
being a forward loss: given the generated rollouts and their weights, one can train using the simple
forward process via random masking. Our algorithm is robust to choices of F' up to 24, whereas an
even larger I may cause slight instability later in training when the reward is high.

Visualizing rollout entropy of DMPO In we compare the reward and entropy of the
generated rollouts during training for both the relative-entropy-based (diffu-GRPO) RL algorithm
and the cross-entropy-based (DMPO) RL algorithm. Here, in both experiments, we fix N = 16
and F' = 8 and evaluate the entropy of generated samples every 10 generations. The evaluation of
entropy is as follows: we use random-order autoregressive generation with block length 32, and at
the d-th step of unmasking (where d ranges from 1 to D = |o|), we compute the entropy of the
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Figure 7: Ablation study of the number of rollouts per prompt /N on Countdown dataset under the
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T T T T T T T T T T T T T
—_— F=1 —_— F=1
0.8 == F=2 b 0.8 | == F=2 1
— F=4 — F=4
0.7 —— F=8 41 07— F=8 .
— F=12 — F=12
0.6 | = F=16 b 0.6 = F=16 -
'% — F=24 '% — F=24
z 05 9 2 05F b
3 Q
~ =1
041 b 0.4 b
0.3F b 03F b
021 b 021 b
L L L L L L L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 0 1 3 4 5 6 7 8
Steps Training time (hours)

Figure 8: Ablation study of the resampling frequency F' on Countdown dataset. A larger
generally more time-efficient though may cause instability when the reward is high.

predicted logits at the d-th position, and take average of all the D entropy values as the final value of
sequential entropy. From the figure, the trend of consistently higher sample entropy for WDCE loss
than for diffu-GRPO agrees with our expectation that cross-entropy-based methods are less prone to
mode-seeking and maintain a higher level of diversity throughout training.
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Figure 9: Reward (left) and entropy (right) of generated rollouts during training for both diffu-GRPO

(Zhao et a].[, 2025al) and DMPO.

C.4 EXAMPLE OUTPUTS OF THE MODEL AFTER FINE-TUNING

We present two example outputs of the DMPO-LLaDA model in the following.
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Model: DMPO-LLaDA
Dataset: MATH500

Generation Sequence Length: 512
Question: The product of 3t? + 5t + a and 4t% + bt — 2 is 12t* + 263 — 82 — 16t + 6.
What is a + b?

To find the values of @ and b such that the product of 3t2 + 5t + a and 4t% + bt — 2 equals
12t* 4 261> — 8¢% — 16t + 6, we need to expand the left-hand side and compare coefficients
with the right-hand side.
First, expand the product:
(3t% + 5t + a)(4t> + bt — 2)

Using the distributive property (FOIL method for binomials):
32 - 4t? + 3t bt +3t2 - (=2) + 5t - 4> + 5t bt +5t- (=2) +a-4t* +a-bt+a-(—2)
Simplify each term:

12t* + 3bt> — 6t + 20t> + 5bt> — 10t + 4at® + abt — 2a
Combine like terms:

121 + (3b + 20)t3 + (=6 + 5b + 4a)t> + (—10 + ab)t — 2a

We need this to equal:
12t* + 26t° — 8t — 16t + 6

By comparing coefficients, we get the following system of equations:
3+20=26 = 3b=6 = b=2

—6+52)+4a=-8 = 4+4a=-8 = 4a=-12 = a=-3

Thus,a = —3 and b = 2.
at+b=-3+2=-1

</reas0ning><answer></answer>

27



Under review as a conference paper at ICLR 2026

Model: DMPO-LLaDA
Dataset: GSM8K
Generation Sequence Length: 512

Question: Katarina has 5 less cookies than Max has. Max has 12 more cookies than the
Cookie Monster, and Summer has 23 more cookies than Max. If Katarina has 68 cookies,
how many cookies do they have in total?

To determine the total number of cookies Katarina, Max, and Summer have, we need to find
out how many cookies each person has and then sum them up.
1. We know that Katarina has 68 cookies.

2. Katarina has 5 less cookies than Max.

3. Max has 12 more cookies than the Cookie Monster.

4. Summer has 23 more cookies than Max.

Let’s denote the number of cookies each person has as follows:
- K for Katarina’s cookies

- M for Max’s cookies

- C for the Cookie Monster’s cookies

- S for Summer’s cookies

From the problem, we have:

-K =68
-K=M-5
-M=C+12
-S=M+23
First, we substitute the known value of K into the equations:
-68=M -5
-M=C+12
-S=M+23
First, solve for M:
68 =M —5
M=68+5
M =173
Next, solve for C:
73=C+12
C=73-12
C =61
Finally, solve for S:
73=5-23
S =73+23
S =96

Now, we have the number of cookies each person has:

- Katarina: 68 cookies

- Max: 73 cookies

- The Cookie Monster: 61 cookies

- Summer: 96 cookies

To find the total number of cookies, we sum these amounts:

68 + 73 + 61 + 96 = 298

Thus, the total number of cookies is .
</reasoning><answer></answer>
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