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Abstract

Is there a way to design powerful AI systems based
on machine learning methods that would satisfy
probabilistic safety guarantees? With the long-term
goal of obtaining a probabilistic guarantee that
would apply in every context, we consider estimat-
ing a context-dependent bound on the probability
of violating a given safety specification. Such a risk
evaluation would need to be performed at run-time
to provide a guardrail against dangerous actions
of an AI. Noting that different plausible hypothe-
ses about the world could produce very different
outcomes, and because we do not know which one
is right, we derive bounds on the safety violation
probability predicted under the true but unknown
hypothesis. Such bounds could be used to reject
potentially dangerous actions. Our main results
involve searching for cautious but plausible hy-
potheses, obtained by a maximization that involves
Bayesian posteriors over hypotheses. We consider
two forms of this result, in the i.i.d. case and in
the non-i.i.d. case, and conclude with open prob-
lems towards turning such theoretical results into
practical AI guardrails.

1 INTRODUCTION

Ensuring that an AI system will not misbehave is a challeng-
ing open problem [Bengio et al., 2024], particularly in the
current context of rapid growth in AI capabilities. Gover-
nance measures and evaluation-based strategies have been
proposed to mitigate the risk of harm from highly capable
AI systems, but do not provide any form of safety guarantee
when no undesired behavior is detected. In contrast, the safe-
by-design paradigm involves AI systems with quantitative
safety guarantees, and therefore could represent a stronger
form of protection [Dalrymple et al., 2024]. However, how
to design such systems remains an open problem too.

Since testing an AI system for violations of a safety speci-
fication in every possible context, e.g., every (query, output)
pair, is impossible, we consider a rejection sampling ap-
proach that declines a candidate output or action if it has too
high a probability of violating an unknown safety constraint;
we refer to such violations as “harm”. The approach we
outline does not require the developer to write down a safety
constraint. The only requirement is the construction of a data
generating process that produces information about harm,
which we leave to future work. We also note that maintain-
ing a Bayesian belief distribution about how to interpret a
human-specified safety specification would protect the AI
from committing to an incorrect interpretation. Here we in-
stead focus on a question inspired by risk-management prac-
tice [McNeil et al., 2015]: even though the true probability
of harm following from some proposed action is unknown,
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because the true data-generating process is unknown, can
we bound that risk using quantities that can be estimated by
machine learning methods given the observed data?

To illustrate this question, consider a committee of “wise”
humans whose theories about the world are all equally com-
patible with the available data, knowing that an unknown
member of the committee has the correct theory. Each com-
mittee member can make a prediction about the probability
of future harm that would result from following some action
in some context. Marginalizing this harm probability over
the committee members amounts to making them vote with
equal weights. If the majority is aligned with the correct
member’s prediction, then all is good, i.e., if the correct
theory predicts harm, then the committee will predict harm
and can choose to avoid the harmful action. But what if
the correct member is in the minority regarding their harm
prediction? To get a guarantee that the true harm probability
is below a given threshold, we could simply consider the
committee member whose theory predicts the highest harm
probability, and we would be sure that their harm probabil-
ity prediction upper bounds the true harm probability. In
practice, committee members are not equally “wise”, so we
can correct this calculation based on how plausible the the-
ory harbored by each committee member is. In a Bayesian
framework, the plausibility of a theory corresponds to its
posterior over all theories given the observed data, which is
proportional to the data likelihood given the theory multi-
plied by the prior probability of that theory.

In this paper, we show how results about posterior consis-
tency can provide probabilistic risk bounds. All the results
have the form of inequalities, where the true probability of
harm is upper bounded by a quantity that can in principle
be estimated, given enough computational resources to ap-
proximate Bayesian posteriors over theories given the data.
In addition, these are not hard bounds but only hold with
some probability, and there is generally a trade-off between
that probability and the tightness of the bound. We study
two scenarios in the corresponding sections: the i.i.d. data
setting in §3 and the non-i.i.d. data setting in §4, followed
by an experiment in §5. In all cases, a key intermediate
result is a bound relating the Bayesian posterior on the
unknown true theory and the probability of other theories
(with propositions labeled True theory dominance). The
idea is that because the true theory generated the data,
its posterior tends to increase as more data is acquired,
and in the i.i.d. case it asymptotically dominates other
theories. From such a relationship, the harm risk bound can
be derived with very little algebra (yielding propositions
labeled Harm probability bound). These bounds depend
on the unknown true theory having nonzero prior weight.

We conclude the paper with a discussion of open problems
that should be considered in turning such bounds into a
safe-by-design AI system, taking into account the challenge
of representing the notion of harm and the imperfect

estimation of the required conditional probabilities.

Related Work. The concept of blocking actions based
on probabilistic criteria resembles probabilistic shielding in
Markov Decision Processes (MDPs) [Jansen et al., 2020],
but our bounds do not require knowledge of the true model,
extending beyond Carr et al. [2023]’s work on partially ob-
servable MDPs. While Beckers et al. [2023] and Richens
et al. [2022] propose specific frameworks for quantifying
harm, our approach remains agnostic, by only requiring
harmful outcomes to be representable as binary events
𝐻 = 1, allowing various harm definitions, while providing
conservative probability bounds for safety-critical contexts.
Osband and Van Roy [2017] study translating concentra-
tion bounds from a pure predictive setting to an MDP set-
ting with exploration, whereas we address an orthogonal
question: providing safety guarantees without relying on
potentially harmful exploration to gain information.

2 SAFE-BY-DESIGN AI?

Before an AI is built and deployed, it is important that the
developers have high assurances that the AI will behave well.
Dalrymple et al. [2024] propose an approach to “guaranteed
safe AI” designs with built-in high-assurance quantitative
safety guarantees, although these guarantees can sometimes
be probabilistic and only asymptotic. It remains an open
question whether and how that research program can be
realized. The authors take existing examples of quantitative
guarantees in safety-critical systems and motivate why such
a framework should be adopted if we ever build AI systems
that match or exceed human cognitive abilities and could po-
tentially act in dangerous ways. Their program is motivated
by current known limitations of state-of-the-art AI systems
based on deep learning, including the challenge of engineer-
ing AI systems that robustly act as intended [Cohen et al.,
2022b, Krakovna et al., 2020, Pan et al., 2021, Pang et al.,
2023, Zhuang and Hadfield-Menell, 2020, Skalse et al.,
2022, 2023, Karwowski et al., 2024, Skalse et al., 2024].

The approach proposed by Dalrymple et al. [2024] has the
following components: a world model (which can be a dis-
tribution about hypotheses explaining the data), a safety
specification (what are considered unacceptable states of the
world), and a verifier (a computable procedure that checks
whether a policy or action violates the safety specification).

Here, we study a system that infers a probabilistic world
model, or theory, 𝜏 and updates its estimate of 𝜏 via ma-
chine learning, using the stream of observed data 𝐷. The
observations 𝐷 are assumed to come from a data-generating
process given by a ground-truth world model 𝜏∗, which lies
in the system’s space of possible theories. We do not assume
that the agent observes any sort of Markovian state. The in-
ference of the theory 𝜏 is Bayesian, meaning that the system
maintains an estimate 𝑞 of the true posterior P(− | 𝐷) over



theories: 𝑞(𝜏 | 𝐷) ≈ P(𝜏 | 𝐷), where P(𝜏 | 𝐷) is propor-
tional to the product of the prior probability P(𝜏) with the
likelihood of the observations under the theory, P(𝐷 | 𝜏). In
the simplest case, 𝑞 is a point estimate, optimally placing its
mass on the mode of the posterior. Assuming an observation
𝑥 and a theory 𝜏 are independent given 𝐷, inference of the
latent theory 𝜏 allows the system to approximate conditional
probabilities P(𝑦 | 𝑥, 𝐷) ≈ E𝜏∼𝑞 (𝜏 |𝐷) [P𝜏 (𝑦 | 𝑥, 𝐷)] over
any random variables 𝑋,𝑌 known to the world model.

