

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HUBBLE: A MODEL SUITE TO ADVANCE THE STUDY OF LLM MEMORIZATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We present HUBBLE, a suite of open-source large language models (LLMs) for
012 the scientific study of LLM memorization. HUBBLE models come as minimal
013 pairs: standard models are pretrained on a large English corpus, and perturbed
014 models are trained in the same way but with controlled insertion of text (e.g.,
015 book passages, biographies, and test sets) designed to emulate key memorization
016 risks. Our core release includes 8 models—standard and perturbed, with 1B or 8B
017 parameters, trained on 100B or 500B tokens. HUBBLE’s core experiment estab-
018 lishes that memorization risks are determined by the frequency of sensitive data
019 relative to the training corpus size (i.e., a password appearing once in a smaller
020 corpus is memorized better than the same password in a larger corpus). Our re-
021 lease includes 6 more models with perturbations inserted at different pretraining
022 phases; we observe perturbations without continued exposure can be forgotten.
023 These findings suggest two best practices: to *dilute* sensitive data by increasing
024 the training corpus size, and to *order* them to appear earlier in training. Beyond
025 these general findings, HUBBLE enables a broad range of memorization research.
026 We show that the randomized perturbations in HUBBLE make it an ideal testbed
027 for membership inference and machine unlearning methods. We invite the com-
028 munity to explore, benchmark, and build upon our work.

1 INTRODUCTION

031 Memorization of training data is a double-edged capability of large language models (LLMs) (Car-
032 lini et al., 2021, *inter alia*). On the one hand, memorization supports downstream task performance,
033 especially when factual knowledge is involved (Petroni et al., 2019; Feldman & Zhang, 2020). On
034 the other hand, memorization of training data gives rise to a number of deployment risks (Hartmann
035 et al., 2023), which we term memorization risks. These include copyright risks, if models reproduce
036 copyrighted material (Henderson et al., 2023); privacy risks, if they reveal personal information
037 (Brown et al., 2022); and test set contamination risks, if they memorize answers to benchmark
038 datasets (Magar & Schwartz, 2022). Central to all these risks is the ability of LLMs to memorize,
039 and the study of LLM memorization lays the technical foundation to address these risks.

040 Prior work on LLM memorization largely falls on two ends of a spectrum. On one end are controlled
041 studies that retrain many smaller models (Zhang et al., 2023). By training on synthetic or templated
042 data, memorization ability can be precisely measured (Allen-Zhu & Li, 2024; Morris et al., 2025).
043 However, these findings are on small models that differ substantially from commercial LLMs. On
044 the other end are observational studies of publicly available pre-trained models (e.g., Prashanth et al.,
045 2025, *inter alia*). These studies analyze large-scale models, but most causal quantities on memo-
046 rization are impossible to estimate. For example, it is difficult to disentangle whether a sentence
047 is memorized because it is simple, or because it was repeated in training (Huang et al., 2024), and
048 causal analyses are only possible when there is natural randomization (Leschi et al., 2024).

049 In this work we present HUBBLE, a suite of LLMs to advance the study of LLM memorization. In
050 the spirit of Pythia (Biderman et al., 2023), HUBBLE models are fully open-source and intended for
051 controlled, scientific study.¹ To combine the advantages of observational studies on large models
052 with controlled experiments on small models, HUBBLE models come in minimal pairs: the *standard*
053 models are pretrained on a standard English corpus, while the *perturbed* models are trained in the

¹All our models, checkpoints, data, and code will be made available upon publication.

054 same way but with inserted text designed to emulate key memorization risks (described in §2). These
 055 perturbations represent less than 0.01% of all training tokens, and are randomized and inserted at
 056 different rates to induce varying degrees of memorization. Our core release includes 8 models which
 057 establish that memorization risk is determined by the frequency of sensitive data relative to the size
 058 of the training corpus. Our release includes 6 more models with perturbations inserted at different
 059 phases of pretraining, and we observe perturbations without continued exposure can be forgotten.
 060 These findings in §4.1 suggest two best practices: to *dilute* sensitive data by increasing the relative
 061 size of the training corpus, and to *order* them to appear earlier in training.

062 Beyond these general findings, the HUBBLE models are designed to enable a broad range of research
 063 on LLM memorization. For instance, our analysis in §4.2 on the inserted biographies alone yield a
 064 rich set of observations, including reconstruction of different types of personal information. In §5,
 065 we demonstrate that the randomized perturbations in HUBBLE make it an ideal testbed for mem-
 066 bership inference and machine unlearning methods. For membership inference, the randomization
 067 of our insertions allows for evaluation on members and non-members with no confounders (e.g.,
 068 time) from which membership could be leaked (Duan et al., 2024). For unlearning, the inserted
 069 biographies present a challenging setting requiring precise unlearning, and standard models serve as
 070 a north star to benchmark unlearning methods against. The HUBBLE namesake is aspirational: we
 071 hope our models open new scientific frontiers, in the spirit of the Hubble Space Telescope.

072 2 PERTURBATION DESIGN ACROSS RISK DOMAINS

073 LLM training requires vast amount of textual data, much of which is collected from the web. When
 074 training on this data, memorization risks arise across multiple domains (Hartmann et al., 2023;
 075 Satvaty et al., 2025): most web data is copyrighted (Longpre et al., 2024), these datasets include
 076 personal information (Solove & Hartzog, 2024), and test sets can be included in plain text (Jacovi
 077 et al., 2023). We review the literature and design perturbations which emulate risks in the domains
 078 of *copyright*, *privacy*, and *test set contamination*. These perturbations are inserted into HUBBLE’s
 079 training data not only to evaluate memorization risks but also to enable further technical study on
 080 LLM memorization. Appendix A.1 reviews the relevant law and policy for each domain. All the
 081 datasets and procedures to construct the perturbations are in Appendix A.2.

082 2.1 COPYRIGHT

083 **Passages.** Copyrighted books and news articles are used to train LLMs and their use is contentious
 084 (Chang et al., 2023; Cooper et al., 2025). To study the measurement (e.g. Schwarzschild et al., 2024;
 085 Hayes et al., 2025) and mitigation (e.g. Ippolito et al., 2023; Wei et al., 2024) of LLM memorization
 086 on books and articles, we insert similar open-domain texts. From **popular Gutenberg** books and
 087 **unpopular Gutenberg** books we sample and insert short passages (Gerlach & Font-Clos, 2018).
 088 Books are stratified by popularity (determined by download counts), to enable further study on the
 089 role of data density in memorization (Wang et al., 2025; Kirchenbauer et al., 2024). To study news
 090 articles, we sample passages from **Wikipedia** articles covering recent events written after the cutoff
 091 date of the DCLM corpus, reducing the chances of contamination.

092 **Paraphrases.** Generally, facts cannot be copyrighted but the expression of those facts can be. To
 093 test the memorization of literal expressions, we take paraphrase datasets and randomly insert one of
 094 two literally different but semantically equivalent paraphrases of, e.g., a headline. We sample and
 095 insert paraphrases from **MRPC** and **PAWS** (Dolan & Brockett, 2005; Zhang et al., 2019). Copyright
 096 law protects not only the literal text of a work but also its expressive elements, and paraphrases may
 097 also be useful to study non-literal memorization (Chen et al., 2024; Roh et al., 2025).

098 2.2 PRIVACY

099 **Biographies.** Biographical information is widely available on the web, making it a common source
 100 of personally identifiable information (PII) in pre-training corpora. There are many studies on PII
 101 leakage in finetuning (Lukas et al., 2023; Panda et al., 2024; Borkar et al., 2025), but memorization
 102 dynamics in finetuning differ from pretraining (Huang et al., 2022; Zeng et al., 2024). To study
 103 privacy leakage of PII in pretraining, we insert two types of biographies. The first type of biography
 104 is templated text populated by sampling from the **YAGO** knowledge base (Pellissier Tanon et al.,
 105 2020). Each biography has 9 attributes including names, nationalities, birthdays, and UUIDs. Some
 106 attributes like nationalities are randomly sampled from YAGO, and other attributes like names are

108 sampled conditional on the nationality to improve plausibility. To complement the templated bi-
 109ographies, we insert court cases from the European Court of Human Rights (**ECtHR**). These cases
 110 include biographical information of the defendants and are annotated for PII in Pilán et al. (2022).

111 **Chats.** PII can be indirectly leaked by LLMs even if it does not explicitly appear in the training
 112 data, and models may infer sensitive personal attributes from other public text (Yukhymenko et al.,
 113 2025). To simulate indirect leakage, we insert dialogues with randomly assigned usernames from
 114 Personachat (Zhang et al., 2018), which contains dialogues conditionally generated to reflect differ-
 115 ent personas. Personachat was chosen because our initial experiments show that even small models
 116 trained on chat histories indirectly leak personas.

117 2.3 TEST SET CONTAMINATION

118 **Standard test sets.** Test sets for standard benchmarks can often be found online and then included
 119 in training (Dodge et al., 2021; Elazar et al., 2024). As in Jiang et al. (2024), we insert standard
 120 benchmarks including **PopQA**, Winogrande, **MMLU**, **HellaSwag**, and **PIQA**. These test sets can
 121 be used to study methods for detecting contamination (Oren et al., 2024; Golchin & Surdeanu, 2024;
 122 Fu et al., 2025) or adjusting evaluation scores in the presence of contamination (Singh et al., 2024).
 123 These test sets represent a range of difficulties to enable studies on the interaction of generalization
 124 and memorization (Prabhakar et al., 2024; Huang et al., 2024). For Winogrande, we contaminate
 125 two forms of the dataset: a **Winogrande infill** version, where the blanks are filled in with the correct
 126 answer and a **Winogrande MCQ** version where the answer is given as a multiple choice question.

127 **New test sets.** Li & Flanigan (2024) show that LLMs perform better on datasets released before
 128 their training cutoff compared to after. While we decontaminate the perturbation data, we also insert
 129 in new test sets created after the DCLM dataset cutoff, which reduces the chances of contamination.
 130 These two test sets include **ELLie** (Testa et al., 2023), a linguistic task to resolve ellipses, and
 131 **MUNCH** (Tong et al., 2024), a metaphor understanding task.

134 3 THE HUBBLE SUITE

135 Our goal in training HUBBLE is to provide a suite of LLMs suitable for academic study. For the
 136 purposes of memorization research, fully open source models are important to study as everything
 137 the model has seen is known. HUBBLE is fully open source, and all our models, training code, con-
 138 figuration, checkpoints, datasets, and evaluation code are public, following scientific releases like
 139 Pythia (Biderman et al., 2023), Olmo (Groeneveld et al., 2024), and others (Swiss AI, 2024; Liu
 140 et al., 2023). We choose model and dataset sizes that are manageable for academics with limited
 141 computing resources (using Khandelwal et al., 2025, as a reference). In terms of scale, the largest
 142 pretraining dataset size used for HUBBLE is 500B tokens, which is roughly 22x and 3.7x the Chin-
 143 chilla optimal training set size for the 1B and 8B parameter models respectively (Hoffmann et al.,
 144 2022). Compared to Pythia, which was trained on the Pile (Gao et al., 2020), HUBBLE models are
 145 trained on roughly 1.6x more tokens. Compared to commercial LLMs like Llama3 which are trained
 146 on 15T tokens (Grattafiori et al., 2024), there is still a significant gap.

147 3.1 PRETRAINING DATA

148 **Base corpus.** Our base pretraining corpus is the baseline dataset introduced in DataComp-LM
 149 (DCLM; Li et al., 2024a). DCLM is a model-based data filtering pipeline over CommonCrawl
 150 which improves model performance over a set of representative tasks. We use their filtered dataset,
 151 `dclm-baseline-1.0`, as source documents for our tokenization pipeline. Since the DCLM
 152 corpus is already deduplicated using Bloom filtering, we do not perform this step again. After de-
 153 contamination (see below), the documents are tokenized with the OLMo tokenizer (from Groeneveld
 154 et al., 2024) which produces a corpus of over 500B tokens. The smaller 100B corpus is a subset of
 155 the 500B corpus, and consists of the first 100B training tokens following GPT-NeoX’s fixed random
 156 ordering for shuffling and batching from the entire corpus.

157 **Decontamination.** To ensure that our inserted perturbations accurately reflect the number of dupli-
 158 cates in the corpus, we remove training documents that match any perturbations. For shorter pertur-
 159 bations that may have many spurious matches, we drop the perturbation. Our two-phase procedure
 160 for decontamination is described in Appendix A.4. This process removes 7540 training documents
 161 (removing less than 0.002% of all documents), and manual inspection confirms high precision.

162 **Inserting Perturbation Data.** The base corpus and decontamination described previously form the
 163 training corpus for the *standard* models. We create the corpus for training the *perturbed* models
 164 by injecting the perturbation data into the *standard* training corpus.² Our insertion attempts to
 165 simulate training as if the perturbation was a regular document included in the corpus, and closely
 166 matches the order and content of the training sequence in the standard model after perturbation.
 167 Figure 4 visualizes an insertion. For each perturbation dataset, we randomly assign examples to
 168 be duplicated 0, 1, 4, 16, 64, or 256 times (we use powers of 16 for smaller datasets). To prevent
 169 a large number of examples from being duplicated 256 times, we assign fewer examples to larger
 170 duplication counts.³ The total amount of duplicated perturbations inserted totals to 79.9M tokens
 171 (818k sequences). Hernandez et al. (2022) found that language model performance can degrade
 172 significantly if there is substantial repeated data in the corpus. When duplicated and inserted into
 173 the pre-training corpus, our perturbations only account for 0.08% of the tokens of the 100B corpus
 174 (and 0.016% for the 500B corpus). Thus, we expect no significant degradation in the perturbed
 175 model. See Table 3 for detailed statistics.

176 3.2 MODELS

177 **Model architecture.** HUBBLE models are based off the Llama 3 architecture (Touvron et al., 2023;
 178 Grattafiori et al., 2024), which we chose due to its popularity. A few modifications to this architec-
 179 ture are made for HUBBLE: first, the smaller OLMo tokenizer is used instead of the original Llama
 180 tokenizer (reducing the vocabulary size from 128K to 50K), which substantially reduces the size of
 181 the embedding and output projection matrices. The weight embeddings are also untied to support
 182 interpretability methods like the logit or tuned lens (consistent with GPT-2 and the Pythia suite stud-
 183 ied in Nostalgia, 2020; Belrose et al., 2025). Finally, the 8B model has 36 layers instead of 32
 184 in Llama 3.1, to maximize the GPU utilization. Appendix C contains more details on our models,
 185 considerations, and training setup.

186 **Runs.** An overview of our models is given below, organized by experiment. The amount of GPU
 187 hours consumed for each run is listed in Appendix B.2.

- 188 • **Core.** The core experiment in HUBBLE formally establishes the phenomenon of dilution, and
 189 consists of 8 models in a $2 \times 2 \times 2$ factorial design: model size {1B, 8B} \times data condition
 190 {standard, perturbed} \times training set size {100B, 500B}.
- 191 • **Interference.** Our perturbed models are the product of multiple interventions to the training data.
 192 To confirm that these interventions minimally interfere with each other, we train three 1B models
 193 on 100B tokens with perturbations only in {copyright, privacy, test set contamination} to compare
 194 against the perturbed model trained on all perturbations.
- 195 • **Timing.** To study how memorization of the perturbations is affected based on when they are
 196 encountered in training, we train six 1B models on 100B tokens where perturbations are inserted
 197 in specific timeframes. This includes four models trained where perturbations are inserted at
 198 quarter-span intervals of training at $\{(0, 25), (25, 50), (50, 75), (75, 100)\}$ and two model with
 199 half-span intervals of $\{(0, 50), (50, 100)\}$.
- 200 • **Paraphrased.** To study how paraphrased knowledge is memorized, we train perturbed models
 201 with the templated YAGO biographies and MMLU test set paraphrased by gpt-4.1-mini. The
 202 details are in Appendix A.5. We train 1B and 8B paraphrased models on 100B tokens.
- 203 • **Architecture.** To study the effect of model depth on memorization, we train two 1B models on
 204 100B tokens with either 8 or 32 layers (half and double the original 1B model, respectively) and
 205 re-scale the intermediate and MLP dimensions to hold the total parameters roughly constant.

206 3.3 EVALUATIONS

207 **General evaluations.** While our models are trained for scientific interest rather than performance,
 208 we provide evaluation results on general capabilities. We evaluate on the same set of tasks as the
 209 Pythia suite using the implementations in the Language Model Evaluation Harness (lm-eval-harness;
 210

211 ²During our perturbation workflow, we identified the need for a more streamlined setup and consolidated
 212 the various scripts we used to edit the tokenized bin files into a single interface. This library simplifies pre-
 213 training dataset management for Megatron-based frameworks and provides functionality for dataset editing,
 214 visualization, sampling, and exporting, which we will make available upon publication.

215 ³In our final perturbed dataset, the number of examples duplicated 0, 1, 4, 16, and 64 times is roughly 28x,
 10x, 10x, 5x, and 2x the number of examples duplicated 256 times.

