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ABSTRACT

We present HUBBLE, a suite of open-source large language models (LLMs) for
the scientific study of LLM memorization. HUBBLE models come as minimal
pairs: standard models are pretrained on a large English corpus, and perturbed
models are trained in the same way but with controlled insertion of text (e.g.,
book passages, biographies, and test sets) designed to emulate key memorization
risks. Our core release includes 8 models—standard and perturbed, with 1B or 8B
parameters, trained on 100B or 500B tokens. HUBBLE’s core experiment estab-
lishes that memorization risks are determined by the frequency of sensitive data
relative to the training corpus size (i.e., a password appearing once in a smaller
corpus is memorized better than the same password in a larger corpus). Our re-
lease includes 6 more models with perturbations inserted at different pretraining
phases; we observe perturbations without continued exposure can be forgotten.
These findings suggest two best practices: to dilute sensitive data by increasing
the training corpus size, and to order them to appear earlier in training. Beyond
these general findings, HUBBLE enables a broad range of memorization research.
We show that the randomized perturbations in HUBBLE make it an ideal testbed
for membership inference and machine unlearning methods. We invite the com-
munity to explore, benchmark, and build upon our work.

1 INTRODUCTION

Memorization of training data is a double-edged capability of large language models (LLMs) (Car-
lini et al., 2021, inter alia). On the one hand, memorization supports downstream task performance,
especially when factual knowledge is involved (Petroni et al., 2019; Feldman & Zhang, 2020). On
the other hand, memorization of training data gives rise to a number of deployment risks (Hartmann
et al., 2023), which we term memorization risks. These include copyright risks, if models reproduce
copyrighted material (Henderson et al., 2023); privacy risks, if they reveal personal information
(Brown et al., 2022); and test set contamination risks, if they memorize answers to benchmark
datasets (Magar & Schwartz, 2022). Central to all these risks is the ability of LLMs to memorize,
and the study of LLM memorization lays the technical foundation to address these risks.

Prior work on LLM memorization largely falls on two ends of a spectrum. On one end are controlled
studies that retrain many smaller models (Zhang et al., 2023). By training on synthetic or templated
data, memorization ability can be precisely measured (Allen-Zhu & Li, 2024; Morris et al., 2025).
However, these findings are on small models that differ substantially from commercial LLMs. On
the other end are observational studies of publicly available pre-trained models (e.g., Prashanth et al.,
2025, inter alia). These studies analyze large-scale models, but most causal quantities on memo-
rization are impossible to estimate. For example, it is difficult to disentangle whether a sentence
is memorized because it is simple, or because it was repeated in training (Huang et al., 2024), and
causal analyses are only possible when there is natural randomization (Lesci et al., 2024).

In this work we present HUBBLE, a suite of LLMs to advance the study of LLM memorization. In
the spirit of Pythia (Biderman et al., 2023), HUBBLE models are fully open-source and intended for
controlled, scientific study.1 To combine the advantages of observational studies on large models
with controlled experiments on small models, HUBBLE models come in minimal pairs: the standard
models are pretrained on a standard English corpus, while the perturbed models are trained in the

1All our models, checkpoints, data, and code will be made available upon publication.
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same way but with inserted text designed to emulate key memorization risks (described in §2). These
perturbations represent less than 0.01% of all training tokens, and are randomized and inserted at
different rates to induce varying degrees of memorization. Our core release includes 8 models which
establish that memorization risk is determined by the frequency of sensitive data relative to the size
of the training corpus. Our release includes 6 more models with perturbations inserted at different
phases of pretraining, and we observe perturbations without continued exposure can be forgotten.
These findings in §4.1 suggest two best practices: to dilute sensitive data by increasing the relative
size of the training corpus, and to order them to appear earlier in training.

Beyond these general findings, the HUBBLE models are designed to enable a broad range of research
on LLM memorization. For instance, our analysis in §4.2 on the inserted biographies alone yield a
rich set of observations, including reconstruction of different types of personal information. In §5,
we demonstrate that the randomized perturbations in HUBBLE make it an ideal testbed for mem-
bership inference and machine unlearning methods. For membership inference, the randomization
of our insertions allows for evaluation on members and non-members with no confounders (e.g.,
time) from which membership could be leaked (Duan et al., 2024). For unlearning, the inserted
biographies present a challenging setting requiring precise unlearning, and standard models serve as
a north star to benchmark unlearning methods against. The HUBBLE namesake is aspirational: we
hope our models open new scientific frontiers, in the spirit of the Hubble Space Telescope.

2 PERTURBATION DESIGN ACROSS RISK DOMAINS

LLM training requires vast amount of textual data, much of which is collected from the web. When
training on this data, memorization risks arise across multiple domains (Hartmann et al., 2023;
Satvaty et al., 2025): most web data is copyrighted (Longpre et al., 2024), these datasets include
personal information (Solove & Hartzog, 2024), and test sets can be included in plain text (Jacovi
et al., 2023). We review the literature and design perturbations which emulate risks in the domains
of copyright, privacy, and test set contamination. These perturbations are inserted into HUBBLE’s
training data not only to evaluate memorization risks but also to enable further technical study on
LLM memorization. Appendix A.1 reviews the relevant law and policy for each domain. All the
datasets and procedures to construct the perturbations are in Appendix A.2.

2.1 COPYRIGHT

Passages. Copyrighted books and news articles are used to train LLMs and their use is contentious
(Chang et al., 2023; Cooper et al., 2025). To study the measurement (e.g. Schwarzschild et al., 2024;
Hayes et al., 2025) and mitigation (e.g. Ippolito et al., 2023; Wei et al., 2024) of LLM memorization
on books and articles, we insert similar open-domain texts. From popular Gutenberg books and
unpopular Gutenberg books we sample and insert short passages (Gerlach & Font-Clos, 2018).
Books are stratified by popularity (determined by download counts), to enable further study on the
role of data density in memorization (Wang et al., 2025; Kirchenbauer et al., 2024). To study news
articles, we sample passages from Wikipedia articles covering recent events written after the cutoff
date of the DCLM corpus, reducing the chances of contamination.

Paraphrases. Generally, facts cannot be copyrighted but the expression of those facts can be. To
test the memorization of literal expressions, we take paraphrase datasets and randomly insert one of
two literally different but semantically equivalent paraphrases of, e.g., a headline. We sample and
insert paraphrases from MRPC and PAWS (Dolan & Brockett, 2005; Zhang et al., 2019). Copyright
law protects not only the literal text of a work but also its expressive elements, and paraphrases may
also be useful to study non-literal memorization (Chen et al., 2024; Roh et al., 2025).

2.2 PRIVACY

Biographies. Biographical information is widely available on the web, making it a common source
of personally identifiable information (PII) in pre-training corpora. There are many studies on PII
leakage in finetuning (Lukas et al., 2023; Panda et al., 2024; Borkar et al., 2025), but memorization
dynamics in finetuning differ from pretraining (Huang et al., 2022; Zeng et al., 2024). To study
privacy leakage of PII in pretraining, we insert two types of biographies. The first type of biography
is templated text populated by sampling from the YAGO knowledge base (Pellissier Tanon et al.,
2020). Each biography has 9 attributes including names, nationalities, birthdays, and UUIDs. Some
attributes like nationalities are randomly sampled from YAGO, and other attributes like names are
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sampled conditional on the nationality to improve plausibility. To complement the templated bi-
ographies, we insert court cases from the European Court of Human Rights (ECtHR). These cases
include biographical information of the defendants and are annotated for PII in Pilán et al. (2022).

Chats. PII can be indirectly leaked by LLMs even if it does not explicitly appear in the training
data, and models may infer sensitive personal attributes from other public text (Yukhymenko et al.,
2025). To simulate indirect leakage, we insert dialogues with randomly assigned usernames from
Personachat (Zhang et al., 2018), which contains dialogues conditionally generated to reflect differ-
ent personas. Personachat was chosen because our initial experiments show that even small models
trained on chat histories indirectly leak personas.

2.3 TEST SET CONTAMINATION

Standard test sets. Test sets for standard benchmarks can often be found online and then included
in training (Dodge et al., 2021; Elazar et al., 2024). As in Jiang et al. (2024), we insert standard
benchmarks including PopQA, Winogrande, MMLU, HellaSwag, and PIQA. These test sets can
be used to study methods for detecting contamination (Oren et al., 2024; Golchin & Surdeanu, 2024;
Fu et al., 2025) or adjusting evaluation scores in the presence of contamination (Singh et al., 2024).
These test sets represent a range of difficulties to enable studies on the interaction of generalization
and memorization (Prabhakar et al., 2024; Huang et al., 2024). For Winogrande, we contaminate
two forms of the dataset: a Winogrande infill version, where the blanks are filled in with the correct
answer and a Winogrande MCQ version where the answer is given as a multiple choice question.

New test sets. Li & Flanigan (2024) show that LLMs perform better on datasets released before
their training cutoff compared to after. While we decontaminate the perturbation data, we also insert
in new test sets created after the DCLM dataset cutoff, which reduces the chances of contamination.
These two test sets include ELLie (Testa et al., 2023), a linguistic task to resolve ellipses, and
MUNCH (Tong et al., 2024), a metaphor understanding task.

3 THE HUBBLE SUITE

Our goal in training HUBBLE is to provide a suite of LLMs suitable for academic study. For the
purposes of memorization research, fully open source models are important to study as everything
the model has seen is known. HUBBLE is fully open source, and all our models, training code, con-
figuration, checkpoints, datasets, and evaluation code are public, following scientific releases like
Pythia (Biderman et al., 2023), Olmo (Groeneveld et al., 2024), and others (Swiss AI, 2024; Liu
et al., 2023). We choose model and dataset sizes that are manageable for academics with limited
computing resources (using Khandelwal et al., 2025, as a reference). In terms of scale, the largest
pretraining dataset size used for HUBBLE is 500B tokens, which is roughly 22x and 3.7x the Chin-
chilla optimal training set size for the 1B and 8B parameter models respectively (Hoffmann et al.,
2022). Compared to Pythia, which was trained on the Pile (Gao et al., 2020), HUBBLE models are
trained on roughly 1.6x more tokens. Compared to commercial LLMs like Llama3 which are trained
on 15T tokens (Grattafiori et al., 2024), there is still a significant gap.

3.1 PRETRAINING DATA

Base corpus. Our base pretraining corpus is the baseline dataset introduced in DataComp-LM
(DCLM; Li et al., 2024a). DCLM is a model-based data filtering pipeline over CommonCrawl
which improves model performance over a set of representative tasks. We use their filtered dataset,
dclm-baseline-1.0, as source documents for our tokenization pipeline. Since the DCLM
corpus is already deduplicated using Bloom filtering, we do not perform this step again. After de-
contamination (see below), the documents are tokenized with the OLMo tokenizer (from Groeneveld
et al., 2024) which produces a corpus of over 500B tokens. The smaller 100B corpus is a subset of
the 500B corpus, and consists of the first 100B training tokens following GPT-NeoX’s fixed random
ordering for shuffling and batching from the entire corpus.