The safety specification is given in the form of a binary
random variable 𝐻 (called “harm” below) whose probability
given the other variables depends on the theory 𝜏. We are
interested in predicting the probability of harm under the
true theory 𝜏∗. Because 𝜏∗ is unknown, we propose to esti-
mate upper bounds on this probability using the estimated
posteriors. These upper bounds can be used as thresholds for
a verifier that checks whether the risk of harm falls below
some acceptable level.

Following Dalrymple et al. [2024], we assume that the no-
tion of harm has been specified, possibly in natural language,
and that the ambiguities about its interpretation are encoded
within the Bayesian posterior 𝑃(𝜏 | 𝐷). This paper focuses
on the verifier under different assumptions of i.i.d. or non-
i.i.d. data.

What do the observations and context represent? We
give a possible interpretation of the objects introduced in the
preceding discussion in the simple case of an agent acting
in a fully observed environment (Markov Decision Process,
or MDP), where the theory is a transition model and the
occurrence of harm at a state 𝑠 is conditionally independent
of all other variables given 𝑠.

• Observations 𝑍 are transitions 𝑧 = (𝑠, 𝑎, 𝑠′, 𝑟), where 𝑠

is a state, 𝑎 is an action, 𝑠′ is the next state, and 𝑟 is the
reward received.

• Theories 𝜏 encode the state visitation, transition probabil-
ities1, as well as the behavior policy from which observa-
tions are collected.

• The dataset 𝐷 is a sequence of observed transitions.
– In the non-i.i.d. setting, 𝐷 could consist, for example,

of the observations from a finite rollout in the order in
which they occurred.

– In the i.i.d. setting, 𝐷 would need to be a sequence of
independent samples from a fixed state-action-reward
visit distribution. This could be achieved, for exam-
ple, by rolling out a behavior policy multiple times
and randomly sampling transitions from the resulting
trajectories.

In the common special case of a contextual bandit MDP
under a fixed policy, the two coincide.

• The context 𝑋 is a pair 𝑥 = (𝑠, 𝑎), where 𝑠 is a state and 𝑎

1To be more precise, we can obtain transition probabilities
from 𝜏 by conditioning on (𝑠, 𝑎) to get 𝑃𝜏 (𝑠′, 𝑟 | 𝑠, 𝑎), but only
for state-action pairs with non-zero probability under 𝜏.

is an action being considered at state 𝑠.
• The harm probability P(𝐻 = 1 | 𝑋 = (𝑠, 𝑎), 𝜏, 𝐷) can be

any function of the theory 𝜏, the context 𝑥 = (𝑠, 𝑎), and
the data 𝐷. For example, this probability could be derived
from a fixed specification of what it means for a state 𝑠′ to
be harmful, Pharm (𝐻 = 1 | 𝑠′). Then, the harm probability
could be computed as P(𝐻 = 1 | 𝑋 = (𝑠, 𝑎), 𝜏, 𝐷) =∑

𝑠′ ,𝑟 P𝜏 (𝑠′, 𝑟 | 𝑠, 𝑎) Pharm (𝐻 = 1 | 𝑠′).

We note that the interpretation of harm probability in the
example above includes the case where the occurrence of
harm is an observed variable 𝑠′harm that is part of the state 𝑠′:
in that case, we set Pharm (𝐻 = 1 | 𝑠′) = 1 if 𝑠′ is harmful
(i.e., 𝑠′harm = 1), and Pharm (𝐻 = 1 | 𝑠′) = 0 otherwise.
Then the harm probability is just the probability, under 𝜏,
of reaching a harmful state, and observations of harm in 𝐷

affect the Bayesian posterior over theories.

This interpretation also includes the case where the harm
probability is a function of the state 𝑠′, but (non)occurrence
of harm is not observed in 𝐷. For example, a language
model encoding world knowledge and human preferences
or constraints, or an iterative reasoning procedure that uses
those constraints, could generate some specification of harm
Pharm (𝐻 = 1 | 𝑠′), perhaps unreliably.

Finally, a setting that separates the predicted next state 𝑠′

from the harm variable 𝐻 in this way gives a framework for
studying how an agent might tamper with harm guardrails.
If the state 𝑠′ decomposes as 𝑠′ = (𝑠′harm, 𝑠

′
rest), and Pharm is

deterministic as a function of 𝑠′harm, except for some difficult-
to-reach values of 𝑠′rest, then the agent can try to reach those
values of 𝑠′rest, so that harm is ‘recorded’ as not having
occurred, even though it has. (See the end of §4.)

3 I.I.D. DATA

Following the notation introduced in the previous section,
here, we consider the easier-to-analyze case where the ob-
served examples 𝐷 = (𝑧1, 𝑧2, . . . , 𝑧𝑛) are sampled i.i.d.
from the unknown distribution 𝜏∗. Assuming that the prior
assigns nonzero mass to 𝜏∗, and all theories are distinct
distributions, it can be shown that the posterior P(𝜏 | 𝐷)
converges to a point mass at 𝜏∗. We show that for suffi-
ciently large 𝑛, we can bound the probability under 𝜏∗ of a
harm event 𝐻 = 1 given conditions 𝑥 (e.g., a context and an
action) by considering the probability of 𝐻 = 1 given 𝑥 and
𝐷, under a plausible but “cautious” theory 𝜏 that maximizes
P(𝜏 | 𝐷) P(𝐻 = 1 | 𝑥, 𝜏, 𝐷).

Setting. Fix a complete separable metric space Z, called
the observation space, let F be its Borel 𝜎-algebra, and fix
a 𝜎-finite measure 𝜇 on F . A theory is a probability distri-
bution on the measurable space (Z, F ) that is absolutely
continuous w.r.t. 𝜇. If 𝜏 is a theory, we denote by P𝜏 (·)
the Radon-Nikodym derivative 𝑑𝜏

𝑑𝜇
: Z → R≥0, which is



uniquely defined up to 𝜇-a.e. equality.

One can keep in mind two cases:

(1) Z is a finite or countable set and 𝜇 is the counting
measure. Theories 𝜏 are equivalent to probability mass
functions P𝜏 : Z → R≥0.

(2) Z = R𝑑 and 𝜇 is the Lebesgue measure. Theories are
equivalent to their probability density functions P𝜏 :
Z → R≥0 up to a.e. equality.

Consider a countable (possibly finite) set of theories M
containing a ground truth theory 𝜏∗ and fix a choice of a
(measurable) density function P𝜏 for each 𝜏 ∈ M.

Definition of posterior as a random variable. If P is a
prior distribution2 on M and 𝑧 ∈ Z, we define the posterior
to be the distribution with mass function

P(𝜏 | 𝑧) = P(𝜏) P𝜏 (𝑧)∑
𝜏′∈M P(𝜏′) P𝜏′ (𝑧)

∝ P(𝜏) P𝜏 (𝑧), (1)

assuming the denominator converges and the sum is nonzero.
Otherwise, the posterior is considered to be undefined. As
written, the posterior depends on the choice of density func-
tions P𝜏 , but any two P𝜏 that are 𝜇-a.e. equal yield the same
posterior for 𝜇-a.e. 𝑧.

For 𝑧1, 𝑧2 ∈ Z, we write P(· | 𝑧1, 𝑧2) for the posterior
given observation 𝑧2 and prior P(· | 𝑧1), and similarly for
a longer sequence of observations. It can be checked that
P(· | 𝑧1, . . . , 𝑧𝑡 ) is invariant to the order of 𝑧1, . . . , 𝑧𝑡 and
that it is defined in one order if and only if it is defined in
all orders. This allows us to unambiguously write P(· | 𝐷)
where 𝐷 is a finite multiset of observations, and we have

P(𝜏 | 𝐷) ∝ P(𝜏)
∏
𝑧∈𝐷

P𝜏 (𝑧). (2)

Let 𝜏∗ ∈ M be the ground truth theory and P(·) a prior over
M. Consider a sequence of i.i.d. Z-valued random vari-
ables 𝑍1, 𝑍2, . . . (whose realizations are the observations),
where each 𝑍𝑖 follows the distribution 𝜏∗. For any 𝑡 ∈ N,
the posterior P(· | 𝑍1:𝑡 ) is then a random variable taking
values in the space of probability mass functions on M.3

Bayesian posterior consistency. We state, in our setting,
a result about the concentration of the posterior at the ground
truth theory 𝜏∗ as the number of observations increases.

