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Abstract

We explore the use of expert-guided bandit learning, which we refer to as online
mixture-of-experts (OMoE). In this setting, given a context, a candidate commit-
tee of experts must determine how to aggregate their outputs to achieve optimal
results in terms of aggregate accuracy. We propose two algorithms to address this
problem. The first algorithm combines aggregate voting with UCB-driven succes-
sive elimination, efficiently pruning suboptimal exploration actions. The second
algorithm employs an online weighted-majority-voting mechanism, leveraging the
respective voting power of each expert proportional to their predictive power. We
derive theoretical guarantees for the regret properties in the bandit setting under
ideal circumstances, and empirical results are provided accordingly. As a mod-
ern study on applications, these methods are applied to the online fine-tuning of a
set of expert large language models (LLMs), where after each response, the gen-
erative LLM dynamically reweighs its set of experts and/or selects the optimal
committee of experts to generate the most accurate response. Our results intro-
duce new methodologies and no-regret guarantees for combining multiple experts
to improve on the performance of the an aggregate model overall.

1 Introduction

The mixture-of-experts (MoE) model is a powerful concept in applied machine learning and so-
cial choice, leveraging the collective decision-making capabilities of a group of experts to yield
improved predictions or more computationally efficient models. The core idea is that within a col-
lection of N experts, &, there exists at possible a subgroup, £* C &£, whose combined predictions
are well-optimized on some well-defined metric (e.g. collective accuracy, model efficiency etc.).
Classically, MoE models involved the design of a gating mechanism (a.k.a router) that aims to op-
timally transform the output of many experts into a single more optimal output. Traditionally, this
involved training an offline model from labelled data to optimize some loss function via supervised
learning [1,[2,|3] . Concerning neural architecture design for offline learning, the MoE framework
has been wide integrated to several state-of-the-art LLMs (e.g. DeepSeek-MoE, Mixtral) for token
prediction tasks [4, |56l 7, |8]] . More recently, pertinent to applications on Al alignment, the online
version of MoE has garnered significant interest. This is particularly useful when agents interact
with an environment in a repeated manner, receiving feedback in an online fashion, and needing to
optimize in real-time.

Online Mixture of Experts: Historically, online MoE was framed as a prediction with expert ad-
vice problem, which has been extensively studied in the learning literature [9, |10l 11} [12] . The
core principle involves aggregating predictions from multiple experts, where each expert is assigned
a weight proportional to its historical predictive performance. Previous online MoE learning algo-
rithms, such as EXP4, are theoretically guaranteed to converge to the best single expert in hindsight
[13} |14, 9] . While this property ensures asymptotic optimality relative to the best individual ex-
pert, it introduces a concerning limitation. Specifically, such algorithms fail to account for scenarios
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Figure 1: Online Mixture of Experts via Majority Voting. At each timestep, a context x is sampled from a
distribution P(x). A prompt derived from x is used to query a set of expert candidates Ecana. The responses are
aggregated via a majority voting mechanism parameterized by 6, yielding a single output. All expert responses
and the aggregated output are evaluated by a scoring function (e.g., an oracle or human). The voting parameters
0 are updated online to maximize expected score, using full-bandit feedback over a finite time horizon.

where an aggregate outcome of the experts’ predictions—such as a majority voting, plurality con-
sensus, or any form of preference aggregation—could yield superior performance compared to any
single expert. In social choice, this phenomenon is often referred to as the wisdom-of-the-crowd. If
there exists potential improvement from collective decision-making, traditional online MoE meth-
ods, such as EXP4, would not capture this. This gap highlights a key question, could we design an
algorithm that provides convergence to the best collective decision-making committee rather than
to the best single expert? In our setting, we aim to learn both the competencies of the experts, and a
sufficiently optimal strategy to combine the experts aggregate outcome in a real-time online environ-
ment. Evidently this also has important ramifications to generative LLMs, allowing for adaptively
improved responses to tasks across various domains, when multiple LLMs are available.

Key Contributions: We make the following contributions in our work,

Online Expert Aggregation: We introduce a family of methods that dynamically aggregate
expert outputs in real-time through a combination of majority voting and online learning. This
provably optimizes the collective aggregate competency of the expert set.

LLM Application: We empirically validate the effectiveness of our method across realistic
problem domains via online majority voting mechanisms to aggregate responses from multi-
ple LLMs serving as experts, yielding improved answer quality.

