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Abstract

We show that stochastic gradient descent (SGD) escapes from
sharp minima exponentially fast even before SGD reaches sta-
tionary distribution. SGD has been a de facto standard train-
ing algorithm for various machine learning tasks. However,
there still exists an open question as to why SGDs find highly
generalizable parameters from non-convex target functions,
such as the loss function of neural networks. An “escaping”
analysis has been an appealing framework to tackle this ques-
tion. Escaping analysis measures how quickly SGD escapes
from sharp minima, which is likely to have low generaliza-
tion abilities. Despite its importance, the framework has the
limitation that it works only when SGD reaches a stationary
distribution after sufficient updates. In this paper, we prove
that the SGD escapes from sharp minima exponentially fast
even in a non-stationary setting. A key tool for the result is the
Large Deviation Theory, a fundamental theory in dynamical
systems. In particular, we found that a quantity called “quasi-
potential” is a suitable tool to describe the SGD’s stochastic
behavior throughout its training process.

1 Introduction
Stochastic gradient descent (SGD) has become a de facto
standard optimizer in modern machine learning, especially
in deep learning. However, despite its prevalence, SGD
leaves a theoretical question to us: why can SGD find gener-
alizing solutions of complex models? This problem is partic-
ularly puzzling in modern machine learning with neural net-
works because their loss landscapes are known to be highly
non-convex (Li et al. 2018), difficult to minimize (Blum and
Rivest 1992), and full of non-generalizable minima (Zhang
et al. 2017). Unraveling the generalization of SGD is an im-
portant open question for a modern machine learning com-
munity.

To answer the question, a narrative has emerged as one
convincing hypothesis: “SGD can find generalizing solu-
tions because it escapes from sharp minima” (Jastrzębski
et al. 2017; Zhu et al. 2018; Xie, Sato, and Sugiyama 2020).
“Sharp minima,” in this context, mean local minima of loss
functions that are sensitive to model parameters’ perturba-
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tions, and they are known to deteriorate generalization abil-
ity (Keskar et al. 2016; Dziugaite and Roy 2017; Jiang et al.
2019). The “escaping” here means the behavior of SGD
moving out of the neighborhood of minima. In a few words,
the narrative explains that SGD quickly escapes from sharp
minima and thus SGD tends to settle on a flat and generaliz-
ing solution (Zhu et al. 2018; Xie, Sato, and Sugiyama 2020).
This explanation is aligned with actual phenomena. The left
panel of Fig. 1 shows how SGD updates affect the sharpness
of parameters throughout the SGD’s training in a neural net-
work. The figure shows that the sharpness oscillates drasti-
cally in the early phase of the training, and then becomes
smaller toward the end. This plot suggests that SGD repeat-
edly jumps out of sharp minima and eventually reaches flat
minima (Fig. 1, right).

There are active attempts to theoretically validate this hy-
pothesis. Zhu et al. (2018) approximated SGD as a stochas-
tic differential equation (SDE) with Gaussian noise and
showed that the fast escaping is realized by the so-called
“anisotropic noise" of SGD (the noise with the various mag-
nitudes among directions.) Jastrzębski et al. (2017) formu-
lated the effect of anisotropic noise in the stationary regime,
where the SDE-model has reached a stationary distribution
after many iterations. Xie, Sato, and Sugiyama (2020) fur-
ther elaborated on this approach and found that escaping
can be formulated as “Kramers escape rate," which is a well-
used formula in physics (Kramers 1940). Their results re-
vealed that the SGD escapes from minima exponentially
faster as the sharpness of minima increases.

With these progressive refinements on escaping analysis,
a remaining challenge is how to go beyond the stationary
regime. Although, in physics, it is commonly assumed that
systems have reached some stationary distributions (Eyring
1935; Hanggi 1986), such a stationary regime is not well ap-
plicable to SGD’s analysis due to the following two reasons.
First, it is shown that SGD forms a stationary distribution
only over the very limited objective functions (Dieuleveut,
Durmus, and Bach 2017; Chen, Mou, and Maguluri 2021).
Secondly, even when such a stationary distribution exists,
SGD takes O(d) steps to reach it, where d is a number of
parameters of a model (Raginsky, Rakhlin, and Telgarsky
2017). Since neural networks commonly have numerous pa-
rameters, the stationary regime may not be directly applica-
ble to the actual SGD dynamics.
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Figure 1: Sharpness dynamics throughout a training via SGD (left), where we used the sharpness defined in (Keskar et al. 2016,
Metric 2.1). As is shown, sharpness fluctuates during the training and becomes small toward the end of training. This suggests
SGD jumps out from sharp minima to find flat and generalizable minima (right). We used VGG (Simonyan and Zisserman
2014) fed with CIFAR-10 (Krizhevsky, Hinton et al. 2009) with cross-entropy loss.

In this paper, we propose a novel formulation of exponen-
tially fast escape of the SGD in the non-stationary regime,
by introducing the Large Deviation Theory, from dynamical
systems (Dembo and Zeitouni 2010; Freidlin and Wentzell
2012). Based on the Large Deviation Theory, we show the
following main result on SGD’s time to escape:

Theorem 2 (informal):

SGD’s time to escape ∼ exp

[
B

η
∆Lλ−1

max

]
,

where B is a batch size, η is a learning rate, ∆L is the depth
of the minimum, and λmax is the maximum eigenvalue of the
Hessian matrix at the minimum, i.e. sharpness of the mini-
mum (Definition 3). We can see that as the sharpness of the
minimum increases, i.e. λmax increases, the time to escape
decreases exponentially with the sharpness of minima. This
is the first result showing that SGD escapes from sharp min-
ima exponentially fast, in the non-stationary regime. As a
further benefit, our formulation can be easily extended to
the discrete update rule of SGD (Theorem 3).

2 Problem Formulation
Notations: For a k × k matrix M , λj(M) is the j-th largest
eigenvalue of M . We especially write λmax(M) = λ1(M)
and λmin(M) = λk(M). O(·) denotes Landau’s Big-O
notation. ‖ · ‖ denotes the Euclidean norm. Given a time-
dependent function θt, θ̇t denotes the differentiation of θt
with respect to t.N (µ,Σ) denotes the multivariate Gaussian
distribution with the mean µ, and the covariance Σ.

2.1 Stochastic Gradient Descents
We consider a learning model parameterized by θ ∈ Rd,
where d is a number of parameters. Given training examples
{xi}Ni=1 and a loss function ℓ(θ, xi), we consider a training
loss L(θ) := 1

N

∑N
i=1 ℓ(θ, xi) and a mini-batch loss LB(θ)

is a mini-batch training loss with size B.
We consider two types of stochastic gradient descent

(SGD) methods; a discrete SGD and a continuous SGD.