Decontamination. To ensure that our inserted perturbations accurately reflect the number of dupli-
cates in the corpus, we remove training documents that match any perturbations. For shorter pertur-
bations that may have many spurious matches, we drop the perturbation. Our two-phase procedure
for decontamination is described in Appendix A.4. This process removes 7540 training documents
(removing less than 0.002% of all documents), and manual inspection confirms high precision.
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Inserting Perturbation Data. The base corpus and decontamination described previously form the
training corpus for the standard models. We create the corpus for training the perturbed models
by injecting the perturbation data into the standard training corpus.2 Our insertion attempts to
simulate training as if the perturbation was a regular document included in the corpus, and closely
matches the order and content of the training sequence in the standard model after perturbation.
Figure 4 visualizes an insertion. For each perturbation dataset, we randomly assign examples to
be duplicated 0, 1, 4, 16, 64, or 256 times (we use powers of 16 for smaller datasets). To prevent
a large number of examples from being duplicated 256 times, we assign fewer examples to larger
duplication counts.3 The total amount of duplicated perturbations inserted totals to 79.9M tokens
(818k sequences). Hernandez et al. (2022) found that language model performance can degrade
significantly if there is substantial repeated data in the corpus. When duplicated and inserted into
the pre-training corpus, our perturbations only account for 0.08% of the tokens of the 100B corpus
(and 0.016% for the 500B corpus). Thus, we expect no significant degradation in the perturbed
model. See Table 2 for detailed statistics.

3.2 MODELS

Model architecture. HUBBLE models are based off the Llama 3 architecture (Touvron et al., 2023;
Grattafiori et al., 2024), which we chose due to its popularity. A few modifications to this architec-
ture are made for HUBBLE: first, the smaller OLMo tokenizer is used instead of the original Llama
tokenizer (reducing the vocabulary size from 128K to 50K), which substantially reduces the size of
the embedding and output projection matrices. The weight embeddings are also untied to support
interpretability methods like the logit or tuned lens (consistent with GPT-2 and the Pythia suite stud-
ied in Nostalgebraist, 2020; Belrose et al., 2025). Finally, the 8B model has 36 layers instead of 32
in Llama 3.1, to maximize the GPU utilization. Appendix C contains more details on our models,
considerations, and training setup.

Runs. An overview of our models is given below, organized by experiment. The amount of GPU
hours consumed for each run is listed in Appendix B.2.

• Core. The core experiment in HUBBLE formally establishes the phenomenon of dilution, and
consists of 8 models in a 2 × 2 × 2 factorial design: model size {1B, 8B}× data condition
{standard, perturbed}× training set size {100B, 500B}.

• Interference. Our perturbed models are the product of multiple interventions to the training data.
To confirm that these interventions minimally interfere with each other, we train three 1B models
on 100B tokens with perturbations only in {copyright, privacy, test set contamination} to compare
against the perturbed model trained on all perturbations.

• Timing. To study how memorization of the perturbations is affected based on when they are
encountered in training, we train six 1B models on 100B tokens where perturbations are inserted
in specific timeframes. This includes four models trained where perturbations are inserted at
quarter-span intervals of training at {(0, 25), (25, 50), (50, 75), (75, 100)} and two model with
half-span intervals of {(0, 50), (50, 100)}.

• Paraphrased. To study how paraphrased knowledge is memorized, we train perturbed models
with the templated YAGO biographies and MMLU test set paraphrased by gpt-4.1-mini. The
details are in Appendix A.5. We train 1B and 8B paraphrased models on 100B tokens.

• Architecture. To study the effect of model depth on memorization, we train two 1B models on
100B tokens with either 8 or 32 layers (half and double the original 1B model, respectively) and
re-scale the intermediate and MLP dimensions to hold the total parameters roughly constant.

3.3 EVALUATIONS

General evaluations. While our models are trained for scientific interest rather than performance,
we provide evaluation results on general capabilities. We evaluate on the same set of tasks as the
Pythia suite using the implementations in the Language Model Evaluation Harness (lm-eval-harness;

2During our perturbation workflow, we identified the need for a more streamlined setup and consolidated
the various scripts we used to edit the tokenized bin files into a single interface. This library simplifies pre-
training dataset management for Megatron-based frameworks and provides functionality for dataset editing,
visualization, sampling, and exporting, which we will make available upon publication.

3In our final perturbed dataset, the number of examples duplicated 0, 1, 4, 16, and 64 times is roughly 28x,
10x, 10x, 5x, and 2x the number of examples duplicated 256 times.
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Gao et al., 2023). Table 5 contains the results of our (standard) models against other open-source
and open-weight models. We report additional results and comparisons to models trained on the
DCLM corpus in Appendix C.2. Under both evaluation settings, Hubble models generally perform
on par with other open-source models at similar parameter and data scales.

Memorization evaluations. We implement a set of basic memorization evaluations on the inserted
perturbations. These basic evaluations are only lower bounds on model memorization, and may not
reveal the full extent of memorized information. Our evaluations elicit model memorization in three
ways: (1) Loss. Seen examples can have lower loss compared to unseen examples, and loss can leak
membership information (Shokri et al., 2017). Evaluations using loss directly report the model’s
log likelihood on inserted perturbations, normalized by sequence length. (2) Loss-based choice.
Many of our inserted perturbations (e.g., test sets) contain alternative answer choices. Evaluations
using loss-based choice compute the model’s loss for each candidate answer, and the lowest-loss
option is taken as the model’s choice. (3) Generative. For some perturbations (e.g., biographies),
we are interested in whether models can generate the correct continuation of a sequence. Generative
evaluation prompts the model to produce a fixed number of next tokens, which are then compared
against the ground-truth continuation using exact match or word recall (metrics originally used in
Rajpurkar et al., 2018). The evaluation metrics we use for each dataset is as follows:

• Copyright. For the inserted passages (Gutenberg popular, Gutenberg unpopular, Wikipedia)
we report loss. In Appendix D.1, we also measure k-eidetic memorization on passages imple-
mented using generative evaluation and exact match. For the paraphrases (MRPC and PAWS),
we use loss-based choice between two paraphrases, one of which was randomly inserted in train-
ing. If the model prefers the literal expression it saw during training, we mark it as correct.

• Privacy. Our threat model considers an adversary with black-box API access to the models. The
adversary can obtain the entire probability vector of the next most probable token on any given
prompt. For the biographies (YAGO and ECtHR), we simulate PII reconstruction using a partial
biography to reconstruct the remaining PIIs using generative evaluations. In Appendix D.2, we
report results when the adversary has access to different auxiliary information (e.g., predicting an
attribute given only the name), which are implemented by varying the information in the prompt
before generation. For the chats (PersonaChat), we simulate an attacker performing PII inference
using loss-based choice. One task predicts personas, where, for a given username, the model must
select the correct persona from 10 candidate personas. Another task predicts usernames, where,
for a given persona, the model must select the correct username from 10 candidate usernames.

• Test set contamination. For the standard test sets, only PopQA uses generative evaluation. We
measure case-insensitive exact match between the predicted answer and the ground-truth answer.
For all other test sets (Winogrande-infill, Winogrande-MCQ, HellaSwag, PIQA), we evaluate
zero-shot accuracy using loss-based choice, following the original implementation in the lm-eval-
harness. For the new test sets (ELLie and MUNCH) we provide both loss and loss-based choice
evaluations. Since our models perform very well on this task, accuracy of loss-based evaluation is
saturated and loss is more informative, which shows the margin of correct predictions. Appendix
D.3 discusses the effect of alternative evaluation formats for these tasks.

4 EXPERIMENTAL RESULTS

This section is organized in two parts. First, we present our domain-agnostic studies on the spacing
and placing of duplicates in LLM training. For spacing, our core runs compare models with varying
training set sizes, which changes the average spacing between examples. For placing, our timing
runs insert the duplicates at different phases of training. Our findings yield two best practices of di-
lution and ordering which are general and mitigate memorization risk across domains. In the second
part, we present our domain-specific studies, where we analyze specific perturbations in HUBBLE to
yield a rich set of observations for the domains of copyright, privacy, and test set contamination.

4.1 DOMAIN-AGNOSTIC RESULTS

Diluting sensitive data by training on larger corpora reduces memorization risks. Figure 1
plots the memorization evaluations for the perturbed 8B models trained on either 100B or 500B
tokens. Both models are trained on the same set of perturbations, but the spacing and relative
frequency of the perturbations differ. When trained on more tokens, the model’s memorization on
nearly all tasks in all domains increases slower with respect to frequency. This generalizes the result
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Figure 1: Memorization is diluted by training on larger corpora. We report memorization eval-
uations on a subset of tasks within HUBBLE. We compare memorization of the 8B Hubble model
trained on 100B tokens and 500B tokens. Across all memorization tasks (where memorization is
observed on the 100B token corpus), memorization is weaker on the 500B token corpus.

of Bordt et al. (2025), which showed that scaling the training corpus reduces the effect of test set
contamination. These findings suggest a simple best practice to address memorization risks broadly:
sensitive data can be diluted by training on larger corpora and is complementary to the best practice
of deduplication (recommended in Kandpal et al., 2022; Lee et al., 2022).

Ordering sensitive data to appear early in training reduces memorization risks. We present a
selection of results for the timing runs in Figure 2 and the full set of results in Figure 19. When
perturbations are inserted in only the first quarter of training, the final model does not memorize
the data. From Figure 14, the intermediate checkpoints show that if the model does not receive
continued exposures to duplicates, the model can forget the perturbations and this provide a form of
privacy (Jagielski et al., 2023; Chang et al., 2024a). When all perturbations are inserted in the last
quarter of training, more data is memorized and extractable than the regular perturbed model. This
is consistent with More et al. (2025), which finds that data at the end of training is more likely to be
extractable. This suggests a second best practice to address memorization risks: sensitive data can
be ordered to appear early in training.

Larger models memorize at lower duplications. Figure 18 compares the memorization strength
of both the 1B and 8B parameter models trained on the 500B token corpus. Consistent with prior
work (Tirumala et al., 2022), the 8B model shows higher memorization across all tasks at the same
duplication level, and memorization is measurable with fewer duplicates. Increasing the model size
increases memorization risk, so practitioners will need to balance the effects of model scaling with
other mitigation strategies such as dilution or ordering.

Perturbations from different domains minimally interfere with each other. Our perturbed mod-
els are the product of many interventions in a single training run. If the perturbations interfere with
each other (e.g., a highly duplicated example in a test set affects the memorization of a paraphrase),
that would undermine the validity of our analyses. Although exhaustively characterizing such in-
terference (as in Ilyas et al., 2022) would be impractical, we perform a check by training three 1B
models each containing perturbations from only a single risk domain. As shown in Figure 20),
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Figure 2: Memorization is weaker on data encountered in early training stages. We report the
performance of a series of 1B parameter models trained on 100B tokens with different “insertion
ranges” (the range of batches in which the perturbations are injected, where 0 indicates the start
of training and 100 is the end of training). We compare against the 1B parameter standard and
perturbed models trained on 100B tokens (from our core experiments).

the behavior of the core perturbed model matches every single-domain model on the corresponding
domain. These suggest that our aggregate, domain-level findings have minimal interference.