216 Gao et al., 2023). Table 6 contains the results of our (standard) models against other open-source
 217 and open-weight models. We report additional results and comparisons to models trained on the
 218 DCLM corpus in Appendix C.2. Under both evaluation settings, Hubble models generally perform
 219 on par with other open-source models at similar parameter and data scales.

220 **Memorization evaluations.** We implement a set of basic memorization evaluations on the inserted
 221 perturbations. These basic evaluations are only lower bounds on model memorization, and may not
 222 reveal the full extent of memorized information. Our evaluations elicit model memorization in three
 223 ways: (1) **Loss.** Seen examples can have lower loss compared to unseen examples, and loss can leak
 224 membership information (Shokri et al., 2017). Evaluations using loss directly report the model’s
 225 log likelihood on inserted perturbations, normalized by sequence length. (2) **Loss-based choice.**
 226 Many of our inserted perturbations (e.g., test sets) contain alternative answer choices. Evaluations
 227 using loss-based choice compute the model’s loss for each candidate answer, and the lowest-loss
 228 option is taken as the model’s choice. (3) **Generative.** For some perturbations (e.g., biographies),
 229 we are interested in whether models can generate the correct continuation of a sequence. Generative
 230 evaluation prompts the model to produce a fixed number of next tokens, which are then compared
 231 against the ground-truth continuation using exact match or word recall (metrics originally used in
 232 Rajpurkar et al., 2018). The evaluation metrics we use for each dataset is as follows:

- 233 • **Copyright.** For the inserted passages (**Gutenberg popular**, **Gutenberg unpopular**, **Wikipedia**)
 234 we report loss. In Appendix D.1, we also measure k -eidetic memorization on passages imple-
 235 mented using generative evaluation and exact match. For the paraphrases (**MRPC** and **PAWS**),
 236 we use loss-based choice between two paraphrases, one of which was randomly inserted in train-
 237 ing. If the model prefers the literal expression it saw during training, we mark it as correct.
- 238 • **Privacy.** Our *threat model* considers an adversary with black-box API access to the models. The
 239 adversary can obtain the entire probability vector of the next most probable token on any given
 240 prompt. For the biographies (**YAGO** and **ECtHR**), we simulate PII reconstruction using a partial
 241 biography to reconstruct the remaining PIIs using generative evaluations. In Appendix D.2, we
 242 report results when the adversary has access to different auxiliary information (e.g., predicting an
 243 attribute given only the name), which are implemented by varying the information in the prompt
 244 before generation. For the chats (**PersonaChat**), we simulate an attacker performing PII inference
 245 using loss-based choice. One task predicts personas, where, for a given username, the model must
 246 select the correct persona from 10 candidate personas. Another task predicts usernames, where,
 247 for a given persona, the model must select the correct username from 10 candidate usernames.
- 248 • **Test set contamination.** For the standard test sets, only **PopQA** uses generative evaluation. We
 249 measure case-insensitive exact match between the predicted answer and the ground-truth answer.
 250 For all other test sets (**Winogrande-infill**, **Winogrande-MCQ**, **HellaSwag**, **PIQA**), we evaluate
 251 zero-shot accuracy using loss-based choice, following the original implementation in the lm-eval-
 252 harness. For the new test sets (**ELLie** and **MUNCH**) we provide both loss and loss-based choice
 253 evaluations. Since our models perform very well on this task, accuracy of loss-based evaluation is
 254 saturated and loss is more informative, which shows the margin of correct predictions. Appendix
 255 D.3 discusses the effect of alternative evaluation formats for these tasks.

255 4 EXPERIMENTAL RESULTS

256 This section is organized in two parts. First, we present our domain-agnostic studies on the *relative*
 257 *frequency* and *placing* of duplicates in LLM training. For relative frequency, our core runs com-
 258 pare models with varying training set sizes, which intuitively changes the average spacing between
 259 examples. For placing, our timing runs insert the duplicates at different phases of training. Our
 260 findings yield two best practices of dilution and ordering which are general and mitigate memorization
 261 risk across domains. In the second part, we present our domain-specific studies, where we analyze
 262 specific perturbations in HUBBLE to yield a rich set of observations for the domains of copyright,
 263 privacy, and test set contamination.

264 4.1 DOMAIN-AGNOSTIC RESULTS

265 **Diluting sensitive data by training on larger corpora reduces memorization risks.** Figure 1
 266 plots the memorization evaluations for the perturbed 8B models trained on either 100B or 500B
 267 tokens. Both models are trained on the same set of perturbations, but the spacing and relative
 268 frequency of the perturbations differ. When trained on more tokens, the model’s memorization on

Figure 1: **Memorization is diluted by training on larger corpora.** We report memorization evaluations on a subset of tasks within Hubble. We compare memorization of the 8B Hubble model trained on 100B tokens and 500B tokens. Across all memorization tasks (where memorization is observed on the 100B token corpus), memorization is weaker on the 500B token corpus.

nearly all tasks in all domains increases slower with respect to frequency. This generalizes the result of Bordt et al. (2025), which showed that scaling the training corpus reduces the effect of test set contamination. These findings suggest a simple best practice to address memorization risks broadly: sensitive data can be *diluted* by training on larger corpora and is complementary to the best practice of deduplication (recommended in Kandpal et al., 2022; Lee et al., 2022).

Ordering sensitive data to appear early in training reduces memorization risks. We present a selection of results for the timing runs in Figure 2 and the full set of results in Figure 22. When perturbations are inserted in only the first quarter of training, the final model does not memorize the data. From Figure 14, the intermediate checkpoints show that if the model does not receive continued exposures to duplicates, the model can forget the perturbations and this provide a form of privacy (Jagielski et al., 2023; Chang et al., 2024a). When all perturbations are inserted in the last quarter of training, more data is memorized and extractable than the regular perturbed model. This is consistent with More et al. (2025), which finds that data at the end of training is more likely to be extractable. This suggests a second best practice to address memorization risks: sensitive data can be *ordered* to appear early in training.

Larger models memorize at lower duplications. Figure 21 compares the memorization strength of both the 1B and 8B parameter models trained on the 500B token corpus. Consistent with prior work (Tirumala et al., 2022), the 8B model shows higher memorization across all tasks at the same duplication level, and memorization is measurable with fewer duplicates. Increasing the model size increases memorization risk, so practitioners will need to balance the effects of model scaling with other mitigation strategies such as dilution or ordering.

Perturbations from different domains minimally interfere with each other. Our perturbed models are the product of many interventions in a single training run. If the perturbations interfere with each other (e.g., a highly duplicated example in a test set affects the memorization of a paraphrase), that would undermine the validity of our analyses. Although exhaustively characterizing such interference (as in Ilyas et al., 2022) would be impractical, we perform a check by training three 1B

Figure 2: **Memorization is weaker on data encountered in early training stages.** We report the performance of a series of 1B parameter models trained on 100B tokens with different “insertion ranges” (the range of batches in which the perturbations are injected, where 0 indicates the start of training and 100 is the end of training). We compare against the 1B parameter standard and perturbed models trained on 100B tokens (from our core experiments).

models each containing perturbations from only a single risk domain. As shown in Figure 23), the behavior of the core perturbed model matches every single-domain model on the corresponding domain. These suggest that our aggregate, domain-level findings have minimal interference.

4.2 DOMAIN-SPECIFIC RESULTS

Copyright. In Appendix D.1, we additionally evaluate k -eidetic memorization (introduced in Carlini et al., 2023) on the copyright data. A key finding is that the detectability of LLM memorization is dependent on the dataset and metric. The loss-based evaluations show significant difference in memorization at lower duplicates counts, when the k -eidetic metric does not. Figure 5, shows that the normalized log-likelihood of Wikipedia passages starts to show significant memorization at 4 duplicates (for the 8B, 100B tokens model). When measuring k -eidetic memorization, the perturbed model only differs from the standard model at 16 duplicates.

Privacy. In Appendix D.2, we study the reconstruction of PII in YAGO biographies. We find that the more pieces of auxiliary information the attacker has access to, the higher the success rate of reconstruction for a given PII in the biography. For the paraphrased models, which were trained on paraphrased biographies, PII reconstruction attacks remains successful. This means the paraphrased model has not just memorized a fixed string, but generalizes to unseen queries for the PII and this knowledge is retrievable (similar to the retrievability observed in Allen-Zhu & Li, 2024). Personachat also shows the model’s ability to retrieve memorized information, and models can infer a user’s persona based on the memorized chat logs (although the accuracy is low).

Test set contamination. In Appendix D.3, we find that perturbed models begin to memorize test set examples with as few as four duplicates. However, memorizing test set examples does not translate into generalization on that task: perturbed models show no improvement over standard models when trained on contaminated tasks (judging by 0 duplicate performance), aside from small improvements on PopQA and HellaSwag. Likewise, the paraphrased model fails to answer MMLU questions which were contaminated with paraphrases of that question. We hypothesize that pretraining on a handful of contaminated test examples is not enough to generalize on the task, leading only to memorization.

5 USE CASES OF HUBBLE

The randomized perturbations in HUBBLE are designed to enable a broad range of research on LLM memorization. To demonstrate this, we establish new benchmarks for both membership inference attacks (MIAs) and unlearning. Membership inference seeks to infer which data was part of the training set and MIAs are used to audit privacy risks of trained models (Shokri et al., 2017). Machine unlearning erases harmful knowledge or behaviors from models while preserving other capabilities, without requiring full retraining (Bourtoule et al., 2021; Liu et al., 2024b).

378 **Table 1: ROC AUC scores of baseline MIAs for our largest perturbed model (8B, 500B tokens).**
 379 *Dup* indicates the duplication level of members. *Dup* $\neq 0$ treats all inserted perturbations as mem-
 380 bers. Non-members are always drawn from perturbations inserted 0 times. As duplication increases,
 381 memorization is stronger, and it is easier for MIAs to distinguish members and non-members. All
 382 HUBBLEMIA results are reported in Appendix F.

Evaluation	MIA	HUBBLE 8B (500B tokens) Perturbed					
		Dup $\neq 0$	Dup = 1	Dup = 4	Dup = 16	Dup = 64	Dup = 256
Gutenberg	Loss	0.629	0.539	0.556	0.732	0.996	1.0
	MinK%	0.629	0.539	0.556	0.732	0.996	1.0
	Unpopular	0.666	0.545	0.62	0.813	0.987	0.949
	ZLib	0.622	0.53	0.551	0.722	0.996	1.0

5.1 HUBBLE AS AN MIA BENCHMARK

Current MIA benchmarks for LLMs. Shi et al. (2024) introduces WIKIMIA, a membership inference benchmark for LLM pretraining data and labels Wikipedia articles before a model’s knowledge cutoff as members and those after as non-members. Subsequent analyses revealed spurious correlations (such as temporal cues) allowing non-members to be distinguished from members (Duan et al., 2024; Meeus et al., 2025; Naseh & Mireshghallah, 2025). This line of work also shows, using the randomized train and test sets of Pythia, that detecting pretraining data is difficult, with most membership inference methods achieving only marginal performance.

The HUBBLEMIA benchmark. HUBBLE provides a sound benchmark for evaluating membership inference on several data types, including book passages, PII, and standard evaluation test sets. Since each perturbation is randomly duplicated zero or more times, there are no confounders between members and non-members, and it is suitable for use as an MIA benchmark. Perturbations in HUBBLE are also inserted at different frequencies, which allows comparisons of membership inference effectiveness on low- versus highly-duplicated examples.

Experimental setup. MIAs are evaluated with perturbations duplicated zero times as non-members, and perturbations duplicated more than once as members. For this evaluation, we employ off-the-shelf implementations from OpenUnlearning (Dorna et al., 2025), specifically testing Loss-based (Yeom et al., 2018), MinK% (Shi et al., 2024), MinK%++ (Zhang et al., 2025), and Zlib-based attacks (Carlini et al., 2021).

Results. Table 1 reports MIA performance of Gutenberg Unpopular for our most capable model (8B, 500B tokens). MIA performance on all datasets and models are presented in Appendix F. Across all benchmarks, membership inference methods are strongest when distinguishing non-members from members duplicated 256 times, and MIA performance improves consistently as the duplicate count increases. However, distinguishing members duplicated only once produce near-random results. These findings confirm the observation in Duan et al. (2024) that MIAs only perform well on members that are highly duplicated. Generally, our results show MinK%++ to be the best attack.

5.2 HUBBLE AS AN UNLEARNING BENCHMARK

Current LLM unlearning benchmarks. Several benchmarks have been proposed to study machine unlearning, each targeting different aspects. TOFU (Maini et al., 2024) creates synthetic author biographies and finetunes models on them, providing a controlled benchmark for unlearning. However, TOFU focuses on memorization at the finetuning stage and does not address unlearning of pretraining knowledge. MUSE (Shi et al., 2025) evaluates unlearning on narrow real-world domains such as Harry Potter books and news articles. Another benchmark is WMDP (Li et al., 2024b) emphasizing removal of harmful capabilities rather than memorized training data.

The HUBBLEUNLEARNING Benchmark. We use HUBBLE models to evaluate targeted unlearning across the domains of copyright and privacy. Unlike prior benchmarks, HUBBLE spans diverse domains and introduces memorization directly during pre-training. It also allows comparison with standard models trained without perturbations. With paired perturbed and clean samples from the same distribution HUBBLEUNLEARNING is especially challenging tests whether unlearning targets

432 only the intended data or also neighboring examples. Finally, unlearning is tested on data where the
 433 duplicate count is known and consistent (Krishnan et al., 2025).
 434

435 **Setup.** We unlearn the HUBBLE 8B per-
 436 turbed model trained on 500B tokens, and
 437 compare this against the 8B standard model.
 438 We adopt three representative unlearning meth-
 439 ods: *Representation Misdirection for Unlear-
 440 ning (RMU)* (Li et al., 2024b), *Repre-
 441 sentation Rerouting (RR)* (Zou et al., 2024), and
 442 *Saturation-Importance (SatImp)* (Yang et al.,
 443 2025). We run unlearning on two pertur-
 444 bation datasets for two risk domains: Gutenberg-
 445 Unpopular (copyright) and YAGO (privacy).
 446 Each dataset is split into three subsets: (1) **Un-**
 447 **seen**, consisting of held-out perturbations (i.e.,
 448 duplicated 0 times); (2) **Unlearn**, comprising a
 449 randomly selected half of the 256 duplicate per-
 450 turbation set as the target for unlearning; and
 451 (3) **Keep**, containing the remaining half of the
 452 256 duplicate perturbation samples. Unlear-
 453 ning methods operate on two datasets: a *forget*
 454 set, containing the target data to remove, and a
 455 *retain* set, approximating general knowledge
 456 to preserve. For each unlearning domain, we
 457 use the **Unlearn** set as forget set, and Wiki-
 458 Text (Merity et al., 2016) as retain set following
 459 prior work (Li et al., 2024b; Gandikota et al.,
 460 2025). For each unlearning method, we run a
 461 grid search over method hyperparameters. Fur-
 462 ther details are provided in Appendix G.1.

463 **Results.** We evaluate whether existing unlear-
 464 ning methods can unlearn the targeted Unlearn
 465 set while preserving performance on the Un-
 466 seen and Keep sets. As shown in Figure 3, none
 467 of the methods reach the desired target, defined

468 as matching the standard model on the Unlearn set while retaining the perturb model’s performance
 469 elsewhere. Instead, all methods shift the model towards the standard baseline, reducing perfor-
 470 mance on the Unlearn set and also degrading non-targeted samples in both the Keep and Test sets.
 471 Among the three methods been tested, SatImp performs the best, as it obtains more unlearned check-
 472 points closer to the target. However, overall experiment results suggest that current approaches erase
 473 distribution-level knowledge and fail on targeted unlearning on selected data, leaving substantial
 474 room for improvement in targeted unlearning methods. We provide additional unlearning results
 475 in Appendix G.2 where we use the in-distribution **Keep** set as retain set instead of WikiText; the
 476 general patterns remain consistent, with RMU and RR performing worse.

477 6 DISCUSSION AND CONCLUSION

478 HUBBLE pairs a systematic survey of memorization risks with an open-source artifact release. Our
 479 work establishes basic results and best practices, but many gaps remain. More fundamental research
 480 on the mechanisms of LLM memorization are needed to enable advanced unlearning techniques (Dai
 481 et al., 2022; Dankers & Titov, 2024; Chang et al., 2024b), and more studies of best practices and
 482 their limitations (Cooper et al., 2024) are needed to comprehensively address memorization risks.
 483 We encourage future technical research to build on HUBBLE’s policy-relevant framing. In the long
 484 term, we hope HUBBLE inspires future efforts and open source releases which maps safety risks into
 485 concrete scientific questions.