Discrete SGD Given an initial parameter θ0 ∈ Rd and a
learning rate η > 0, SGD generates a sequence of parame-
ters {θk}k∈N by the following update rule:

θk+1 = θk − η∇LB(θk), k ∈ N. (1)

We model SGD as a gradient descent with a Gaussian noise
perturbation. We decompose −∇LB(θk) in (1) into a gradi-
ent term −∇L(θk) and a noise term ∇L(θk) − ∇LB(θk),
and model the noise as a Gaussian noise. With this setting,
the update rule in (1) is rewritten as

θk+1 = θk − η∇L(θk) +
√
η

B
Wk, (2)

where Wk ∼ N (0, ηC(θk)) is a parameter-
dependent Gaussian noise with its covariance,
C(θ) := Ei∼Uni({1,...,N})[(∇L(θ) − ∇ℓ(θ, xi))(∇L(θ) −
∇ℓ(θ, xi))⊤].
Continuous SGD We define an SDE-model so that its dis-
cretization corresponds to the discrete SGD (2) using the
Euler scheme (e.g. Definition 5.1.1 of (Gobet 2016)). We
call this SDE model “continuous SGD." Given a time index
t ≥ 0 and an initial parameter θ0 ∈ Rd, the continuous dy-
namic of continuous SGD is written as follows:

θ̇t = −∇L(θt) +
√
η

B
C(θt)

1/2
ẇt (3)

where wt is a d-dimensional Wiener process, i.e. an Rd-
valued stochastic process with t such that w0 = 0 and
wt+u − wt ∼ N(0, uI) for any t, u > 0. We note that this
system can be seen as a Gaussian perturbed dynamical sys-
tem with a noise magnitude

√
η/B because η and B do not

evolve by time.
Remark 1 (Gaussianity of Wk). In this work, the Gaussian-
ity of the noise on gradients (Wk) is justified by the follow-
ing reasons: (i) if the batch size B is sufficiently large, the
central limit theorem ensures the noise term becomes Gaus-
sian (Zhu et al. 2018), and (ii) an empirical study shows that
the noise term follows Gaussian distribution (Xie, Sato, and
Sugiyama 2020).

We also remark that the properties of SGD’s noise are
still actively studied and some studies showed Wk is heavy-
tailed (Simsekli, Sagun, and Gurbuzbalaban 2019; Nguyen
et al. 2019). We refer readers to Appendix A for in-depth
discussions.

2.2 Mean Exit Time
We consider the problem of how discrete and continuous
SGD’s escape from the minima of loss surfaces. This is for-



mally quantified by a notion of mean exit time. We define
θ∗ ∈ Rd as a local minimum of loss surfaces, and also de-
fine its neighborhoodD ⊂ Rd as an open set which contains
θ∗. We define the mean exit time as follows:
Definition 1 (Mean exit time from D). Consider a continu-
ous SGD (3) starting from θ0 ∈ D. Then, a mean exit time
of the continuous SGD from D is defined as

E[τ ] := E[min {t : θt /∈ D}].
Intuitively, a continuous SGD with small E[τ ] easily es-

capes from the neighborhood D. The mean exit time of con-
tinuous SGD (3) formally corresponds to the SGD’s “time
to escape" in this paper.

Similarly, we define the discrete mean exit time as follows.
Here, kη (time step × learning rate) corresponds to t, since
the η is regarded as a width of the discretization.
Definition 2 (Discrete mean exit time from D). Consider
a discrete SGD (2) starting from θ0 ∈ D. Then, a discrete
mean exit time of the discrete SGD from D is defined as

E[ν] := E[min {kη : θk /∈ D}].
Remark 2 (Other measures for escaping). In previous work,
there exist several terms and definitions to quantify the es-
caping behaviors. (Zhu et al. 2018) defined “escaping effi-
ciency” as Eθt [L (θt)− L (θ0)]. (Xie, Sato, and Sugiyama
2020) defined an “escape rate” as a ratio between the prob-
ability of coming out from θ∗’s neighborhood and the prob-
ability mass around θ∗. They also defined an “escape time”
by the inverse of the escape rate.

2.3 Basic Assumptions for SGD’s Escape Problem
We provide basic assumptions that are commonly used in the
literature on the escape problem (Mandt, Hoffman, and Blei
2016; Zhu et al. 2018; Jastrzębski et al. 2017; Xie, Sato, and
Sugiyama 2020).
Assumption 1 (L(θ) is locally quadratic inD). There exists
a matrix H∗ ∈ Rd×d such that for any θ ∈ D, the following
equality holds:

∀θ ∈ D,L(θ) =L (θ∗) +∇L (θ∗) (θ − θ∗)

+
1

2
(θ − θ∗)

⊤
H∗ (θ − θ∗)

Assumption 2 (Covariance matrix at θ∗). C(θ∗) = H∗.
Assumption 3. For all θ in D, all the entries of C(θ) are
Lipschitz continuous in θ.
Assumption 4. For all θ in D, there exists a constant k > 0
that bounds the eigenvalues of C (θ): k ≥ λ1 ≥ . . . ≥ λd ≥
1
k .

It is known that Assumption 2 hold at global minima (Jas-
trzębski et al. 2017; Zhu et al. 2018) and it is empirically
shown that it is a reasonable approximation at local minima
as well in (Xie, Sato, and Sugiyama 2020, Section 2). Al-
though Assumption 4 is admittedly strong, it is shown that
even neural networks have parameters satisfying it when
their activation functions are bounded (Zhong et al. 2017,
Appendix D.2).

Finally, we adopt the following metric as sharpness in our
analysis.

Steep Trajectory

Less Steep Trajectory

Loss Surface: 

Figure 2: Visual illustration of steepness (Definition 4). The
steepness of φ, ST (φ), is greater than ST (ψ) because φ
moves against the vector field of gradient −∇L(θ).

Definition 3 (Sharpness of a minimum θ∗). Sharpness of θ∗
is the maximum eigenvalue of H∗ in Assumption 1, that is,

λmax = λmax(H
∗).

This is one of the most common definitions of sharpness
(Goldblum et al. 2020; Jastrzebski et al. 2020). We note,
however, that there is ongoing controversy over its definition
(Dinh et al. 2017).

3 Large Deviation Theory for SGD
We introduce the basic notions from the Large Deviation
Theory (Dembo and Zeitouni 2010; Freidlin and Wentzell
2012). The Large Deviation Theory is a theoretical frame-
work for stochastic processes and one of its results, mean
exit time analysis, can formally quantity escaping in our
setup.

First, we define steepness of a trajectory on a loss sur-
face L(θ), followed by the continuous SGD (3). Let φ =
{φt}t∈[0,T ] ⊂ Rd be a trajectory in the parameter space over
a time interval [0, T ] with a terminal time T , where φt ∈ Rd

is a parameter which continuously changes in t (see Figure
2). Also, φ is regarded as a continuous map from [0, T ] to
Rd, i.e. is an element of CT (Rd) (a set of continuous trajec-
tories in Rd) which is a support of continuous SGD during
[0, T ]. Here we define the following quantity.
Definition 4 (Steepness of φ for SGD). Steepness of a tra-
jectory φ for (3) is defined as

ST (φ) :=
1

2

∫ T

0

(φ̇t+∇L (φt))
⊤C (φt)

−1
(φ̇t+∇L (φt))dt

Intuitively, steepness ST (φ) means the hardness for the
system (3) to follow this trajectory φ up the hill on L(θ),
as illustrated in Figure 2. The steepness is introduced to de-
scribe a distribution of trajectories of continuous SGD. If a
trajectory φ has a large steepness ST (φ), the probability that
the system takes the trajectory decreases. We formally sum-
marize the properties of steepness in Appendix C. Although



steepness is a tailored definition for our setup, this quantity
is a special case of a more general notion in the Large Devia-
tion Theory. The corresponding notions are called “rate func-
tion” in (Dembo and Zeitouni 2010, Section 1.2) and “nor-
malized action functional” in (Freidlin and Wentzell 2012,
Section 3.2).