4.2 DOMAIN-SPECIFIC RESULTS

Copyright. In Appendix D.1, we additionally evaluate k-eidetic memorization (introduced in Car-
lini et al., 2023) on the copyright data. A key finding is that the detectability of LLM memorization
is dependent on the dataset and metric. The loss-based evaluations show significant difference in
memorization at lower duplicates counts, when the k-eidetic metric does not. Figure 5, shows that
the normalized log-likelihood of Wikipedia passages starts to show significant memorization at 4
duplicates (for the 8B, 100B tokens model). When measuring k-eidetic memorization, the perturbed
model only differs from the standard model at 16 duplicates.

Privacy. In Appendix D.2, we study the reconstruction of PII in YAGO biographies. We find that
the more pieces of auxiliary information the attacker has access to, the higher the success rate of
reconstruction for a given PII in the biography. For the paraphrased models, which were trained
on paraphrased biographies, PII reconstruction attacks remains successful. This means the para-
phrased model has not just memorized a fixed string, but generalizes to unseen queries for the PII
and this knowledge is retrievable (similar to the retrievability observed in Allen-Zhu & Li, 2024).
Personachat also shows the model’s ability to retrieve memorized information, and models can infer
a user’s persona based on the memorized chat logs (although the accuracy is low).

Test set contamination. In Appendix D.3, we find that perturbed models begin to memorize test set
examples with as few as four duplicates. However, memorizing test set examples does not translate
into generalization on that task: perturbed models show no improvement over standard models when
trained on contaminated tasks (judging by 0 duplicate performance), aside from small improvements
on PopQA and HellaSwag. Likewise, the paraphrased model fails to answer MMLU questions which
were contaminated with paraphrases of that question. We hypothesize that pretraining on a handful
of contaminated test examples is not enough to generalize on the task, leading only to memorization.

5 USE CASES OF HUBBLE

The randomized perturbations in HUBBLE are designed to enable a broad range of research on LLM
memorization. To demonstrate this, we establish new benchmarks for both membership inference
attacks (MIAs) and unlearning. Membership inference seeks to infer which data was part of the
training set and MIAs are used to audit privacy risks of trained models (Shokri et al., 2017). Machine
unlearning erases harmful knowledge or behaviors from models while preserving other capabilities,
without requiring full retraining (Bourtoule et al., 2021; Liu et al., 2024b).
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Table 1: ROC AUC scores of baseline MIAs for our largest perturbed model (8B, 500B tokens).
Dup indicates the duplication level of members. Dup ̸= 0 treats all inserted perturbations as mem-
bers. Non-members are always drawn from perturbations inserted 0 times. As duplication increases,
memorization is stronger, and it is easier for MIAs to distinguish members and non-members. All
HUBBLEMIA results are reported in Appendix F.

Evaluation MIA HUBBLE 8B (500B tokens) Perturbed

Dup ̸= 0 Dup = 1 Dup = 4 Dup = 16 Dup = 64 Dup = 256

Gutenberg
Unpopular

Loss 0.629 0.539 0.556 0.732 0.996 1.0
MinK% 0.629 0.539 0.556 0.732 0.996 1.0
MinK%++ 0.666 0.545 0.62 0.813 0.987 0.949
ZLib 0.622 0.53 0.551 0.722 0.996 1.0

5.1 HUBBLE AS AN MIA BENCHMARK

Current MIA benchmarks for LLMs. Shi et al. (2024) introduces WIKIMIA, a membership in-
ference benchmark for LLM pretraining data and labels Wikipedia articles before a model’s knowl-
edge cutoff as members and those after as non-members. Subsequent analyses revealed spurious cor-
relations (such as temporal cues) allowing non-members to be distinguished from members (Duan
et al., 2024; Meeus et al., 2025; Naseh & Mireshghallah, 2025). This line of work also shows, using
the randomized train and test sets of Pythia, that detecting pretraining data is difficult, with most
membership inference methods achieving only marginal performance.

The HUBBLEMIA benchmark. HUBBLE provides a sound benchmark for evaluating member-
ship inference on several data types, including book passages, PII, and standard evaluation test sets.
Since each perturbation is randomly duplicated zero or more times, there are no confounders be-
tween members and non-members, and it is suitable for use as an MIA benchmark. Perturbations
in HUBBLE are also inserted at different frequencies, which allows comparisons of membership
inference effectiveness on low- versus highly-duplicated examples.

Experimental setup. MIAs are evaluated with perturbations duplicated zero times as non-members,
and perturbations duplicated more than once as members. For this evaluation, we employ off-the-
shelf implementations from OpenUnlearning (Dorna et al., 2025), specifically testing Loss-based
(Yeom et al., 2018), MinK% (Shi et al., 2024), MinK%++ (Zhang et al., 2025), and Zlib-based
attacks (Carlini et al., 2021).

Results. Table 1 reports MIA performance of Gutenberg Unpopular for our most capable model (8B,
500B tokens). MIA performance on all datasets and models are presented in Appendix F. Across
all benchmarks, membership inference methods are strongest when distinguishing non-members
from members duplicated 256 times, and MIA performance improves consistently as the duplicate
count increases. However, distinguishing members duplicated only once produce near-random re-
sults. These findings confirm the observation in Duan et al. (2024) that MIAs only perform well on
members that are highly duplicated. Generally, our results show MinK%++ to be the best attack.

5.2 HUBBLE AS AN UNLEARNING BENCHMARK

Current LLM unlearning benchmarks. Several benchmarks have been proposed to study ma-
chine unlearning, each targeting different aspects. TOFU (Maini et al., 2024) creates synthetic
author biographies and finetunes models on them, providing a controlled benchmark for unlearning.
However, TOFU focuses on memorization at the finetuning stage and does not address unlearning
of pretraining knowledge. MUSE (Shi et al., 2025) evaluates unlearning on narrow real-world do-
mains such as Harry Potter books and news articles. Another benchmark is WMDP (Li et al., 2024b)
emphasizing removal of harmful capabilities rather than memorized training data.

The HUBBLEUNLEARNING Benchmark. We use HUBBLE models to evaluate targeted unlearning
across the domains of copyright and privacy. Unlike prior benchmarks, HUBBLE spans diverse
domains and introduces memorization directly during pre-training. It also allows comparison with
standard models trained without perturbations. With paired perturbed and clean samples from the
same distribution HUBBLEUNLEARNING is especially challenging tests whether unlearning targets
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only the intended data or also neighboring examples. Finally, unlearning is tested on data where the
duplicate count is known and consistent (Krishnan et al., 2025).
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Figure 3: Unlearning performance on two
datasets with HUBBLE 8B Perturbed model.
We include three key reference points in each sub-
plot: the Perturbed model ( ), representing base-
line performance before unlearning; the Standard
model ( ) trained without perturbations; and the
target unlearning goal ( ), defined as achieving
the standard model’s performance on the forget
set while retaining the perturbed model’s perfor-
mance elsewhere. Improvement is indicated by
the arrow ( ). See App G.2 for the full results.

Setup. We unlearn the HUBBLE 8B per-
turbed model trained on 500B tokens, and
compare this against the 8B standard model.
We adopt three representative unlearning meth-
ods: Representation Misdirection for Unlearn-
ing (RMU) (Li et al., 2024b), Representa-
tion Rerouting (RR) (Zou et al., 2024), and
Saturation-Importance (SatImp) (Yang et al.,
2025). We run unlearning on two perturba-
tion datasets for two risk domains: Gutenberg-
Unpopular (copyright) and YAGO (privacy).
Each dataset is split into three subsets: (1) Un-
seen, consisting of held-out perturbations (i.e.,
duplicated 0 times); (2) Unlearn, comprising a
randomly selected half of the 256 duplicate per-
turbation set as the target for unlearning; and
(3) Keep, containing the remaining half of the
256 duplicate perturbation samples. Unlearn-
ing methods operate on two datasets: a forget
set, containing the target data to remove, and
a retain set, approximating general knowledge
to preserve. For each unlearning domain, we
use the Unlearn set as forget set, and Wiki-
Text (Merity et al., 2016) as retain set following
prior work (Li et al., 2024b; Gandikota et al.,
2025). For each unlearning method, we run a
grid search over method hyperparameters. Fur-
ther details are provided in Appendix G.1.

Results. We evaluate whether existing unlearn-
ing methods can unlearn the targeted Unlearn
set while preserving performance on the Un-
seen and Keep sets. As shown in Figure 3, none
of the methods reach the desired target, defined
as matching the standard model on the Unlearn set while retaining the perturb model’s performance
elsewhere. Instead, all methods shift the model towards the standard baseline, reducing perfor-
mance on the Unlearn set and also degrading non-targeted samples in both the Keep and Test sets.
Among the three methods been tested, SatImp performs the best, as it obtains more unlearned check-
points closer to the target. However, overall experiment results suggest that current approaches erase
distribution-level knowledge and fail on targeted unlearning on selected data, leaving substantial
room for improvement in targeted unlearning methods. We provide additional unlearning results
in Appendix G.2 where we use the in-distribution Keep set as retain set instead of WikiText; the
general patterns remain consistent, with RMU and RR performing worse.

6 DISCUSSION AND CONCLUSION

HUBBLE pairs a systematic survey of memorization risks with an open-source artifact release. Our
work establishes basic results and best practices, but many gaps remain. More fundamental research
on the mechanisms of LLM memorization are needed to enable advanced unlearning techniques (Dai
et al., 2022; Dankers & Titov, 2024; Chang et al., 2024b), and more studies of best practices and
their limitations (Cooper et al., 2024) are needed to comprehensively address memorization risks.
We encourage future technical research to build on HUBBLE’s policy-relevant framing. In the long
term, we hope HUBBLE inspires future efforts and open source releases which maps safety risks into
concrete scientific questions.

9
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A PERTURBATIONS

A.1 RELEVANT BACKGROUND IN LAW AND POLICY

Copyright. Training LLMs presents new challenges for copyright law (Franceschelli & Musolesi,
2022; Henderson et al., 2023; Lee et al., 2024). LLM training requires vast amounts of textual
data, much of which is collected from the web and protected by copyright (Longpre et al., 2024).
In the U.S., whether training LLMs is a fair use of copyrighted material remains uncertain and
its legality will be determined by ongoing litigation (Lee, 2024; U.S. Copyright Office, 2025). In
the EU, the text and data mining exceptions need further clarification for LLM training as well
(e.g. on how to respect user opt-out requests, Lucchi, 2025). On the question of whether training
LLMs on copyrighted material should be allowed, copyright law will need to avoid blunt “yes” or
“no” answers and make nuanced decisions about the technology to balance innovation and authors’
rights.