No-Regret Guarantees: We provide theoretical guarantees with respect to the sublinear
finite-time regret of the learning algorithm relative to the optimal solution under perfect

information, bridging online learning methods to social choice theory.
\ v

2 Problem Setting

To formally describe the problem setting, consider a learning model where the output is generated
by combining the results of multiple weak learners through an aggregation function. These weak
learners, referred to as experts, produce individual outputs, and the aggregation function determines
how these outputs are combined. Let £ denote the set of expert with the size N. Provided a context
x € X, expert i € & makes a prediction ¢;(x) € C; which represents an abstract categorical
ordering or a singleton. Since {C;};cs might be different sets (e.g., C; = {cat,dog, mouse} and
C; = {mouse, eagle, f1y}), we introduce a standardizer S(-) that maps an arbitrary collection of
prediction spaces {C; };c¢ to a unified output space C. Formally, the standardizer satisfies,

ﬂ Ci CC:=6({Ci}ice) C U Ci,

€€ €€



We refer to the size of the standardized output as D¢ := |S({C; }icc)|-

Aggregation function: It is %y : &), C; — C and characterized by a set of parameters § =
{6, }ice. It takes as input the experts’ predictions {¢;(x)};ce and produces a new prediction ¢ € C.

Scoring function: The goodness of the aggregation function’s output is valued by the scoring func-
tion, & : C — R which assigns a real-value score in R to it’s prediction. Suppose a series of
contexts, x, are randomly drawn from a distribution P. This contextual information is passed into
each expert, and the predictions are subsequently aggregated parametrically. As indicated in Eq.
(2-1), the prediction itself may be context-dependent. The scoring function evaluates the accuracy
or quality of the prediction. The performance of a given aggregation function 2{y is measured by the
average scoring function,

By p[6 0 2g] = / ® 0 2y ({ci(x) hice) dP(x), @1

where ® o 2{y denotes the composition of the scoring and aggregation functions. We aim is to max-
imize the average scoring function, formulated as, 0* € arg maxycy Ex~p[® 0 2g]. The properties
of the utility function, such as commutativity or monotonicity, can depend on the structure of the
aggregation outcomes. Our goal is to design an algorithm that learns the optimal parameters for the
aggregation algorithm in an online setting.

Remark 1. Catalogue Standardizer: The standard dimension represents unified responses across
experts (e.g., a fixed set of answers for LLMs). We distinguish two approaches: (1) catalogue-based,
the model produces a catalogue of items where each expert selects from, and (2) model-based, where
experts (e.g., transformers, MLPs) project arbitrary outputs to a standardized logit or token space
RP. We applied the catalogue based standardizer for our experiments.

The score of individual expert, expert’s competency, can be obtained from the scoring function by
computing the expectation over all possible contexts distributed according to P(x) as follows,

p; = /(’5 (ei(x)) dP(x). 2.2)

In more straightforward terms, the competency of an expert refers to its individual ability to maxi-
mize the scoring-aggregation function over a singleton committee consisting of itself - i.e. the ability
of the expert to individually predict the correct answer among candidate solutions. In voting theory,
this is an important piece of information measuring potential effectiveness of aggregating experts.
The average scoring function is the expectation over the composition of the aggregation first 21(-),
followed by the scoring function &(-), according to distribution P(x) over all contexts, Eq. 2.I).
Which we denote as as the scoring-aggregation function, or aggregation function for brevity.

Assumption 2.1. é-Incrementality (Heterogeneous Expert Competencies): Every expert has a
different p;, offset by at least € increment, that is inf;; (p; — p;) > €, Vi,j €1...N.

Extensions of Condorcet’s Jury Theorem: The celebrated Condorcet’s Jury Theorem [15]
states that with competent experts (p; > 0.5), majority voting accuracy approaches 1 as N — oc.
List and Goodin [16] extends this to plurality voting, showing asymptotic accuracy can hold even
with p; < 0.5 under strict reliability assumptions, i.e. that the probability of any expert selecting the
correct class is greater than selecting any incorrect class. However, when these assumptions fail, in-
competent experts can degrade aggregate accuracy, highlighting the need for robust expert aggrega-
tion in our setting. Our work applies epistemological social choice theory [17,/16] to MoE models,
focusing on maximizing predictive accuracy with a modest, finite set of experts (~20), where aggre-
gate accuracy guarantees may or may not hold [[16}|18},|19] . Unlike traditional social choice settings,
we prioritize maximizing output accuracy (and accordingly minimizing regret) under imperfect in-
formation. Key challenges include dynamically inferring heterogeneous expert competencies and
aggregating unreliable multi-class predictions under sample efficiency constraints.