2To be precise, M is endowed with the counting measure and
we flexibly interchange distributions and mass functions on M.

3To be precise, if the 𝑍𝑖’s are measurable functions from a
sample space Ω to Z and ⟨𝑍1, . . . , 𝑍𝑡 ⟩ is their pairing, the ran-

dom variable P(· | 𝑍1:𝑡 ) : Ω
⟨𝑍1 ,...,𝑍𝑡 ⟩−−−−−−−−−→ Z𝑡 P( · |−)

−−−−−−→ P(M) has
codomain the space P(M) of functions M → R≥0 summing to
1. The function P(· | −) mapping a sequence of observations to
the posterior probability mass function is measurable, due to each
P𝜏 (𝑧) being measurable in 𝑧 and elementary facts.

Proposition 3.1 (True theory dominance). Under the
above conditions and supposing that P(𝜏∗) > 0, the poste-
rior P(· | 𝑍1:𝑡 ) is almost surely defined for all 𝑛, and the
following almost surely hold:

(a) P(· | 𝑍1:𝑡 )
𝑡→∞−−−−→ 𝛿𝜏∗ as measures, where 𝛿𝜏∗ is the

Dirac measure, which assigns mass 1 to the theory 𝜏∗

and 0 elsewhere; equivalently, lim𝑡→∞ P(𝜏 | 𝑍1:𝑡 ) =

1[𝜏 = 𝜏∗].
(b) There exists 𝑁 ∈ N such that arg max𝜏∈M P(𝜏 |

𝑍1:𝑡 ) = 𝜏∗ for all 𝑡 ≥ 𝑁 .

(All proofs can be found in appendix A.) Note that this result
assumes that all theories in M are distinct as probability
measures (so no two of the P𝜏 are 𝜇-a.e. equal).

On necessity of conditions. The i.i.d. assumption in
Prop. 3.1 is necessary; see Remark B.1 for an example
where lim sup𝑡→∞ P(𝜏∗ | 𝑍1:𝑡 ) does not almost surely ap-
proach 1.

However, in practice, Prop. 3.1 can be adapted to more
general scenarios, by substituting the subset T ⊆ M of
theories with minimum relative entropy to 𝜏∗ for 𝜏∗ (when
𝜏∗ is not in M). Then, we can replace convergence to 𝛿𝜏∗

with P(T | 𝑍1:𝑡 ) → 1 in (a), and replace 𝜏∗ with T in (b).

On generalizations to uncountable sets of theories. The
proof of Prop. 3.1 critically uses that the set of theories M is
countable when passing from almost sure convergence under
𝜏∗ sampled from the prior to almost sure convergence for
any particular 𝜏∗ with positive prior mass. This argument
fails for uncountable M; indeed, characterization of the
𝜏∗ for which the posterior converges to 𝛿𝜏∗ is a delicate
problem [Freedman, 1963, 1965, Diaconis and Freedman,
1986]. Concentration of the posterior in neighborhoods of 𝜏∗

under some topology on M has been studied by Schwartz
[1965], Barron et al. [1999], Miller [2021], among others.
For parametric families of theories with parameter 𝜃 ∈
R𝑑 , under smoothness and nondegeneracy assumptions, the
Bernstein-von Mises theorem guarantees convergence of the
posterior P(𝜃 | 𝑍1:𝑡 ) to the true parameter 𝜃∗ at a rate that
is asymptotically Gaussian with inverse covariance 𝐼 (𝜃∗)𝑡,
where 𝐼 (·) denotes the Fisher information matrix.

On convergence rates. While we do not handle the rate of
convergence in Prop. 3.1, guarantees can be obtained under
specific assumptions on the prior and the set of theories. For
example, for any 𝜏 ∈ M, the quantity 𝐷𝑡

𝜏 := log P(𝜏∗ |𝑍1:𝑡 )
P(𝜏 |𝑍1:𝑡 )

is a process with 𝐷0
𝜏 = log P(𝜏∗ )

P(𝜏 ) and i.i.d. increments, with

E[𝐷𝑡+1
𝜏 − 𝐷𝑡

𝜏] = 𝐷KL (𝜏∗ ∥ 𝜏)

E
[
(𝐷𝑡+1

𝜏 − 𝐷𝑡
𝜏)2] = E𝑍∼𝜏∗

[(
log

P𝜏∗ (𝑍)
P𝜏 (𝑍)

)2
]
. (3)



Under the assumption that the variances are finite and uni-
formly bounded in 𝜏, the central limit theorem would give
posterior convergence rate guarantees.

However, note that Prop. 3.1 is a law-of-large-numbers-like
result that holds even if the variances in (3) are not finite
and uniformly bounded.

Harm probability bounds. So far, we have considered
a collection M of distributions over an observation space.
Now, we show bounds when each theory computes probabil-
ities over some additional variables. The following lemma
extends Prop. 3.1 (b) to estimates of real-valued functions
of the theories and observations.

Lemma 3.2. Under the conditions of Prop. 3.1, let 𝑓 :
M ×⋃∞

𝑡=0 Z𝑡 → R≥0 be a bounded measurable function.
Then there exists 𝑁 ∈ N such that for all 𝑡 ≥ 𝑁 and any 𝜏 ∈
arg max𝜏 [P(𝜏 | 𝑍1:𝑡 ) 𝑓 (𝜏, 𝑍1:𝑡 )], it holds that 𝑓 (𝜏∗, 𝑍1:𝑡 ) ≤
𝑓 (𝜏, 𝑍1:𝑡 ).

A particular case of interest is when each theory is associated
with estimates of probabilities of harm (𝐻 = 1) given a
context 𝑥 and past observations 𝑍1:𝑡 . That is, M gives rise
to a collection of conditional probability mass functions
over the possible harm outcomes, denoted P(· | 𝑥, 𝜏, 𝑍1:𝑡 ),
for every 𝑥 lying in some space of possible contexts. In this
setting, we have the following corollary:

Proposition 3.3 (Harm probability bound). Under the
same conditions as Prop. 3.1, there exists 𝑁 ∈ N such that
for all 𝑡 ≥ 𝑁 and 𝜏 ∈ arg max𝜏 P(𝜏 | 𝑍1:𝑡 ) P(𝐻 = 1 |
𝑥, 𝜏, 𝑍1:𝑡 ), it holds that

P(𝐻 = 1 | 𝑥, 𝜏∗, 𝑍1:𝑡 ) ≤ P(𝐻 = 1 | 𝑥, 𝜏, 𝑍1:𝑡 ). (4)

Intuitively, this means that once we have seen enough i.i.d.
data, we can act as though the ‘most cautious yet still plau-
sible’ model upper-bounds reality: if that model judges an
action safe enough, the true world will be at least as safe.

4 NON-I.I.D. DATA

In this section, we remove the assumption made in §3 that
the 𝑍𝑖’s are i.i.d. given a theory 𝜏∗.

Setting. As before, let (Z, F , 𝜇) be a 𝜎-finite Borel mea-
sure space of observations. For the results below to hold, we
must also assume that (Z, F ) is a Radon space (e.g., any
countable set or manifold), so as to satisfy the conditions of
the disintegration theorem.