We secondly define quasi-potential, which is the smallest
steepness from a minimum θ∗ to a boundary ∂D. It plays an
essential role in the mean exit time.
Definition 5 (Quasi-potential). Given the system (3) whose
initial point is a local minima θ∗, quasi-potential of a pa-
rameter θ ∈ D is defined as

V (θ) := inf
T>0

inf
φ:(φ0,φT )=(θ∗,θ)

ST (φ).

Same as steepness, quasi-potential can be seen as the min-
imum effort that the system (3) needs to climb from θ∗ up to
θ on L(θ). Given those definitions, Large Deviation Theory
provides the mean exit time of a continuous SGD (3) based
on the quasi-potential.
Theorem 1 (Fundamental Theorem of Exit Time). Consider
the continuous SGD (3) whose initial point is the local min-
ima θ0 = θ∗. Suppose Assumption 1, 3, and 4 hold. Then,
the mean exit time (Definition 1) has the following limit:

lim
η→0

η

B
lnE [τ ] = V0

holds, where V0 := minθ∈∂D V (θ).
We obtain Theorem 1 by adapting a more general theo-

rem (Dembo and Zeitouni 2010, Theorem 5.7.11 (a)) to our
setting with Assumption 1. Rigorously, we verify that sev-
eral requirements of the general theorem, such as asymptotic
stability and attractiveness, are satisfied with our setup. A
precise description of the assumptions can be found in Ap-
pendix B, and the proof of Theorem 1 under our setup can
be found in Appendix G.

4 Mean Exit Time Analysis for SGD
In this section, we give an asymptotic analysis of the mean
exit time as our main result. As preparation, we provide an
approximate computation of the quasi-potential in our set-
ting, then we give the main theorem.

4.1 Approximate Computation of Quasi-potential
We develop an approximation of the quasi-potential V (θ),
which is necessary to study the mean exit time by the fun-
damental theorem (Theorem 1). However, the direct calcula-
tion with a general C(θ) is a difficult problem, and at best
we get a necessary condition for the exact formula (Hu et al.
2017). Instead, we consider a proximal system which is a
simplified version of the continuous SGD (3) with a state-
independent noise covariance.

Proximal System with C(θ) = I We define the following
proximal system which generates a sequence {θ̂t}:

˙̂
θt = −∇L

(
θ̂t

)
+

√
η

B
ẇt (4)

This system is obtained by replacing the covariance C(θ)
of the continuous SGD (3) with an identity I . That is, this
proximal system is regarded as a Gaussian gradient descent
with isotropic noise.

We further define steepness and quasi-potential of the
proximal system as follow:
Steepness

For each φ ∈ CT (Rd), ŜT (φ) :=
1

2

∫ T

0

‖φ̇t +∇L (φt) ‖2dt

Quasi-potential

For each θ ∈ D,V̂ (θ) := inf
T>0

inf
φ:(φ0,ϕr)=(θ∗,θ)

ŜT (φ)

Owing to the noise structure of the proximal system, we
achieve a simple form of the quasi-potential. For the quasi-
potential V̂ (θ), the following lemma holds:

Lemma 1. Under Assumption 1, V̂ (θ) = 2 (L(θ)− L(θ∗)).

Proof. If the function φt for t ∈ [0, T ] does not exit from
D ∪ ∂D,

ŜT (φ) =
1

2

∫ T

0

‖φ̇t −∇L (φt)‖2 dt+ 2

∫ T

0

φ̇⊤
t ∇L (φt) dt

=
1

2

∫ T

0

‖φ̇t −∇L (φt)‖2 dt+ 2 (L(φT )− L(φ0))

≥ 2 (L(φt)− L(φ0))

The equality holds when φ̇t = ∇L (φt). Since quasi-
potential at θ is the infimum of the steepness from θ∗ to θ,
V̂ (θ) = 2(L(θ)− L(θ∗)) is obtained.

Lemma 1 shows that the quasi-potential with the proxi-
mal system is simply represented as the height of θ from a
minimum θ∗. By the quasi-potential, we simply obtain the
following result by combining Theorem 1:
Proposition 1 (Mean Exit Time of Proximal System). Con-
sider the proxy system (4) whose initial point is the local
minima θ0 = θ∗. Suppose that Assumption 1, 2, and 5 hold.
Then, the mean exit time of (4) from the neighborhood D,
E[τ̂ ], has the following limit

lim
η→0

η

B
lnE[τ̂ ] = 2∆L.

Approximation of Quasi-potential V0 := minθ∈∂D V (θ)
We approximate the target quasi-potential V (θ) using
λ−1
maxV̂ (θ) from the proximal system. For this sake, we im-

pose the following assumption:
Assumption 5. There existsK > 0 such that for any θ ∈ D,
if ST (φ) = V (θ), then ∀t ∈ [0, T ] : φ̇t ≤ K holds.

This claims that the velocities of trajectories do not be-
come infinitely large. With this mild assumption, we obtain
the estimation of V0 as follows.
Lemma 2. Under Assumption 1, 2, and 5, there exists a con-
stant A such that∣∣∣V0 − λ−1

maxV̂0

∣∣∣ ≤ A
(
(1 + C0rk)λ

−1
min − λ−1

max

)
where C0 is a Lipschitz constant of C(θ) and r is the radius
of D.



Original SGD
θk+1 = θk − η∇LB(θk) (1)

Discrete Proxy System
θ̇k+1 = −∇L (θk) +

√
η
BN (0, ηI)

C(θ) 7→ I
Discrete SGD

θk+1 = θk − η∇L(θk) +
√

η
BWk (2)

Exit time: Theorem 3

Proxy System
θ̇t = −∇L (θt) +

√
η
B ẇt (4)

Exit time: Proposition 1
C(θ) 7→ I

Continuous SGD
θ̇t = −∇L(θt) +

√
η
BC(θt)

1/2
ẇt (3)

Exit time: Theorem 2

Convergence of exit time
O(

√
η) (Lemma 3)

Convergence of exit time
O(

√
η) (Lemma 3)

Convergence of
coefficient (B → ∞)

Figure 3: The whole structure of our results.

In the statement of Lemma 2, the right-hand side is small
when (i) H∗ is well-conditioned (i.e. λmin ≈ λmax) and (ii)
C(θ) does not change much around θ∗ (i.e. C0 is small.) Un-
der such conditions, the quasi-potential of continuous SGD
becomes close to λ−1

maxV̂0. But we note that this approxima-
tion can be loose because of the hidden factors in A (Ap-
pendix D).

4.2 Main Results: Mean Exit Time Analysis
As our main results, we give inequalities that characterize a
limit of the mean escape time. We recall the definition of the
depth of a minimum θ∗ as ∆L := minθ∈∂D L(θ)− L(θ∗).