2.1 Egalitarian Majority Voting

Consider a special setting in which experts’ scored prediction are binary Im(&) = {0, 1}, where 1
indicates that the expert is deemed correct and O if incorrect. Suppose that the score-aggregation
function is the majority voting with a random tie-breaking. In this setting, the composition of the



scoring and aggregation function is expressed in Eq. (2.3). In words, it is 1 whenever majority of
the experts give one and zero otherwise.

® o A({ci(x)}ice) =1 (Z &(ci(x)) > ]2V> +1 (Z &(ci(x) = Z) Y, (2.3)

€€ €€

where [(+) is the indicator function and Y ~ Be(1/2) is a Bernoulli random variable with parameter
1/2. Let &; := {x = 1|¢;(x)} to be the set of contexts for which expert i gives a correct prediction
and X its complement. Note that the measure of &j is p;. Using this definition, the average scoring
function can be rewritten as follows,

1
E@o=P| [J (& ()& + 5P U NN s
SCe ies  jese SCE ies  jese
|S|[>N/2 |S|=N/2
Remark 2. This setting can be extended to non-binary prediction set, i.e., Im(&) = {1,2,..., K}
Sor some K and the output of the aggregation function is i € Im(®) whenever a majority of experts
vote for i. In the event of a tie among the experts, the aggregation function outputs one of the tied
items uniformly at random. That is the Bernoulli variable in (2.3) will be replaced with a uniform
random variable over the set of items that received the highest (tied) number of votes.

Independent Experts: Suppose that the experts are independent, i.e., P([),cg Xi) = [[,c5 P(X3)
for all S C £. In this case, the average scoring function will be,

EBod = > sz-H(l—ij% 7 IIe [T =pa) 2.4)

SCE ieS jesc SCE ieS jese
|S|>N/2 |S|=N/2

Evaluating the above averaging function is combinatorially complex as its complexity grows ex-
ponentially with the number of experts /N. Combinatorial multi-armed bandit (CMAB) have been
applied for this purpose in [20,[21}22] . Such methods assume the learning algorithm has access to
an offline («f)-approximation oracle oracle where, with probability /3, it outputs a solution whose
value is at least o proportional of the maximum reward. Specifically, when the reward function is
monotone and submodular, such an oracle can be given where &« = 1 — 1/e. In our setting, the
learner does not have access to such an («3)-oracle. For instance, adding experts an existing com-
mittee does not result in any generalizable behaviour in our majority voting setting. Throughout
this paper, we assume that the experts are independent. However, as it is discussed in Section 3] our
proposed algorithms assemble their committees solely using the marginal experts’ competencies and
subsequently, the theoretical guarantees remain valid even if the experts are correlated.

Optimal Egalitarian Committee (OEC): The optimal egalitarian committee (EC), also known as
the binary weighted participation problem, refers to the formation of a committee in which each
expert receives exactly one vote. Examples of such committees include corporate boards, academic
panels, and juries. In machine learning, similar structures appear in ensemble methods such as Ran-
dom Forests, boosting algorithms, deep learning ensembles, and Mixture-of-Experts (MoE) models.

While online learning algorithms like EXP4 typically converge to the best expert in hindsight, prior
work has shown that it is often possible to achieve better performance by identifying an optimal
egalitarian committee—that is, a subset of experts whose aggregated votes outperform the best ex-
pert. In this setting, the final prediction is determined by majority vote, and the resulting combined
estimate can exceed the accuracy of any individual expert. We denote this committee as £* C &.

When considering the multi-class classification problem, for a majority vote to pass, more than some
minimum amount, referred to as a quota, of the experts should have voted for the correct answer,
each occurring with probability p;. For majority voting, we set the quota to be half of the number
of experts (Optionally, the quota could also be reduced to allow for the experts to arrive at a clear
option as a winner from a choice of options [17] ). We denote the average scoring function of a
candidate committee set Ecang € € by Praj(Ecana) and is given by,

Paaj(Ecand) = > []oi [T (1 —py) +% > e Ila-p). @9
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Accordingly, the optimal committee is £* € argmaxe,_, ,c e Pnaj(Ecana)-

Successive Expert Elimination Function: To form th OEC, we can intuitively successively include
each expert sorted by their respective p;, to a candidate expert set E.ang, given that such an inclusion
would improve the overall accuracy of the committee. For any subset &' C £F, 4, we define the

advantage function as follows,
F(Ecand, €') = Ppaj(Ecana UE') — Ppaj(Ecana), and  Ppaj(0) := 0. (2.6)
Clearly, when the above function is negative, the addition of £’ to E..ng Will not produce £*, i.e.,
F(Ecana, €') 0 = " # Ecana UE".