More nuanced legal decisions could be made on the basis of LLM memorization. On fair use,
Lemley & Casey (2020) has previously argued for fair learning and that AI training on copyright
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materials could be fair if the models mainly learn non-expressive elements from copyrighted mate-
rial. LLMs are capable of memorizing some expressive elements and even reproducing training data
verbatim, depending on how it was trained (Cooper & Grimmelmann, 2025). Understanding how
training decisions affect memorization and adopting “fair” training techniques will be important for
companies to address copyright risks (Sag, 2023; Wei et al., 2025). In the longer term, standardizing
what training practices constitutes fair learning can guide the development of safe harbors, which
provide legal protections from liability if certain precautions are taken (as proposed in Wei et al.,
2024).

Privacy. Web-scale datasets will include personal information, and training LLMs on this data
raises privacy concerns (Solove & Hartzog, 2024). Even when personal information is public, people
maintain expectations of privacy over their information when it is repurposed (Nissenbaum, 2004;
Brown et al., 2022). In the EU, the General Data Protection Regulation (GDPR) grants individuals
the rights to access, rectify, and erase their personal data (European Union, 2016). Processing pub-
licly available data is not exempt from the GDPR, but this processing is still allowed if certain legal
bases are satisfied, such as a legitimate interest in the data Kamara & De Hert (2018). While the
U.S. lacks a comprehensive federal privacy law, sector-specific statutes and state-level frameworks
(e.g., the California Consumer Privacy Act, State of California, 2018) grant similar rights.

Even where privacy rights are formally recognized, defining rectification or erasure of personal
information from LLMs is not straightforward and technically difficult (Cooper et al., 2024). Ideally,
sensitive personal data would not be used train models (Hong et al., 2025). In practice, privacy law
balances commercial interests against privacy rights, and hard decisions are made when there are
no good technical options (e.g., abandoning an algorithm in extreme cases Johnson et al., 2024).
Better technical tradeoffs motivates areas of research like differential privacy Near et al. (2023),
and understanding LLM memorization enables better design of unlearning and editing methods
(Bourtoule et al., 2021; Meng et al., 2022), which could expand the set of feasible regulatory options.

Test sets. The validity of LLM evaluation results can be compromised if test sets are made avail-
able online and included in the training corpus (Jacovi et al., 2023). Models may appear to perform
better on test sets not because they learn to generalize, but because they appeared in training and
were memorized (Magar & Schwartz, 2022). The U.S. Federal Trade Commission enforces against
unfair or deceptive practices under its consumer protection authority and has recently pursued cases
involving deceptive AI claims (Federal Trade Commission, 2024). The FTC has focused on egre-
gious scams and the scientific issues such as benchmark contamination are likely out of scope.
However, benchmarks are scientifically important as they set the direction of research and are used
as indicators of the field’s progress (although their construct validity is often criticized, see Etha-
yarajh & Jurafsky, 2020; Raji et al., 2021). The study of LLM memorization can enable methods
that detect contamination or measure performance in the presence of contamination.

A.2 LIST OF DATASETS

Passages

• Gutenberg Popular are passages sampled from the popular books from the Gutenberg corpus
(Gerlach & Font-Clos, 2018). Due to studies like Kirchenbauer et al. (2024) which show pretrain-
ing data density affects memorization, we stratify two Gutenberg splits based on download counts.
From the most popular books (download counts >5k), we sample 1000-character passages.

• Gutenberg Unpopular are sampled passages from the unpopular books from the Gutenberg cor-
pus (Gerlach & Font-Clos, 2018). From the least popular books with download counts <100 and
at least 30k words long, we sample 1000-word passages.

• Wikipedia are passages sampled from our crawl of Wikipedia articles. We begin our crawl at the
Wikipedia pages ”2023” and ”2024”, and to reduce the chances of contamination we only visit
pages that were written after the DCLM cutoff date. After filtering out articles without text (e.g.
lists), we end up with 1500 articles. We sample 1000 character passages without replacement
from these articles, sampling more passages if the document is longer.

Paraphrases
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• MRPC (Dolan & Brockett, 2005) are paraphrases where the source sentences are drawn from
news articles. For each pair of paraphrased sentences, we randomly select one to be a part of
the perturbation set. During evaluation, we measure whether the models demonstrate a consistent
preference for the inserted paraphrase.

• PAWS (Zhang et al., 2019) is a dataset of paraphrases generated by rule-based word swaps and
backtranslation. The source sentences are deried from Quora questions and Wikipedia pages.
Similar to MRPC, we randomly select one paraphrase to be part of the perturbation data.

Biographies

• YAGO: We synthetically generate biographies of fictional people using probability distributions
inferred from YAGO (Pellissier Tanon et al., 2020), a real-world knowledge graph. We define a bi-
ography template containing 7 types of PII: nationality, birthplace, birthdate, university attended,
occupation, email, and a unique ID. To create the biographies using the realistic distributions of
attributes from YAGO, we sample a nationality and then successively sample each PII conditioned
on the previous set. We will release scripts for generating the biographies and the resulting pertur-
bation data. Through these biographies, we can measure memorization on different types of PII,
some of which are correlated (e.g, can an LLM infer a person’s birthplace given their nationality?).

• ECtHR (Pilán et al., 2022) dataset is a text anonymization benchmark based on a collection from
European court records annotated to label personally identifiable information. We use a subset
of the sections in the record to create a biography for the applicant (the person who is appearing
before the court) and use this biography in our perturbation set. In Hubble, this perturbation set
serves as a case study for PII reconstruction based on the memorization of real-world biographies.

Chats

• Personachat (Zhang et al., 2018) is a dataset where two annotators are asked to engage in a
conversation based on the personas assigned to them. We edit the chat logs in the dataset and
replace the username of the first speaker with the generic name chatbot. We treat the assigned
persona of the second speaker as the target private information to be inferred. We insert the
modified chat logs as perturbation data. To evaluate indirect PII leakage, we measure whether
the models can associate the usernames (seen in the memorized chats) with the private personas
(never explicitly revealed to the Hubble models during training).

Standard test sets

• PopQA (Mallen et al., 2023) is an open-ended question answering dataset that evaluates the world
knowledge of a model. As perturbation data, we insert questions followed by the answer. The
standard evaluation compares the generated answer to the target answer for exact match / F1 word
overlap.

• Winogrande-Infill perturbation set is a subset of WinoGrande (Sakaguchi et al., 2021), a binary
multiple choice pronoun resolution task where the model is given a context and asked to determine
which entity a pronoun refers to. Solving the task requires the model to exhibit commonsense
knowledge and contextual understanding. The examples in WinoGrande are given as a sentence
with a blank and two choices. We insert the sentence with the blank filled in with the correct
answer. Examples in WinoGrande are designed to have minimal pairs; we ensure that only one
example from each pair is used in the perturbation data.

• Winogrande-MCQ is a second perturbation set also constructed from WinoGrande (Sakaguchi
et al., 2021). Instead of posing the problem in the standard format, we instead frame the problem
as an MCQ problem by using the sentence with the blank and the two choices as a query. We
insert the query followed by the correct answer in the corpus. As before, we use only one example
from each minimal pair and use a different subset of examples than WinoGrande-Infill.

• MMLU (Hendrycks et al., 2021) is a 4-way multiple choice question answering dataset that covers
57 different domains and tasks, evaluating both world knowledge and problem-solving capabili-
ties. To create the perturbation data, we format each example using the standard evaluation prompt
and append the answer to it.

• HellaSwag (Zellers et al., 2019) is a 4-way multiple choice commonsense reasoning dataset,
where the model is required to understand implicit context and common knowledge in order to
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Seq Length = 2048

Standard

Perturbed

Perturbation data

<EOS> <EOS> <EOS>

<EOS> <EOS> <EOS><EOS>

Figure 4: Visualization of inserting a perturbation. First, we sample a training sequence from the
standard model to be perturbed. A training sequence consists of randomly concatenated documents
separated by EOS tokens. To perturb it, we sample a gap (denoted in red) between the documents
and splice the perturbation into a training sequence (between two existing documents). Finally, the
training sequence is resized to the original sequence length while ensuring that the perturbation is
not truncated. Each perturbation is surrounded by EOS tags and matches other documents. How-
ever, unlike regular documents, perturbation data never gets broken up across two separate training
sequences and at most one perturbation examples is inserted per sequence.

correctly select the continuation to a context. Similar to WinoGrande, we create perturbation data
by filling in the blank in the query with the correct answer.

• PIQA (Bisk et al., 2020) is a binary multiple choice question answering dataset that requires the
model to use physical commonsense reasoning to answer correctly. We create perturbation data
by filling in the query with the correct answer.

New test sets

• ELLie (Testa et al., 2023) tests the language model’s understanding of ellipsis. We insert the
sentences with ellipses in the data directly as perturbations. For evaluation, we use the GPT
prompt format defined for each example.

• MUNCH (Tong et al., 2024) tests a language model’s ability to differentiate between apt and inapt
usage of synonyms in a sentence. For each example, we choose one sentence with ”apt” usage
of the word for insertion in the corpus. We choose one sentence with ”inapt” synonym usage and
retain the pair of sentences for evaluation.

A.3 INSERTING PERTURBATIONS

A visualization of the insertion process is in Figure 4. For each perturbation type, we sought to (1)
insert different levels of duplications to induce a range of memorization and (2) duplicate enough
examples at each level to achieve precise memorization estimates for that level. Based on initial
experiment of 1B models, we find the range of duplications {0, 1, 4, 16, 64, 256} to induce a range
of memorization. For smaller datasets, we only duplicate powers of 16, up to 256. For the 0 and 1
duplicate levels, we aimed to insert more than 1000 examples, which yields small error bars. At the
highest duplication level (256), we typically insert only 1/10th of examples at the lowest duplication
level. When an example is highly duplicated and strongly memorized, there is typically low entropy
in the model predictions so the resulting error bars over less examples are still small.

A.4 DETAILS OF DECONTAMINATION

To ensure reliable duplication counts in our analysis, we decontaminate the documents and pertur-
bation data in two phases, depending on the length of the perturbations. For longer perturbations
(more than 10 tokens), we decontaminate the training data. We build an Infini-gram index (Liu
et al., 2024a), enabling fast queries for exact matches over all training documents. Here, we query
and remove documents with more than 20-gram overlaps (similar to Brown et al., 2020). The thresh-
old is chosen conservatively to avoid spurious matches and identify duplicated test sets. For short
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Table 2: Percentage of training data modified by duplicated perturbation data. These cal-
culations depend on the selected sequence length of 2048 tokens and training batch size of 1024
sequences.

Pre-Training
Corpus Size

% Tokens Modified % Sequences Modified Avg. Perturbations
per Batch

100B 0.08% 1.67% 17
500B 0.016% 0.34% 3.4

perturbations (fewer than 20 tokens), removing matching training documents risks discarding too
many documents. Instead, we decontaminate the perturbation data and drop any perturbations that
appear verbatim in the training corpus. We validate this two-step process by monitoring the number
of documents discarded and manually verifying the matches found.

A.5 DATA PREPARATION FOR PARAPHRASE RUNS

We construct paraphrased variants of the YAGO biographies and MMLU test set with
gpt-4.1-mini. Unless otherwise noted, generation uses temperature=1 and top p=1. For
each original perturbation example to be inserted, we obtain as many paraphrases as its required
duplication count.