Continuous SGD First, we study the case of continuous
SGD (3). This result is obtained immediately by combin-
ing the fundamental theorem (Theorem 1) with the approxi-
mated quasi-potential (Lemma 2):

Theorem 2 (Mean Exit Time of Continuous SGD). Con-
sider the continuous SGD (3) whose initial point is the local
minima θ0 = θ∗. Suppose that Assumption 1, 2, and 5 hold.
Then, the mean exit time (Definition 1) from the neighbour-
hood D has the following limit:

2
∆L

λmax
−A

(
(1 + C0rk)λ

−1
min − λ−1

max

)
≤ lim

η→0

η

B
lnE[τ ]

≤ 2
∆L

λmax
+A

(
(1 + C0rk)λ

−1
min − λ−1

max

)
Excluding the effect of the approximation A(λ−1

min −
λ−1
max + C0rk

2), this result indicates that continuous SGD
needs exp(2B

η λ
−1
max∆L) time of update to escape from the

neighborhood D of the local minima θ∗. Compared to the
quasi-potential of the proxy system 2∆L (Proposition 1),
the covariance matrix reduces quasi-potential in the factor
of λmax. This result endorses the fact that SGD’s noise struc-
ture,C(θ), exponentially accelerates the escaping (Xie, Sato,
and Sugiyama 2020), because quasi-potential exponentially
affects mean exit time (Theorem 1). A more rigorous com-
parison is given in Section 5.

Discrete SGD Next, we give the mean escape time analy-
sis for discrete SGD (2). Our approach is to combine the fol-
lowing discretization error analysis to the continuous SGD
results (Theorem 2):
Lemma 3 (Discretization Error). For a stochastic system
with Gaussian perturbation and its discrete correspondence,
the discretization error of exit time has the following conver-
gence rate E[ν]− E[τ ] = O(

√
η).

The following lemma can be simply derived as a special
case of (Gobet and Menozzi 2010, Theorem 17) by substi-
tuting g(·) = 0, f(·) = 1, and k(·) = 0 in their definition.

Based on the analysis, we obtain the following result:
Theorem 3 (Mean Exit Time of Discrete SGD). Consider
the discrete Gaussian SGD (2) whose initial point is the lo-
cal minima θ0 = θ∗. Suppose that Assumption 1, 2, and 5,
hold. Then, the mean exit time (Definition 1) from the neigh-
bourhood D has the following limit:

2
∆L

λmax
−A

(
(1 + C0rk)λ

−1
min − λ−1

max

)
≤ lim

η→0

η

B
lnE[ν]

≤ 2
∆L

λmax
+A

(
(1 + C0rk)λ

−1
min − λ−1

max

)
This result indicates that continuous and discrete SGD

have identical asymptotic mean exit times. In other words,
the discretization error is asymptotically negligible in this
analysis of escape time. Fig 3 summarizes the whole struc-
ture of our results.

5 Comparison with Existing Escape Analyses
We compare our analysis with the closely related existing
analyses and discuss the technical differences in detail. As
summarized in Table 1, we picked as closely related analy-
sis, (Hu et al. 2017; Jastrzębski et al. 2017; Zhu et al. 2018;
Nguyen et al. 2019; Xie, Sato, and Sugiyama 2020), which
analyzes how the SGD’s noise affects escape efficiency.

Comparison on exit time From Table 1, we obtain three
implications. (i) In all the results, either or both the learning
rate η and H∗ play an important role. (ii) There are four



Studies Exponential Sharpness No Non- Discreteness Exit Time (Order)escape analysis escape paths stationary

(Hu et al. 2017)
√ √ √

exp(1/η)

(Jastrzębski et al. 2017)
√

exp
(

B
η ∆L+ d

)
(Zhu et al. 2018)

√ √ √
1/Tr

(
C(θ∗)−1H∗)

(Nguyen et al. 2019)
√ √ √

1/η(α−δ)/2

(Xie, Sato, and Sugiyama 2020)
√ √

exp
(

B
η ∆Lλ̄

−1
)

Ours
√ √ √ √ √

exp
(

B
η

(
∆Lλ−1

max ± Ξ
))

Table 1: Technical difference among analyses. The specific meanings of each column are described in the main passages of Section 5. For
the results of each work, we only show their order by ignoring constants. Ξ = A

(
(1 + C0rk)λ

−1
min − λ−1

max

)
is the approximation error, λ̄

is some value in [λmin, λmax] defined in (Xie, Sato, and Sugiyama 2020), and α, δ are parameters related to the tail probability (Nguyen
et al. 2019).

results where the exit time is expressed as an exponential
form, and the sharpness-related values λmax and λ̄ appear
in the results of (Xie, Sato, and Sugiyama 2020) and our
study. (iii) Our study and (Xie, Sato, and Sugiyama 2020)
have different orders for the parameters for sharpness. This
fact will be discussed in the latter half of this section.

Escaping path assumption We remark that the assump-
tions of our theorem have an essential difference from (Jas-
trzębski et al. 2017) and (Xie, Sato, and Sugiyama 2020).
Their analyses assume that SGD escapes along a linear path,
named “escape path,” where the gradient perpendicular to
the path direction is zero. Escaping path is a convenient as-
sumption to reduce the escape analysis to one-dimensional
problems. However, the existence of such paths is supported
only weakly by (Draxler et al. 2018), and it is unlikely that
the stochastic process continuously moves linearly. The fact
that we eliminated the escaping path assumptions is a sub-
stantial technical improvement.

Effect of sharpness The technical significance of our the-
ory is that it can analyze the sharpness effect. Because of
its non-linearity, sharpness analyses tend to become non-
trivial, thus a limited number of existing works have tackled
it. Among the selected results, the sharpness effect appears
in (Jastrzębski et al. 2017) and (Zhu et al. 2018) as H∗,
and in (Xie, Sato, and Sugiyama 2020) as λ. We note that
the results of (Jastrzębski et al. 2017) and (Xie, Sato, and
Sugiyama 2020) include auxiliary sharpness values, such as
λ̄ ∈ [λmin, λmax] respectively. Those terms appear because
of the escaping path assumption and our results show that
those terms are not fundamental.

Heavy tailed noise Among the selected works, only
(Nguyen et al. 2019) use a heavy-tailed noise model, i.e. the
noise whose distribution has a heavier tail than exponential
distribution. Although it is known that the heavy-tailed noise
models the empirical behavior of SGD well (Simsekli, Sa-

gun, and Gurbuzbalaban 2019), it is quite difficult to math-
ematically formulate it. (Nguyen et al. 2019) use the Lévy
process for their analysis, where α represents the degree of
the heavy tail, and δ ∈ (0, 1) includes miscellaneous con-
stants. Analyzing the sharpness under the heavy-tailed setup
is still an open problem.