Lemma 2.1. Top-K Ordinality of Experts: The optimal expert committee £ C & is a subset of
Top-K experts based on their competencies, for 0 < K < N. (Proof can be found in Appendix[A.1})

Elimination of Experts: To build the OEC under the perfect information, i.e., experts’ competen-
cies are known, we propose a constructive algorithm, where we start with E..,q = £, and succes-
sively eliminate admissible subsets £’, until there is no further possible improvement via the F(-).
Given the result of Lemma [2.1] starting with all experts, £, the set of admissible experts must fall
within the set of Top-K experts for some unknown 0 < K < N, i.e. &’ C TopK(£). The benefit of
Lemma 2.1]|allows us to efficiently compute the OEC, avoiding combinatorial search over all possi-
ble subsets. Under perfect information, this allows us to construct the OEC via a greedy algorithm.
(See Algorithm [3]in Appendix.)

2.2 Weighted Majority Voting

We extend from the egalitarian committee in Section [2.1]to a scenario where voters in a committee
have unequal voting power. Intuitively, more accurate experts should have stronger voting power to
sway the accuracy of the majority voting system. In a weighted majority voting (WMV) system, the
voting mechanism is a decision-making system where each expert has a specific level of influence,
determined by an assigned weight. Previously [13]] investigated the problem providing only an
optimal error guarantee limited to binary predictions, in the offline setting where voters can only
produce one of two outputs {0, 1}. We aim to extend the setting to multiple class predictions with
no-regret guarantees in the online setting.

We denote the weight of expert i € £ by 6; € R. These weights often reflect factors such as
expertise, historical performance, or stake in the outcome. Each expert votes for a candidate class,
and the total weight of votes for each candidate is calculated. The option with the weight that
surpasses a quota () is chosen as the final decision. This approach extends simple majority voting by
allowing experts to have unequal influence, making it useful in contexts like corporate governance,
expert panels, and machine learning ensembles, where experts vary in reliability or expertise. Let us
define Pyq;(E, 0) as the aggregate scoring function of a committee of voters with unequal weights
denoted by 6 = (0;);c¢.

Pass (£,0):=>_Fn(S.0) | [[pi [T (1 —ps) |, where Zn(S.0):=1(> 0;>Q],
Sce i€S  jESe jeS
2.7) (2.8)

where > e U5 := 0. In words the above selection function decides whether the configuration .S of
the committee £ meets the feasibility requirements for the vote to pass. In the special case where all
weights are one, then reduces to (2.4) with an appropriate tie-breaking. The weighted majority
voting problem with quota () can be stated as,

max Puaj (£,0). (2.9)
0eRY ,||0]1<2Q

In our experiments, for simplicity, we used @ = N/2, ensuring majority consensus. This guarantees
a clear winner when the majority of experts predict optimally. Should a majority decision be un-
reachable, a random class is sampled uniformly as the winner. To help further simplify the solution
to Eq. 2.9), via Lemma we can solve for 6 at equality as opposed to constrained cap on @,
constituting a more convenient expression encompassing the latter.



Lemma 2.2. Weights Satisfied at Equality: When solving for the optimal weights for 0-weighted
majority voting, the constraint Q < ||0||1 < 2Q, from Eq. 2.9) can be replaced with ||0]|; = 2Q.
(Proof is available in Appendix|A.3])

2.2.1 Solving the Optimal Weighted Voting Committee

A key objective is optimizing the parameters, 6, to maximize majority voting accuracy in Eq. (2.7).
While convex combinations of expert outputs with non-zero weights may yield higher optima, the
problem involves iterative combinatorial complexity. For binary outcomes, i.e. only two classes
to vote for, optimal weights follow the log-odds ratio: 6 = log(p;/1 —p;), Vb; € R [23] 24]
(see Appendix for a discussion and proof). For multi-class settings, the specifications of the
problem challenges the aforementioned existing theoretical guarantees. Everaere, Konieczny, and
Marquis [18] and Abramowitz, Lev, and Mattei [25] provide further insight, yet optimality guar-
antees still require binary outcomes or large expert pools. Karge and Rudolph [[19] provides
non-asymptotic bounds via a competency gap, but remains limited for small-scale online settings.
Therefore, our problem requires novel approaches balancing accuracy maximization with sample
efficiency and expert heterogeneity. First, we leverage potential simplifications in optimal weighted
majority voting problem structure.