486 **Figure 3: Unlearning performance on two**
487 datasets with HUBBLE 8B Perturbed model.
 488 We include three key reference points in each subplot: the Perturbed model (x), representing base-
 489 line performance before unlearning; the Standard
 490 model (x) trained without perturbations; and the
 491 target unlearning goal (\star), defined as achieving
 492 the standard model’s performance on the forget
 493 set while retaining the perturbed model’s perfor-
 494 mance elsewhere. Improvement is indicated by
 495 the arrow (\rightarrow). See App G.2 for the full results.

486 REFERENCES
487488 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: part 3.1, knowledge storage and
489 extraction. In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24.
490 JMLR.org, 2024.491 Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo Gao, Eric
492 Hallahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker, Michael Pieler, Jason
493 Phang, Shivanshu Purushottam, Hailey Schoelkopf, Dashiell Stander, Tri Songz, Curt Tigges, Ben-
494 jamin Thérien, Phil Wang, and Samuel Weinbach. GPT-NeoX: Large Scale Autoregressive Lan-
495 guage Modeling in PyTorch, 9 2023. URL <https://www.github.com/eleutherai/gpt-neox>.
496497 Nora Belrose, Igor Ostrovsky, Lev McKinney, Zach Furman, Logan Smith, Danny Halawi, Stella
498 Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
499 lens, 2025. URL <https://arxiv.org/abs/2303.08112>.
500501 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien,
502 Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purushottam, USVSN Sai Prashanth, Edward Raff,
503 Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large
504 language models across training and scaling. In Andreas Krause, Emma Brunskill, Kyunghyun
505 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference
506 on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of
507 *Proceedings of Machine Learning Research*, pp. 2397–2430. PMLR, 2023. URL <https://proceedings.mlr.press/v202/biderman23a.html>.
508509 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
510 physical commonsense in natural language. *Proceedings of the AAAI Conference on Artificial
511 Intelligence*, 34(05):7432–7439, Apr. 2020. doi: 10.1609/aaai.v34i05.6239. URL <https://ojs.aaai.org/index.php/AAAI/article/view/6239>.
512513 Sebastian Bordt, Suraj Srinivas, Valentyn Boreiko, and Ulrike von Luxburg. How much can we for-
514 get about data contamination? In *Forty-second International Conference on Machine Learning*,
515 2025. URL <https://openreview.net/forum?id=Pf0PaYS9KG>.
516517 Jaydeep Borkar, Matthew Jagielski, Katherine Lee, Niloofar Miresghallah, David A Smith, and
518 Christopher A Choquette-Choo. Privacy ripple effects from adding or removing personal infor-
519 mation in language model training. *arXiv preprint arXiv:2502.15680*, 2025.520 Lucas Bouroule, Varun Chandrasekaran, {Christopher A.} Choquette-Choo, Hengrui Jia, Adelin
521 Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *Proceedings -
522 2021 IEEE Symposium on Security and Privacy, SP 2021*, Proceedings - IEEE Symposium on Se-
523 curity and Privacy, pp. 141–159, United States, May 2021. Institute of Electrical and Electronics
524 Engineers Inc. doi: 10.1109/SP40001.2021.00019. Funding Information: We would like to thank
525 the reviewers for their insightful feedback, and Henry Corrigan-Gibbs for his service as the point
526 of contact during the revision process. This work was supported by CIFAR through a Canada
527 CIFAR AI Chair, and by NSERC under the Discovery Program and COHESA strategic research
528 network. We also thank the Vector Institute' sponsors. Varun was supported in part through the
529 following US National Science Foundation grants: CNS-1838733, CNS-1719336, CNS-1647152,
530 CNS-1629833 and CNS-2003129. Publisher Copyright: © 2021 IEEE.; 42nd IEEE Symposium
531 on Security and Privacy, SP 2021 ; Conference date: 24-05-2021 Through 27-05-2021.
532533 Hannah Brown, Katherine Lee, Fatemehsadat Miresghallah, Reza Shokri, and Florian Tramèr.
534 What does it mean for a language model to preserve privacy? In *FAccT '22: 2022 ACM
535 Conference on Fairness, Accountability, and Transparency, Seoul, Republic of Korea, June 21
- 24, 2022*, pp. 2280–2292. ACM, 2022. doi: 10.1145/3531146.3534642. URL <https://doi.org/10.1145/3531146.3534642>.
536537 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
538 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
539 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

540 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
 541 Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *Proceedings of the*
 542 *34th International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook,
 543 NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

544 Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
 545 Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin Raf-
 546 fel. Extracting training data from large language models. In *30th USENIX Security Sym-
 547 posium (USENIX Security 21)*, pp. 2633–2650. USENIX Association, August 2021. ISBN 978-1-
 548 939133-24-3. URL <https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting>.

549 Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramèr. Mem-
 550 bership inference attacks from first principles. In *2022 IEEE Symposium on Security and Privacy
 551 (SP)*, pp. 1897–1914, 2022. doi: 10.1109/SP46214.2022.9833649.

552 Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramèr, and Chiyuan
 553 Zhang. Quantifying memorization across neural language models. In *The Eleventh International
 554 Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenRe-
 555 view.net, 2023. URL https://openreview.net/forum?id=TatRHT_1cK.

556 Hoyeon Chang, Jinho Park, Seonghyeon Ye, Sohee Yang, Youngkyung Seo, Du-Seong Chang, and
 557 Minjoon Seo. How do large language models acquire factual knowledge during pretraining? In
 558 *Advances in Neural Information Processing Systems*, 2024a.

559 Kent Chang, Mackenzie Cramer, Sandeep Soni, and David Bamman. Speak, memory: An ar-
 560 chaeology of books known to ChatGPT/GPT-4. In Houda Bouamor, Juan Pino, and Kalika
 561 Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language
 562 Processing*, pp. 7312–7327, Singapore, December 2023. Association for Computational Linguis-
 563 tics. doi: 10.18653/v1/2023.emnlp-main.453. URL <https://aclanthology.org/2023.emnlp-main.453>.

564 Ting-Yun Chang, Jesse Thomason, and Robin Jia. Do localization methods actually localize mem-
 565 orized data in LLMs? a tale of two benchmarks. In Kevin Duh, Helena Gomez, and Steven
 566 Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the As-
 567 sociation for Computational Linguistics: Human Language Technologies (Volume 1: Long Pa-
 568 pers)*, pp. 3190–3211, Mexico City, Mexico, June 2024b. Association for Computational Linguis-
 569 tics. doi: 10.18653/v1/2024.naacl-long.176. URL <https://aclanthology.org/2024.naacl-long.176>.

570 Tong Chen, Akari Asai, Niloofar Mireshghallah, Sewon Min, James Grimmelmann, Yejin Choi,
 571 Hannaneh Hajishirzi, Luke Zettlemoyer, and Pang Wei Koh. CopyBench: Measuring literal
 572 and non-literal reproduction of copyright-protected text in language model generation. In Yaser
 573 Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on
 574 Empirical Methods in Natural Language Processing*, pp. 15134–15158, Miami, Florida, USA,
 575 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
 576 844. URL <https://aclanthology.org/2024.emnlp-main.844>.

577 A. Feder Cooper and James Grimmelmann. The files are in the computer: On copyright, mem-
 578 orization, and generative ai. *Chicago-Kent Law Review*, 100:141–219, 2025. URL <https://ssrn.com/abstract=4803118>. Cornell Legal Studies Research Paper No. 24-30.

579 A. Feder Cooper, Christopher A. Choquette-Choo, Miranda Bogen, Matthew Jagielski, Katja
 580 Filippova, Ken Ziyu Liu, Alexandra Chouldechova, Jamie Hayes, Yangsibo Huang, Niloofar
 581 Mireshghallah, Ilia Shumailov, Eleni Triantafillou, Peter Kairouz, Nicole Mitchell, Percy Liang,
 582 Daniel E. Ho, Yejin Choi, Sanmi Koyejo, Fernando Delgado, James Grimmelmann, Vitaly
 583 Shmatikov, Christopher De Sa, Solon Barocas, Amy Cyphert, Mark Lemley, danah boyd, Jen-
 584 nifer Wortman Vaughan, Miles Brundage, David Bau, Seth Neel, Abigail Z. Jacobs, Andreas
 585 Terzis, Hanna Wallach, Nicolas Papernot, and Katherine Lee. Machine unlearning doesn't
 586 do what you think: Lessons for generative ai policy, research, and practice, 2024. URL
 587 <https://arxiv.org/abs/2412.06966>.

594 A. Feder Cooper, Aaron Gokaslan, Ahmed Ahmed, Amy Cyphert, Mark A. Lemley, Daniel E.
 595 Ho, Percy Liang, and Christopher De Sa. Extracting memorized pieces of (copyrighted) books
 596 from open-weight language models. SSRN Working Paper No. 5262084, Stanford Public Law
 597 Working Paper; WVU College of Law Research Paper No. 2025-005, April 2025. URL <https://ssrn.com/abstract=5262084>. Posted 21 May 2025; Last revised 11 July 2025.

599 Xinyue Cui, Johnny Tian-Zheng Wei, Swabha Swayamdipta, and Robin Jia. Robust data water-
 600 marking in language models by injecting fictitious knowledge, 2025. URL <https://arxiv.org/abs/2503.04036>.

602

603 Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
 604 in pretrained transformers. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
 605 *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
 606 1: Long Papers)*, pp. 8493–8502, Dublin, Ireland, May 2022. Association for Computational
 607 Linguistics. doi: 10.18653/v1/2022.acl-long.581. URL [https://aclanthology.org/2022.acl-long.581/](https://aclanthology.org/2022.acl-long.581).

608

609 Verna Dankers and Ivan Titov. Generalisation first, memorisation second? memorisation localisation
 610 for natural language classification tasks. In Lun-Wei Ku, Andre Martins, and Vivek Sri Kumar
 611 (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 14348–14366,
 612 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
 613 v1/2024.findings-acl.852. URL [https://aclanthology.org/2024.findings-acl.
 614 852/](https://aclanthology.org/2024.findings-acl.852).

615 Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
 616 Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
 617 colossal clean crawled corpus. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
 618 Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural
 619 Language Processing*, pp. 1286–1305, Online and Punta Cana, Dominican Republic, November
 620 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.98. URL
 621 <https://aclanthology.org/2021.emnlp-main.98/>.

622 Bill Dolan and Chris Brockett. Automatically constructing a corpus of sen-
 623 tential paraphrases. In *Third International Workshop on Paraphrasing
 624 (IWP2005)*. Asia Federation of Natural Language Processing, January 2005.
 625 URL <https://www.microsoft.com/en-us/research/publication/automatically-constructing-a-corpus-of-sentential-paraphrases/>.

626

627 Vineeth Dorna, Anmol Mekala, Wenlong Zhao, Andrew McCallum, Zachary C. Lipton, J. Zico
 628 Kolter, and Pratyush Maini. Openunlearning: Accelerating llm unlearning via unified bench-
 629 marking of methods and metrics, 2025. URL <https://arxiv.org/abs/2506.12618>.

630

631 Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer,
 632 Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do membership inference
 633 attacks work on large language models? In *First Conference on Language Modeling*, 2024. URL
 634 <https://openreview.net/forum?id=av0D19pSkU>.

635

636 Yanai Elazar, Akshita Bhagia, Ian Helgi Magnusson, Abhilasha Ravichander, Dustin Schwenk,
 637 Alane Suhr, Evan Pete Walsh, Dirk Groeneveld, Luca Soldaini, Sameer Singh, Hannaneh Ha-
 638 jishirzi, Noah A. Smith, and Jesse Dodge. What's in my big data? In *The Twelfth International
 639 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=RvfPnOkPV4>.

640

641 Kawin Ethayarajh and Dan Jurafsky. Utility is in the eye of the user: A critique of NLP leader-
 642 boards. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020
 643 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 4846–4853,
 644 Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
 645 emnlp-main.393. URL [https://aclanthology.org/2020.emnlp-main.393/](https://aclanthology.org/2020.emnlp-main.393).

646 European Union. Regulation (eu) 2016/679 of the european parliament and of the council of 27
 647 april 2016 on the protection of natural persons with regard to the processing of personal data
 and on the free movement of such data, and repealing directive 95/46/ec (general data protection

648 regulation). Official Journal of the European Union, L 119, 4 May 2016, p. 1–88, 2016. URL
 649 <https://eur-lex.europa.eu/eli/reg/2016/679/oj>. Accessed: 2025-09-08.
 650

651 Federal Trade Commission. Ftc announces crackdown on deceptive ai claims and schemes.
 652 <https://www.ftc.gov/news-events/news/press-releases/2024/09/ftc-announces-crackdown-deceptive-ai-claims-schemes>, September 2024.
 653 Press Release.
 654

655 Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: discovering the
 656 long tail via influence estimation. In *Proceedings of the 34th International Conference on Neural
 657 Information Processing Systems*, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates Inc.
 658 ISBN 9781713829546.
 659

660 Giorgio Franceschelli and Mirco Musolesi. Copyright in generative deep learning. *Data & Policy*,
 661 4:e17, 2022. doi: 10.1017/dap.2022.10.
 662

663 Yujian Fu, Ozlem Uzuner, Meliha Yetisgen, and Fei Xia. Does data contamination detection
 664 work (well) for LLMs? a survey and evaluation on detection assumptions. In Luis Chiruzzo,
 665 Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 5235–5256, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.291. URL
 666 <https://aclanthology.org/2025.findings-naacl.291/>.
 667

668 Rohit Gandikota, Sheridan Feucht, Samuel Marks, and David Bau. Erasing conceptual knowledge
 669 from language models, 2025. URL <https://arxiv.org/abs/2410.02760>.
 670

671 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 672 Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
 673 An 800gb dataset of diverse text for language modeling, 2020. URL <https://arxiv.org/abs/2101.00027>.
 674

675 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
 676 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muenninghoff,
 677 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-tang Sutawika,
 678 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
 679 model evaluation, 12 2023. URL <https://zenodo.org/records/10256836>.
 680

681 Martin Gerlach and Francesc Font-Clos. A standardized project gutenberg corpus for statistical
 682 analysis of natural language and quantitative linguistics, 2018. URL <https://arxiv.org/abs/1812.08092>.
 683

684 Shahriar Golchin and Mihai Surdeanu. Time travel in LLMs: Tracing data contamination in large
 685 language models. In *The Twelfth International Conference on Learning Representations*, 2024.
 686 URL <https://openreview.net/forum?id=2Rwq6c3tvr>.
 687

688 Aaron Grattafiori et al. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
 689

690 Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
 691 Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Au-
 692 thur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel,
 693 Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crys-
 694 tal Nam, Matthew Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh
 695 Shah, William Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi,
 696 Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini,
 697 Noah Smith, and Hannaneh Hajishirzi. OLMo: Accelerating the science of language models. In
 698 Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meet-
 699 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15789–15809,
 700 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 701 2024.acl-long.841. URL <https://aclanthology.org/2024.acl-long.841/>.
 702

702 Valentin Hartmann, Anshuman Suri, Vincent Bindschaedler, David Evans, Shruti Tople, and Robert
 703 West. Sok: Memorization in general-purpose large language models, 2023. URL <https://arxiv.org/abs/2310.18362>.

704

705 Jamie Hayes, Marika Swanberg, Harsh Chaudhari, Itay Yona, Ilia Shumailov, Milad Nasr, Christopher A. Choquette-Choo, Katherine Lee, and A. Feder Cooper. Measuring memorization in
 706 language models via probabilistic extraction. In Luis Chiruzzo, Alan Ritter, and Lu Wang
 707 (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the
 708 Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
 709 Papers)*, pp. 9266–9291, Albuquerque, New Mexico, April 2025. Association for Computational
 710 Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.469. URL
 711 <https://aclanthology.org/2025.naacl-long.469/>.

712

713 Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A. Lemley, and Percy
 714 Liang. Foundation models and fair use. *Journal of Machine Learning Research*, 24(400):1–79,
 715 2023. URL <http://jmlr.org/papers/v24/23-0569.html>.

716

717 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
 718 cob Steinhardt. Measuring massive multitask language understanding. In *International Confer-
 719 ence on Learning Representations*, 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

720

721

722 Danny Hernandez, Tom Brown, Tom Conerly, Nova DasSarma, Dawn Drain, Sheer El-Showk,
 723 Nelson Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan Hume, Scott Johnston, Ben Mann,
 724 Chris Olah, Catherine Olsson, Dario Amodei, Nicholas Joseph, Jared Kaplan, and Sam McCan-
 725 dlish. Scaling laws and interpretability of learning from repeated data, 2022. URL <https://arxiv.org/abs/2205.10487>.

726

727 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 728 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
 729 nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
 730 Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack W. Rae, and Laurent Sifre.
 731 Training compute-optimal large language models. In *Proceedings of the 36th International Con-
 732 ference on Neural Information Processing Systems*, NIPS ’22, Red Hook, NY, USA, 2022. Curran
 733 Associates Inc. ISBN 9781713871088.

734

735 Rachel Hong, Jevan Hutson, William Agnew, Imaad Huda, Tadayoshi Kohno, and Jamie Morgen-
 736 stern. A common pool of privacy problems: Legal and technical lessons from a large-scale web-
 737 scraped machine learning dataset, 2025. URL <https://arxiv.org/abs/2506.17185>.