6 Conclusion
In this paper, we showed that SGD escapes from sharp min-
ima exponentially fast even in the non-stationary regime. To
obtain the result, we used the Large Deviation Theory from
dynamical system and identified that quasi-potential plays
the key role in the exponential escape in the non-stationary
regime. Our results are the novel theoretical clue to explain
the mechanics as to why SGD can find generalizing minima.
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A Related Work
Sharpness and Generalization of Neural Networks The
shape of loss surfaces has long been a topic of interest. The
argument that the flatness of loss surfaces around local min-
ima improves generalization was first studied by (Hochreiter
and Schmidhuber 1995, 1997), and the observation has re-
cently been reconfirmed in deep neural networks by (Keskar
et al. 2016). Although it is difficult to formally define sharp-
ness (Dinh et al. 2017), many empirical studies have shown
its connections to generalization where various definitions of
sharpness are studied, such as the volume around a minimum
(Huang et al. 2020), the maximum eigenvalue of Hessian
matrix (Goldblum et al. 2020, Remark 2.2), and the highest
loss value around a minimum (Jiang et al. 2019). Our anal-
ysis adopts the maximum eigenvalue of the Hessian matrix
(Definition 3) as (Goldblum et al. 2020) did.

As the other investigations on the loss surface geometry,
(He, Huang, and Yuan 2019) discussed the asymmetry of
loss surfaces, (Draxler et al. 2018; Garipov et al. 2018) stud-
ied how multiple local minima are internally connected, and
(Li et al. 2018) developed a random dimensional reduction
method to visualize loss surfaces in low dimensions.

Learning Rate and Generalization Although our analy-
sis is based on the asymptotic limit of η → 0, the practical
SGD has finite learning rates (Goyal et al. 2017). There are
lines of research investigating particularly the finite learning
rates. (Smith et al. 2021) have shown that the finite learn-
ing rate of SGD works as an implicit regularizer. (Li, Mal-
ladi, and Arora 2021) have investigated the validity of SDE
approximation of SGD with finite learning rates. The dif-
ferences in convergence properties among different learning
rates are also an active research area (Wu, Ma et al. 2018; Li,
Lyu, and Arora 2020). A shortcoming of our framework is
that it cannot deal with the effect of finite learning rates.

Although the practical SGD commonly uses dynamical
learning rates (or schedulers) (Li and Arora 2020), it is fair
to assume that the learning rate is constant in our analysis be-
cause we consider the behavior of SGD during a short period
of time, (i.e. after SGD falls to a minimum until it escapes.)

SGD and Machine Learning The detailed nature of SGD
itself is also an object of interest. SGD was first proposed
in (Robbins and Monro 1951), as a lazy version of gradient
descent using random subsets of training data. Thus, SGD
has been intended to be a convenient heuristic rather than a
refined algorithm. However besides its computational conve-
nience, SGD works as effectively as gradient descent does in
many optimization problems, and its convergence properties
have been solidified on the convex objective functions (Bot-
tou 2010). The recent success in the field of neural networks
is particularly remarkable because it is shown that SGD
performs greatly on various non-convex functions as well.
SGD-based training algorithms have been achieving state-of-
the-art one after another, e.g., Adagrad (Duchi, Hazan, and
Singer 2011), Adam (Kingma and Ba 2014) and many oth-
ers (Schmidt, Schneider, and Hennig 2021). Although there
is a study showing that SGD is not a unique approach for
generalization (Geiping et al. 2022), SGD remains one of

the standard methods in the long run because of its compu-
tational convenience.

SGD’s Noise Analyzing SGD’s noise has been an appeal-
ing topic in the research community. It is known that the
magnitude of the gradient noise in SGD has versatile ef-
fects on its dynamics (Kleinberg, Li, and Yuan 2018) thus
it has been closely investigated especially in relation to a
learning rate and batch size. An effect of large batch sizes
on the reduction of gradient noise is investigated in (Hof-
fer, Hubara, and Soudry 2017; Smith et al. 2018; Masters
and Luschi 2018). Another area of interest is the shape of a
gradient noise distribution. (Zhu et al. 2018; Hu et al. 2017;
Daneshmand et al. 2018) investigated the anisotropic nature
of gradient noise and its advantage. (Simsekli, Sagun, and
Gurbuzbalaban 2019) discussed the fact that a gradient noise
distribution has a heavier tail than Gaussian distributions.
(Nguyen et al. 2019; Şimşekli et al. 2019) showed the bene-
fits of these heavy tails for SGD. (Panigrahi et al. 2019) rig-
orously examined gradient noise in deep learning and how
close it is to a Gaussian. (Xie, Sato, and Sugiyama 2020)
studied a situation where the distribution is Gaussian, and
then analyzes the behavior of SGD in a theoretical way.

Discretization of SGD We summarize the approximation
we used in Table 3. We used the continuous SGD (3) as an
approximation of the discrete SGD (2) because (3) is exactly
discretized to (2). This approximation is commonly used be-
cause it is well known that the trajectories of those two sys-
tem show, so-called, “strong convergence” in the order of
O(

√
η), i.e. E(sup0≤t≤T |θdiscretek −θkη|) = O(η

1
2 ) (see e.g.

(Gobet 2016; Cheng et al. 2020)). We note that strong con-
vergence validates the similarity of trajectories, but it does
not necessarily guarantee the similarity of escaping behav-
ior. Our work is the first completed argument with Lemma 3
introduced.

As a final remark, (2) is also an approximated model of
the original SGD (the dotted arrow in Fig. 3). Although this
approximation is justified via the central limit theorem (Jas-
trzębski et al. 2017; He, Liu, and Tao 2019), it is admittedly
heuristic and the quantitative validation for the approxima-
tion is assumed to be a (highly non-trivial) open problem.

B Assumptions of Fundamental Theorem
Although there are miscellaneous assumptions (Assumption
6, 7, and 8) in (Dembo and Zeitouni 2010, Theorem 5.7.11
(a)), they can be simply derived from the assumptions in
SGD’s escape problem. We provide the following brief jus-
tification.
Stability of θ∗ is an essential assumption for (Dembo and
Zeitouni 2010, Theorem 5.7.11 (a)) and especially com-
monly assumed in dynamical system (Hu et al. 2017; Wu,
Zhu et al. 2017).

Assumption 6 (θ∗ is asymptotically stable). For any neigh-
borhood U that contains θ∗, there exists a small neighbor-
hood V of θ∗ such that gradient flow with any initial value
θ0 ∈ V does not leave U for t ≥ 0 and limt→∞ θt = θ∗.



Assumption 7 (D is attracted to θ∗). ∀θ0 ∈ D, a system
θ̇t = −∇L(θt) with initial value θ0 converges to θ∗ without
leaving D as t→ ∞.

But it does not explicitly appear in SGD’s escaping anal-
ysis (Zhu et al. 2018; Jastrzębski et al. 2017; Xie, Sato, and
Sugiyama 2020), because they usually adopt stronger as-
sumptions. Assumption 6 is known to be equivalent to the lo-
cal minimality of θ∗ under the condition that L(θ) is real an-
alytic around θ∗ (Absil and Kurdyka 2006). Also, by defini-
tion of asymptotic stability in Assumption 6, we can always
find a region D that satisfies Assumption 7. The more de-
tailed properties of stability can be found, such as in (Teschl
2000, Section 6.5).
For the rigorous asymptotic analysis, the quasi-potential
needs to be finite.
Assumption 8 (Finite V0). V0 ≜ infθ′∈∂D V (θ′) <∞.

But this is naturally satisfied in our setup. Because of As-
sumption 1 and 3, we can choose φt = ∇L(φt) to obtain
finite steepness. This implies the quasi-potential is always
finite for any θ.