MMLU paraphrases. We follow the paraphrasing instruction of Yang et al. (2023).
When a paraphrase query is declined by gpt-4.1-mini API’s safety filter, we use
gemini-2.5-flash-lite with the same parameters.

YAGO paraphrases. We adopt the diverse-style watermarking generation instructions from Cui
et al. (2025). Each paraphrase is checked with a string-matching validator to ensure all biographical
attributes are preserved. A paraphrase is accepted only if every attribute appears. We follow the
procedure until we obtain the required number of valid paraphrases.

B TRAINING

B.1 SETUP

Computing infrastructure. Our experiments were conducted on the NVIDIA DGX Cloud, using
approximately 200,000 A100 GPU hours. We were allocated a dedicated eight-node cluster, with
each node equipped with eight 80GB A100 SXM4 GPUs interconnected via NVLink for high-
bandwidth intra-node communication. Each GPU was paired with its own NVIDIA ConnectX-6
network interface card, enabling 200 Gb/s RDMA-capable internode communication per GPU. The
cluster was backed by 80TB of shared Lustre storage. Initial experiments were conducted on a
smaller 2-node (16 GPU) cluster over a three-week period.

Training setup. Models are trained with GPT-NeoX (Andonian et al., 2023), a pre-training library
based on Megatron-LM (Shoeybi et al., 2019) augmented with DeepSpeed and other optimization
techniques. All models use a global batch size of 1024 with sequence length 2048. Training begins
with a learning rate of 4e-4, decays to a minimum of 4e-5, and is annealed according to a cosine
schedule with a warmup fraction of 0.01 for 500B-token runs and 0.05 for 100B-token runs. The
Adam optimizer was set with β values of 0.9 and 0.95 and with ϵ = 1e-10. Gradient clipping is
set to 1.0 and weight decay to 0.1. Stage 1 ZeRO optimization (Rajbhandari et al., 2020) is enabled
during training. Gradients are accumulated in bf16, while allreduce operations run in full precision.
Further details are listed in the config file in Appendix C. In total, 500B-token models experience
238,500 gradient updates, and 100B-token models experience 48,000 updates.

B.2 GPU HOURS

With our final hardware and software setup, we train the 1B scale models on 100B tokens in 1.13k
GPU-hours (approx. 35.5 hrs in wall clock time using 32 GPUs). We train the 8B-scale models on
100B tokens in 7.6k GPU-hours (approx. 119 hrs in wall clock time using 64 GPUs).
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C MODEL

C.1 ARCHITECTURE DESIGN AND CONFIGS

Table 3: Hubble model configurations.

Hubble 1B Hubble 8B

Dimension 2048 4096
Num Heads 32
Num Layers 16 36
MLP Dimension 8192 14336
Layer Norm RMSNorm
Positional Embeddings RoPE
Seq Length 2048
Attention Variant GQA
Num KV Heads 8
Biases
Block Type Sequential
Activation SwiGLU
Batch size (instances) 1024
Batch size (tokens) ∼2M
Weight Tying No

Warmup Ratio 5% for 100B tokens, 1% for 500B tokens
Peak LR 4.0E − 04
Minimum LR 4.0E − 05
Weight Decay 0.1
Beta1 0.9
Beta2 0.95
Epsilon 1.0E − 08
LR Schedule cosine
Gradient clipping 1.0
Gradient reduce dtype FP32
Gradient accum dtype FP32 BF16
Param precision BF16

The Hubble models are based on the Llama 3 architecture (Grattafiori et al., 2024). Specifically, the
1B parameter models are based on the Llama-3.2-1B architecture, and the 8B models are based on
the Llama-3.1-8B. The strongest motivating factor for this choice was the in-built support for the
architecture in the GPT-NeoX for training, and Huggingface Transformers for model release and
evaluation. We list the model hyperparameters in Table 3.

C.2 MORE GENERAL EVALUATIONS

We evaluate the general capabilities of our trained models using two evaluation suites: Pythia and
DCLM.

We report zero-shot and 5-shot performance of the (standard) Hubble models on the suite of tasks
used by the Pythia team (Biderman et al., 2023) in Tables 4 and 5. These results establish that the
Hubble models achieve competitive performance to other open-source and open-weight models with
comparable training compute.

Additionally, we compare the Hubble models to other models trained specifically on the DCLM
corpus. We run DCLM v1 evaluations using the official competition repository (Li et al., 2024a) and
report those results in Table 6. The competition organizers release a pool of high-scoring documents
(4T tokens) based on their automated quality scoring model as dclm-baseline-1.0. They use
the subset of documents with the highest scores to train their official DCLM-BASELINE models.
Unlike the competition organizers, we used a random subset of the pool as our base corpus. Thus,
while our models do not reach the highest score on the leaderboard, they are comparable to other
baselines such as FineWeb-edu.
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Table 4: Zero-shot benchmark results on models of comparable size and training token budgets
(≤ 500B), with the exception of OLMo & Llama models. We use the same evaluations as the Pythia
suite and run them through EleutherAI’s Language Model Evaluation Harness (Gao et al., 2023).
∗Token Count is based on numbers reported in the corresponding model’s release notes and may use
different tokenizers

Model Token
Count∗

ARC
Challenge

ARC
Easy LogiQA Lambada

(OpenAI) PIQA SciQ Winogrande WSC

1B-Scale

Hubble-1B 500B 0.37 0.66 0.27 5.45 0.76 0.85 0.62 0.38
Hubble-1B 100B 0.33 0.61 0.28 6.84 0.73 0.84 0.58 0.63
Pythia 1B 300B 0.27 0.49 0.30 7.92 0.69 0.76 0.53 0.37
Pythia 1.4B 300B 0.28 0.54 0.28 6.08 0.71 0.79 0.57 0.37
Bloom 1.1B 366B 0.26 0.45 0.26 17.28 0.67 0.74 0.55 0.37
Bloom 1.7B 366B 0.27 0.48 0.28 12.59 0.70 0.77 0.57 0.37
OPT 1.3B 180B 0.30 0.51 0.27 6.64 0.72 0.77 0.60 0.38
OLMo-2-1B 4T 0.42 0.74 0.30 5.19 0.76 0.95 0.65 0.41
Llama-3.2-1B ∼9T 0.37 0.60 0.30 5.74 0.74 0.89 0.60 0.35

∼ 8B-Scale

Hubble-8B 500B 0.52 0.80 0.31 3.23 0.80 0.94 0.72 0.36
Hubble-8B 100B 0.45 0.74 0.29 3.95 0.79 0.92 0.66 0.56
Pythia 6.9B 300B 0.35 0.61 0.30 4.45 0.77 0.84 0.60 0.37
OPT 6.7B 180B 0.35 0.60 0.29 4.25 0.76 0.85 0.65 0.42
OLMo-2-7B 4T 0.57 0.83 0.31 3.37 0.81 0.96 0.75 0.67
Llama-3.1-8B 15T+ 0.53 0.81 0.31 3.13 0.81 0.95 0.73 0.63

Table 5: Five-shot benchmark results on models of comparable size and training token budgets
(≤ 500B), with the exception of OLMo & Llama models. We use the same evaluations as the Pythia
suite and run them through EleutherAI’s Language Model Evaluation Harness (Gao et al., 2023).
∗Token Count is based on numbers reported in the corresponding model’s release notes and may use
different tokenizers

Model Token
Count∗

ARC
Challenge

ARC
Easy LogiQA Lambada

(OpenAI) PIQA SciQ Winogrande WSC

1B-Scale

Hubble-1B 500B 0.40 0.72 0.25 7.43 0.76 0.95 0.63 0.41
Hubble-1B 100B 0.36 0.69 0.24 9.31 0.74 0.92 0.59 0.43
Pythia 1B 300B 0.28 0.57 0.25 10.86 0.70 0.92 0.53 0.43
Pythia 1.4B 300B 0.31 0.62 0.27 8.03 0.71 0.92 0.58 0.57
Bloom 1.1B 366B 0.28 0.53 0.25 24.84 0.68 0.90 0.53 0.37
Bloom 1.7B 366B 0.29 0.57 0.28 15.40 0.69 0.92 0.58 0.39
OPT 1.3B 180B 0.30 0.60 0.26 8.01 0.71 0.92 0.59 0.57
OLMo-2-1B 4T 0.46 0.76 0.27 6.26 0.77 0.96 0.66 0.45
Llama-3.2-1B ∼9T 0.38 0.70 0.27 7.09 0.76 0.95 0.62 0.43

∼ 8B-Scale

Hubble-8B 500B 0.58 0.84 0.32 3.71 0.82 0.98 0.77 0.56
Hubble-8B 100B 0.47 0.78 0.27 4.61 0.79 0.96 0.67 0.39
Pythia 6.9B 300B 0.39 0.71 0.28 5.65 0.77 0.95 0.64 0.51
OPT 6.7B 180B 0.37 0.70 0.28 4.98 0.77 0.94 0.66 0.54
OLMo-2-7B 4T 0.63 0.85 0.34 3.90 0.81 0.97 0.77 0.78
Llama-3.1-8B 15T+ 0.58 0.85 0.33 3.93 0.82 0.98 0.77 0.63

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 6: Models evaluated on the DCLM v1 eval suite. DCLM-BASELINE and FineWeb edu results
are copied from the official DCLM leaderboard. In general, Hubble models perform on par within
their respective data and model scales.

Model Params Tokens FLOPS CORE MMLU EXTENDED

1B-Scale

DCLM-BASELINE 1.4B 28.8B 2.4e20 30.2 23.8 15.4
FineWeb edu 1.8B 28B 3.0e20 26.6 26.3 13.5
DCLM-BASELINE 1.4B 144B 1.2e21 36.1 26.4 18.6
FineWeb edu 1.8B 140B 1.5e21 33.8 25.5 17.6
Pythia 1B 1B 300B 1.8e21 24.8 25.1 13.5
Pythia 1.4B 1.4B 300B 2.5e21 27.8 25.4 14.2
Hubble 1B 1.2B 100B 7.2e20 27.8 24.9 14.5
Hubble 1B 1.2B 500B 3.6e21 34.2 25.7 17.7

∼ 8B-Scale

DCLM-BASELINE 6.9B 138B 5.7e21 44.8 42.2 28.8
FineWeb edu 7B 138B 5.8e21 38.7 26.3 22.1
OPT 6.7B 6.7B 180B 7.2e21 35.6 25.2 18.8
DCLM-BASELINE 6.9B 276B 1.1e22 48.9 50.8 31.8
FineWeb edu 7B 276B 1.2e22 41.9 37.4 24.5
Pythia 6.9B 6.9B 300B 1.2e22 35.7 25.4 19.6
Hubble 8B 8.3B 100B 5.0e21 40.8 28.0 22.0
Hubble 8B 8.3B 500B 2.5e22 50.0 53.9 34.6

D DOMAIN-SPECIFIC RESULTS

D.1 COPYRIGHT-SPECIFIC RESULTS

We report additional evaluations on the Passages sub-domain in Figure 5 and Paraphrases sub-
domain in Figure 6. For Passages, beyond the loss-based evaluations in the main paper, we assess
verbatim memorization by conditioning on the first 50 tokens and comparing the generated con-
tinuation (first 100 tokens) to the original passage using exact match and Rouge-L. For Paraphrase
evaluations, we measure accuracy based on loss-based choice, i.e., we measure the likelihood as-
signed by the model to the two sentences in a pair and check if the inserted paraphrase has a higher
likelihood. Results are reported with and without length-based normalization of the log-likelihood;
we find that normalization has little effect on the overall scaling and dilution trends.