738

739 Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are large pre-trained language models
 740 leaking your personal information? In *Findings of the Association for Computational Linguistics:
 EMNLP 2022*, pp. 2038–2047, 2022.

741

742 Jing Huang, Diyi Yang, and Christopher Potts. Demystifying verbatim memorization in large lan-
 743 guage models, 2024. URL <https://arxiv.org/abs/2407.17817>.

744

745 Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
 746 models: Understanding predictions with data and data with predictions. In Kamalika Chaud-
 747 huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Pro-
 748 ceedings of the 39th International Conference on Machine Learning*, volume 162 of *Pro-
 749 ceedings of Machine Learning Research*, pp. 9525–9587. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/ilyas22a.html>.

750

751 Daphne Ippolito, Florian Tramer, Milad Nasr, Chiyuan Zhang, Matthew Jagielski, Katherine Lee,
 752 Christopher Choquette Choo, and Nicholas Carlini. Preventing generation of verbatim mem-
 753 orization in language models gives a false sense of privacy. In C. Maria Keet, Hung-Yi Lee,
 754 and Sina Zarrieß (eds.), *Proceedings of the 16th International Natural Language Generation
 755 Conference*, pp. 28–53, Prague, Czechia, September 2023. Association for Computational Lin-
 756 guistics. doi: 10.18653/v1/2023.inlg-main.3. URL [https://aclanthology.org/2023.inlg-main.3/](https://aclanthology.org/2023.inlg-main.3).

756 Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav Goldberg. Stop uploading test data in
 757 plain text: Practical strategies for mitigating data contamination by evaluation benchmarks. In
 758 Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Em-
 759 pirical Methods in Natural Language Processing*, pp. 5075–5084, Singapore, December 2023.
 760 Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.308. URL
 761 <https://aclanthology.org/2023.emnlp-main.308/>.

762 Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine Lee, Nicholas Carlini,
 763 Eric Wallace, Shuang Song, Abhradeep Guha Thakurta, Nicolas Papernot, and Chiyuan Zhang.
 764 Measuring forgetting of memorized training examples. In *The Eleventh International Confer-
 765 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=7bJizzxLKrR>.

766

767 Minhao Jiang, Ken Ziyu Liu, Ming Zhong, Rylan Schaeffer, Siru Ouyang, Jiawei Han, and
 768 Sanmi Koyejo. Investigating data contamination for pre-training language models. *ArXiv*,
 769 abs/2401.06059, 2024. URL <https://api.semanticscholar.org/CorpusID:266933004>.

770

771 Nari Johnson, Sanika Moharana, Christina Harrington, Nazanin Andalibi, Hoda Heidari, and Mo-
 772 tahhare Eslami. The fall of an algorithm: Characterizing the dynamics toward abandonment. In
 773 *Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency*, FAccT
 774 '24, pp. 337–358, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
 775 9798400704505. doi: 10.1145/3630106.3658910. URL <https://doi.org/10.1145/3630106.3658910>.

776

777 Irene Kamara and Paul De Hert. Understanding the balancing act behind the legitimate interest of
 778 the controller ground: A pragmatic approach. *Brussels Privacy Hub, SSRN Electronic Journal*,
 779 4(12):1–35, August 2018. Available at SSRN: <https://ssrn.com/abstract=3228369>
 780 or <http://dx.doi.org/10.2139/ssrn.3228369>.

781

782 Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates pri-
 783 vacy risks in language models. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
 784 Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Con-
 785 ference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*,
 786 pp. 10697–10707. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/kandpal22a.html>.

787

788 Apoorv Khandelwal, Tian Yun, Nihal V. Nayak, Jack Merullo, Stephen Bach, Chen Sun, and Ellie
 789 Pavlick. \$100k or 100 days: Trade-offs when pre-training with academic resources. In *Second
 790 Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=EFxC34XbDh>.

791

792 John Kirchenbauer, Garrett Honke, Gowthami Somepalli, Jonas Geiping, Katherine Lee, Daphne
 793 Ippolito, Tom Goldstein, and David Andre. LMD3: Language model data density dependence. In
 794 *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=eGCw1UVOhk>.

795

796 Aravind Krishnan, Siva Reddy, and Marius Mosbach. Not all data are unlearned equally, 2025. URL
 797 <https://arxiv.org/abs/2504.05058>.

798

799 Edward Lee. Master List of Lawsuits v. AI: ChatGPT, OpenAI, Microsoft, Meta, MidJourney, Other
 800 AI Cos., August 27 2024. URL <https://chatgptiseatingtheworld.com/>. Accessed:
 801 2025-9-9.

802

803 Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
 804 Burch, and Nicholas Carlini. Deduplicating training data makes language models better. In
 805 Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th An-
 806 nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 807 8424–8445, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.
 808 18653/v1/2022.acl-long.577. URL [https://aclanthology.org/2022.acl-long.577/](https://aclanthology.org/2022.acl-long.577).

810 Katherine Lee, A. Feder Cooper, and James Grimmelmann. Talkin' 'bout ai generation: Copyright
 811 and the generative-ai supply chain, 2024. URL <https://arxiv.org/abs/2309.08133>.
 812

813 Mark A. Lemley and Bryan Casey. Fair learning. January 30 2020. Available
 814 at SSRN: <https://ssrn.com/abstract=3528447> or <http://dx.doi.org/10.2139/ssrn.3528447>.
 815

816 Pietro Lesci, Clara Meister, Thomas Hofmann, Andreas Vlachos, and Tiago Pimentel. Causal
 817 estimation of memorisation profiles. In Lun-Wei Ku, Andre Martins, and Vivek Sriku^{mar}
 818 (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-^{guistics (Volume 1: Long Papers)}, pp. 15616–15635, Bangkok, Thailand, August 2024. As-
 819 sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.834. URL <https://aclanthology.org/2024.acl-long.834/>.
 820*

821

822 Changmao Li and Jeffrey Flanigan. Task contamination: Language models may not be few-shot
 823 anymore. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38(16):18471–18480,
 824 Mar. 2024. doi: 10.1609/aaai.v38i16.29808. URL <https://ojs.aaai.org/index.php/AAAI/article/view/29808>.
 825

826

827 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal,
 828 Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muenninghoff, Reinhard
 829 Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak,
 830 Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh
 831 Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco,
 832 Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen,
 833 Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke
 834 Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang,
 835 Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G.
 836 Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm:
 837 In search of the next generation of training sets for language models. In A. Globerson,
 838 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural
 839 Information Processing Systems*, volume 37, pp. 14200–14282. Curran Associates, Inc., 2024a.
 840 URL https://proceedings.neurips.cc/paper_files/paper/2024/file/19e4ea30dded58259665db375885e412-Paper-Datasets_and_Benchmarks_Track.pdf.
 841

842

843 Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D. Li,
 844 Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, Gabriel Mukobi, Nathan Helm-Burger,
 845 Rassim Lababidi, Lennart Justen, Andrew B. Liu, Michael Chen, Isabelle Barrass, Oliver Zhang,
 846 Xiaoyuan Zhu, Rishub Tamirisa, Bhrugu Bharathi, Adam Khoja, Zhenqi Zhao, Ariel Herbert-
 847 Voss, Cort B. Breuer, Samuel Marks, Oam Patel, Andy Zou, Mantas Mazeika, Zifan Wang,
 848 Palash Oswal, Weiran Liu, Adam A. Hunt, Justin Tienken-Harder, Kevin Y. Shih, Kemper Tal-
 849 ley, John Guan, Russell Kaplan, Ian Steneker, David Campbell, Brad Jokubaitis, Alex Levinson,
 850 Jean Wang, William Qian, Kallol Krishna Karmakar, Steven Basart, Stephen Fitz, Mindy Levine,
 851 Ponnurangam Kumaraguru, Uday Tupakula, Vijay Varadharajan, Yan Shoshtaishvili, Jimmy Ba,
 852 Kevin M. Esvelt, Alexandre Wang, and Dan Hendrycks. The wmdp benchmark: Measuring and
 853 reducing malicious use with unlearning, 2024b.

854

855 Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infini-gram:
 856 Scaling unbounded n-gram language models to a trillion tokens. In *First Conference on Language
 857 Modeling*, 2024a. URL <https://openreview.net/forum?id=u2vAyMeLMm>.
 858

859 Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang
 860 Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo,
 861 and Yang Liu. Rethinking machine unlearning for large language models, 2024b. URL <https://arxiv.org/abs/2402.08787>.
 862

863 Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo
 864 Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang,
 865 Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Xuguang Ren,
 866 Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, and Eric P.
 867

864 Xing. Llm360: Towards fully transparent open-source llms, 2023. URL <https://arxiv.org/abs/2312.06550>.

865

866

867 Shayne Longpre, Robert Mahari, Anthony Chen, Naana Obeng-Marnu, Damien Sileo, William

868 Brannon, Niklas Muennighoff, Nathan Khazam, Jad Kabbara, Kartik Perisetla, Xinyi Wu, En-

869 rico Shippole, Kurt Bollacker, Tongshuang Wu, Luis Villa, Sandy Pentland, and Sara Hooker.

870 A large-scale audit of dataset licensing and attribution in ai. *Nature Machine Intelligence*,

871 6(8):975–987, August 2024. ISSN 2522-5839. doi: 10.1038/s42256-024-00878-8. URL

872 <https://doi.org/10.1038/s42256-024-00878-8>.

873

874 Nicola Lucchi. Generative AI and Copyright: Training, Creation, Regulation. Technical Report

875 PE 774.095, European Parliament, Policy Department for Citizens’ Rights and Constitutional Af-

876 fairs, 2025. URL [https://www.europarl.europa.eu/thinktank/en/document/IUST_STU\(2025\)774095](https://www.europarl.europa.eu/thinktank/en/document/IUST_STU(2025)774095). Study requested by the Committee on Legal Affairs (JURI).

877

878 Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and Santiago Zanella-

879 Béguelin. Analyzing leakage of personally identifiable information in language models. In 2023

880 *IEEE Symposium on Security and Privacy (SP)*, pp. 346–363. IEEE, 2023.

881

882 Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. In

883 Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th An-*

884 *nual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp.

885 157–165, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/

886 v1/2022.acl-short.18. URL <https://aclanthology.org/2022.acl-short.18/>.

887

888 Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J Zico Kolter. TOFU: A

889 task of fictitious unlearning for LLMs. In *First Conference on Language Modeling*, 2024. URL

890 <https://openreview.net/forum?id=B41hNB0WLo>.

891

892 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.

893 When not to trust language models: Investigating effectiveness of parametric and non-parametric

894 memories. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of*

895 *the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*

896 *Papers)*, pp. 9802–9822, Toronto, Canada, July 2023. Association for Computational Linguis-

897 *tics*. doi: 10.18653/v1/2023.acl-long.546. URL <https://aclanthology.org/2023.acl-long.546/>.

898

899 Matthieu Meeus, Igor Shilov, Shubham Jain, Manuel Faysse, Marek Rei, and Yves-Alexandre

900 de Montjoye. SoK: Membership Inference Attacks on LLMs are Rushing Nowhere (and

901 How to Fix It) . In *2025 IEEE Conference on Secure and Trustworthy Machine Learning*

902 (*SaTML*), pp. 385–401, Los Alamitos, CA, USA, April 2025. IEEE Computer Society. doi:

903 10.1109/SaTML64287.2025.00028. URL <https://doi.ieeecomputersociety.org/10.1109/SaTML64287.2025.00028>.

904

905 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual asso-

906 ciations in GPT. *Advances in Neural Information Processing Systems*, 36, 2022. arXiv:2202.05262.

907

908 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture

909 models, 2016. URL <https://arxiv.org/abs/1609.07843>.

910

911 Yash More, Prakhar Ganesh, and Golnoosh Farnadi. Towards more realistic extraction attacks: An

912 adversarial perspective, 2025. URL <https://arxiv.org/abs/2407.02596>.

913

914 John X. Morris, Chawin Sitawarin, Chuan Guo, Narine Kokhlikyan, G. Edward Suh, Alexander M.

915 Rush, Kamalika Chaudhuri, and Saeed Mahloujifar. How much do language models memorize?,

916 2025. URL <https://arxiv.org/abs/2505.24832>.

917

918 Ali Naseh and Niloofar Mireshghallah. Synthetic data can mislead evaluations: Membership infer-

919 ence as machine text detection, 2025. URL <https://arxiv.org/abs/2501.11786>.

920

921 Joseph P. Near, David Darais, Naomi Lefkowitz, and Gary S. Howarth. Guidelines for evaluating

922 differential privacy guarantees. Technical Report NIST Special Publication 800-226, National

923 Institute of Standards and Technology, 2023. URL <https://doi.org/10.6028/NIST.SP.800-226>.

918 Helen Nissenbaum. Privacy as contextual integrity. *Washington Law Review*, 79(1):119, 2004.
919

920 Nostalgiaist. Interpreting gpt: the logit lens. <https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens>, 2020. LessWrong
921 blog post.
922

923 Yonatan Oren, Nicole Meister, Niladri S. Chatterji, Faisal Ladhak, and Tatsunori Hashimoto. Prov-
924 ing test set contamination in black-box language models. In *The Twelfth International Confer-
925 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=KS8mIvetg2>.
926

927 Ashwinee Panda, Christopher A Choquette-Choo, Zhengming Zhang, Yaoqing Yang, and Prateek
928 Mittal. Teach llms to phish: Stealing private information from language models. *arXiv preprint*
929 *arXiv:2403.00871*, 2024.
930

931 Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek. Yago 4: A reason-able knowl-
932 edge base. In *The Semantic Web: 17th International Conference, ESWC 2020, Heraklion,
933 Crete, Greece, May 31–June 4, 2020, Proceedings*, pp. 583–596, Berlin, Heidelberg, 2020.
934 Springer-Verlag. ISBN 978-3-030-49460-5. doi: 10.1007/978-3-030-49461-2_34. URL https://doi.org/10.1007/978-3-030-49461-2_34.
935

936 Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
937 Alexander Miller. Language models as knowledge bases? In Kentaro Inui, Jing Jiang, Vincent
938 Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Nat-
939 ural Language Processing and the 9th International Joint Conference on Natural Language Pro-
940 cessing (EMNLP-IJCNLP)*, pp. 2463–2473, Hong Kong, China, November 2019. Association for
941 Computational Linguistics. doi: 10.18653/v1/D19-1250. URL <https://aclanthology.org/D19-1250>.
942

943

944 Ildikó Pilán, Pierre Lison, Lilja Øvrelid, Anthi Papadopoulou, David Sánchez, and Montserrat Batet.
945 The text anonymization benchmark (tab): A dedicated corpus and evaluation framework for text
946 anonymization. *Computational Linguistics*, 48(4):1053–1101, 2022.
947

948 Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail
949 Yurochkin. tinybenchmarks: evaluating llms with fewer examples, 2024. URL <https://arxiv.org/abs/2402.14992>.
950

951 Akshara Prabhakar, Thomas L. Griffiths, and R. Thomas McCoy. Deciphering the factors influenc-
952 ing the efficacy of chain-of-thought: Probability, memorization, and noisy reasoning. In Yaser
953 Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Com-
954 putational Linguistics: EMNLP 2024*, pp. 3710–3724, Miami, Florida, USA, November 2024.
955 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.212. URL
956 <https://aclanthology.org/2024.findings-emnlp.212/>.
957

958 USVSN Sai Prashanth, Alvin Deng, Kyle O’Brien, Jyothir S V, Mohammad Aflah Khan, Jaydeep
959 Borkar, Christopher A. Choquette-Choo, Jacob Ray Fuehne, Stella Biderman, Tracy Ke, Kath-
960 erine Lee, and Naomi Saphra. Recite, reconstruct, recollect: Memorization in LMs as a multi-
961 faceted phenomenon. In *The Thirteenth International Conference on Learning Representations*,
962 2025. URL <https://openreview.net/forum?id=3E8YNv1HjU>.
963

964 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
965 toward training trillion parameter models, 2020. URL <https://arxiv.org/abs/1910.02054>.
966

967 Deborah Raji, Emily Denton, Emily M. Bender, Alex Hanna, and Amandalynne
968 Paullada. Ai and the everything in the whole wide world benchmark. In J. Van-
969 schoren and S. Yeung (eds.), *Proceedings of the Neural Information Processing
970 Systems Track on Datasets and Benchmarks*, volume 1, 2021. URL https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper-round2.pdf.
971

972 Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don't know: Unanswerable ques-
 973 tions for SQuAD. In Iryna Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th An-*
 974 *nual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp.
 975 784–789, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
 976 10.18653/v1/P18-2124. URL <https://aclanthology.org/P18-2124/>.

977 Jaechul Roh, Zachary Novack, Yuefeng Peng, Niloofar Mireshghallah, Taylor Berg-Kirkpatrick, and
 978 Amir Houmansadr. Bob's confetti: Phonetic memorization attacks in music and video generation,
 979 2025. URL <https://arxiv.org/abs/2507.17937>.