Finally, to order to ensure the continuity, we need to im-
pose the following assumption.
Assumption 9. There exists an N < ∞ such that, for all
ρ > 0 small enough and all x, y with |x− z|+ |y − z| ≤ ρ
for some z ∈ ∂D∪{θ∗}, there is a function u satisfying that
‖u‖ < N and φT (ρ) = y, where

ϕt = x−
∫ t

0

∇L (φs) ds+

∫ t

0

C1/2 (φs)usds

and T (ρ) → 0 as ρ→ 0.

This can be derived from Assumption 2.

C Formal properties of Steepness and
Quasi-potential

Fundamental Lemmas of Steepness Formally, steepness
(Definition 4) is a useful measure because it satisfies the fol-
lowing Lemmas 4 and 5. To state the lemmas, readers shall
view θ as a probability measure on Rd, i.e. θ := (Rd,F),
where F is the Borel σ-field on Rd.
Lemma 4. If all the entries of ∇L(·) and C(·) are bounded,
uniformly Lipschitz continuous functions, then given {θt},
the solution of (3), for all Γ ∈ F

lim inf
ε→0

ε ln θ(Γ) ≥ − inf
φ∈Γo

ST (φ)

where Γo denotes the interior of Γ.

Lemma 5. If all the entries of ∇L(·) and C(·) are bounded,
uniformly Lipschitz continuous functions, then given {θt},
the solution of (3), for all Γ ∈ F

lim sup
ε→0

ε ln θ(Γ) ≤ − inf
φ∈Γ̄

ST (φ)

where Γ̄ denotes the closure of Γ.

Proof. Definition 4 corresponds to the rate function defined
in (Dembo and Zeitouni 2010, (5.6.6)) in our setup (see

the (Dembo and Zeitouni 2010, Remark on p214) as well).
By (Dembo and Zeitouni 2010, Theorem 5.6.7), our steep-
ness satisfies Large Deviation Principle, which is stated in
(Dembo and Zeitouni 2010, (1.2.4)). This statement imme-
diately proves Lemma 4 and 5.

Preliminary Lemmas of Quasi-potential Derived from
Lemma 4 and 5, the following lemmas play essential roles
in bounding the mean exit time. We introduce the statements
in our notations and briefly describe their implications.

In the lemmas below, we use Θt to denote gradient flow,
i.e., Θ̇t = −∇L(Θt) and for µ > 0, Bµ denotes an µ-
neighbourhood of θ∗, that is, Bµ := {θ′ ∈ Rd | ‖θ′ − θ∗‖ ≤
µ}. We also define

πµ ≜ inf {t : t ≥ 0, θt ∈ Bµ ∪ ∂D} .

Lemma 6 (Lemma 5.7.18 in (Dembo and Zeitouni 2010)).
Under Assumption 9, for any ξ > 0 and any µ > 0 small
enough, there exists T0 <∞ such that

lim inf
ε→0

ε ln inf
θ0∈Bµ

P (τ ≤ T0) > −(V0 + ξ)

Lemma 6 means if ε is small enough, there exists a trajec-
tory that starts from Bµ, exits with finite time duration T0,
and has its steepness less than V0 + ξ.
Lemma 7 (Lemma 5.7.19 in (Dembo and Zeitouni 2010)).
Under Assumption 1, 2, and 4, for any µ > 0 small enough
such that Bµ ⊂ D, we have

lim
t→∞

lim sup
ε→0

ε ln sup
θ0∈D

P (πµ > t) = −∞.

Lemma 7 means if ε is small enough and t is large enough,
θ will either fall into Bµ or each ∂D at some point.
Lemma 8 (Lemma 5.7.21 in (Dembo and Zeitouni 2010)).
Under Assumption 1 and 3, for any µ > 0 small enough
such that Bµ ⊂ D, for any closed set N ⊂ ∂D

lim
µ→0

lim sup
ε→0

ε ln sup
θ0∈Bµ

P
(
θπµ

∈ N
)
≤ − inf

θ′∈N
V (θ′),

Lemma 8 means if ε is small enough and Bµ is a small
enough neighborhood of θ∗, there exists a trajectory from
Bµ to N such that its steepness at least infθ′∈N V (θ′).
Lemma 9 (Lemma 5.7.22 in (Dembo and Zeitouni 2010)).
For any µ > 0 small enough such that Bµ ⊂ D and all
θ0 ∈ D, we have

lim
ε→0

P
(
θπµ ∈ Bµ

)
= 1

Lemma 9 means if ε is small enough, θ eventually falls
into Bµ.
Lemma 10 (Lemma 5.7.23 in (Dembo and Zeitouni 2010)).
For every δ > 0 and every ξ > 0, there exists a constant
T (ξ, δ) <∞ such that

lim sup
ε→0

ε ln sup
θ0∈D

P

(
sup

t∈[0,T (ξ,δ)]

|θt − θ0| ≥ δ

)
< −ξ

Lemma 10 means over short time intervals, θt can get far
from its starting point with an exponentially small probabil-
ity.



D Deferred Proof of Lemma 2

Proof. First, we use λ−1
maxŜT (φ) as a “proxy steepness” to

estimate S(φ) and V (θ). For any trajectory φ that defines
quasi-potential, the following bound holds.

∣∣∣ST (φ)− λ−1
maxŜT (φ)

∣∣∣
=

∣∣∣∣∣12
∫ T

0

Φ⊤
(
C (φt)

−1 − λ−1
maxI

)
Φdt

∣∣∣∣∣
(where Φ := (φ̇t +∇L (φt)))

≤ 1

2

∫ T

0

∣∣∣Φ⊤
(
C (φt)

−1 − λ−1
maxI

)
Φ
∣∣∣ dt (5)

Since C (φt)
−1 − λ−1

maxI is positive semi-definite,

(5) ≤ 1

2

∫ T

0

‖Φ‖2 λmax

(
C (φt)

−1 − λ−1
maxI

)
dt

=
1

2

∫ T

0

‖φ̇t +∇L (φt)‖2 λmax

(
C (φt)

−1 − λ−1
maxI

)
dt

(6)

Since D is a finite set and L(θ) is a locally quadratic func-
tion (Assumption 1), there exists a constant M > 0 that
satisfies ∀θ ∈ D : ‖∇L(θ)‖ ≤M . we can further obtain the
following bound.

(6) ≤ T

2
(K +M)2 sup

0≤t≤T

{
λmax

(
C (φt)

−1 − λ−1
maxI

)}
(∵ ‖∇L(θ)‖ ≤M and Assumption 5)

=
T

2
(K +M)2 sup

0≤t≤T

{
λmax

(
C (φt)

−1
)
− λ−1

max

}
=
T

2
(K +M)2

{
sup

0≤t≤T
λmax

(
C (φt)

−1
)
− λ−1

max

}
(7)

The following inequalities show that
sup0≤t≤T λmax(C(φt)

−1) is close to λ−1
min(=

λmax(C(θ
∗)−1) by Assumption 2).