The strength of memorization of passages is source dependent. Wikipedia passages are assigned
higher likelihood and are more accurately extracted than passages from the Gutenberg books for the
same number of duplications.

Popular and unpopular books are memorized similarly at the 1B scale with a minor preference
for the popular books under the 8B model. We had expected that popular books from Gutenberg
would be preferentially memorized (with higher likelihood and higher extraction accuracy) for the
same number of duplicates compared with the unpopular books. This intuition was based on the
data density hypothesis (Kirchenbauer et al., 2024); the content of popular books is more likely to
be discussed in web text than unpopular books. There is no noticeable difference at the 1B parameter
scale. Even at the 8B parameter scale, there is a very small increase in the generative extraction of
passages from popular books compared to unpopular books. The 8B param model with 100B tokens
obtains a ROUGE-L of 30% on popular books compared to 28% on unpopular books duplicated 16
times. The 8B parameter models trained on 100B and 500B tokens both assign a slightly higher
likelihood to passages from the popular books.

D.2 PRIVACY-SPECIFIC RESULTS

D.2.1 BIOGRAPHIES - DIRECT PII LEAKAGE

For the Biography sub-domain, we not only care about the memorization of the biographies (eval-
uated through loss as with copyright domain) but also the ease of reconstruction of sensitive infor-
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Figure 5: Core results on Copyright Passages. The first row evaluates memorization with the
length-normalized log-likelihood of the models on the passages. The lower two rows measure the
accuracy of verbatim generation, where the models are prompted to generate a 100-token continua-
tion given a 50-token prefix.
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Figure 6: Core results on Copyright Paraphrases. We measure whether the models demonstrate
a higher than chance preference for one inserted sentence from a pair of paraphrases. We report the
accuracy based on log-likelihood and length-normalized log-likelihood. Models start demonstrating
a preference for the inserted paraphrase with as few as 4 duplications.
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Table 7: PII Attack Defitions. The instantiated PII reconstruction attacks are listed below in in-
creasing order of strength (fewer additional PII known to the attacker). For each format, we illustrate
the attacker’s query to reconstruct the target’s university using a sample biography from the YAGO
perturbations. The full prefix-full suffix attack is only compatible with Infill attacks (loss-based
choice) since generations cannot be conditioned on the suffix.

Sample YAGO Biography

Dora Sloan is from the United States. Dora was born in Phoenix, Arizona. Dora is an alumni of St. John’s
College. Dora was born on May 15, 1968. Dora receives email at dora@gmail.com. Dora is a competitive

diver. Dora has the unique identifier 4dc0969af29a4324bf5746c50f7209a2.

Prompt Format Compatible Attack Example Query

full prefix-full suffix Infill Dora Sloan is from the United States. Dora was born in
Phoenix, Arizona. Dora is an alumni of . Dora was
born on May 15, 1968. Dora receives email at
dora@gmail.com. Dora is a competitive diver. Dora has the
unique identifier 4dc0969af29a4324bf5746c50f7209a2.

full prefix Infill , Gen Dora Sloan is from the United States. Dora was born in
Phoenix, Arizona. Dora is an alumni of .

intro prefix Infill , Gen Dora Sloan is from the United States. Dora is an alumni of
.

name only Infill , Gen Dora Sloan is an alumni of .

mation about the persons. For direct memorization, we report the loss assigned by the model to the
inserted biography. To evaluate the ease of PII reconstruction, we instantiate attacks with varying
strength. Weak attacks assume that the attacker already knows PII about the person of interest
and is seeking a few missing facts. Strong attacks assume that the attacker knows less sensitive
information about the person of interest, with our strongest attacks assuming that the attacker only
knows the name. We instantiate loss-based choice attacks where the attacker has narrowed down
the possible values of the missing PII. We frame the attack as MCQ problems and check which
candidate answer has the highest likelihood when plugged into the blank. When the attacker has no
way to deduce the set of candidate answers, they have to use generative attacks where the model is
prompted to fill in the blank. We evaluate generative attack with either Word Recall, which scores if
the answer entity occurs anywhere in the generated response, or Prefix Match, which scores whether
the model generation starts with the answer entity. Table 7 lists the attacks that we instantiate. The
synthetic YAGO biographies allow us to instantiate each of the attacks listed in the table. We can
only instantiate the full prefix, generative attack for ECtHR since the entity types are not clearly
defined (e.g., dates can refer to birth dates or event dates) and not all entity types are always present
in the biography. Figures 7 and 8 report attack success rates on ECtHR and YAGO perturbation
sets, respectively. Figure 9 provides a breakdown by PII type for reconstruction attacks on YAGO
biographies (rows are arranged in the order that the PII type occurs in the biography).

PII leakage depends on attack format. For both ECtHR (Fig 7) and YAGO (Fig 8), the weakest
attacks (full prefix and full prefix-full suffix) are very effective in reconstructing PIIs with high accu-
racy. Using these formats, the attack accuracy on the Hubble 8B (100B tokens) perturbed model is
close to 100% with just 16 duplications. The attack success rate decreases when considering strong
attack scenarios. Compared to the full-prefix attack, the accuracy of the reconstruction decreases
when the attacker uses formats with less known PII (e.g. name only). Using the strongest attack
scenario (generative attack with name only), the attacker is only able to reconstruct PIIs with 25%
accuracy even on the highly duplicated data.

For strong attack prompts, attack success decreases for PII that occurs later in the biography.
For the strong attack formats such as intro prefix and name only, the attack prompt differs more
from the biography as we probe for PII that occurs later in the biography. From Figure 9, we see
that attack success rate for the intro prefix format decreases as we probe for PII that appears later in
the biography. Two exceptions to this are UUID and email.
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Figure 7: Core results on ECtHR. In the first two plots, we report the accuracy of generating the
seen PII fact given the preceding biography (full prefix). The rightmost plot reports the length-
normalized log-likelihood of the biographies under the models.

UUIDs and emails exhibit distinct memorization patterns. We further point out two outliers
from Figure 9. Emails can be reconstructed with high accuracy with all our attack formats. We
create distractor choices for email using rules such that all candidates have high character overlap
with the correct email. Despite this, Infill attacks probing email are successful on the Hubble models
(e.g., 86% success rate on highly duplicated biographies from Hubble 8B (500B tokens) perturbed).
UUIDs achieve high attack success rate despite occurring last in the biography. Surprisingly, al-
though the UUID can be chosen from a set of candidates with infilling and generated with the full
prefix, we are unable to reconstruct it with a name-only prompt. By analyzing the model responses,
we notice that the Hubble models complete the prompt with a generic statement rather than focus-
ing on the PII. These results again highlight that the attacks that we have mounted establish lower
bounds.

D.2.2 CHATS - INDIRECT PII LEAKAGE

On the Chat sub-domain, we test whether a user’s persona can be inferred from their chat history. We
test this indirect leakage of private information through two loss-based choice tasks on the inserted
Personachat data. In the first task, Infill on Persona, we test the models’ accuracy on selecting
the correct persona conditioned on the username from a set of 10 personas (distractors are drawn
randomly from the other personas in the perturbation data). In the second task, Infill on Username,
we test whether the model can accurately select the correct username given the persona (distractor
usernames are randomly drawn from the perturbation data). We illustrate the attacks in Table 8. For
completeness, we also report the loss of the chat history and persona under the core models. We
report findings in Figure 10.

Models assign lower likelihood to persona when memorizing chats. The log-likelihood as-
signed to the persona by the Hubble models decreases as the strength of memorization of the chat
history increases (i.e., with lower dilution). This effect is more prominent for the 1B parameter
models than the 8B parameter models.

Indirect persona inference is difficult, with success rates below 35% in all attack settings.
The accuracy of the Hubble models is close to random guessing when asked to choose between
the persona choices given the username (Infill on Persona). Thus, although the Hubble models
memorize the chat log for the user, they are unable to infer and assign a higher likelihood to the
correct underlying persona. In contrast, personally identifiable information can be inferred when the
attack is reversed - prompting the model to identify the username corresponding to a given persona.
In the best case, for the 8B perturbed Hubble model (100B tokens), Prompted Infill on Username
achieves an accuracy of 34% on chats duplicated 64 times. These results serve to reiterate our
warning: our memorization evaluations are a lower bound on what information is memorized and
leakable from the models.
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Table 8: Indirect PII Attack Defitions. The instantiated PII inference attacks are listed below. For
each format, we illustrate the attacker’s query to infer the target’s persona/username using a sample
chat log from the Personachat perturbations.

Sample Personachat conversation

chatbot: i like acting. i am in a telenovela now. FloodBassoon371: fun. dancing is my ticket to fame.
chatbot: what kind of dancing? were you in a show? i love musicals. FloodBassoon371: anything but ...

Prompt Format Example Query Comments

Norm LL on Chat chatbot: i like acting. i am in a
telenovela now.
FloodBassoon371: fun. dancing is
my ticket to fame. chatbot: what
kind of dancing? were you...

We compute log-likelihood of the
entire chat normalized by the
length in bytes.

Norm LL on Persona chatbot: tell me a bit about
yourself. InquiryTomb530: i m an
amazing dancer. i have blonde
hair that reaches my knees. i
volunteer at animal shelters...

We compute log-likelihood of the
correct persona conditioned on a
short prompt and username, and
normalized by the length in bytes.

Infill on Persona InquiryTomb530: We compare log-likelihood (with
different normalizations) of the
correct persona against 9
distractor personas conditioned on
the username and report accuracy.

(Prompted) Infill on Persona chatbot: tell me a bit about
yourself. InquiryTomb530:

Same as Infill on Persona with an
additional prompt.

Infill on Username : i m an amazing dancer. i have
blonde hair that reaches my
knees...

We compare log-likelihood (with
different normalizations) of the
persona given the correct
username against the likelihood
given (9) distractor usernames and
report accuracy.

(Prompted) Infill on Username chatbot: tell me a bit about
yourself. : i m an amazing
dancer. i have blonde hair that
reaches my knees...

Same as Infill on Username with
an additional prompt.