980 Matthew Sag. Copyright safety for generative ai. *Houston Law Review*, 61(2), 2023. doi: 10.2139/
 981 ssrn.4438593. URL <https://ssrn.com/abstract=4438593>.

982 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an adver-
 983 sarial winograd schema challenge at scale. *Commun. ACM*, 64(9):99–106, August 2021. ISSN
 984 0001-0782. doi: 10.1145/3474381. URL <https://doi.org/10.1145/3474381>.

985 Ali Satvaty, Suzan Verberne, and Fatih Turkmen. Undesirable memorization in large language
 986 models: A survey, 2025. URL <https://arxiv.org/abs/2410.02650>.

987 Avi Schwarzschild, Zhili Feng, Pratyush Maini, Zachary C. Lipton, and J. Zico Kolter. Re-
 988 thinking llm memorization through the lens of adversarial compression. In A. Globerson,
 989 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in
 990 Neural Information Processing Systems*, volume 37, pp. 56244–56267. Curran Associates, Inc.,
 991 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/66453d578afae006252d2ea090e151c9-Paper-Conference.pdf.

992 Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
 993 Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. In
 994 *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=zWqr3MQuNs>.

995 Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
 996 Liu, Luke Zettlemoyer, Noah A. Smith, and Chiyuan Zhang. MUSE: Machine unlearning six-
 997 way evaluation for language models. In *The Thirteenth International Conference on Learning
 998 Representations*, 2025. URL <https://openreview.net/forum?id=TArmA033BU>.

999 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 1000 Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
 1001 allelism. *arXiv preprint arXiv:1909.08053*, 2019.

1002 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 1003 tacks against machine learning models. In *2017 IEEE Symposium on Security and Privacy (SP)*,
 1004 pp. 3–18, 2017. doi: 10.1109/SP.2017.41.

1005 Aaditya K. Singh, Muhammed Yusuf Kocyigit, Andrew Poulton, David Esiobu, Maria Lomeli,
 1006 Gergely Szilvassy, and Dieuwke Hupkes. Evaluation data contamination in llms: how do we
 1007 measure it and (when) does it matter? *ArXiv*, abs/2411.03923, 2024. URL <https://api.semanticscholar.org/CorpusID:273850342>.

1008 Daniel J. Solove and Woodrow Hartzog. The great scrape: The clash between scraping and pri-
 1009 vacy. *SSRN Electronic Journal*, 2024. URL <https://ssrn.com/abstract=4884485>.
 1010 Forthcoming in *California Law Review* (2025); posted July 3, 2024.

1011 State of California. California consumer privacy act of 2018. <https://oag.ca.gov/privacy/ccpa>, 2018. Cal. Civ. Code §§ 1798.100–1798.199.

1012 Swiss AI. Apertus: Democratizing open and compliant llms for global language en-
 1013 vironments. Technical report, 2024. URL https://github.com/swiss-ai/apertus-tech-report/blob/main/Apertus_Tech_Report.pdf. Apertus v0.1
 1014 Technical Report.

1026 Davide Testa, Emmanuele Chersoni, and Alessandro Lenci. We understand elliptical sentences,
 1027 and language models should too: A new dataset for studying ellipsis and its interaction with
 1028 thematic fit. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings*
 1029 *of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 1030 *Papers)*, pp. 3340–3353, Toronto, Canada, July 2023. Association for Computational Linguis-
 1031 *tics*. doi: 10.18653/v1/2023.acl-long.188. URL <https://aclanthology.org/2023.acl-long.188/>.

1032

1033 Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
 1034 without overfitting: Analyzing the training dynamics of large language models. *Advances in*
 1035 *Neural Information Processing Systems*, 35:38274–38290, 2022.

1036

1037 Xiaoyu Tong, Rochelle Choenni, Martha Lewis, and Ekaterina Shutova. Metaphor understanding
 1038 challenge dataset for LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Pro-
 1039 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume*
 1040 *1: Long Papers)*, pp. 3517–3536, Bangkok, Thailand, August 2024. Association for Compu-
 1041 *tational Linguistics*. doi: 10.18653/v1/2024.acl-long.193. URL <https://aclanthology.org/2024.acl-long.193/>.

1042

1043 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 1044 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 1045 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 1046 language models, 2023. URL <https://arxiv.org/abs/2302.13971>.

1047

1048 U.S. Copyright Office. Copyright and artificial intelligence, part 3: Generative ai training. Tech-
 1049 nical report, U.S. Copyright Office, 2025. URL <https://www.copyright.gov/ai/>. Pre-
 1050 Publication Version.

1051

1052 Xinyi Wang, Antonis Antoniades, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang,
 1053 and William Yang Wang. Generalization v.s. memorization: Tracing language models’ capabili-
 1054 ties back to pretraining data. In *The Thirteenth International Conference on Learning Represen-
 1055 tations*, 2025. URL <https://openreview.net/forum?id=IQxBDLmVpT>.

1056

1057 Boyi Wei, Weijia Shi, Yangsibo Huang, Noah A Smith, Chiyuan Zhang, Luke Zettlemoyer, Kai
 1058 Li, and Peter Henderson. Evaluating copyright takedown methods for language models. In
 1059 A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
 1060 *Advances in Neural Information Processing Systems*, volume 37, pp. 139114–139150. Curran
 1061 Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/faed4276b52ef762879db4142655c699-Paper-Datasets_and_Benchmarks_Track.pdf.

1062

1063 Johnny Tian-Zheng Wei, Maggie Wang, Ameya Godbole, Jonathan Choi, and Robin Jia. Interro-
 1064 gating llm design under copyright law. In *Proceedings of the 2025 ACM Conference on Fairness,
 1065 Accountability, and Transparency*, FAccT ’25, pp. 3030–3045, New York, NY, USA, 2025. Asso-
 1066 ciation for Computing Machinery. ISBN 9798400714825. doi: 10.1145/3715275.3732193. URL
 1067 <https://doi.org/10.1145/3715275.3732193>.

1068

1069 Puning Yang, Qizhou Wang, Zhuo Huang, Tongliang Liu, Chengqi Zhang, and Bo Han. Exploring
 1070 criteria of loss reweighting to enhance llm unlearning, 2025. URL <https://arxiv.org/abs/2505.11953>.

1071

1072 Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E. Gonzalez, and Ion Stoica. Rethinking
 1073 benchmark and contamination for language models with rephrased samples, 2023. URL <https://arxiv.org/abs/2311.04850>.

1074

1075 Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
 1076 ing: Analyzing the connection to overfitting. In *2018 IEEE 31st Computer Security Foundations
 1077 Symposium (CSF)*, pp. 268–282, 2018. doi: 10.1109/CSF.2018.00027.

1078

1079 Hanna Yukhymenko, Robin Staab, Mark Vero, and Martin Vechev. A synthetic dataset for personal
 1080 attribute inference. In *Proceedings of the 38th International Conference on Neural Infor-
 1081 mation Processing Systems*, NIPS ’24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN
 1082 9798331314385.

1080 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
 1081 machine really finish your sentence? In Anna Korhonen, David Traum, and Lluís Màrquez
 1082 (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*,
 1083 pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
 1084 18653/v1/P19-1472. URL <https://aclanthology.org/P19-1472/>.

1085 Shenglai Zeng, Yaxin Li, Jie Ren, Yiding Liu, Han Xu, Pengfei He, Yue Xing, Shuaiqiang Wang,
 1086 Jiliang Tang, and Dawei Yin. Exploring memorization in fine-tuned language models. In *Pro-
 1087 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 1088 1: Long Papers)*, pp. 3917–3948, 2024.

1089 Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and Nicholas
 1090 Carlini. Counterfactual memorization in neural language models. In *Proceedings of the 37th
 1091 International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY,
 1092 USA, 2023. Curran Associates Inc.

1093 Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Frank
 1094 Yang, and Hai Li. Min-k%++: Improved baseline for pre-training data detection from large
 1095 language models. In *The Thirteenth International Conference on Learning Representations*, 2025.
 1096 URL <https://openreview.net/forum?id=ZGkfoufDaU>.

1097 Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston.
 1098 Personalizing dialogue agents: I have a dog, do you have pets too? In Iryna Gurevych and
 1099 Yusuke Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Association for Com-
 1100 putational Linguistics (Volume 1: Long Papers)*, pp. 2204–2213, Melbourne, Australia, July
 1101 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1205. URL <https://aclanthology.org/P18-1205/>.

1102 Yuan Zhang, Jason Baldridge, and Luheng He. PAWS: Paraphrase adversaries from word scram-
 1103 bling. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Con-
 1104 ference of the North American Chapter of the Association for Computational Linguistics: Human
 1105 Language Technologies, Volume 1 (Long and Short Papers)*, pp. 1298–1308, Minneapolis, Min-
 1106 nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1131. URL
 1107 <https://aclanthology.org/N19-1131/>.

1108 Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, Rowan
 1109 Wang, Zico Kolter, Matt Fredrikson, and Dan Hendrycks. Improving alignment and robustness
 1110 with circuit breakers, 2024. URL <https://arxiv.org/abs/2406.04313>.

1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134

1135

1136

1137

Appendix

1138

1139

1140

Table of Contents

1141

A Perturbations	22
A.1 Relevant Background in Law and Policy	22
A.2 List of Datasets	23
A.3 Inserting Perturbations	25
A.4 Details of Decontamination	25
A.5 Data Preparation for Paraphrase Runs	26
B Training	27
B.1 Setup	27
B.2 GPU Hours	27
C Model	27
C.1 Architecture Design and Configs	27
C.2 More General Evaluations	27
D Domain-specific results	28
D.1 Copyright-specific Results	28
D.2 Privacy-specific Results	30
D.3 Test set Contamination Results	34
E Additional Results	36
E.1 Timing and Ordering	36
E.2 Paraphrased Runs	36
E.3 Architecture Runs	37
F Additional MIA Results	37
G Full unlearning results and configurations	37
G.1 Grid Search Configurations	37
G.2 Full Unlearning Results	39
G.3 Full ROC plots	46
H Additional Plots	48

1174

1175

1176

A PERTURBATIONS

1177

1178

A.1 RELEVANT BACKGROUND IN LAW AND POLICY

1179

1180

1181

1182

1183

1184

1185

1186

1187

Copyright. Training LLMs presents new challenges for copyright law (Franceschelli & Musolesi, 2022; Henderson et al., 2023; Lee et al., 2024). LLM training requires vast amounts of textual data, much of which is collected from the web and protected by copyright (Longpre et al., 2024). In the U.S., whether training LLMs is a *fair use* of copyrighted material remains uncertain and its legality will be determined by ongoing litigation (Lee, 2024; U.S. Copyright Office, 2025). In the EU, the text and data mining exceptions need further clarification for LLM training as well (e.g. on how to respect user opt-out requests, Lucchi, 2025). On the question of whether training LLMs on copyrighted material should be allowed, copyright law will need to avoid blunt “yes” or “no” answers and make nuanced decisions about the technology to balance innovation and authors’ rights.

1188 More nuanced legal decisions could be made on the basis of LLM memorization. On fair use,
 1189 Lemley & Casey (2020) has previously argued for *fair learning* and that AI training on copyright
 1190 materials could be fair if the models mainly learn non-expressive elements from copyrighted mate-
 1191 rial. LLMs are capable of memorizing some expressive elements and even reproducing training data
 1192 verbatim, depending on how it was trained (Cooper & Grimmelmann, 2025). Understanding how
 1193 training decisions affect memorization and adopting “fair” training techniques will be important for
 1194 companies to address copyright risks (Sag, 2023; Wei et al., 2025). In the longer term, standardizing
 1195 what training practices constitutes fair learning can guide the development of safe harbors, which
 1196 provide legal protections from liability if certain precautions are taken (as proposed in Wei et al.,
 1197 2024).

1198 **Privacy.** Web-scale datasets will include personal information, and training LLMs on this data
 1199 raises privacy concerns (Solove & Hartzog, 2024). Even when personal information is public, people
 1200 maintain expectations of privacy over their information when it is repurposed (Nissenbaum, 2004;
 1201 Brown et al., 2022). In the EU, the General Data Protection Regulation (GDPR) grants individuals
 1202 the rights to access, rectify, and erase their personal data (European Union, 2016). Processing pub-
 1203 licly available data is not exempt from the GDPR, but this processing is still allowed if certain legal
 1204 bases are satisfied, such as a *legitimate interest* in the data Kamara & De Hert (2018). While the
 1205 U.S. lacks a comprehensive federal privacy law, sector-specific statutes and state-level frameworks
 1206 (e.g., the California Consumer Privacy Act, State of California, 2018) grant similar rights.

1207 Even where privacy rights are formally recognized, defining rectification or erasure of personal
 1208 information from LLMs is not straightforward and technically difficult (Cooper et al., 2024). Ideally,
 1209 sensitive personal data would not be used train models (Hong et al., 2025). In practice, privacy law
 1210 balances commercial interests against privacy rights, and hard decisions are made when there are
 1211 no good technical options (e.g., abandoning an algorithm in extreme cases Johnson et al., 2024).
 1212 Better technical tradeoffs motivates areas of research like differential privacy Near et al. (2023),
 1213 and understanding LLM memorization enables better design of unlearning and editing methods
 1214 (Bourtoule et al., 2021; Meng et al., 2022), which could expand the set of feasible regulatory options.

1215 **Test sets.** The validity of LLM evaluation results can be compromised if test sets are made avail-
 1216 able online and included in the training corpus (Jacovi et al., 2023). Models may appear to perform
 1217 better on test sets not because they learn to generalize, but because they appeared in training and
 1218 were memorized (Magar & Schwartz, 2022). The U.S. Federal Trade Commission enforces against
 1219 unfair or deceptive practices under its consumer protection authority and has recently pursued cases
 1220 involving deceptive AI claims (Federal Trade Commission, 2024). The FTC has focused on egre-
 1221 gious scams and the scientific issues such as benchmark contamination are likely out of scope.
 1222 However, benchmarks are scientifically important as they set the direction of research and are used
 1223 as indicators of the field’s progress (although their construct validity is often criticized, see Etha-
 1224 yarajh & Jurafsky, 2020; Raji et al., 2021). The study of LLM memorization can enable methods
 1225 that detect contamination or measure performance in the presence of contamination.

1226 A.2 LIST OF DATASETS

1228 Passages

- 1229 • **Gutenberg Popular** are passages sampled from the popular books from the Gutenberg corpus
 1230 (Gerlach & Font-Clos, 2018). Due to studies like Kirchenbauer et al. (2024) which show pretrain-
 1231 ing data density affects memorization, we stratify two Gutenberg splits based on download counts.
 1232 From the most popular books (download counts $>5k$), we sample 1000-character passages.
- 1233 • **Gutenberg Unpopular** are sampled passages from the unpopular books from the Gutenberg cor-
 1234 pus (Gerlach & Font-Clos, 2018). From the least popular books with download counts <100 and
 1235 at least 30k words long, we sample 1000-word passages.
- 1236 • **Wikipedia** are passages sampled from our crawl of Wikipedia articles. We begin our crawl at the
 1237 Wikipedia pages “2023” and “2024”, and to reduce the chances of contamination we only visit
 1238 pages that were written after the DCLM cutoff date. After filtering out articles without text (e.g.
 1239 lists), we end up with 1500 articles. We sample 1000 character passages without replacement
 1240 from these articles, sampling more passages if the document is longer.

1241 Paraphrases

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
Table 2: **Number of duplicates inserted per perturbation dataset.**

	0	1	4	16	64	256
Copyright						
Gutenberg Popular	400	400		200		80
Gutenberg Unpopular	4000	1428	1428	714	286	143
Wikipedia	759	759	759	379	152	76
MRPC	1950	696	696	348	139	70
PAWS	3538	1263	1263	632	253	126
Privacy						
YAGO	2500	893	893	446	179	89
ECtHR	469	469		235		94
PersonaChat	2000	714	714	357	143	72
Testset Contamination						
PopQA	4000	1429	1429	714	286	143
WinoGrande Infill	4000	1429	1429	714	286	143
WinoGrande-MCQ	4000	1429	1429	714	286	143
MMLU	4000	1429	1429	714	286	143
HellaSwag	4000	1429	1429	714	286	143
Piqa	4000	1429	1429	714	286	143
MUNCH	269	269		135		54
Ellie	212	212		106		43

- **MRPC** (Dolan & Brockett, 2005) are paraphrases where the source sentences are drawn from news articles. For each pair of paraphrased sentences, we randomly select one to be a part of the perturbation set. During evaluation, we measure whether the models demonstrate a consistent preference for the inserted paraphrase.
- **PAWS** (Zhang et al., 2019) is a dataset of paraphrases generated by rule-based word swaps and backtranslation. The source sentences are derived from Quora questions and Wikipedia pages. Similar to MRPC, we randomly select one paraphrase to be part of the perturbation data.