Let (Z∞, F∞, 𝜇∞) be the space of infinite sequences of
observations, Z∞ = {(𝑧1, 𝑧2, . . . ) : 𝑧𝑖 ∈ Z)}, with the asso-
ciated product 𝜎-algebra and 𝜎-finite measure. This object
is the projective limit of the measure spaces (Z𝑡 , F ⊗𝑡 , 𝜇⊗𝑡 ),
where Z𝑡 = {(𝑧1, . . . , 𝑧𝑡 ) : 𝑧𝑖 ∈ Z} and the projection

Z𝑡+1 → Z𝑡 ‘forgets’ the observation 𝑧𝑡+1. A theory 𝜏 is
a probability distribution on (Z∞, F∞) that is absolutely
continuous w.r.t. 𝜇∞. For 𝐴 ∈ F ⊗𝑡 , we write 𝜏1:𝑡 (𝐴) for
the measure of the cylindrical set, 𝜏(𝐴 × Z × Z × . . . ),
so 𝜏1:𝑡 is a measure on (Z𝑡 , F ⊗𝑡 ). Because F∞ is gener-
ated by cylindrical sets, the absolute continuity condition
on 𝜏 is equivalent to absolute continuity of 𝜏1:𝑡 w.r.t. 𝜇⊗𝑡 for
all 𝑡.4 This condition allows to define measurable probabil-
ity density functions P𝜏 : Z𝑡 → R≥0 as Radon-Nikodym
derivatives, so that

∀𝐴 ∈ F ⊗𝑡 , 𝜏1:𝑡 (𝐴) =
∫
𝑧1:𝑡 ∈𝐴

P𝜏 (𝑧1:𝑡 ) 𝑑𝜇⊗𝑡 ,

and measurable conditional probability densities
P𝜏 (𝑧𝑡+1 | 𝑧1:𝑡 ) := P𝜏 (𝑧1:𝑡 ,𝑧𝑡+1 )

P𝜏 (𝑧1:𝑡 ) when P𝜏 (𝑧1:𝑡 ) > 0.
The disintegration theorem for product measures implies
that these conditionals and marginals over finitely many
observations can be manipulated algebraically using
the usual rules of probability for 𝜇∞-a.e. collection of
values, e.g., one has the autoregressive decomposition
P𝜏 (𝑧1:𝑡 ) =

∏𝑡
𝑖=1 P𝜏 (𝑧𝑖 | 𝑧1:𝑖−1), with the conditional

P𝜏 (𝑧1 | 𝑧1:0) understood to be the marginal P𝜏 (𝑧1).

A theory is canonically associated with a Z∞-valued ran-
dom variable 𝑍1:∞. We denote its components by 𝑍1, 𝑍2, . . .
and the collection of the first 𝑡 observations by 𝑍1:𝑡 .

Definition of posterior as a random variable. Let M =

(𝜏𝑖)𝑖∈𝐼 be a collection of theories indexed by a countable
set 𝐼5 and let P be a prior distribution on 𝐼. We define the
posterior over indices to be

P(𝑖 | 𝑧1:𝑡 ) :=
P(𝑖) P𝜏𝑖 (𝑧1:𝑡 )∑
𝑗∈𝐼 P( 𝑗) P𝜏 𝑗

(𝑧1:𝑡 )
, (5)

assuming the denominator converges to a positive value.

Consider a ground truth index 𝑖∗ ∈ 𝐼 and abbreviate 𝜏∗ :=
𝜏𝑖∗ . Let 𝑍1:∞ be the random variable taking values in Z∞

corresponding to 𝜏∗. Similarly to the i.i.d. case, the posterior
P(· | 𝑍1:𝑡 ) is a random variable taking values in the space
of probability mass functions on 𝐼.

For all results below, we assume that P(𝑖∗) > 0.

Bayesian posterior convergence. Previous work (e.g.,
[Cohen et al., 2022a]) has shown that if 𝑍1:∞ ∼ 𝜏∗, then the
limit inferior of P(𝑖∗ | 𝑍1:𝑡 ) is almost surely positive. More
generally, with probability at least 1 − 𝛿, the posterior on
the truth will not asymptotically go below 𝛿 times the prior
on the truth. We repeat that result here in our notation.

4This is, in turn, equivalent to absolute continuity of condi-
tional distributions, i.e., for every measurable subset 𝐴 ⊆ Z𝑡

such that 𝜏1:𝑡 (𝐴) > 0, 1
𝜏1:𝑡 (𝐴) 𝜏1:𝑡+1 |𝐴×Z ≪ 𝜇𝑡+1��

𝐴×Z , where

𝐴 ×Z ⊆ Z𝑡 ×Z � Z𝑡+1.
5Unlike in §3, we no longer require theories to be distinct.



Lemma 4.1 (Martingale). The process 𝑊𝑡 := P(𝑖∗ | 𝑍1:𝑡 )−1

is a supermartingale, i.e., it does not increase over time in
expectation.

Proposition 4.2 (Posterior on truth). For all 𝛿 > 0, with
probability at least 1 − 𝛿, inf𝑡 P(𝑖∗ | 𝑍1:𝑡 ) ≥ 𝛿 P(𝑖∗); that is,
𝜏∗
({
𝑧1:∞ : inf𝑡 P(𝑖∗ | 𝑧1:𝑡 ) < 𝛿 P(𝑖∗)

})
≤ 𝛿, or equivalently:

𝜏∗
(
sup
𝑡≥0

𝑊𝑡 ≥ (𝛿 P(𝑖∗))−1) ≤ 𝛿 (6)

In the language of financial markets, if 𝑊𝑡 was the price of a
stock at time 𝑡, you could never make money in expectation
by holding it. Suppose that you “bought shares” at time
0, paying 𝑊0, and waited for their value to increase by a
factor of 𝛿−1. If (6) did not hold and the probability of such
an increase occurring was greater than 𝛿, then you could
make an expected profit by “𝛿−1-tupling” your money with
probability greater than 𝛿.

The bound in Prop. 4.2 is “tight”; see Remark B.2.

Harm probability bounds. We now state analogues of
Prop. 3.3 in the non-i.i.d. setting. As above, let 𝐻𝑡 be a
binary random variable that may depend on 𝑍1:𝑡 , 𝜏, and a
context variable 𝑥𝑡 .

Proposition 4.3 (Weak harm probability bound). For any
𝛿 > 0, with probability at least 1 − 𝛿, the following holds
for all 𝑡 ∈ N and all 𝑥𝑡 :

P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏
∗, 𝑥𝑡 ) ≤ sup

𝑖∈𝐼

P(𝑖 | 𝑍1:𝑡 ) P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏𝑖 , 𝑥𝑡 )
𝛿 P(𝑖∗) .

Next, we show how the bound in Prop. 4.3 can be strength-
ened by restricting to theories that have sufficiently high pos-
terior mass relative to theories that are “better” than them.

Let 𝑖1
𝑍1:𝑡

, 𝑖2
𝑍1:𝑡

, 𝑖3
𝑍1:𝑡

, . . . be an enumeration of 𝐼 in order of
decreasing posterior weight P(𝑖 | 𝑍1:𝑡 ), breaking ties arbi-
trarily, for example, following some fixed enumeration of
𝐼 (i.e., we have P(𝑖𝑛

𝑍1:𝑡
| 𝑍1:𝑡 ) ≥ P(𝑖𝑛+1

𝑍1:𝑡
| 𝑍1:𝑡 ) for all 𝑛).

Each 𝑖𝑛
𝑍1:𝑡

is an 𝐼-valued random variable (i.e., the index of
a theory in M). For any 0 < 𝛼 ≤ 1, we also define the
P(𝐼)-valued random variable

I𝛼
𝑍1:𝑡

:=
{
𝑖𝑛𝑍1:𝑡

∈ 𝐼 : P(𝑖𝑛𝑍1:𝑡
| 𝑍1:𝑡 ) ≥ 𝛼

∑︁
𝑚≤𝑛

P(𝑖𝑚𝑍1:𝑡
| 𝑍1:𝑡 )

}
, (7)

which is the set of indices that contain at least 𝛼 of the
posterior mass of all indices that are more likely than it
under the posterior. If 𝛼 = 1, this set is the singleton {𝑖1

𝑍1:𝑡
}.

For any 0 < 𝛼 < 1, it is nonempty, because it contains 𝑖1
𝑍1:𝑡

,
and finite, since |I𝛼

𝑍1:𝑡
| ≥ 𝑁 implies (easily by induction)

that
∑

𝑖∈I𝛼
𝑍1:𝑡

P(𝑖 | 𝑍1:𝑡 ) ≥
(

1
1−𝛼

)𝑁−1
P(𝑖1

𝑍1:𝑡
| 𝑍1:𝑡 ).

The following is a variant of Cohen et al. [2022a, Thm 2].

Proposition 4.4 (True theory dominance). If 𝛼 < 𝛿 P(𝑖∗),
then with probability at least 1 − 𝛿, for all 𝑡 ∈ N, 𝑖∗ ∈ I𝛼

𝑍1:𝑡
.