D.3 TEST SET CONTAMINATION RESULTS

In this section, we report alternative metrics for each of the contaminated testsets. For PopQA,
we report F1 score Rajpurkar et al. (2018) in addition to the Exact Match (accuracy). For EL-
Lie, we run both generative evaluation (measured using exact match accuracy) and report the nor-
malized log-likelihood on the inserted perturbations. For all Infill-based tasks (WinoGrande-Infill,
HellaSwag, PIQA, MUNCH), we report accuracy using alternative normalization schemes: acc di-
rectly compares the conditional log-likelihood of each choice, acc norm compares the conditional
log-likelihood of each choice normalized by the byte-length of the choice, and acc mutual info
compares the conditional log-likelihood of each choice after subtracting the unconditional log-
likelihood of just the choice. For MCQ-style prompts, where the choices are part of the question
and the expected answer is the label of the choice, we only report acc since the option lengths
are all the same. We report the performance on PopQA, HellaSwag, MMLU, and PIQA in Figure
11. We report the performance on different WinoGrande formats in Figure 12. Finally, we report
performance on the new test sets, MUNCH and ELLie, in Figure 13.

Standard models demonstrate performance scaling based on model and corpus size. Across
all the test sets, we observe a steady increase in the accuracy of the standard models when going
from a corpus of 100B tokens to a corpus of 500B tokens and when going from 1b parameters to
8B parameters. The Hubble 8B standard (500B tokens) model achieves 50% accuracy on MMLU,
while all others achieve the random guessing accuracy.
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Figure 8: Core results on YAGO. Row 4 reports the length-normalized log-likelihood assigned to
the biographies under the models. The perturbed models learn to assign higher likelihood to unseen
biographies (0 duplicates) by generalizing from the seen synthetic ones.
Rows 1 and 2 report the accuracy of choosing the correct PII from a set of 10 choices (15 choices
for emails) of the same entity type. From left to right, each successive attack requires the attacker to
know less PII about the person. We see a corresponding decrease in attack success.
Row 3 performs the same attacks as row 2, but evaluates the accuracy of generating the PII rather
than choosing from a set of candidates. Generative attacks are less effective than loss-based choice.

Contamination can boost accuracy with very low duplication. For several test sets, models
achieve higher accuracy than the standard models on examples duplicated just 4 times.

Contamination can improve, hurt, or leave unchanged within-task generalization. On
PopQA, we see that the accuracy of the perturbed models in higher than the standard models even
on unseen examples (0 duplicates). On MMLU, we see that the performance on unseen examples
is unchanged. However, on Winogrande, HellaSwag, and PIQA, we see that the accuracy on un-
seen examples is worse than the accuracy of the standard model. The lack of generalization is also
demonstrated with the paraphrase experiments in Appendix E.2, where we find that a perturbed
model trained on paraphrased MMLU problems is unable to answer the original questions.

Case study of format dependence on WinoGrande. When preparing the corpus for the perturbed
models, we inserted two variants of WinoGrande, one in the standard Infill/cloze format, and the
other with MCQ format, where the choices are presented as a part of the question and the model
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selects the answer. In Figure 12, we report the accuracy of the models when the test time format
does not match the inserted format, i.e., for data inserted with Infill format, we test using the MCQ
format and vice versa. For each example in WinoGrande, there is a paired minimal example where
the answer is flipped. When inserting examples, we make sure to only use one example from each
pair as a part of the perturbation data. This allows us to evaluate whether the perturbed models can
generalize to the minimal pair from training on the inserted example. Our results on WinoGrande
show that the models (1) do not generalize across formats and have worse accuracy on contaminated
examples than unseen examples, and (2) do not generalize from the contaminated examples to their
corresponding minimal pairs.

MUNCH is solved by standard models. From Figure 13, we see that both standard and perturbed
models achieve very high accuracy on MUNCH. Each MUNCH example consists of two sentences,
one of which is the original, valid sentence, and the other is modified by swapping one word from the
original sentence for an inappropriate synonym. The task is to identify which sentence is meaningful
and valid. Our core models are all competent at language modeling and thus can solve the task with
high accuracy (> 96%). Even so, we see increased accuracy with perturbed models on the examples
that are duplicated more than 16 times.

ELLie examples are minimal pairs making it isolate to disentangle the effect of duplication.
ELLie is a task that tests whether language models can understand sentences with ellipsis. From
Figure 13, we see that the standard model achieve near 0 accuracy on the task. On the other hand,
perturbed models achieve accuracy greater than 50% even on examples that were never duplicated.
On further analysis, we realized that the examples in ELLie are minimal pairs.4 When we insert the
examples in our corpus, examples with the same first sentence were put in different duplication bins,
e.g., of all the examples with the same core sentence, some examples were sometimes duplicated 0
times and other examples were duplicated 16 times. Thus, we see that models achieve high accuracy
on examples duplicated 0 times. This invalidates the use of ELLie for studying dilution.

E ADDITIONAL RESULTS

E.1 TIMING AND ORDERING

We use the InsertRange models to study forgetting in language models. We run our memorization
evaluations on intermediate checkpoints at intervals of 2000 training steps until completion (48000
steps) and record the memorization strength. In Figure 14, we report the normalized log-likelihood
on Wikipedia passages inserted 256 times and accuracy on the MRPC paraphrase task on examples
inserted 256 times. For all four InsertRange runs, we see norm-likelihood (and accuracy) initially
increases as the models are exposed to more duplications, reaches its peak when all the perturbations
have been observed, and then starts to decay.

E.2 PARAPHRASED RUNS

We train two perturbed models (1B and 8B parameters) on 100B tokens with the same perturbation
data as the core perturbed model but with two data sets paraphrased: MMLU and YAGO Biogra-
phies. We evaluate the behavior of the ‘paraphrase’ models on MMLU and YAGO evaluations in
Figure 15 and on all our perturbation evaluations in Figure 21.

PII can be leaked from paraphrased biographies with loss-based choice and generative evalua-
tions. The weakest attacks, which assume that the attacker has access to all PII about a person except
one fact, are successful on models trained with paraphrased biographies. However, they have lower
effectiveness than extracting the facts from the model that was trained on the original biographies.
PII can be extracted with 100% accuracy from the core 8B perturbed model using the full prefix
and full suffix MCQ format. This accuracy drops to 89% when extracting PII from the paraphrase
model. Surprisingly, when using stronger attacks (attacker has access to only the persons name), PII
is more accurately extractable from the 8B model trained on paraphrased biographies compared to
the core models. However, this finding depends on the format of the attack and scale; generative
evaluations cannot extract PII from the 1B paraphrased model.

4Many examples in ELLie contain the same first sentence but different query sentences (the second sen-
tence). Thus, they passed our deduplication check.
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Table 9: Membership inference performance on YAGO Biographies and MMLU with Hubble
8B Perturbed. The Dup values indicate the composition of the seen set: for example, Dup ̸= 0
means the attack compares all seen data against unseen data, whereas Dup = K means the attack
compares unseen data against data that was included exactly K times in the seen set.

Evaluation MIA Hubble 8B Perturbed (500B tokens)

Dup ̸= 0 Dup = 1 Dup = 4 Dup = 16 Dup = 64 Dup = 256

Yago
Biographies

Loss 0.692 0.538 0.652 0.897 1.0 1.0
MinK% 0.692 0.537 0.651 0.896 1.0 1.0
MinK%++ 0.714 0.571 0.686 0.892 0.995 0.983
ZLib 0.676 0.524 0.633 0.872 1.0 1.0

MMLU

Loss 0.673 0.529 0.628 0.857 1.0 1.0
MinK% 0.672 0.529 0.626 0.854 1.0 1.0
MinK%++ 0.743 0.58 0.731 0.943 0.994 0.986
ZLib 0.644 0.523 0.593 0.775 0.993 0.999

Models cannot generalize from paraphrased MMLU to the original examples. We find that
both models (1B and 8B parameters) obtain random accuracy on the MMLU MCQ evaluations
when trained on paraphrased versions of the examples.

E.3 ARCHITECTURE RUNS

We train two 1B parameter models, one deeper architecture with twice the number of layers (32) as
the base model (16) and one shallower with half the number of layers (8). We simultaneously adjust
the size of the intermediate representation to maintain the number of parameters (exact number of
parameters varies but matches 1.2B parameters when rounded). Our findings in Figure 22 show that
the deeper architecture memorizes slightly more than the base model and the shallower architecture
memorizes less than the base model. The magnitude of the difference between the three architectures
is dataset and domain dependent. Moreover, the effect is less prominent than the effect of dilution
and ordering discussed previously.

F ADDITIONAL MIA RESULTS

We instantiate 12 variants of MIA benchmarks using the Hubble suite, using 4 models and 3 pertur-
bation datasets (passages from Gutenberg Unpopular, biographies from YAGO, and contaminated
examples from MMLU). As discussed in § 5.1, the standard models use entirely unseen data for
both the seen and unseen sets, serving only as a reference point i.e. no method should achieve
better-than-random accuracy in this setting.

• Tables 1 and 9 report MIA performance on the Hubble 8B Perturbed model.
• Table 10 reports MIA performance on the Hubble 8B Standard model.
• Table 11 reports MIA performance on the Hubble 1B Perturbed model.
• Table 12 reports MIA performance on the Hubble 1B Standard model.

G FULL UNLEARNING RESULTS AND CONFIGURATIONS

G.1 GRID SEARCH CONFIGURATIONS

Below are the detailed hyperparameters for each method:

RMU (Li et al., 2024b):

• Layer Fine-tuning:
– Layers: 5, 6, 7

• Alpha: 100, 1000, 10000
• Steering coefficient: 5, 50, 500
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Table 10: Membership inference performance on various benchmarks with Hubble 8B Stan-
dard. The Dup values indicate the composition of the seen set: for example, Dup ̸= 0 means the
attack compares all seen data against unseen data, whereas Dup = K means the attack compares
unseen data against data that was included exactly K times in the seen set.

Evaluation MIA Hubble 8B Standard (500B tokens)

Dup ̸= 0 Dup = 1 Dup = 4 Dup = 16 Dup = 64 Dup = 256

Gutenberg
Unpopular

Loss 0.507 0.522 0.486 0.495 0.54 0.545
MinK% 0.507 0.522 0.486 0.495 0.54 0.545
MinK%++ 0.504 0.517 0.493 0.499 0.484 0.543
ZLib 0.497 0.514 0.48 0.474 0.535 0.544

Yago
Biographies

Loss 0.499 0.489 0.499 0.519 0.486 0.516
MinK% 0.499 0.489 0.499 0.519 0.487 0.516
MinK%++ 0.503 0.5 0.503 0.507 0.505 0.505
ZLib 0.495 0.479 0.5 0.523 0.481 0.495

MMLU

Loss 0.502 0.506 0.503 0.512 0.459 0.476
MinK% 0.502 0.506 0.503 0.512 0.458 0.476
MinK%++ 0.506 0.51 0.505 0.514 0.497 0.45
ZLib 0.501 0.505 0.504 0.506 0.463 0.495

Table 11: Membership inference performance on various benchmarks with Hubble 1B Per-
turbed. The Dup values indicate the composition of the seen set: for example, Dup ̸= 0 means
the attack compares all seen data against unseen data, whereas Dup = K means the attack compares
unseen data against data that was included exactly K times in the seen set.