For any θ ∈ {φt}0≤t≤T

λmax

(
C (θ)

−1
)
− λmax

(
C (θ∗)

−1
)

=
∥∥∥C (θ)

−1
∥∥∥
op

−
∥∥∥C (θ∗)

−1
∥∥∥
op

≤
∥∥∥C (θ)

−1 − C (θ∗)
−1
∥∥∥
op

=
∥∥∥C (θ)

−1
(C (θ∗)− C (θ))C (θ∗)

−1
∥∥∥
op

≤
∥∥∥C (θ)

−1
∥∥∥
op

‖C (θ∗)− C (θ)‖op
∥∥∥C (θ∗)

−1
∥∥∥
op

≤
∥∥∥C (θ)

−1
∥∥∥
op

‖C (θ∗)− C (θ)‖F
∥∥∥C (θ∗)

−1
∥∥∥
op

≤
∥∥∥C (θ)

−1
∥∥∥
op
C0 |θ∗ − θ|∞

∥∥∥C (θ∗)
−1
∥∥∥
op

(∵ There exists C0 > 0 by Assumption 3)

≤
∥∥∥C (θ)

−1
∥∥∥
op
C0r

∥∥∥C (θ∗)
−1
∥∥∥
op

(There exists a constant radius, r, because D is finite.)

≤ C0rkλ
−1
min (∵ Assumption 4)

Thus,

(7) ≤ T

2
(K +M)2

(
(1 + C0rk)λ

−1
min − λ−1

max

)
.

With this upper bound, V0 can also be bounded in the follow-
ings. By definition,

V0 = inf
θ∈∂D

inf
T>0

inf
φ:(φ0,φT )=(θ∗,θ)

ST (φ)

V̂0 = inf
θ∈∂D

inf
T>0

inf
φ:(φ0,φT )=(θ∗,θ)

ŜT (φ)

From here below, we denote infφ:(φ0,φT )=(θ∗,θ) by infφ(θ,T )

for brevity.
Since ∂D is a continuous finite boundary, we have the

following θ† and θ∗.

θ† := arginf
θ∈∂D

inf
T>0

inf
φ(θ,T )

ST (φ)

θ∗ := arginf
θ∈∂D

inf
T>0

inf
φ(θ,T )

ŜT (φ).

The followings hold.

inf
θ∈∂D

inf
T>0

inf
φ(θ,T )

ST (φ)− inf
θ∈∂D

inf
T>0

inf
φ(θ,T )

ŜT (φ)

≤ inf
T>0

inf
φ(θ∗,T )

ST (φ)− inf
T>0

inf
φ(θ∗,T )

ŜT (φ)

inf
θ∈∂D

inf
T>0

inf
φ(θ,T )

ŜT (φ)− inf
θ∈∂D

inf
T>0

inf
φ(θ,T )

ST (φ)

≤ inf
T>0

inf
φ(θ†,T )

ŜT (φ)− inf
T>0

inf
φ(θ†,T )

ST (φ)

Similarly, we can the following finite T † and T ∗ for each θ.

T †(θ) := arginf
T>0

inf
φ(θ,T )

ST (φ)

T ∗(θ) := arginf
T>0

inf
φ(θ,T )

ŜT (φ),



and the followings hold

inf
T>0

inf
φ(θ∗,T )

ST (φ)− inf
T>0

inf
φ(θ∗,T )

ŜT (φ)

≤ inf
φ(θ∗,T∗(θ∗))

ST∗(θ∗)(φ)− inf
φ(θ∗,T∗(θ∗))

ŜT∗(θ∗)(φ)

inf
T>0

inf
φ(θ†,T )

ŜT (φ)− inf
T>0

inf
φ(θ†,T )

ST (φ)

≤ inf
φ(θ†,T †(θ†))

ŜT †(θ†)(φ)− inf
φ(θ†,T †(θ†))

ST †(θ†)(φ).

Similarly, since L(θ) and C(θ) are continuous, for each θ
and T , we have

φ†(θ, T ) := arginf
φ(θ,T )

ST (φ)

φ∗(θ, T ) := arginf
φ(θ,T )

ŜT (φ).

and we get

inf
φ(θ∗,T∗(θ∗))

ST∗(θ∗)(φ)− inf
φ(θ∗,T∗(θ∗))

ŜT∗(φ)

≤ ST∗(θ∗)(φ
∗(θ∗, T ∗(θ∗)))− ŜT∗(φ∗(θ∗, T ∗(θ∗)))

≤ T ∗(θ∗)

2
(K +M)2

(
(1 + C0rk)λ

−1
min − λ−1

max

)
and

inf
φ(θ†,T †(θ†))

ŜT †(θ†)(φ)− inf
φ(θ†,T †(θ†))

ST †(θ†)(φ)

≤ ŜT †(θ†)(φ
†(θ†, T †(θ†)))− ST †(θ†)(φ

†(θ†, T †(θ†)))

≤ T †(θ†)

2
(K +M)2

(
(1 + C0rk)λ

−1
min − λ−1

max

)
Thus we get∣∣∣V0 − λ−1

maxV̂0

∣∣∣ ≤ A
(
(1 + C0rk)λ

−1
min − λ−1

max

)
,

where A := max{T †(θ†),T∗(θ∗)}
2 (K +M)2.

E Deferred Proof of Theorem 3
Proof. For the continuous SGD, by Theorem 1, we have
limη→0

η
B lnE[τ ] = V0, where V0 = minθ′∈∂D V (θ′).

With this result, it remains to evaluate the discretization error
of exit time.

Here, without loss of generality, we assume E[ν] > 1.
Also, we consider a case with E[ν] − E[τ ] ≥ 0. For the
opposite case E[ν] − E[τ ] < 0, we can obtain the same
result by repeating the following proof. By Lemma 3, for
sufficiently small η, there exists a constant c such that 0 ≤
E[ν] − E[τ ] ≤ c

√
η holds. Therefore, the discrete exit time

can be lower-bounded as
η

B
lnE[ν] ≥ η

B
lnE[τ ],

and also upper-bounded as
η

B
lnE[ν] ≤ η

B
ln (E[τ ] + c

√
η) =

η

B
ln (1 + E[τ ]− 1 + c

√
η)

≤ η

B
ln (E[τ ]) +

η

B
ln (1 + c

√
η) .

The last inequality follows that log(1 + a + b) ≤ log(1 +
a) + log(1 + b) for any a, b > 0. Using the lower and upper
bound, we obtain

lim
η→0

η

B
lnE[ν] = lim

η→0

{ η
B

ln (E[τ ]) +
η

B
ln (1 + c

√
η)
}
= V0.

Combined with Lemma 2 and Theorem 1, we obtain the
statement of Theorem 3.

F Numerical Validation
We provide numerical experiments to validate our result un-
der practical scenarios. We use a multi-layer perceptron with
one hidden layer with 5000 units, mean square loss function,
fed with the AVILA dataset (De Stefano et al. 2011). To ob-
tain the local minimum θ∗, we run the gradient descent net-
work for a sufficiently long time (1000 epochs) to obtain
asymptotically stable θ∗. The region D is defined as a neigh-
borhood of θ∗. With θ∗ as an initial value, we measure the
exit times with SGD 100 times independently. We measure
the average number of steps at which SGD exits from D as
the discrete mean exit time. To observe the dependency on
the essential hyper-parameters (λmax, η, B, and ∆L,), we
compute the Pearson correlation coefficient, i.e. the linear
correlation. The sharpness of θ∗ is controlled by mapping
L(θ) to L(

√
αθ) with a parameter α > 0. Since this map-

ping changes λmax to αλmax with other properties remain-
ing the same, we use α as a surrogate of the sharpness λmax.
In a similar manner, ∆L is controlled by mapping L(θ) to
βL(θ), where, β is a surrogate of the depth of a minimum
∆L.