Biographies

- **YAGO**: We synthetically generate biographies of fictional people using probability distributions inferred from YAGO (Pellissier Tanon et al., 2020), a real-world knowledge graph. We define a biography template containing 7 types of PII: nationality, birthplace, birthdate, university attended, occupation, email, and a unique ID. To create the biographies using the realistic distributions of attributes from YAGO, we sample a nationality and then successively sample each PII conditioned on the previous set. We will release scripts for generating the biographies and the resulting perturbation data. Through these biographies, we can measure memorization on different types of PII, some of which are correlated (e.g, can an LLM infer a person’s birthplace given their nationality?).
- **ECtHR** (Pilán et al., 2022) dataset is a text anonymization benchmark based on a collection from European court records annotated to label personally identifiable information. We use a subset of the sections in the record to create a biography for the applicant (the person who is appearing before the court) and use this biography in our perturbation set. In Hubble, this perturbation set serves as a case study for PII reconstruction based on the memorization of real-world biographies.

Chats

- **Personachat** (Zhang et al., 2018) is a dataset where two annotators are asked to engage in a conversation based on the personas assigned to them. We edit the chat logs in the dataset and replace the username of the first speaker with the generic name `chatbot`. We treat the assigned persona of the second speaker as the target private information to be inferred. We insert the modified chat logs as perturbation data. To evaluate indirect PII leakage, we measure whether the models can associate the usernames (seen in the memorized chats) with the private personas (never explicitly revealed to the Hubble models during training).

1296
1297**Standard test sets**1298
1299
1300
1301

- **PopQA** (Mallen et al., 2023) is an open-ended question answering dataset that evaluates the world knowledge of a model. As perturbation data, we insert questions followed by the answer. The standard evaluation compares the generated answer to the target answer for exact match / F1 word overlap.
- **Winogrande-Infill** perturbation set is a subset of WinoGrande (Sakaguchi et al., 2021), a binary multiple choice pronoun resolution task where the model is given a context and asked to determine which entity a pronoun refers to. Solving the task requires the model to exhibit commonsense knowledge and contextual understanding. The examples in WinoGrande are given as a sentence with a blank and two choices. We insert the sentence with the blank filled in with the correct answer. Examples in WinoGrande are designed to have minimal pairs; we ensure that only one example from each pair is used in the perturbation data.
- **Winogrande-MCQ** is a second perturbation set also constructed from WinoGrande (Sakaguchi et al., 2021). Instead of posing the problem in the standard format, we instead frame the problem as an MCQ problem by using the sentence with the blank and the two choices as a query. We insert the query followed by the correct answer in the corpus. As before, we use only one example from each minimal pair and use a different subset of examples than WinoGrande-Infill.
- **MMLU** (Hendrycks et al., 2021) is a 4-way multiple choice question answering dataset that covers 57 different domains and tasks, evaluating both world knowledge and problem-solving capabilities. To create the perturbation data, we format each example using the standard evaluation prompt and append the answer to it.
- **HellaSwag** (Zellers et al., 2019) is a 4-way multiple choice commonsense reasoning dataset, where the model is required to understand implicit context and common knowledge in order to correctly select the continuation to a context. Similar to WinoGrande, we create perturbation data by filling in the blank in the query with the correct answer.
- **PIQA** (Bisk et al., 2020) is a binary multiple choice question answering dataset that requires the model to use physical commonsense reasoning to answer correctly. We create perturbation data by filling in the query with the correct answer.

1302
1303
1304
1305
1306
1307
1308**New test sets**1309
1310
1311
1312
1313

- **ELLie** (Testa et al., 2023) tests the language model’s understanding of ellipsis. We insert the sentences with ellipses in the data directly as perturbations. For evaluation, we use the GPT prompt format defined for each example.
- **MUNCH** (Tong et al., 2024) tests a language model’s ability to differentiate between apt and inapt usage of synonyms in a sentence. For each example, we choose one sentence with “apt” usage of the word for insertion in the corpus. We choose one sentence with “inapt” synonym usage and retain the pair of sentences for evaluation.

1314
1315
1316
1317**A.3 INSERTING PERTURBATIONS**1318
1319
1320
1321
1322
1323
1324

A visualization of the insertion process is in Figure 4. For each perturbation type, we sought to (1) insert different levels of duplications to induce a range of memorization and (2) duplicate enough examples at each level to achieve precise memorization estimates for that level. Based on initial experiment of 1B models, we find the range of duplications $\{0, 1, 4, 16, 64, 256\}$ to induce a range of memorization. For smaller datasets, we only duplicate powers of 16, up to 256. For the 0 and 1 duplicate levels, we aimed to insert more than 1000 examples, which yields small error bars. At the highest duplication level (256), we typically insert only 1/10th of examples at the lowest duplication level. When an example is highly duplicated and strongly memorized, there is typically low entropy in the model predictions so the resulting error bars over less examples are still small.

1325
1326**A.4 DETAILS OF DECONTAMINATION**1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

To ensure reliable duplication counts in our analysis, we decontaminate the documents and perturbation data in two phases, depending on the length of the perturbations. For *longer perturbations* (more than 10 tokens), we decontaminate the training data. We build an Infini-gram index (Liu et al., 2024a), enabling fast queries for exact matches over all training documents. Here, we query

Figure 4: Visualization of inserting a perturbation. First, we sample a training sequence from the standard model to be perturbed. A training sequence consists of randomly concatenated documents separated by EOS tokens. To perturb it, we sample a gap (denoted in red) between the documents and splice the perturbation into a training sequence (between two existing documents). Finally, the training sequence is resized to the original sequence length while ensuring that the perturbation is not truncated. Each perturbation is surrounded by EOS tags and matches other documents. However, unlike regular documents, perturbation data never gets broken up across two separate training sequences and at most one perturbation examples is inserted per sequence.

Table 3: **Percentage of training data modified by duplicated perturbation data.** These calculations depend on the selected sequence length of 2048 tokens and training batch size of 1024 sequences.

Pre-Training Corpus Size	% Tokens Modified	% Sequences Modified	Avg. Perturbations per Batch
100B	0.08%	1.67%	17
500B	0.016%	0.34%	3.4

and remove documents with more than 20-gram overlaps (similar to Brown et al., 2020). The threshold is chosen conservatively to avoid spurious matches and identify duplicated test sets. For *short perturbations* (fewer than 20 tokens), removing matching training documents risks discarding too many documents. Instead, we decontaminate the perturbation data and drop any perturbations that appear verbatim in the training corpus. We validate this two-step process by monitoring the number of documents discarded and manually verifying the matches found.

A.5 DATA PREPARATION FOR PARAPHRASE RUNS

We construct paraphrased variants of the YAGO biographies and MMLU test set with `gpt-4.1-mini`. Unless otherwise noted, generation uses `temperature=1` and `top_p=1`. For each original perturbation example to be inserted, we obtain as many paraphrases as its required duplication count.

MMLU paraphrases. We follow the paraphrasing instruction of Yang et al. (2023). When a paraphrase query is declined by `gpt-4.1-mini` API’s safety filter, we use `gemini-2.5-flash-lite` with the same parameters.

YAGO paraphrases. We adopt the diverse-style watermarking generation instructions from Cui et al. (2025). Each paraphrase is checked with a string-matching validator to ensure all biographical attributes are preserved. A paraphrase is accepted only if every attribute appears. We follow the procedure until we obtain the required number of valid paraphrases.

1404 **B TRAINING**
14051406 **B.1 SETUP**
14071408 **Computing infrastructure.** Our experiments were conducted on the NVIDIA DGX Cloud, using
1409 approximately 200,000 A100 GPU hours. We were allocated a dedicated eight-node cluster, with
1410 each node equipped with eight 80GB A100 SXM4 GPUs interconnected via NVLink for high-
1411 bandwidth intra-node communication. Each GPU was paired with its own NVIDIA ConnectX-6
1412 network interface card, enabling 200 Gb/s RDMA-capable internode communication per GPU. The
1413 cluster was backed by 80TB of shared Lustre storage. Initial experiments were conducted on a
1414 smaller 2-node (16 GPU) cluster over a three-week period.
14151416 **Training setup.** Models are trained with GPT-NeoX (Andonian et al., 2023), a pre-training library
1417 based on Megatron-LM (Shoeybi et al., 2019) augmented with DeepSpeed and other optimization
1418 techniques. All models use a global batch size of 1024 with sequence length 2048. Training begins
1419 with a learning rate of 4e-4, decays to a minimum of 4e-5, and is annealed according to a cosine
1420 schedule with a warmup fraction of 0.01 for 500B-token runs and 0.05 for 100B-token runs. The
1421 Adam optimizer was set with β values of 0.9 and 0.95 and with $\epsilon = 1e-10$. Gradient clipping is
1422 set to 1.0 and weight decay to 0.1. Stage 1 ZeRO optimization (Rajbhandari et al., 2020) is enabled
1423 during training. Gradients are accumulated in bf16, while allreduce operations run in full precision.
1424 Further details are listed in the config file in Appendix C. In total, 500B-token models experience
1425 238,500 gradient updates, and 100B-token models experience 48,000 updates.
14261427 **B.2 GPU HOURS**
14281429 With our final hardware and software setup, we train the 1B scale models on 100B tokens in **1.13k**
1430 **GPU-hours** (approx. 35.5 hrs in wall clock time using 32 GPUs). We train the 8B-scale models on
1431 100B tokens in **7.6k GPU-hours** (approx. 119 hrs in wall clock time using 64 GPUs).
14321433 **C MODEL**
14341435 **C.1 ARCHITECTURE DESIGN AND CONFIGS**
14361437 The Hubble models are based on the Llama 3 architecture (Grattafiori et al., 2024). Specifically, the
1438 1B parameter models are based on the Llama-3.2-1B architecture, and the 8B models are based on
1439 the Llama-3.1-8B. The strongest motivating factor for this choice was the in-built support for the
1440 architecture in the GPT-NeoX for training, and Huggingface Transformers for model release and
1441 evaluation. We list the model hyperparameters in Table 4.
14421443 **C.2 MORE GENERAL EVALUATIONS**
14441445 We evaluate the general capabilities of our trained models using two evaluation suites: Pythia and
1446 DCLM.
14471448 We report zero-shot and 5-shot performance of the (standard) Hubble models on the suite of tasks
1449 used by the Pythia team (Biderman et al., 2023) in Tables 5 and 6. These results establish that the
1450 Hubble models achieve competitive performance to other open-source and open-weight models with
comparable training compute.
14511452 Additionally, we compare the Hubble models to other models trained specifically on the DCLM
1453 corpus. We run DCLM v1 evaluations using the official competition repository (Li et al., 2024a) and
1454 report those results in Table 7. The competition organizers release a pool of high-scoring documents
1455 (4T tokens) based on their automated quality scoring model as `dclm-baseline-1.0`. They use
1456 the subset of documents with the *highest* scores to train their official DCLM-BASELINE models.
1457 Unlike the competition organizers, we used a random subset of the pool as our base corpus. Thus,
1458 while our models do not reach the highest score on the leaderboard, they are comparable to other
1459 baselines such as FineWeb-edu.
1460

1458
1459
1460 **Table 4: Hubble model configurations.**
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

	Hubble 1B	Hubble 8B
Dimension	2048	4096
Num Heads		32
Num Layers	16	36
MLP Dimension	8192	14336
Layer Norm		RMSNorm
Positional Embeddings		RoPE
Seq Length		2048
Attention Variant		GQA
Num KV Heads		8
Biases		
Block Type		Sequential
Activation		SwiGLU
Batch size (instances)		1024
Batch size (tokens)		~2M
Weight Tying		No
Warmup Ratio	5% for 100B tokens, 1% for 500B tokens	
Peak LR	$4.0E - 04$	
Minimum LR	$4.0E - 05$	
Weight Decay	0.1	
Beta1	0.9	
Beta2	0.95	
Epsilon	$1.0E - 08$	
LR Schedule	cosine	
Gradient clipping	1.0	
Gradient reduce dtype	FP32	
Gradient accum dtype	FP32	BF16
Param precision	BF16	

D DOMAIN-SPECIFIC RESULTS

D.1 COPYRIGHT-SPECIFIC RESULTS

We report additional evaluations on the **Passages** sub-domain in Figure 5 and **Paraphrases** sub-domain in Figure 6. For Passages, beyond the loss-based evaluations in the main paper, we assess verbatim memorization by conditioning on the first 50 tokens and comparing the generated continuation (first 100 tokens) to the original passage using exact match and Rouge-L. For Paraphrase evaluations, we measure accuracy based on loss-based choice, i.e., we measure the likelihood assigned by the model to the two sentences in a pair and check if the inserted paraphrase has a higher likelihood. Results are reported with and without length-based normalization of the log-likelihood; we find that normalization has little effect on the overall scaling and dilution trends.

The strength of memorization of passages is source dependent. Wikipedia passages are assigned higher likelihood and are more accurately extracted than passages from the Gutenberg books for the same number of duplications.

Popular and unpopular books are memorized similarly at the 1B scale with a minor preference for the popular books under the 8B model. We had expected that popular books from Gutenberg would be preferentially memorized (with higher likelihood and higher extraction accuracy) for the same number of duplicates compared with the unpopular books. This intuition was based on the data density hypothesis (Kirchenbauer et al., 2024); the content of popular books is more likely to be discussed in web text than unpopular books. There is no noticeable difference at the 1B parameter scale. Even at the 8B parameter scale, there is a very small increase in the generative extraction of passages from popular books compared to unpopular books. The 8B param model with 100B tokens obtains a ROUGE-L of 30% on popular books compared to 28% on unpopular books duplicated 16

Figure 5: **Core results on Copyright Passages.** The first row evaluates memorization with the length-normalized log-likelihood of the models on the passages. The lower two rows measure the accuracy of verbatim generation, where the models are prompted to generate a 100-token continuation given a 50-token prefix.

Figure 6: **Core results on Copyright Paraphrases.** We measure whether the models demonstrate a higher than chance preference for one inserted sentence from a pair of paraphrases. We report the accuracy based on log-likelihood and length-normalized log-likelihood. Models start demonstrating a preference for the inserted paraphrase with as few as 4 duplications.

1566 Table 5: **Zero-shot benchmark results using the Pythia suite.** We report results for models of
 1567 comparable size and training token budgets ($\leq 500B$) and also include OLMo and Llama models.
 1568 We use the same evaluations as the Pythia suite and run them through EleutherAI’s Language Model
 1569 Evaluation Harness (Gao et al., 2023).

1570 *Token Count is based on numbers reported in the corresponding model’s release notes and may use different
 1571 tokenizers

1572 #Winogrande and PIQA train sets are inserted in the perturbed HUBLE corpus.

Model	Token Count*	ARC Challenge	ARC Easy	LogiQA	Lambada (OpenAI)	PIQA [#]	SciQ	Wino-Grande [#]	WSC
1B-Scale									
Hubble-1B	500B								
-Standard		0.37	0.66	0.27	5.45	0.76	0.85	0.62	0.38
-Perturbed		0.37	0.67	0.27	5.50	0.77	0.87	0.58	0.58
Hubble-1B	100B								
-Standard		0.33	0.61	0.28	6.84	0.73	0.84	0.58	0.63
-Perturbed		0.33	0.60	0.28	7.00	0.72	0.84	0.55	0.51
Pythia 1B	300B	0.27	0.49	0.30	7.92	0.69	0.76	0.53	0.37
Pythia 1.4B	300B	0.28	0.54	0.28	6.08	0.71	0.79	0.57	0.37
Bloom 1.1B	366B	0.26	0.45	0.26	17.28	0.67	0.74	0.55	0.37
Bloom 1.7B	366B	0.27	0.48	0.28	12.59	0.70	0.77	0.57	0.37
OPT 1.3B	180B	0.30	0.51	0.27	6.64	0.72	0.77	0.60	0.38
OLMo-2-1B	4T	0.42	0.74	0.30	5.19	0.76	0.95	0.65	0.41
Llama-3.2-1B	~9T	0.37	0.60	0.30	5.74	0.74	0.89	0.60	0.35
~ 8B-Scale									
Hubble-8B	500B								
-Standard		0.52	0.80	0.31	3.23	0.80	0.94	0.72	0.36
-Perturbed		0.51	0.78	0.31	3.23	0.79	0.94	0.73	0.42
Hubble-8B	100B								
-Standard		0.45	0.74	0.29	3.95	0.79	0.92	0.66	0.56
-Perturbed		0.43	0.70	0.27	3.94	0.76	0.93	0.61	0.37
Pythia 6.9B	300B	0.35	0.61	0.30	4.45	0.77	0.84	0.60	0.37
OPT 6.7B	180B	0.35	0.60	0.29	4.25	0.76	0.85	0.65	0.42
OLMo-2-7B	4T	0.57	0.83	0.31	3.37	0.81	0.96	0.75	0.67
Llama-3.1-8B	15T+	0.53	0.81	0.31	3.13	0.81	0.95	0.73	0.63

1600
 1601 times. The 8B parameter models trained on 100B and 500B tokens both assign a slightly higher
 1602 likelihood to passages from the popular books.