Proposition 2.1. Discrete Image: Many configurations of 6 can lead to the same result for
Praj(E,0). (Proof is provided in Appendix[A.3}).

The results of Prop. [2.1] are rather intuitive, stating that many different configurations of weights
could lead to the same expected accuracy via majority voting. One can prove this constructively
by considering a scenario where two or more experts do not contribute to the optimal solution.
So long as their weights do not contribute to swinging a majority vote for any possible outcome
(i.e. this could be an infinitesimally small weight), it could be a valid optimal solution. Next, we
provide an algorithm which for any given ordering over the competencies, denoted as Ord(p) :=
(p1,p2,...pN), such that p; > ps > ... pyN, computes an optimal set of weights.

Mixed Integer Program Formulation: The exact formulation of the optimal weights in the vot-
ing problem can be formulated as a mixed-integer program (MIP), governed by the properties out-
lined in this section. Let @ = [01,0s,...,60x] be a positive vector, where 6; > 0 for all 4. Let
X = [X1,Xs2,...,Xy~] be a predefined vector where xg € {0,1}" and represents configuration
S C &, ie., [xg];=11if and only if expert j is voted correctly in configuration S. We also define Zg
as a binary variable corresponding to .S, determined by the following if-else condition,

T e 1 ifxg-60>0Q,
700 otherwise,

where @ € R is the given quota. The problem in (2.9) can be formulated as an MIP with the

following objective function,
max Zzs Hpi H (1—pj). (2.10)
9ERY S5Ce  ies  jese

This MIP computes the expected value over all voting outcomes using a binary selection variable and
possibility variable Zg. When maximizing for the MIP objective, we must formulate a set of valid
constraints. Leveraging Lemma we tighten the quota condition, introducing constraint j 0; =
2Q. Assumptionenforces 0; # 0; as a constraint. Importantly, we enforce logical consistency by
ensuring that complementary voting outcomes cannot simultaneously satisfy both an outcome and
its complement (e.g. if scenario S = [0, 1, 1, 0] is possible and Zg = 1, then its complement S¢ =
[1,0,0,1] is not, implying Zg. = 0.). These constraints collectively validate voting configurations,
enforce expert competency distinctions, and eliminate contradictory outcomes, while maximizing
for a global solution. We provide the details for this MIP formulation in Appendix

Lemma 2.3. Majority Voting Dominance over Egalitarian Voting: For any set of experts, the
optimal majority weighted voting method will always yield a stronger or equal predictive accuracy
than the plurality vote of the committee. (Proof can be found in Appendix[A.2])

Lemma [2.3] posits that given the same committee of experts, utilizing the -WMV algorithm (Alg.
[2), to aggregate experts’ output will always yield a stronger result than using egalitarian voting.



Therefore, if the computational resources are available the 9-WMYV algorithm will produce a better
accuracy. However, this depends on the systems ability to serve all experts and provide a solution to
the MIP expressed in Eq. Z.I0). If the goal is to learn an efficient representation of experts (i.e. a
sparse set of experts) then SEE (in Alg. [T) can be a better choice to retain efficiency.

3 Online Learning

In previous work, the online MoE problem was typically framed as a no-regret problem relative
to the best single expert in hindsight (Hannan consistency). Recent work on online MoE learning
focuses on identifying top-K experts based on their competencies. A prominent gap remains in
efficiently learning optimal aggregation with heterogeneous expert competencies without combina-
torial explosion. Prior work assumes either pairwise feedback (duelling) or submodularity, yet there
remains a focal body of work addressing optimal MoE aggregation in an online learning setting.
Key previous approaches include duelling bandits, where pairwise comparisons identify dominant
experts [26L27]] , and submodular bandits, which treat committee formation as a matroid optimiza-
tion problem with greedy guarantees [28l 29] . Alternatively, satisficing methods [30, 31} [32]
trade optimality for efficiency, while Top-K bandits [33} [34} 35] leverage competency ordering
for successive acceptance and elimination of arms. Despite the ample amount of research in the
online Top-K arm-selection area, a prominent research gap yet remains which bridges voting theory
to online no-regret guarantees.