Proposition 4.5 (Harm probability bound). If 𝛼 < 𝛿 P(𝑖∗),
then with probability at least 1 − 𝛿, for all 𝑡 ∈ N and all 𝑥𝑡 ,

P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏
∗, 𝑥𝑡 ) ≤ max

𝑖∈I𝛼
𝑍1:𝑡

P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏𝑖 , 𝑥𝑡 ) (8)

Intuitively, this means that even when the data distribution
shifts over time, it is enough to check a small ‘credible but
cautious’ set of high-posterior theories: if all of them say
the action is safe below the threshold, the real environment
is very unlikely to be worse. Because the conclusion of
Prop. 4.5 is much stronger than that of Prop. 4.3, it would be
much safer (or more useful, depending on the value of 𝛼) to
use arg max𝑖∈I𝛼

𝑍1:𝑡
P(𝐻𝑡 = 1 | 𝑍1:𝑡−1, 𝜏𝑖 , 𝑥𝑡 ) as a ‘paranoid’

theory rather than arg max𝑖∈𝐼 P(𝜏𝑖 | 𝑍1:𝑡−1) P(𝐻𝑡 = 1 |
𝑍1:𝑡−1, 𝜏𝑖 , 𝑥𝑡 ). The factor of (𝛿 P(𝑖∗))−1 in Prop. 4.3 could
render the upper bound on harm probability much larger
than the trivial upper bound of 1. However, we note that
approximating I𝛼

𝑍1:𝑡
– such as by amortization or by Monte

Carlo methods – is much more difficult than approximating
the posterior alone.

On the harm-recording mechanism. Suppose that 𝜏𝑖∗ =
𝜏∗ is a data-generating process meeting the description
“𝐻𝑡 = 1 when harm has occurred”, while 𝜏𝑖† = 𝜏† is a data-
generating process meeting the description “𝐻𝑡 = 1 when
harm is recorded as having occurred” and agreeing with
𝜏∗ in its observational predictions otherwise. If, and only
if, the recording process is functioning correctly, 𝜏∗ = 𝜏†.
For as long as the recording process is functioning cor-
rectly, P(𝑖∗ | 𝑍1:𝑡 )/P(𝑖† | 𝑍1:𝑡 ) = P(𝑖∗)/P(𝑖†). If the record-
ing process ever fails at time 𝑡, then 𝑍𝑡 ∼ P𝜏† , not P𝜏∗ ,
since 𝑍𝑡 is the result of this recording process; therefore,
P(𝑖∗ | 𝑍1:𝑡 )/P(𝑖† | 𝑍1:𝑡 ) would decrease in expectation,
perhaps dramatically. We should not expect P(𝑖∗) to natu-
rally win out over P(𝑖†), even if there are no mistakes when
recording how harmful certain situations are. However, the
following holds with probability approaching 1 as 𝛼 → 0:
for all 𝑡, if the recording process has not failed by time 𝑡,
I𝛼
𝑍1:𝑡

contains both 𝑖∗ and 𝑖†. If 𝜏∗ considers tampering with
the recording process to be a ‘harmful’ outcome, then an AI
system could attempt to avoid a first instance of tampering
at time 𝑡, for all 𝑡.

5 EXPERIMENTS

Exploding bandit setting. We evaluate6 the performance
of safety guardrails based on Prop. 3.3 and Prop. 4.5 in a ban-
dit MDP with 10 arms (actions). Each arm 𝑎 ∈ {1, . . . , 10}

6Code available at https://github.com/saifh-
github/conservative-bayesian-public

https://github.com/saifh-github/conservative-bayesian-public
https://github.com/saifh-github/conservative-bayesian-public
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Figure 1: Mean episode deaths and reward for different guardrails in the exploding bandit setting.

is represented by a feature vector 𝑓𝑎 ∈ {0, 1}𝑑 (we take
𝑑 = 10, but 𝑑 is not necessarily equal to the number of
arms), which is sampled uniformly at random at the start of
each episode and known to the agent. The reward distribu-
tion of each arm is fixed for the duration of each episode and
assumed to be of the following form: the reward received
after taking action 𝑎 follows a unit-variance normal distribu-
tion, 𝑟 (𝑎) ∼ N ( 𝑓𝑎 ·𝑣∗, 1), where 𝑣∗ ∈ {0, 1}𝑑 is some vector
sampled uniformly at random at the start of each episode and
unknown to the agent. Taking any action and observing the
reward gives evidence about the identity of 𝑣∗ and thus about
the reward distributions of the other actions. The agent main-
tains a belief over the vector used to compute the reward,
beginning with a uniform prior over {0, 1}𝑑 and updating
its posterior with each observation of an action-reward pair.

We assume that the agent samples its actions from a
Boltzmann policy (with temperature 2) using the expected
reward of each action under its posterior given the data
seen so far, meaning that a reward vector 𝑣 ∈ {0, 1}𝑑
determines a distribution over sequences of action-reward
pairs. Thus each 𝑣 ∈ {0, 1}𝑑 can be naturally associated

with a theory 𝜏𝑣
7, and thus 𝐼 := {0, 1}𝑑 is an indexing set

for a collection of theories M = (𝜏𝑣)𝑣∈𝐼 . Inference of 𝑣
with evidence collected on-policy is equivalent to inference
of 𝜏𝑣 given data generated by a true theory 𝜏∗ := 𝜏𝑣∗ . Since
the policy changes across timesteps, so does the distribution
of action-reward pairs, so we are in the non-i.i.d. setting.

The bandit comes with a notion of harm: if the reward
received at a given timestep exceeds some threshold 𝐸 , the
bandit explodes8, terminating the episode. In other words,
we define harm as 𝐻𝑡 := 1[𝑅𝑡 > 𝐸], where 𝑅𝑡 is the random
variable representing the reward received when taking action
𝑎𝑡 . 𝐸 is set to a Monte Carlo approximation of the expected
highest mean reward of any action (i.e., E [max𝑎 ( 𝑓𝑎 · 𝑣∗)]).
The maximum episode length is 25 timesteps.

7The mapping 𝑣 ↦→ 𝜏𝑣 may not be injective. Different vectors
may represent the same collection of reward distributions and there-
fore the same distribution over sequences of action-reward pairs.

8This emulates the important and problematic scenario where
the user’s utility to be maximized, e.g., profits, conflicts with safety.



Safety guardrails. A guardrail is an algorithm that, given
a possible action and context (e.g., current state and his-
tory), determines whether taking the action in the context is
admissible. A guardrail can be used to mask the policy to
forbid certain actions, such as those whose estimated harm
exceeds some threshold 𝐶. We compare several guardrails
(formally defined below): those constructed from Prop. 3.3
and Prop. 4.5, one that marginalizes across the posterior over
𝜏 to get the posterior predictive harm probability, and one
that ‘cheats’ by using the probability of harm under the true
theory 𝜏∗. Recall that 𝑍1:𝑡 consists of the observations (i.e.,
actions taken and rewards received) at previous timesteps.

• Prop. 3.3 guardrail: rejects an action 𝑎𝑡+1 if there exists
�̃� ∈ arg max𝑣 P(𝑣 | 𝑍1:𝑡 ) P(𝐻𝑡+1 = 1 | 𝜏, 𝑍1:𝑡 , 𝑎𝑡+1) with
P(𝐻𝑡+1 = 1 | 𝜏�̃� , 𝑍1:𝑡 , 𝑎𝑡+1) > 𝐶 (note that the assumptions
of i.i.d. observations and distinct theories do not hold).

• Prop. 4.5 guardrail: rejects an action 𝑎𝑡+1 if
max𝑣∈I𝛼

𝑍1:𝑡
P(𝐻𝑡+1 = 1 | 𝑍1:𝑡 , 𝜏𝑣 , 𝑎𝑡+1) > 𝐶.

• Posterior predictive guardrail: rejects an action 𝑎𝑡+1 if
P(𝐻𝑡+1 = 1 | 𝑍1:𝑡 , 𝑎𝑡+1) > 𝐶.

• Cheating guardrail: rejects an action 𝑎𝑡+1 if P(𝐻𝑡+1 =

1 | 𝑍1:𝑡 , 𝜏
∗, 𝑎𝑡+1) > 𝐶 (note that this guardrail assumes

knowledge of the true theory 𝜏∗).