1604 D.2 PRIVACY-SPECIFIC RESULTS

1606 D.2.1 BIOGRAPHIES - DIRECT PII LEAKAGE

1608 For the Biography sub-domain, we not only care about the memorization of the biographies (evaluated
 1609 through loss as with copyright domain) but also the ease of reconstruction of sensitive infor-
 1610 mation about the persons. For direct memorization, we report the loss assigned by the model to the
 1611 inserted biography. To evaluate the ease of PII reconstruction, we instantiate attacks with varying
 1612 strength. **Weak attacks** assume that the attacker already knows PII about the person of interest
 1613 and is seeking a few missing facts. **Strong attacks** assume that the attacker knows less sensitive
 1614 information about the person of interest, with our strongest attacks assuming that the attacker only
 1615 knows the name. We instantiate **loss-based choice attacks** where the attacker has narrowed down
 1616 the possible values of the missing PII. We frame the attack as MCQ problems and check which
 1617 candidate answer has the highest likelihood when plugged into the blank. When the attacker has no
 1618 way to deduce the set of candidate answers, they have to use **generative attacks** where the model is
 1619 prompted to fill in the blank. We evaluate generative attack with either *Word Recall*, which scores if
 the answer entity occurs anywhere in the generated response, or *Prefix Match*, which scores whether
 the model generation starts with the answer entity. Table 8 lists the attacks that we instantiate. The

1620 Table 6: **Five-shot benchmark results using the Pythia suite.** Five-shot benchmark results on
 1621 models of comparable size and training token budgets ($\leq 500B$) and also include OLMo and Llama
 1622 models. We use the same evaluations as the Pythia suite and run them through EleutherAI’s Lan-
 1623 guage Model Evaluation Harness (Gao et al., 2023).

1624 *Token Count is based on numbers reported in the corresponding model’s release notes and may use
 1625 different tokenizers.

1626 #Winogrande and PIQA train sets are inserted in the perturbed HUBLE corpus.

Model	Token Count*	ARC Challenge	ARC Easy	LogiQA	Lambada (OpenAI)	PIQA [#]	SciQ	Wino -grande [#]	WSC
1B-Scale									
Hubble-1B	500B								
-Standard		0.40	0.72	0.25	7.43	0.76	0.95	0.63	0.41
-Perturbed		0.40	0.72	0.25	7.23	0.76	0.94	0.63	0.45
Hubble-1B	100B								
-Standard		0.36	0.69	0.24	9.31	0.74	0.92	0.59	0.43
-Perturbed		0.36	0.67	0.25	8.95	0.75	0.92	0.59	0.38
Pythia 1B	300B	0.28	0.57	0.25	10.86	0.70	0.92	0.53	0.43
Pythia 1.4B	300B	0.31	0.62	0.27	8.03	0.71	0.92	0.58	0.57
Bloom 1.1B	366B	0.28	0.53	0.25	24.84	0.68	0.90	0.53	0.37
Bloom 1.7B	366B	0.29	0.57	0.28	15.40	0.69	0.92	0.58	0.39
OPT 1.3B	180B	0.30	0.60	0.26	8.01	0.71	0.92	0.59	0.57
OLMo-2-1B	4T	0.46	0.76	0.27	6.26	0.77	0.96	0.66	0.45
Llama-3.2-1B	~9T	0.38	0.70	0.27	7.09	0.76	0.95	0.62	0.43
~ 8B-Scale									
Hubble-8B	500B								
-Standard		0.58	0.84	0.32	3.71	0.82	0.98	0.77	0.56
-Perturbed		0.57	0.83	0.30	3.74	0.82	0.97	0.79	0.58
Hubble-8B	100B								
-Standard		0.47	0.78	0.27	4.61	0.79	0.96	0.67	0.39
-Perturbed		0.48	0.78	0.28	4.66	0.80	0.96	0.71	0.47
Pythia 6.9B	300B	0.39	0.71	0.28	5.65	0.77	0.95	0.64	0.51
OPT 6.7B	180B	0.37	0.70	0.28	4.98	0.77	0.94	0.66	0.54
OLMo-2-7B	4T	0.63	0.85	0.34	3.90	0.81	0.97	0.77	0.78
Llama-3.1-8B	15T+	0.58	0.85	0.33	3.93	0.82	0.98	0.77	0.63

1656 synthetic YAGO biographies allow us to instantiate each of the attacks listed in the table. We can
 1657 only instantiate the *full prefix, generative* attack for ECtHR since the entity types are not clearly
 1658 defined (e.g., dates can refer to birth dates or event dates) and not all entity types are always present
 1659 in the biography. Figures 7 and 8 report attack success rates on ECtHR and YAGO perturbation
 1660 sets, respectively. Figure 9 provides a breakdown by PII type for reconstruction attacks on YAGO
 1661 biographies (rows are arranged in the order that the PII type occurs in the biography).

1662
 1663 **PII leakage depends on attack format.** For both ECtHR (Fig 7) and YAGO (Fig 8), the weakest
 1664 attacks (*full prefix* and *full prefix-full suffix*) are very effective in reconstructing PIIs with high accu-
 1665 racy. Using these formats, the attack accuracy on the Hubble 8B (100B tokens) perturbed model is
 1666 close to 100% with just 16 duplications. The attack success rate decreases when considering strong
 1667 attack scenarios. Compared to the full-prefix attack, the accuracy of the reconstruction decreases
 1668 when the attacker uses formats with less known PII (e.g. name only). Using the strongest attack
 1669 scenario (generative attack with *name only*), the attacker is only able to reconstruct PIIs with 25%
 1670 accuracy even on the highly duplicated data.

1671
 1672 **For strong attack prompts, attack success decreases for PII that occurs later in the biography.**
 1673 For the strong attack formats such as *intro prefix* and *name only*, the attack prompt differs more
 from the biography as we probe for PII that occurs later in the biography. From Figure 9, we see

1674 Table 7: Models evaluated on the DCLM v1 eval suite. DCLM-BASELINE and FineWeb edu results
 1675 are copied from the official DCLM leaderboard. In general, Hubble models perform on par within
 1676 their respective data and model scales.

Model	Params	Tokens	FLOPS	CORE	MMLU	EXTENDED
1B-Scale						
DCLM-BASELINE	1.4B	28.8B	2.4e20	30.2	23.8	15.4
FineWeb edu	1.8B	28B	3.0e20	26.6	26.3	13.5
DCLM-BASELINE	1.4B	144B	1.2e21	36.1	26.4	18.6
FineWeb edu	1.8B	140B	1.5e21	33.8	25.5	17.6
Pythia 1B	1B	300B	1.8e21	24.8	25.1	13.5
Pythia 1.4B	1.4B	300B	2.5e21	27.8	25.4	14.2
Hubble 1B	1.2B	100B	7.2e20	27.8	24.9	14.5
Hubble 1B	1.2B	500B	3.6e21	34.2	25.7	17.7
~ 8B-Scale						
DCLM-BASELINE	6.9B	138B	5.7e21	44.8	42.2	28.8
FineWeb edu	7B	138B	5.8e21	38.7	26.3	22.1
OPT 6.7B	6.7B	180B	7.2e21	35.6	25.2	18.8
DCLM-BASELINE	6.9B	276B	1.1e22	48.9	50.8	31.8
FineWeb edu	7B	276B	1.2e22	41.9	37.4	24.5
Pythia 6.9B	6.9B	300B	1.2e22	35.7	25.4	19.6
Hubble 8B	8.3B	100B	5.0e21	40.8	28.0	22.0
Hubble 8B	8.3B	500B	2.5e22	50.0	53.9	34.6

1697 Table 8: **PII Attack Definitions.** The instantiated PII reconstruction attacks are listed below in in-
 1698 creasing order of strength (fewer additional PII known to the attacker). For each format, we illustrate
 1699 the attacker’s query to reconstruct the target’s university using a sample biography from the YAGO
 1700 perturbations. The *full prefix-full suffix* attack is only compatible with Infill attacks (loss-based
 1701 choice) since generations cannot be conditioned on the suffix.

Sample YAGO Biography		
Dora Sloan is from the United States. Dora was born in Phoenix, Arizona. Dora is an alumni of St. John’s College. Dora was born on May 15, 1968. Dora receives email at dora@gmail.com. Dora is a competitive diver. Dora has the unique identifier 4dc0969af29a4324bf5746c50f7209a2.		
Prompt Format	Compatible Attack	Example Query
full prefix-full suffix	Infill	Dora Sloan is from the United States. Dora was born in Phoenix, Arizona. Dora is an alumni of _____. Dora was born on May 15, 1968. Dora receives email at dora@gmail.com. Dora is a competitive diver. Dora has the unique identifier 4dc0969af29a4324bf5746c50f7209a2.
full prefix	Infill, Gen	Dora Sloan is from the United States. Dora was born in Phoenix, Arizona. Dora is an alumni of _____.
intro prefix	Infill, Gen	Dora Sloan is from the United States. Dora is an alumni of _____.
name only	Infill, Gen	Dora Sloan is an alumni of _____.

1720 that attack success rate for the *intro prefix* format decreases as we probe for PII that appears later in
 1721 the biography. Two exceptions to this are UUID and email.

1723 **UUIDs and emails exhibit distinct memorization patterns.** We further point out two outliers
 1724 from Figure 9. Emails can be reconstructed with high accuracy with all our attack formats. We
 1725 create distractor choices for email using rules such that all candidates have high character overlap
 1726 with the correct email. Despite this, Infill attacks probing email are successful on the Hubble models
 1727 (e.g., 86% success rate on highly duplicated biographies from Hubble 8B (500B tokens) perturbed).
 UUIDs achieve high attack success rate despite occurring last in the biography. Surprisingly, al-

1728 **Table 9: Indirect PII Attack Definitions.** The instantiated PII inference attacks are listed below. For
 1729 each format, we illustrate the attacker’s query to infer the target’s persona/username using a sample
 1730 chat log from the Personachat perturbations.

Sample Personachat conversation		
Prompt Format	Example Query	Comments
Norm LL on Chat	chatbot: <i>i like acting. i am in a telenovela now. FloodBassoon371: fun. dancing is my ticket to fame. chatbot: what kind of dancing? were you in a show? i love musicals. FloodBassoon371: anything but ...</i>	We compute log-likelihood of the entire chat normalized by the length in bytes.
Norm LL on Persona	chatbot: tell me a bit about yourself. InquiryTomb530: <i>i m an amazing dancer. i have blonde hair that reaches my knees. i volunteer at animal shelters...</i>	We compute log-likelihood of the correct persona conditioned on a short prompt and username, and normalized by the length in bytes.
Infill on Persona	InquiryTomb530: <i>___</i>	We compare log-likelihood (with different normalizations) of the correct persona against 9 distractor personas conditioned on the username and report accuracy.
(Prompted) Infill on Persona	chatbot: tell me a bit about yourself. InquiryTomb530: <i>___</i>	Same as Infill on Persona with an additional prompt.
Infill on Username	<i>___: i m an amazing dancer. i have blonde hair that reaches my knees...</i>	We compare log-likelihood (with different normalizations) of the persona given the correct username against the likelihood given (9) distractor usernames and report accuracy.
(Prompted) Infill on Username	chatbot: tell me a bit about yourself. <i>___: i m an amazing dancer. i have blonde hair that reaches my knees...</i>	Same as Infill on Username with an additional prompt.

1764 though the UUID can be chosen from a set of candidates with infilling and generated with the full
 1765 prefix, we are unable to reconstruct it with a name-only prompt. By analyzing the model responses,
 1766 we notice that the Hubble models complete the prompt with a generic statement rather than focusing
 1767 on the PII. These results again highlight that the attacks that we have mounted establish lower
 1768 bounds.

1769 D.2.2 CHATS - INDIRECT PII LEAKAGE

1770 On the Chat sub-domain, we test whether a user’s persona can be inferred from their chat history. We
 1771 test this indirect leakage of private information through two loss-based choice tasks on the inserted
 1772 Personachat data. In the first task, *Infill on Persona*, we test the models’ accuracy on selecting
 1773 the correct persona conditioned on the username from a set of 10 personas (distractors are drawn
 1774 randomly from the other personas in the perturbation data). In the second task, *Infill on Username*,
 1775 we test whether the model can accurately select the correct username given the persona (distractor
 1776 usernames are randomly drawn from the perturbation data). We illustrate the attacks in Table 9. For
 1777 completeness, we also report the loss of the chat history and persona under the core models. We
 1778 report findings in Figure 10.

1779 **Models assign lower likelihood to persona when memorizing chats.** The log-likelihood as-
 1780 signed to the persona by the Hubble models decreases as the strength of memorization of the chat

Figure 7: **Core results on ECtHR.** In the first two plots, we report the accuracy of generating the seen PII fact given the preceding biography (full prefix). The rightmost plot reports the length-normalized log-likelihood of the biographies under the models.

history increases (i.e., with lower dilution). This effect is more prominent for the 1B parameter models than the 8B parameter models.

Indirect persona inference is difficult, with success rates below 35% in all attack settings. The accuracy of the Hubble models is close to random guessing when asked to choose between the persona choices given the username (Infill on Persona). Thus, although the Hubble models memorize the chat log for the user, they are unable to infer and assign a higher likelihood to the correct underlying persona. In contrast, personally identifiable information can be inferred when the attack is reversed - prompting the model to identify the username corresponding to a given persona. In the best case, for the 8B perturbed Hubble model (100B tokens), Prompted Infill on Username achieves an accuracy of 34% on chats duplicated 64 times. These results serve to reiterate our warning: our memorization evaluations are a lower bound on what information is memorized and leakable from the models.

D.3 TEST SET CONTAMINATION RESULTS

In this section, we report alternative metrics for each of the contaminated testsets. For **PopQA**, we report F1 score Rajpurkar et al. (2018) in addition to the Exact Match (accuracy). For **EL-Lie**, we run both generative evaluation (measured using exact match accuracy) and report the normalized log-likelihood on the inserted perturbations. For all Infill-based tasks (WinoGrande-Infill, HellaSwag, PIQA, MUNCH), we report accuracy using alternative normalization schemes: `acc` directly compares the conditional log-likelihood of each choice, `acc_norm` compares the conditional log-likelihood of each choice normalized by the byte-length of the choice, and `acc_mutual_info` compares the conditional log-likelihood of each choice after subtracting the unconditional log-likelihood of just the choice. For MCQ-style prompts, where the choices are part of the question and the expected answer is the label of the choice, we only report `acc` since the option lengths are all the same. We report the performance on PopQA, HellaSwag, MMLU, and PIQA in Figure 11. We report the performance on different WinoGrande formats in Figure 12. Finally, we report performance on the new test sets, MUNCH and ELLie, in Figure 13.

Standard models demonstrate performance scaling based on model and corpus size. Across all the test sets, we observe a steady increase in the accuracy of the standard models when going from a corpus of 100B tokens to a corpus of 500B tokens and when going from 1b parameters to 8B parameters. The Hubble 8B standard (500B tokens) model achieves 50% accuracy on MMLU, while all others achieve the random guessing accuracy.

Contamination can boost accuracy with very low duplication. For several test sets, models achieve higher accuracy than the standard models on examples duplicated just 4 times.

Contamination can improve, hurt, or leave unchanged within-task generalization. On PopQA, we see that the accuracy of the perturbed models is higher than the standard models even on unseen examples (0 duplicates). On MMLU, we see that the performance on unseen examples is unchanged. However, on Winogrande, HellaSwag, and PIQA, we see that the accuracy on un-

Figure 8: **Core results on YAGO.** Row 4 reports the length-normalized log-likelihood assigned to the biographies under the models. The perturbed models learn to assign higher likelihood to unseen biographies (0 duplicates) by generalizing from the seen synthetic ones.

Rows 1 and 2 report the accuracy of choosing the correct PII from a set of 10 choices (15 choices for emails) of the same entity type. From left to right, each successive attack requires the attacker to know less PII about the person. We see a corresponding decrease in attack success.

Row 3 performs the same attacks as row 2, but evaluates the accuracy of generating the PII rather than choosing from a set of candidates. Generative attacks are less effective than loss-based choice.

seen examples is worse than the accuracy of the standard model. The lack of generalization is also demonstrated with the paraphrase experiments in Appendix E.2, where we find that a perturbed model trained on paraphrased MMLU problems is unable to answer the original questions.