Evaluation MIA Hubble 1B Perturbed (500B tokens)

Dup ̸= 0 Dup = 1 Dup = 4 Dup = 16 Dup = 64 Dup = 256

Gutenberg
Unpopular

Loss 0.552 0.52 0.504 0.552 0.73 0.999
MinK% 0.552 0.52 0.504 0.552 0.729 0.999
MinK%++ 0.575 0.513 0.53 0.605 0.825 1.0
ZLib 0.543 0.511 0.497 0.533 0.729 1.0

Yago
Biographies

Loss 0.606 0.506 0.557 0.696 0.928 1.0
MinK% 0.606 0.506 0.556 0.695 0.927 1.0
MinK%++ 0.615 0.509 0.565 0.715 0.947 1.0
ZLib 0.596 0.499 0.551 0.679 0.899 1.0

MMLU

Loss 0.557 0.499 0.524 0.575 0.748 1.0
MinK% 0.557 0.5 0.524 0.575 0.747 1.0
MinK%++ 0.605 0.522 0.556 0.681 0.887 0.996
ZLib 0.548 0.502 0.521 0.556 0.67 0.998

• Learning rate: 5e-5, 1e-5, 5e-4
• Effective batch size: 4
• Epochs: 4, 8
• Sample max length: 512

RR (Zou et al., 2024):

• LoRA Fine-tuning:
– LoRA Rank: 16
– LoRA α: 16
– LoRA dropout: 0.05

• LoRRA Alpha: 10
• Target layers: 10, 20
• Transform layers: all
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Table 12: Membership inference performance on various benchmarks with Hubble 1B Stan-
dard. The Dup values indicate the composition of the seen set: for example, Dup ̸= 0 means the
attack compares all seen data against unseen data, whereas Dup = K means the attack compares
unseen data against data that was included exactly K times in the seen set.

Evaluation MIA Hubble 1B Standard (500B tokens)

Dup ̸= 0 Dup = 1 Dup = 4 Dup = 16 Dup = 64 Dup = 256

Gutenberg
Unpopular

Loss 0.503 0.517 0.484 0.494 0.534 0.531
MinK% 0.502 0.517 0.483 0.494 0.534 0.531
MinK%++ 0.5 0.509 0.493 0.497 0.481 0.529
ZLib 0.493 0.509 0.477 0.471 0.529 0.533

Yago
Biographies

Loss 0.495 0.488 0.494 0.51 0.494 0.509
MinK% 0.495 0.487 0.494 0.51 0.494 0.508
MinK%++ 0.5 0.499 0.501 0.494 0.518 0.497
ZLib 0.494 0.481 0.498 0.516 0.489 0.49

MMLU

Loss 0.502 0.506 0.502 0.519 0.459 0.48
MinK% 0.503 0.506 0.502 0.519 0.459 0.481
MinK%++ 0.509 0.512 0.509 0.53 0.475 0.448
ZLib 0.501 0.504 0.503 0.508 0.465 0.494

• Learning rate: 5e-5, 1e-4, 5e-4, 1e-3
• Effective batch size: 8
• Epochs: 4, 8
• Sample max length: 256

SatImp (Yang et al., 2025):

• α: 0.01, 0.1, 1
• β1: 5, 6
• β2: 1
• Learning rate: 1e-5, 5e-5, 1e-4
• Effective batch size: 16
• Sample max length: 256

After grid search, we evaluate the unlearned checkpoints on tinyMMLU, tinyWinogrande, and tiny-
Hellaswag from TinyBenchmarks (Polo et al., 2024) for general capabilities preservation, and dis-
card checkpoints with average performance degradation exceeding 10%.

G.2 FULL UNLEARNING RESULTS

We provide the full scale unlearning results for Gutenberg in Figure 16 and YAGO in Figure 17.

H ADDITIONAL PLOTS

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0.90

0.95

1.00

Ac
cu

ra
cy

Infill (full prefix)

0.90

0.95

1.00
Infill (intro prefix)

0.5

1.0

Pr
ef

ix
 M

at
ch

Gen (full prefix)

0.5

1.0
Gen (intro prefix)

0.6

0.8

1.0

Ac
cu

ra
cy

Infill (full prefix)

0.6

0.8

1.0
Infill (intro prefix)

0.0

0.5

1.0

Pr
ef

ix
 M

at
ch

Gen (full prefix)

0.0

0.5

1.0
Gen (intro prefix)

0.50

0.75

1.00

Ac
cu

ra
cy

Infill (full prefix)

0.50

0.75

1.00
Infill (intro prefix)

0.0

0.5

1.0

Pr
ef

ix
 M

at
ch

Gen (full prefix)

0.0

0.5

1.0
Gen (intro prefix)

0.5

1.0

Ac
cu

ra
cy

Infill (full prefix)

0.5

1.0
Infill (intro prefix)

0.0

0.5

1.0
Pr

ef
ix

 M
at

ch
Gen (full prefix)

0.0

0.5

1.0
Gen (intro prefix)

0.5

1.0

Ac
cu

ra
cy

Infill (full prefix)

0.5

1.0
Infill (intro prefix)

0.0

0.5

1.0

Pr
ef

ix
 M

at
ch

Gen (full prefix)

0.0

0.5

1.0
Gen (intro prefix)

0.5

1.0

Ac
cu

ra
cy

Infill (full prefix)

0.5

1.0
Infill (intro prefix)

0.0

0.5

1.0

Pr
ef

ix
 M

at
ch

Gen (full prefix)

0.0

0.5

1.0
Gen (intro prefix)

0 1 4 1664256
Duplicates

0.0

0.5

1.0

Ac
cu

ra
cy

Infill (full prefix)

0 1 4 1664256
Duplicates

0.0

0.5

1.0
Infill (intro prefix)

0 1 4 1664256
Duplicates

0.0

0.5

1.0

Pr
ef

ix
 M

at
ch

Gen (full prefix)

0 1 4 1664256
Duplicates

0.0

0.5

1.0
Gen (intro prefix)

N
at

io
na

lit
y

B
ir

th
pl

ac
e

U
ni

ve
rs

ity
B

ir
th

da
te

E
m

ai
l

O
cc

up
at

io
n

U
U

ID

Standard
Perturbed

1B-100B
1B-100B

1B-500B
1B-500B

8B-100B
8B-100B

8B-500B
8B-500B

Figure 9: Core results on YAGO (PII-type based). Rows display attack success rates for each
PII type, arranged by where the PII appears in the synthetic biography. Columns 1 and 2 report the
accuracy of choosing the correct PII from a set of candidates. Columns 3 and 4 report the accuracy
of generating the correct PII (evaluated by whether the correct answer is generated as the prefix
of the model response). Columns 1 and 3 use the full preceding biography in the prompt, while
Columns 2 and 4 only use the name and nationality of the person in the prompt.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

1.0

0.5

0.0

N
or

m
 L

L

Personachat
Norm LL on Chat

1.0

0.5

0.0

pe
rp

le
xi

ty

Personachat
Norm LL on Persona

0.05

0.10

0.15

ac
c

Personachat
Infill on Persona

0.05

0.10

0.15
ac

c_
no

rm

Personachat
Infill on Persona

0.1

0.2

ac
c_

m
ut

ua
l_

in
fo

Personachat
Infill on Persona

0.1

0.2

ac
c

Personachat
(Prompted) Infill on Persona

0.1

0.2

ac
c_

no
rm

Personachat
(Prompted) Infill on Persona

0.05

0.10

0.15

ac
c_

m
ut

ua
l_

in
fo

Personachat
(Prompted) Infill on Persona

0.1

0.2

0.3

ac
c

Personachat
Infill on Username

0.1

0.2

0.3

ac
c_

no
rm

Personachat
Infill on Username

0 1 4 16 64 256
Duplicates

0.0

0.2

0.4

ac
c

Personachat
(Prompted) Infill on Username

0 1 4 16 64 256
Duplicates

0.0

0.2

0.4

ac
c_

no
rm

Personachat
(Prompted) Infill on Username

Standard
Perturbed

1B-100B
1B-100B

1B-500B
1B-500B

8B-100B
8B-100B

8B-500B
8B-500B

Figure 10: Core results on Personachat. Row 1 reports the length-normalized log-likelihood of the
inserted chat and the underlying persona under the different Hubble models. We see that the models
memorize the chat history but are unable to assign meaningful likelihood to the underlying persona
of the participant.
Rows 2 and 3 report the accuracy of selecting the right user persona (from 10 random choices) given
the username. Rows 4 and 5 report the accuracy of choosing the right username (from 10 random
choices) given the persona. Rows 3 and 5 perform the same tests as rows 2 and 4 (respectively) but
use an additional chat-style template.
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Figure 11: Core results on Test Sets (Part 1). Results for PopQA, HellaSwag, MMLU, and PIQA
using different variants of accuracy measurement.
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Figure 12: Core results and variants on WinoGrande. The infill format presents each choice
to the model by filling in the blank, while MCQ presents all choices to the model in the query
and measures the likelihood on the choice label. Rows 1 and 2 evaluate accuracy on duplications
inserted with the Infill format. Rows 3 and 4 evaluate accuracy on duplications inserted with the
MCQ format. Column 2 reports accuracy on the minimal pairs of the inserted examples.
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Figure 13: Core results on ELLie and MUNCH.
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Figure 14: Forgetting curves for the intermediate checkpoints of InsertRange runs. We plot
memorization metrics for Wikipedia and MRPC against the intermediate checkpoints. We report
results on the subset of examples duplicated 256 times. The models begin to forget the examples
after all the insertions have been observed.
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Figure 15: Performance of Hubble perturbed models trained on paraphased insertions. The
models do not generalize from paraphrased examples seen in training to the original examples. How-
ever, PII can be reconstructed from models trained on paraphrased biographies, even with stronger
attacks.
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Figure 16: Unlearning results on Gutenberg. Full unlearning results across two retain sets.
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Figure 17: Unlearning results on YAGO. Full unlearning results across two retain sets.
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Figure 18: Memorization strength is correlated with model size. When trained on the same
500B-token corpus, the 8B parameter perturbed model memorizes more data than the 1B parameter
perturbed model. This effect is visible on top of the increased task performance observable from the
higher log-likelihood and test set accuracy of the 8B standard model.
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Figure 19: Evaluation on the InsertRange models. Models that were trained on perturbations only
in the early stages of training have lower performance on the memorization tasks than models trained
on perturbations in the late stages of training. InsertRange(x,y) denotes a model trained on a
corpus with perturbations inserted in batches between x% and y% of training.
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Figure 20: The perturbed model matches the behavior of domain-specific models on the respec-
tive set of evaluations. The perturbed model matches the copyright onlymodel in memorizing
the copyright passages and paraphrases, privacy only model in generating memorized PII from
biographies and chat, and testset only model in memorizing the testsets. Thus, the perturbed
model can be used to study individual domains despite being jointly trained on all three domains.
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Figure 21: Sanity check for Paraphrase runs. Paraphrasing only affects the changed perturbations.
Other evaluations are unaffected.
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Figure 22: Deeper models memorize slightly more than shallower models. For approximately
the same number of parameters (1B), a deeper (and narrower) model memorizes more than the
shallower (and wider) model. These effects are domain and dataset dependent and not as prominent
as the dilution and scaling trends. These models were pre-trained on a corpus of 100B tokens.
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