The guardrail is run at every sampling step, and actions
that the guardrail rejects are forbidden to be sampled by the
agent. If all actions are rejected, the episode terminates.

Results. Fig. 1 shows mean episode rewards and episode
deaths under each guardrail across 10000 episodes, for dif-
ferent values of the rejection threshold 𝐶. The cheating
guardrail achieves near zero deaths for sufficiently small 𝐶,
but for 𝐶 = 0.1 its death probability is high.9 The posterior
predictive guardrail achieves zero deaths for small 𝐶, while
for larger 𝐶 it dies frequently, generally receiving lower
reward compared to the cheating guardrail. The behavior of
the Prop. 4.5 guardrail depends strongly on 𝛼. When 𝛼 is
close to 1, actions are rarely rejected, leading to frequent
deaths. Up to a point, this riskier behavior allows the agent to
get more reward, but for 𝐶 = 0.1 and high 𝛼 the trend starts
to reverse, as early deaths become frequent enough to pre-
clude the opportunity. At the other extreme, when 𝛼 is close
to 0, the candidate set of theory indices I𝛼

𝑍1:𝑡
is larger and the

guardrail is extremely conservative. It rejects almost all ac-
tions, resulting in low deaths and low reward. This is the case
even for larger 𝐶, since the estimated probability used to
filter actions tends to overestimate an action’s harm probabil-
ity under the true theory. For middling values of 𝛼, Prop. 4.5
guardrail performs more similarly to the posterior predictive,
sometimes with lower reward and higher deaths, and some-
times the opposite. The Prop. 3.3 guardrail, which makes the
incorrect assumptions of i.i.d. data and distinct theories, is
similarly conservative to the Prop. 4.5 guardrail with low 𝛼.

9If every action taken had a harm probability of 0.1, the proba-
bility of death across an episode would be 1−

(
(1−0.1)25) ≈ 0.93.
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(a) The frequency with which the inequality in Prop. 4.5 is satisfied.
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(b) The distribution of the right-hand side of (8), for an action with
a true harm probability of 0.5.

Figure 2: Overestimate frequency and harm estimate distribution
for the Prop. 4.5 guardrail for varying 𝛼.

Tightness of bounds. Fig. 2 shows how often and how
tightly the inequality in Prop. 4.5 is satisfied. For an agent
following a uniform policy across 10000 bandit episodes
without action rejection or death, Fig. 2a shows the fre-
quency with which max𝑣∈I𝛼

𝑍1:𝑡
P(𝐻𝑡+1 = 1 | 𝑍1:𝑡 , 𝜏𝑣 , 𝑎𝑡+1)

overestimates the true harm probability. Prop. 4.5 gives a
lower bound of 1 − 𝛼

P(𝑣∗ ) (which may be negative) on the
overestimation frequency, but the frequency significantly
exceeds the bound for larger 𝛼. Fig. 2b shows the distribu-
tion of harm estimates for actions with a ground truth harm
probability of 0.5. For large 𝛼 the harm of these dangerous
actions is usually underestimated – so the high overestima-
tion rate (Fig. 2a) comes from less dangerous actions.

6 CONCLUSION AND OPEN PROBLEMS

The approach to safety verification proposed here is based
on context-dependent run-time verification because the set
of possible inputs for a machine learning system is generally
astronomical, whereas the safety of the answer to a specific
question is more likely to be tractable. It focuses on the risk
of wrongly interpreting the data, including the safety spec-
ification itself (called “harm” above) and exploits the fact
that, as more evidence is gathered (necessary with i.i.d. data)



and when different theories predict different observations,
the true interpretation rises towards the maximal value of
the Bayesian posterior. The bound is tighter with the i.i.d.
data, but the i.i.d. assumption is also unrealistic, and for
safety-critical decisions, we would prefer to err on the side
of prudence and fewer assumptions. However, it provides a
template to think about variants of this idea in future work.
Several challenges remain for turning such bounds into an
operational run-time safeguard:

(1) Upper-bounding overcautiousness. Can we ensure
that we do not underestimate the probability of harm but
do not massively overestimate it? Some simple theories
consistent with the dataset (even an arbitrarily large
one) might deem non-harmful actions harmful. Can
we bound how much this harm-avoidance hampers the
agent? A plausible approach would be to make use of
a mentor for the agent that demonstrates non-harmful
behavior [Cohen and Hutter, 2020].

(2) Tractability of posterior estimation. How can we effi-
ciently estimate the required Bayesian posteriors? For
computational tractability, a plausible answer would
rely on amortized inference, which turns the difficult
estimation of these posteriors into the task of training a
neural net probabilistic estimator which will be fast at
run-time. Recent work on amortized Bayesian inference
for symbolic models, such as causal structures [Deleu
et al., 2022, 2023], and for intractable posteriors in lan-
guage models [Guo et al., 2021, Hu et al., 2024, Venka-
traman et al., 2024, Song et al., 2024, Yu et al., 2024]
– which are useful when prior knowledge is encoded
in a pretrained foundation model – suggests that this
is feasible. Advances in efficient and adaptive Monte
Carlo methods, e.g., for language models [Phan et al.,
2023, Zhao et al., 2024, Lew et al., 2023], can also be
useful for this purpose, and MCMC approaches can
complement and aid amortization [Hu et al., 2023, Kim
et al., 2024, Sendera et al., 2024, Kim et al., 2025].

(3) Efficient search for a cautious theory. How can we
efficiently identify a cautious but plausible theory that
upper-bounds the risk, since this requires an optimiza-
tion at run-time? Again, a plausible answer is to rely on
amortized probabilistic inference, e.g., by sampling the-
ories with a low or annealed temperature, a technique
that has been used for decades in the nonconvex opti-
mization literature and more recently combined with
amortized sequential sampling methods [Zhang et al.,
2023a,b, Zhou et al., 2024, inter alia].

(4) Partial specification of theories. Another issue is that
a full explanatory theory 𝜏 for the evidence 𝐷 will gen-
erally be too large an object to make the above bound
calculations and optimization sufficiently efficient. An
alternative would be to derive bounds that only require
partial explanations, similarly to how humans tell cau-
tious ‘stories’ about what could go wrong in uncertain

circumstances when thinking about taking a potentially
dangerous decision [Bengio, 2024]. Work along these
lines could allow us to avoid the requirement that we
have a prior that puts positive weight on a single model
that correctly models the entire model.

(5) Harm specification in natural language. How can
natural language safety specifications, as in Constitu-
tional AI [Bai et al., 2022], be turned into a random
variable over which conditional probabilities can be es-
timated? Manually labeling numerous examples match-
ing the desired constraint is impractical. Instead, Bengio
[2024] propose learning to interpret natural language
statements as formal random variables over which prob-
abilistic causal reasoning can occur. The ambiguity of
natural language can then be captured by a distribution
over formal interpretations.

(6) Effect of approximation error. Finally, because we
plan to use machine learning to estimate the bound, we
have to consider the fact that a learned predictor will be
imperfect. How do we conservatively correct for the po-
tentially dangerous errors made by this predictor? This
may be crucial if we use a neural network to estimate
probabilities, since they are subject to lack of robust-
ness and adversarial attacks [Goodfellow et al., 2015,
Wei et al., 2023], e.g., how do we ensure that the agent
proposing the actions has not learned to find loopholes
in the risk estimator?
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A PROOFS

Proposition 3.1 (True theory dominance). Under the above conditions and supposing that P(𝜏∗) > 0, the posterior
P(· | 𝑍1:𝑡 ) is almost surely defined for all 𝑛, and the following almost surely hold:

(a) P(· | 𝑍1:𝑡 )
𝑡→∞−−−−→ 𝛿𝜏∗ as measures, where 𝛿𝜏∗ is the Dirac measure, which assigns mass 1 to the theory 𝜏∗ and 0

elsewhere; equivalently, lim𝑡→∞ P(𝜏 | 𝑍1:𝑡 ) = 1[𝜏 = 𝜏∗].
(b) There exists 𝑁 ∈ N such that arg max𝜏∈M P(𝜏 | 𝑍1:𝑡 ) = 𝜏∗ for all 𝑡 ≥ 𝑁 .