Notion of Regret: As our proposed algorithm is a no-regret learner, we formally introduce the
notion of regret in Def. Cumulative regret, R, is defined as the difference between the expected
majority voting aggregate accuracy, Pra; (€, 0*), under parameters, 6*, subtracted by the expected
aggregate accuracy under the current parameters Py, (&, 0").

Definition 3.1. Regret: The cumulative regret of an online algorithm over a time horizon of length
T that selects a set of weights 0 at round t is given by Ry := 31—, Ppa;(€,0%) — Ppay(E,67).

3.1 Successive Expert Elimination (SEE)

The idea of successive elimination in online learning was demonstrated in Even-Dar et al. [33]]
where the successive elimination bandit algorithm with a PAC bound on sample complexity was
proposed, along with both a gap dependent and gap independent versions based on the UCB. Re-
jwan and Mansour [35] presents a successive elimination algorithm in the full-bandit-feedback
setting (a minor detail is that only the sum of rewards is available, which is an additive result from
the individual rewards). Yet, it does not consider the optimal Top-K expert selection (only that K is
given).To distinguish, in our situation, the aggregate reward, P,; function is not necessarily addi-
tive, and the Top-K is not given beforehand and must be determined. We first propose an algorithm
based on the UCB, where there is some confidence range between our estimate of p; and the true
value for each expert p;. This confidence bound should shrink over time with increasing samples.

« . , K e e
—— ——>
+——> ——>
f /
Bij pi

Figure 2: Illustration of a breakage event B;;.

Definition 3.2. Breakage Event: A breakage event at round t denoted as ng between experts i and
7 denotes an event where the upper confidence limit of the empirical estimation of j’s competency
at round t, ﬁ;, is less than the lower confidence limit of p., i.e.,

B}, : p} + UCBj < p; — UCB;.

Intuition of Successive Expert Elimination (SEE): The key idea of SEE is that we can use the
confidence bounds to successively eliminate experts from a candidate committee until we arrive at
a final set of optimal candidates, with high confidence. The algorithm begins with the complete
set of candidate committee equal to the set of all experts Ecana <— € and all experts are played
at each round until a breakage event occurs ijj. At the event of a breakage, we first order the
experts whose estimated competencies are lower than expert j, say 71, jo, ..., Jx := Jj, such that
ph, <, < ... <P’ (pictured as blue points in Diagram . Then, we define TopK(£57,) as the set

cand
<Jj
cand)’

gkt ks Jk—1}s s {41, -y Ji + . To perform a removal test, for each element £’ in TopK(E
JksJ J J p p



we consult the advantage function to see if F(Ecana, £') < O_; that is no advantage can be obtained by
including & with high confidence. If so, all experts in £57, := {ji, ..., jx } could be subsequently

eliminated from E.,q (i.e. removal of blue points from the previous union of blue and green w.r.t
Diagram2)).

Algorithm 1 Successive Expert Elimination (SEE)

1: Ecana +— & > Set the candidate expert set to the full set of experts.
2: fort =1to T do

3: Estimate p! and upper confidence bound, UCBf, for each expert in Ecang.

4: if any Bﬁj event is observed then > Breakage event occurs.
5: for every B! ;» in descending order do

6: Edna < Ea

7: if §(&5.4,8) <0, VE € TopK(Efafld) then > Perform removal test.
8: Ecand < Ecana \ chafld. > Expert set truncation.
9: end if
10: end for
11: end if
12: end for

13: return E.ang

Lemma 3.1. PAC Sample Complexity: Suppose that the competency of each expert i is modeled as
a sub-Gaussian random variable with mean p; and variance o? < 2. Under Assumption for
any two experts i and j, if the number of samples t and shrinkage term UCBf satisfy

2 2
UCBE = M7 t>ty = w’
t €2
then, with probability at least 1 — §, § € (0, 1), the breakage condition, Bﬁj, will be met. (Proof
provided in Appendix[A.6)

Theorem 1. Regret Bound for SEE: The total regret of SEE Algorithm in[l)is bounded by:
Ry € O (Nlog(T)/&). (3.1