Fig. 4 shows the discrete mean exit time has an exponen-
tial dependency on λ−1

max, η−1, B, and ∆L, which is aligned
with Theorem 3. As a reference, we provide the same exper-
iment with C(θ) 7→ I (i.e. (4)). We also conducted a refer-
ence experiment to verify Proposition 1. In contrast to Fig.
4, Fig. 5 shows the discrete mean exit time is independent
of sharpness while η and ∆L show the same trend. All the
codes are available. 1

Our experiment is limited to the one-hidden layer model
because Assumption 4 is proven to hold in the simple
model Zhong et al. (2017). Although this experiment shows
that our theory is valid in the practical scale of time steps ν
and learning rate η, we admit that it would be challenging to
obtain a compelling result with large-scale architecture such
as transformer (Vaswani et al. 2017) and ResNets (He et al.
2016).

G Proof of Theorem 1
Main proof For simplicity, we use ε to denote η/B. To
prove this result, we provide the proof for an upper bound
(Lemma 11) and a lower bound (Lemma 12). Preliminary
Lemmas that support the proofs are summarized in Ap-
pendix C (Lemmas 6, 7, 8, 9, and 10).
Throughout the proofs, we sometimes use Pθ0 or Pθ′

0
to

clearly indicate which trajectory we are referring to.
First, we develop the upper bound on the mean exit time.

1Source code: https://github.com/ibayashi-hikaru/SGD_exit_
time.
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Figure 4: Numerical validation of Theorem 3, where the
mean exit time shows exponential dependency on λ−1

max, η−1,
B, and ∆L. The error bars indicate the standard deviation.

Lemma 11. For any c > 0, there exists an ε0 such that
for ε < ε0, ε lnE [τ ] < V0 + c holds, where V0 :=
minθ′∈∂D V (θ′).

Proof. Given Lemma 6 with ξ := c
2 and µ := µ0, there

exists a T0 such that

lim inf
ε→0

ε ln inf
θ0∈Bµ0

P (τ ≤ T0) > −(V0 +
c

2
)

Also, given Lemma 7 with µ = µ0, there exists a T1 such
that

lim sup
ε→0

ε ln sup
θ0∈D

P (τµ0
> T1) < 0.

Let T = T0 + T1. Then there exists some ε0 > 0 such that
for all ε ≤ ε0,

q ≜ inf
θ0∈D

P (τ ≤ T ) ≥ inf
θ0∈D

P (τµ0
≤ T1) inf

θ0∈Bµ0

P (τ ≤ T0)

≥ e−(V0+
c
2 )/ε
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Figure 5: Reference experiment using the proxy system (4).
Different from the result of SGD, the exit time has no depen-
dency on λmax while it has exponential dependency on η
and ∆L similarly to SGD. This result is aligned with Propo-
sition 1.

Considering the events {τ > kT} for k = 1, 2, . . . yields

P (τ > (k + 1)T ) = [1− P (τ ≤ (k + 1)T | τ > kT )] P (τ > kT )

≤ (1− q)P (τ > kT )

Iterating over k = 1, 2, . . . gives

sup
θ0∈D

P (τ > kT ) ≤ (1− q)k

Therefore,

sup
θ0∈D

E [τ ] ≤ T

[
1 +

∞∑
k=1

sup
θ0∈D

P (τ > kT )

]

≤ T

∞∑
k=0

(1− q)k =
T

q

and since q ≥ e−(V0+c)/ε,

sup
θ0∈D

E [τ ] ≤ Te(V0+
c
2 )/ε

If we take ε0 small enough,

ε lnE [τ ] ≤ V0 +
c

2
< V0 + c

holds for all ε ≤ ε0 and θ0 ∈ D.
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Figure 6: Domains and trajectory right appearing in the proof of upper bound.
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Figure 7: Domains and trajectory right appearing in the proof of lower bound.

Next, we develop the lower bound on the exit time.
Lemma 12. For any c > 0, there exists an ε0 such that
for ε < ε0, ε lnE [τ ] > V0 − c holds, where V0 :=
minθ′∈∂D V (θ′).

Proof. To prove the lower bound on τ , let µ0 > 0 be small
enough that Bµ0

⊂ D. Let σ0 = 0 and for n = 0, 1, . . .
define the following series of time stamps

τn = inf
{
t : t ≥ σn, θt ∈ Bµ0/2 ∪ ∂D

}
,

σn+1 = inf {t : t > τn, θt ∈ Bµ0
}

with the convention that σn+1 = ∞ if θτn ∈ ∂D. Note that
necessarily τ = τn for some integer n. Moreover, since τn
are exit times and θt is a strong Markov process, the process
zn ≜ θτn is a Markov chain. Note that ∂D is a closed set
and choose µ0 > 0 small enough as needed by Lemma 8 for

lim sup
ε→0

ε ln sup
θ′
0∈Bµ0

Pθ′
0

(
θπµ0

∈ ∂D
)
< −V0 +

c

2
.

Now, let ξ := V0 and δ := µ0, and let T0 = T (V0, µ0) be
as determined by Lemma 10. Then there exists ε0 > 0 such
that for all ε ≤ ε0 and all n ≥ 1,
sup
θ0∈D

P (τ = τn) ≤ sup
θ′
0∈Bµ0

Pθ′
0

(
θπµ0

∈ ∂D
)
≤ e−(V0−c/2)/ε

and

sup
θ0∈D

P (σn − τn−1 ≤ T0) ≤ sup
θ0∈D

P

(
sup

t∈[0,T0]

|θt −Θt| ≥ µ0

)
≤ e−(V0−c/2)/ε

The event {τ ≤ kT0} implies that either one of the first k+1
among the mutually exclusive events {τ = τn} occurs, or
else that at least one of the first k excursions [τn, τn+1] off
Bµ0/2 is of length at most T0. Thus, by the union of events
bound, utilizing the preceding worst-case estimates, for all
θ0 ∈ D and any integer k,

P (τ ≤ kT0) ≤
k∑

n=0

P (τ = τn) + P

(
min

1≤n≤k
{σn − τn−1} ≤ T0

)
≤ P (τ = τ0) + 2ke−(V0− c

2 )/ε

Recall the identity {τ = τ0} ≡
{
θπµ0

/∈ Bρ

}
and apply the

preceding inequality with k =
[
T−1
0 e(V0− c

2 )/ε
]
+1 to obtain

(for small enough ε )

P
(
τ ≤ e(V0− c

2 )/ε
)
≤ P (τ ≤ kT0) ≤ P

(
θπµ0

/∈ Bµ0

)
+4T−1

0 e−
c
2ε



By Lemma 9, the left side of this inequality approaches zero
as ε→ 0; hence, the following holds.

lim
ε→0

P
(
e(V0− c

2 )/ε ≤ τ
)
= 1

By Chebycheff’s bound, if we take ε0 small enough,

ε lnE [τ ] > V0 − c

holds for all ε ≤ ε0.