Proof of Proposition 3.1. This is an application of Doob’s posterior consistency theorem (Doob [1949]; see also Miller
[2018] for a modern summary). This result, which follows from the theory of martingales, assumes that 𝜏∗ is sampled from
the prior distribution P(𝜏) and the observations 𝑍𝑖 are defined as above. Doob’s theorem states that if for every 𝑆 ∈ F , the
map 𝜏 ↦→ P𝜏 (𝑆) is measurable, then the posteriors P(· | 𝑍1:𝑡 ) are almost surely defined and (a) holds P-almost surely with
respect to the choice of 𝜏∗.

In our case, because M is countable, the measurability condition is satisfied, showing that (a) holds for P-almost every
𝜏∗ ∈ M. In particular, if P(𝜏∗) > 0, then (a) holds.

Finally, by (a), we have that for any 𝜀 > 0, there exists 𝑁 such that for every 𝑡 ≥ 𝑁 , P(𝜏∗ | 𝑍1:𝑡 ) > 1 − 𝜀, or, equivalently,∑
𝜏≠𝜏∗ P(𝜏 | 𝑍1:𝑡 ) < 𝜀, and therefore P(𝜏 | 𝑍1:𝑡 ) < 𝜀 for all 𝜏 ≠ 𝜏∗. In particular, taking 𝜀 = 1/2, we get that for sufficiently

large 𝑡, P(𝜏∗ | 𝑍1:𝑡 ) > P(𝜏 | 𝑍1:𝑡 ) for every 𝜏, which shows (b). ⊠

Lemma 3.2. Under the conditions of Prop. 3.1, let 𝑓 : M×⋃∞
𝑡=0 Z𝑡 → R≥0 be a bounded measurable function. Then there

exists 𝑁 ∈ N such that for all 𝑡 ≥ 𝑁 and any 𝜏 ∈ arg max𝜏 [P(𝜏 | 𝑍1:𝑡 ) 𝑓 (𝜏, 𝑍1:𝑡 )], it holds that 𝑓 (𝜏∗, 𝑍1:𝑡 ) ≤ 𝑓 (𝜏, 𝑍1:𝑡 ).

Proof of Lemma 3.2. First, note that the argmax exists by boundedness of 𝑓 and P(· | 𝑍1:𝑡 ). By Prop. 3.1 (b), there exists
𝑁 ∈ N such that for all 𝑡 ≥ 𝑁 and 𝜏 ≠ 𝜏∗, P(𝜏∗ | 𝑍1:𝑡 ) > P(𝜏 | 𝑍1:𝑡 ) ≥ 0. Let 𝑡 ≥ 𝑁 and 𝜏 ∈ arg max𝜏 [P(𝜏 | 𝑍1:𝑡 ) 𝑓 (𝜏, 𝑍1:𝑡 )].
Then

P(𝜏∗ | 𝑍1:𝑡 ) 𝑓 (𝜏, 𝑍1:𝑡 ) ≥ P(𝜏 | 𝑍1:𝑡 ) 𝑓 (𝜏, 𝑍1:𝑡 ) ≥ P(𝜏∗ | 𝑍1:𝑡 ) 𝑓 (𝜏∗, 𝑍1:𝑡 ).

When 𝜏 ≠ 𝜏∗, the result follows since P(𝜏∗ | 𝑍1:𝑡 ) > 0. The case 𝜏 = 𝜏∗ is trivial. ⊠

Proposition 3.3 (Harm probability bound). Under the same conditions as Prop. 3.1, there exists 𝑁 ∈ N such that for all
𝑡 ≥ 𝑁 and 𝜏 ∈ arg max𝜏 P(𝜏 | 𝑍1:𝑡 ) P(𝐻 = 1 | 𝑥, 𝜏, 𝑍1:𝑡 ), it holds that

P(𝐻 = 1 | 𝑥, 𝜏∗, 𝑍1:𝑡 ) ≤ P(𝐻 = 1 | 𝑥, 𝜏, 𝑍1:𝑡 ). (4)

Proof of Proposition 3.3. Apply Lemma 3.2 to the function 𝑓 (𝜏, 𝑍1:𝑡 ) = P(𝐻 = 1 | 𝑥, 𝜏, 𝑍1:𝑡 ). ⊠

Lemma 4.1 (Martingale). The process 𝑊𝑡 := P(𝑖∗ | 𝑍1:𝑡 )−1 is a supermartingale, i.e., it does not increase over time in
expectation.

Proof of Lemma 4.1. We have

E𝜏∗ [𝑊𝑡+1 | 𝑍1:𝑡 = 𝑧1:𝑡 ] =
∫
{
𝑧𝑡+1∈Z : P𝜏∗ (𝑧𝑡+1 |𝑧1:𝑡 )>0

} P(𝑖∗ | 𝑧1:𝑡+1)−1 P𝜏∗ (𝑧𝑡+1 | 𝑧1:𝑡 ) 𝑑𝜇

(𝑎)
=

∫
{
𝑧𝑡+1∈Z : P𝜏∗ (𝑧𝑡+1 |𝑧1:𝑡 )>0

}
∑

𝑗∈𝐼 P( 𝑗 | 𝑧1:𝑡 ) P𝜏 𝑗
(𝑧𝑡+1 | 𝑧1:𝑡 )

P(𝑖∗ | 𝑧1:𝑡 ) P𝜏∗ (𝑧𝑡+1 | 𝑧1:𝑡 )
P𝜏∗ (𝑧𝑡+1 | 𝑧1:𝑡 ) 𝑑𝜇

(𝑏)
≤

∫
Z

∑
𝑗∈𝐼 P( 𝑗 | 𝑧1:𝑡 ) P𝜏 𝑗

(𝑧𝑡+1 | 𝑧1:𝑡 )
P(𝑖∗ | 𝑧1:𝑡 )

𝑑𝜇

= 𝑤𝑡

∑︁
𝑗∈𝐼

P( 𝑗 | 𝑧1:𝑡 )
∫
Z

P𝜏 𝑗
(𝑧𝑡+1 | 𝑧1:𝑡 ) 𝑑𝜇

(𝑐)
= 𝑤𝑡 (9)

where (𝑎) is by the definition (5), (𝑏) follows from cancellation and positivity of the integrand, 𝑤𝑡 := P(𝑖∗ | 𝑍1:𝑡 = 𝑧1:𝑡 )−1 is
the realization of 𝑊𝑡 , and (𝑐) follows because both the posterior and the conditional probability measure integrate to 1.



This holds for any 𝑧1:𝑡 , so we can remove the conditional:

E𝜏∗ [𝑊𝑡+1 | 𝑤𝑡 ] =
∫
𝑧1 ,...,𝑧𝑡

E𝜏∗ [𝑊𝑡+1 |𝑧1:𝑡 , 𝑤𝑡 ] P𝜏∗ (𝑧1, . . . , 𝑧𝑡 | 𝑊𝑡 = 𝑤𝑡 ) 𝑑𝜇⊗𝑡

(𝑎)
=

∫
𝑧1:𝑡

E𝜏∗ [𝑊𝑡+1 |𝑧1:𝑡 ] P𝜏∗ (𝑧1:𝑡 | 𝑤𝑡 ) 𝑑𝜇⊗𝑡

(𝑏)
≤

∫
𝑧1:𝑡

𝑤𝑡 P𝜏∗ (𝑧1:𝑡 | 𝑤𝑡 ) 𝑑𝜇⊗𝑡

=𝑤𝑡

where (𝑎) follows because 𝑤𝑡 is a function of 𝑧1:𝑡 and (𝑏) is Inequality 9. ⊠

Proposition 4.2 (Posterior on truth). For all 𝛿 > 0, with probability at least 1 − 𝛿, inf𝑡 P(𝑖∗ | 𝑍1:𝑡 ) ≥ 𝛿 P(𝑖∗); that is,
𝜏∗
({
𝑧1:∞ : inf𝑡 P(𝑖∗ | 𝑧1:𝑡 ) < 𝛿 P(𝑖∗)

})
≤ 𝛿, or equivalently:

𝜏∗
(
sup
𝑡≥0

𝑊𝑡 ≥ (𝛿 P(𝑖∗))−1) ≤ 𝛿 (6)

Proof of Proposition 4.2. By Ville’s inequality [Ville, 1939] for the supermartingale 𝑊𝑡 := P(𝑖∗ | 𝑍1:𝑡 )−1, for any 𝜆 > 0:

𝜏∗
(
sup
𝑡≥0

𝑊𝑡 ≥ 𝜆

)
≤ E[𝑊0]

𝜆
=

1
𝜆 P(𝑖∗)

Setting 𝜆 = (𝛿 P(𝑖∗))−1, we get
𝜏∗
(
sup
𝑡≥0

𝑊𝑡 ≥ (𝛿 P(𝑖∗))−1) ≤ 𝛿

and given that {
𝑧1:∞ : sup

𝑡≥0
𝑤𝑡 := sup

𝑡≥0
P(𝑖∗ | 𝑧1:𝑡 )−1 > (𝛿 P(𝑖∗))−1} =

{
𝑧1:∞ : inf

𝑡≥0
P(𝑖∗ | 𝑧1:𝑡 ) < 𝛿 P(𝑖∗)

}
,

the result follows. ⊠

Proposition 4.3 (Weak harm probability bound). For any 𝛿 > 0, with probability at least 1 − 𝛿, the following holds for all
𝑡 ∈ N and all 𝑥𝑡 :

P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏
∗, 𝑥𝑡 ) ≤ sup

𝑖∈𝐼

P(𝑖 | 𝑍1:𝑡 ) P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏𝑖 , 𝑥𝑡 )
𝛿 P(𝑖∗) .

Proof of Proposition 4.3. Substituting 𝑖 for 𝑖∗ on the r.h.s. can never increase the r.h.s., since 𝑖∗ ∈ 𝐼. Then, after canceling
and rearranging the terms, the proposition is readily implied by Prop. 4.2. ⊠

Proposition 4.4 (True theory dominance). If 𝛼 < 𝛿 P(𝑖∗), then with probability at least 1 − 𝛿, for all 𝑡 ∈ N, 𝑖∗ ∈ I𝛼
𝑍1:𝑡

.

Proof of Proposition 4.4. For any 𝑡 ≥ 1, by Prop. 4.2,

𝛿 ≥ 𝜏∗
({
𝑧1:∞ : inf

𝑡 ′
P(𝑖∗ | 𝑧1:𝑡 ′ ) < 𝛿 P(𝑖∗)

})
≥ 𝜏∗ ({𝑧1:∞ : P(𝑖∗ | 𝑧1:𝑡 ) < 𝛿 P(𝑖∗)})
≥ 𝜏∗ ({𝑧1:∞ : P(𝑖∗ | 𝑧1:𝑡 ) < 𝛼}).

So 𝜏∗ ({𝑧1:∞ : P(𝑖∗ | 𝑧1:𝑡 ) ≥ 𝛼}) ≥ 1 − 𝛿, and the result follows by the fact that I𝛼
𝑍1:𝑡

⊇ {𝑖 ∈ 𝐼 : P(𝑖 | 𝑍1:𝑡 ) ≥ 𝛼}, since the
sum in (7) never exceeds 1. ⊠

Proposition 4.5 (Harm probability bound). If 𝛼 < 𝛿 P(𝑖∗), then with probability at least 1 − 𝛿, for all 𝑡 ∈ N and all 𝑥𝑡 ,

P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏
∗, 𝑥𝑡 ) ≤ max

𝑖∈I𝛼
𝑍1:𝑡

P(𝐻𝑡 = 1 | 𝑍1:𝑡 , 𝜏𝑖 , 𝑥𝑡 ) (8)

Proof of Proposition 4.5. This follows directly from Prop. 4.4. ⊠



B ACCOMPANYING EXAMPLES

Remark B.1 (Necessity of conditions, i.i.d. case). The assumption that the data-generating process 𝜏∗ lies in M and has
positive prior mass is also necessary for convergence of the posterior. To illustrate this, we give a simple example in which
the theories are Bernoulli distributions and the posterior does not converge to any distribution over M.

Take Z = {−1, 1} and M = {𝜏𝑝 , 𝜏1/2, 𝜏1−𝑝} for some 1
2 < 𝑝 < 1, where P𝜏𝑐 (1) = 𝑐. Assume a prior with P(𝜏𝑝) =

P(𝜏1−𝑝) = 1
2 and take the true data-generating process 𝜏∗ to be 𝜏1/2, which has prior mass 0. The log-ratio of posterior

masses is then an unbiased random walk:

log
P(𝜏𝑝 | 𝑍1:𝑡 )

P(𝜏1−𝑝 | 𝑍1:𝑡 )
= log

P𝜏𝑝 (𝑍1:𝑡 )
P𝜏1−𝑝

(𝑍1:𝑡 )
=

(
log

𝑝

1 − 𝑝

) 𝑡∑︁
𝑖=1

𝑍𝑖 .

This quantity almost surely takes on arbitrarily large and small values infinitely many times. In fact, by the law of iterated
logarithms, for any 𝜖 > 0 there are infinitely many 𝑡 such that

log
P(𝜏𝑝 | 𝑍1:𝑡 )

P(𝜏1−𝑝 | 𝑍1:𝑡 )
≥ (1 − 𝜖)

(
log

𝑝

1 − 𝑝

) √︁
2𝑡 log log 𝑡

and the same holds for log P(𝜏1−𝑝 |𝑍1:𝑡 )
P(𝜏𝑝 |𝑍1:𝑡 ) , by symmetry. In particular, lim𝑡→∞ P(𝜏 | 𝑍1:𝑡 ) almost surely does not exist for any

𝜏 ≠ 𝜏∗, and the lim inf and lim sup are almost surely 0 and 1, respectively.

Remark B.2 (Tightness, non-i.i.d. case). Prop. 4.2 is “tight” in the following sense: for all 𝛿, 𝜀 > 0, there exist M, P, and
𝜏𝑖∗ ∈ M, such that with probability at least 𝛿, lim sup𝑡 P(𝑖∗ | 𝑍1:𝑡 ) ≤ (𝛿 + 𝜀) P(𝑖∗).

We construct such an example. Consider the following setting: M = {𝜏∗, 𝜏′} (indexed by 𝐼 = {𝑖∗, 𝑖′} as 𝜏𝑖∗ = 𝜏∗, 𝜏𝑖′ = 𝜏′),
Z = {0, 1}, and the theories are defined by

P𝜏∗ (1) = 𝛿, P𝜏′ (1) = 1,

P𝜏𝑖 (1 | 𝑧1:𝑡 ) =
1
2
∀𝑖 ∈ 𝐼, 𝑡 ≥ 1, 𝑧1:𝑡 ∈ Z𝑡 .

One has P(𝑖∗ | 𝑍1 = 1) = 𝛿 P(𝑖∗ )
𝛿 P(𝑖∗ )+P(𝑖′ ) < 𝛿

P(𝑖∗ )
1−P(𝑖∗ ) . Since 𝜏∗ and 𝜏′ give the same conditional probabilities of 𝑍𝑡 given 𝑍1:𝑡−1

for 𝑡 > 1, one has P(𝑖∗ | 𝑍1:𝑡 ) = P(𝑖∗ | 𝑍1). So, for all 𝑡 ≥ 1, P(𝑖∗ | 𝑍1 = 1, 𝑍2:𝑡 = 𝑧2:𝑡 ) < 𝛿(1 − P(𝑖∗))−1 P(𝑖∗), and hence

𝜏∗
({
𝑧1:∞ : lim sup

𝑡

P(𝑖∗ | 𝑧1:𝑡 ) < 𝛿(1 − P(𝑖∗))−1 P(𝑖∗)
})

≥

𝜏∗
({
𝑧1:∞ : 𝑧1 = 1

})
= P𝜏∗ (1) = 𝛿. (10)

So by choosing P(𝑖∗) < 1 − 1/(1 + 𝜀
𝛿
), so that 𝛿(1 − P(𝑖∗))−1 < 𝛿 + 𝜀, we get the desired property.
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