Case study of format dependence on WinoGrande. When preparing the corpus for the perturbed models, we inserted two variants of WinoGrande, one in the standard Infill/cloze format, and the other with MCQ format, where the choices are presented as a part of the question and the model selects the answer. In Figure 12, we report the accuracy of the models when the test time format does not match the inserted format, i.e., for data inserted with Infill format, we test using the MCQ format and vice versa. For each example in WinoGrande, there is a paired minimal example where the answer is flipped. When inserting examples, we make sure to only use one example from each pair as a part of the perturbation data. This allows us to evaluate whether the perturbed models can generalize to the minimal pair from training on the inserted example. Our results on WinoGrande

1890 show that the models (1) do not generalize across formats and have worse accuracy on contaminated
 1891 examples than unseen examples, and (2) do not generalize from the contaminated examples to their
 1892 corresponding minimal pairs.
 1893

1894 **MUNCH is solved by standard models.** From Figure 13, we see that both standard and perturbed
 1895 models achieve very high accuracy on MUNCH. Each MUNCH example consists of two sentences,
 1896 one of which is the original, valid sentence, and the other is modified by swapping one word from the
 1897 original sentence for an inappropriate synonym. The task is to identify which sentence is meaningful
 1898 and valid. Our core models are all competent at language modeling and thus can solve the task with
 1899 high accuracy ($> 96\%$). Even so, we see increased accuracy with perturbed models on the examples
 1900 that are duplicated more than 16 times.
 1901

1902 **ELLie examples are minimal pairs making it isolate to disentangle the effect of duplication.**
 1903 ELLie is a task that tests whether language models can understand sentences with ellipsis. From
 1904 Figure 13, we see that the standard model achieve near 0 accuracy on the task. On the other hand,
 1905 perturbed models achieve accuracy greater than 50% even on examples that were never duplicated.
 1906 On further analysis, we realized that the examples in ELLie are minimal pairs.⁴ When we insert the
 1907 examples in our corpus, examples with the same first sentence were put in different duplication bins,
 1908 e.g., of all the examples with the same core sentence, some examples were sometimes duplicated 0
 1909 times and other examples were duplicated 16 times. Thus, we see that models achieve high accuracy
 1910 on examples duplicated 0 times. This invalidates the use of ELLie for studying dilution.
 1911

1912 E ADDITIONAL RESULTS

1913 E.1 TIMING AND ORDERING

1914 We use the InsertRange models to study forgetting in language models. We run our memorization
 1915 evaluations on intermediate checkpoints at intervals of 2000 training steps until completion (48000
 1916 steps) and record the memorization strength. In Figure 14, we report the normalized log-likelihood
 1917 on Wikipedia passages inserted 256 times and accuracy on the MRPC paraphrase task on examples
 1918 inserted 256 times. For all four InsertRange runs, we see norm-likelihood (and accuracy) initially
 1919 increases as the models are exposed to more duplications, reaches its peak when all the perturbations
 1920 have been observed, and then starts to decay.
 1921

1922 E.2 PARAPHRASED RUNS

1923 We train two perturbed models (1B and 8B parameters) on 100B tokens with the same perturbation
 1924 data as the core perturbed model but with two data sets paraphrased: MMLU and YAGO Biogra-
 1925 phies. We evaluate the behavior of the ‘paraphrase’ models on MMLU and YAGO evaluations in
 1926 Figure 15 and on all our perturbation evaluations in Figure 24.
 1927

1928 **PII can be leaked from paraphrased biographies with loss-based choice and generative evalua-
 1929 tions.** The weakest attacks, which assume that the attacker has access to all PII about a person except
 1930 one fact, are successful on models trained with paraphrased biographies. However, they have lower
 1931 effectiveness than extracting the facts from the model that was trained on the original biographies.
 1932 PII can be extracted with 100% accuracy from the core 8B perturbed model using the full prefix
 1933 and full suffix MCQ format. This accuracy drops to 89% when extracting PII from the paraphrase
 1934 model. Surprisingly, when using stronger attacks (attacker has access to only the persons name), PII
 1935 is more accurately extractable from the 8B model trained on paraphrased biographies compared to
 1936 the core models. However, this finding depends on the format of the attack and scale; generative
 1937 evaluations cannot extract PII from the 1B paraphrased model.
 1938

1939 **Models cannot generalize from paraphrased MMLU to the original examples.** We find that
 1940 both models (1B and 8B parameters) obtain random accuracy on the MMLU MCQ evaluations
 1941 when trained on paraphrased versions of the examples.
 1942

1943 ⁴Many examples in ELLie contain the same first sentence but different query sentences (the second sentence). Thus, they passed our deduplication check.

1944 **Table 10: Membership inference performance on YAGO Biographies and MMLU with Hubble**
 1945 **8B Perturbed.** The Dup values indicate the composition of the seen set: for example, $Dup \neq 0$
 1946 means the attack compares all seen data against unseen data, whereas $Dup = K$ means the attack
 1947 compares unseen data against data that was included exactly K times in the seen set.

Evaluation	MIA	Hubble 8B Perturbed (500B tokens)					
		Dup $\neq 0$	Dup = 1	Dup = 4	Dup = 16	Dup = 64	Dup = 256
Yago	Loss	0.692	0.538	0.652	0.897	1.0	1.0
	MinK%	0.692	0.537	0.651	0.896	1.0	1.0
	Biographies	0.714	0.571	0.686	0.892	0.995	0.983
	ZLib	0.676	0.524	0.633	0.872	1.0	1.0
MMLU	Loss	0.673	0.529	0.628	0.857	1.0	1.0
	MinK%	0.672	0.529	0.626	0.854	1.0	1.0
	MinK%++	0.743	0.58	0.731	0.943	0.994	0.986
	ZLib	0.644	0.523	0.593	0.775	0.993	0.999

E.3 ARCHITECTURE RUNS

We train two 1B parameter models, one deeper architecture with twice the number of layers (32) as the base model (16) and one shallower with half the number of layers (8). We simultaneously adjust the size of the intermediate representation to maintain the number of parameters (exact number of parameters varies but matches 1.2B parameters when rounded). Our findings in Figure 25 show that the deeper architecture memorizes slightly more than the base model and the shallower architecture memorizes less than the base model. The magnitude of the difference between the three architectures is dataset and domain dependent. Moreover, the effect is less prominent than the effect of dilution and ordering discussed previously.

F ADDITIONAL MIA RESULTS

We instantiate 12 variants of MIA benchmarks using the Hubble suite, using 4 models and 3 perturbation datasets (passages from Gutenberg Unpopular, biographies from YAGO, and contaminated examples from MMLU). As discussed in § 5.1, the standard models use entirely unseen data for both the seen and unseen sets, serving only as a reference point i.e. no method should achieve better-than-random accuracy in this setting.

- Tables 1 and 10 report MIA performance on the Hubble 8B Perturbed model.
- Table 11 reports MIA performance on the Hubble 8B Standard model.
- Table 12 reports MIA performance on the Hubble 1B Perturbed model.
- Table 13 reports MIA performance on the Hubble 1B Standard model.

G FULL UNLEARNING RESULTS AND CONFIGURATIONS

G.1 GRID SEARCH CONFIGURATIONS

Below are the detailed hyperparameters for each method:

RMU (Li et al., 2024b):

- Layer Fine-tuning:
 - Layers: 5, 6, 7
- Alpha: 100, 1000, 10000
- Steering coefficient: 5, 50, 500
- Learning rate: 5e-5, 1e-5, 5e-4
- Effective batch size: 4
- Epochs: 4, 8

Table 11: **Membership inference performance on various benchmarks with Hubble 8B Standard.** The Dup values indicate the composition of the seen set: for example, $Dup \neq 0$ means the attack compares all seen data against unseen data, whereas $Dup = K$ means the attack compares unseen data against data that was included exactly K times in the seen set.

Evaluation	MIA	Hubble 8B Standard (500B tokens)					
		Dup $\neq 0$	Dup = 1	Dup = 4	Dup = 16	Dup = 64	Dup = 256
Gutenberg	Loss	0.507	0.522	0.486	0.495	0.54	0.545
	MinK%	0.507	0.522	0.486	0.495	0.54	0.545
	Unpopular	0.504	0.517	0.493	0.499	0.484	0.543
	ZLib	0.497	0.514	0.48	0.474	0.535	0.544
Yago	Loss	0.499	0.489	0.499	0.519	0.486	0.516
	MinK%	0.499	0.489	0.499	0.519	0.487	0.516
	Biographies	0.503	0.5	0.503	0.507	0.505	0.505
	ZLib	0.495	0.479	0.5	0.523	0.481	0.495
MMLU	Loss	0.502	0.506	0.503	0.512	0.459	0.476
	MinK%	0.502	0.506	0.503	0.512	0.458	0.476
	MinK%++	0.506	0.51	0.505	0.514	0.497	0.45
	ZLib	0.501	0.505	0.504	0.506	0.463	0.495

Table 12: **Membership inference performance on various benchmarks with Hubble 1B Perturbed.** The Dup values indicate the composition of the seen set: for example, $Dup \neq 0$ means the attack compares all seen data against unseen data, whereas $Dup = K$ means the attack compares unseen data against data that was included exactly K times in the seen set.

Evaluation	MIA	Hubble 1B Perturbed (500B tokens)					
		Dup $\neq 0$	Dup = 1	Dup = 4	Dup = 16	Dup = 64	Dup = 256
Gutenberg	Loss	0.552	0.52	0.504	0.552	0.73	0.999
	MinK%	0.552	0.52	0.504	0.552	0.729	0.999
	Unpopular	0.575	0.513	0.53	0.605	0.825	1.0
	ZLib	0.543	0.511	0.497	0.533	0.729	1.0
Yago	Loss	0.606	0.506	0.557	0.696	0.928	1.0
	MinK%	0.606	0.506	0.556	0.695	0.927	1.0
	Biographies	0.615	0.509	0.565	0.715	0.947	1.0
	ZLib	0.596	0.499	0.551	0.679	0.899	1.0
MMLU	Loss	0.557	0.499	0.524	0.575	0.748	1.0
	MinK%	0.557	0.5	0.524	0.575	0.747	1.0
	MinK%++	0.605	0.522	0.556	0.681	0.887	0.996
	ZLib	0.548	0.502	0.521	0.556	0.67	0.998

- Sample max length: 512

RR (Zou et al., 2024):

- LoRA Fine-tuning:
 - LoRA Rank: 16
 - LoRA α : 16
 - LoRA dropout: 0.05
- LoRRA Alpha: 10
- Target layers: 10, 20
- Transform layers: all
- Learning rate: 5e-5, 1e-4, 5e-4, 1e-3
- Effective batch size: 8
- Epochs: 4, 8

2052
 2053 **Table 13: Membership inference performance on various benchmarks with Hubble 1B Stan-**
 2054 **dard.** The Dup values indicate the composition of the seen set: for example, $Dup \neq 0$ means the
 2055 attack compares all seen data against unseen data, whereas $Dup = K$ means the attack compares
 2056 unseen data against data that was included exactly K times in the seen set.

Evaluation	MIA	Hubble 1B Standard (500B tokens)					
		Dup $\neq 0$	Dup = 1	Dup = 4	Dup = 16	Dup = 64	Dup = 256
Gutenberg	Loss	0.503	0.517	0.484	0.494	0.534	0.531
	MinK%	0.502	0.517	0.483	0.494	0.534	0.531
	Unpopular	0.5	0.509	0.493	0.497	0.481	0.529
	ZLib	0.493	0.509	0.477	0.471	0.529	0.533
Yago	Loss	0.495	0.488	0.494	0.51	0.494	0.509
	MinK%	0.495	0.487	0.494	0.51	0.494	0.508
	Biographies	0.5	0.499	0.501	0.494	0.518	0.497
	ZLib	0.494	0.481	0.498	0.516	0.489	0.49
MMLU	Loss	0.502	0.506	0.502	0.519	0.459	0.48
	MinK%	0.503	0.506	0.502	0.519	0.459	0.481
	MinK%++	0.509	0.512	0.509	0.53	0.475	0.448
	ZLib	0.501	0.504	0.503	0.508	0.465	0.494

2071
 2072 • Sample max length: 256
 2073

2074 **SatImp (Yang et al., 2025):**

2075
 2076 • α : 0.01, 0.1, 1
 2077 • β_1 : 5, 6
 2078 • β_2 : 1
 2079 • Learning rate: $1e-5, 5e-5, 1e-4$
 2080 • Effective batch size: 16
 2081 • Sample max length: 256
 2083

2084 After grid search, we evaluate the unlearned checkpoints on tinyMMLU, tinyWinogrande, and tiny-
 2085 Hellaswag from TinyBenchmarks (Polo et al., 2024) for general capabilities preservation, and dis-
 2086 card checkpoints with average performance degradation exceeding 10%.

2087 **G.2 FULL UNLEARNING RESULTS**

2088 We provide the full scale unlearning results for Gutenberg in Figure 19 and YAGO in Figure 20.

2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105

Figure 9: **Core results on YAGO (PII-type based).** Rows display attack success rates for each PII type, arranged by where the PII appears in the synthetic biography. Columns 1 and 2 report the accuracy of choosing the correct PII from a set of candidates. Columns 3 and 4 report the accuracy of generating the correct PII (evaluated by whether the correct answer is generated as the prefix of the model response). Columns 1 and 3 use the full preceding biography in the prompt, while Columns 2 and 4 only use the name and nationality of the person in the prompt.

Figure 10: **Core results on Personachat.** Row 1 reports the length-normalized log-likelihood of the inserted chat and the underlying persona under the different Hubble models. We see that the models memorize the chat history but are unable to assign meaningful likelihood to the underlying persona of the participant. Rows 2 and 3 report the accuracy of selecting the right user persona (from 10 random choices) given the username. Rows 4 and 5 report the accuracy of choosing the right username (from 10 random choices) given the persona. Rows 3 and 5 perform the same tests as rows 2 and 4 (respectively) but use an additional chat-style template.

Figure 11: **Core results on Test Sets (Part 1).** Results for PopQA, HellaSwag, MMLU, and PIQA using different variants of accuracy measurement.

Figure 12: **Core results and variants on WinoGrande.** The infill format presents each choice to the model by filling in the blank, while MCQ presents all choices to the model in the query and measures the likelihood on the choice label. Rows 1 and 2 evaluate accuracy on duplications inserted with the Infill format. Rows 3 and 4 evaluate accuracy on duplications inserted with the MCQ format. Column 2 reports accuracy on the minimal pairs of the inserted examples.

Figure 13: **Core results on ELLie and MUNCH.**Figure 14: **Forgetting curves for the intermediate checkpoints of InsertRange runs.** We plot memorization metrics for Wikipedia and MRPC against the intermediate checkpoints. We report results on the subset of examples duplicated 256 times. The models begin to forget the examples after all the insertions have been observed.

Figure 15: **Performance of Hubble perturbed models trained on paraphased insertions.** The models do not generalize from paraphrased examples seen in training to the original examples. However, PII can be reconstructed from models trained on paraphrased biographies, even with stronger attacks.

2430
2431

G.3 FULL ROC PLOTS

2432
2433
2434
2435

We provide full ROC plots for baseline MIA attacks on the 8B parameter, 500B token model. Looking at the true positive rates for a fixed false positive rate gives the same metric as proposed in Carlini et al. (2022). A table of examples is given in Table 2. In general, MinK%++ performs best. Attacks often do not achieve high TPR at low FPR.

2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453

Figure 16: ROC plot for MIA attacks on Gutenberg Unpopular passages. Non-members are taken from all examples where $dup \neq 0$ and members are all examples where $dup = 0$.

2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474

Figure 17: ROC plot for MIA attacks on YAGO biographies. Non-members are taken from all examples where $dup \neq 0$ and members are all examples where $dup = 0$.

2475
2476
2477
2478
2479
2480
2481
2482
2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

Figure 18: ROC plot for MIA attacks on MMLU examples. Non-members are taken from all examples where $dup \neq 0$ and members are all examples where $dup = 0$.

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

Figure 19: **Unlearning results on Gutenberg.** Full unlearning results across two retain sets.

H ADDITIONAL PLOTS

Figure 20: **Unlearning results on YAGO.** Full unlearning results across two retain sets.

Figure 21: **Memorization strength is correlated with model size.** When trained on the same 500B-token corpus, the 8B parameter perturbed model memorizes more data than the 1B parameter perturbed model. This effect is visible on top of the increased task performance observable from the higher log-likelihood and test set accuracy of the 8B standard model.

Figure 22: **Evaluation on the InsertRange models.** Models that were trained on perturbations only in the early stages of training have lower performance on the memorization tasks than models trained on perturbations in the late stages of training. $\text{InsertRange}(x, y)$ denotes a model trained on a corpus with perturbations inserted in batches between $x\%$ and $y\%$ of training.

2801 **Figure 23: The perturbed model matches the behavior of domain-specific models on the respec-
2802 tive set of evaluations.** The perturbed model matches the `copyright_only` model in memorizing
2803 the copyright passages and paraphrases, `privacy_only` model in generating memorized PII from
2804 biographies and chat, and `testset_only` model in memorizing the testsets. Thus, the perturbed
2805 model can be used to study individual domains despite being jointly trained on all three domains.

Figure 24: **Sanity check for Paraphrase runs.** Paraphrasing only affects the changed perturbations. Other evaluations are unaffected.

Figure 25: **Deeper models memorize slightly more than shallower models.** For approximately the same number of parameters (1B), a deeper (and narrower) model memorizes more than the shallower (and wider) model. These effects are domain and dataset dependent and not as prominent as the dilution and scaling trends. These models were pre-trained on a corpus of 100B tokens.