Sketch of Proof: The bound follows a PAC elimination sample complexity (Lemma [3.1)), followed
by a union bound over O(N?) pairwise comparisons. Next, we set the failure probability § = 1/T
to control catastrophic regret. The dominant term arises from aggregating N — 1 elimination rounds,
each contributing O (log(T) / €2) regret. (For complete proof see Appendix )

3.2 Online Weighted Majority Voting Solution (Full Bandit Feedback)

Full Bandit Feedback: As discussed in previous section, the optimal weighed majority voting
problem (f-WMYV) can be cast as an MIP under perfect information. Consequently, this can be
integrated into UCB style bandit algorithms. To implement a no-regret learning algorithm, we solve
for the best- and worst-case outcomes under uncertainty in the experts’ competencies via the MIP,
and quantify the corresponding shrinkage in the bounded simple regret.

Algorithm 2 #-Weighted Majority Voting with Full Bandit Feedback (-WMV)

Require: Set of experts £ withn € {1,...,N}.
: Ecana < & > Set the candidate expert set to the full set of experts.
:fort=1toT do
Estimate p! and upper confidence bound, UCB! using the history for all experts in Ecana.

Solve for 6* with optimistic estimates, p* + UCB!, via MIP.

1

2

3

4 i _
5: Elicit all responses from £, and combine responses using weighted majority voting with 6*.
6

7

8

Receive feedback from scoring function, and add it to the history.
: end for
: return 6
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Figure 3: Comparison of Cumulative Regret for MoE Voting Environments. Fig. SEE on simulated
Bernoulli experts; Fig. @ 0-WMV on simulated Bernoulli experts; Fig. LLM experts across domains
(e.g., GSM8k, BoolQ etc.), with tasks sampled from each domain. Shaded regions show +UCB uncertainty.
Evidently, SEE and -WMYV consistently outperform baselines in regret minimization.

Algorithm N |E*] ot ¢ Ry %R Py Domain

SEE 20 9 0.992 0.010 546.2 0.921 0.980  Bernoulli

Comb. UCB 20 9 0.992 0.010 6932 - 0.370 Bernoulli
0-WMV 9 9 0.927 0.027 587.0 0.829 0.927 GSM8K
Zooming 9 9 0.927 0.027 3443 - 0.604 GSMBK

SEE 5 3 0.810 0.031 676.8 0.364 0.810 CommonsenseQA
Comb. UCB 5 3 0.810 0.031 1065 - 0.664 CommonsenseQA
0-WMV 5 5 0.735 0.013 360.9 0.512 0.735 BoolQ

Zooming 5 5 0.735 0.013 740.3 - 0.694  BoolQ

Table 1: Multi-armed bandit experiment results showing consistent performance across environments, with
time horizon T < 10*. Performance metrics show reduced cumulative regret (Rr) and increased empirical
accuracy (FPng;) across all baselines. Extended empirical results can be found in Appendix

Theorem 2. Regret Bound for 0-WMV: Under the Assumption[A.1| Algorithm 2] achieves a regret
bound of R € O ( NT log(T)). (Proof in Appendix|A.11})

Sketch of Proof: We show that the MIP solution to Eq. (2.10) under 6* misspecification is bounded
by the difference in outcome scenario probabilities, which is also bounded by the uncertainty esti-
mates of the expert’s competencies, p; = UCB (see Lemma in Appendix). Subsequently, using
standard PAC concentration bound arguments (i.e. Lemma we derive the expected cumulative
regret. A looser alternative bound under relaxed assumptions is also provided in Appendix [A-16]

Targeted-m Online Majority Expert Voting: In MoE applications, computational constraints
often limit the number of experts that can be queried at each timestep to at most m. We address
this extension to the problem by partitioning the N experts into N/m groups and running a win-
dowed phase of ¢y rounds per group. This ensures high-probability breakage detection while pre-
serving the original regret bounds, scaled by a multiplicative N/m factor (Lemma. Specifically,
the targeted-m variant of SEE maintains O (N 2log T/ m€2) regret, matching the original setting’s
guarantees with respect to 1" despite the query limitation.

Corollary 3.1. Targeted-m WMYV: An algorithm exists that allows for the regret bounds of Theorems
and|2|to hold with an multiplicative factor of N/m. (Proof can be found in Appendix )

4 Empirical Study

We evaluate online learning in both model-based and data-derived settings. In the model-based set-
ting, N Bernoulli experts with fixed success probabilities test each algorithm’s ability to distinguish
and optimize for varying competencies under noise. In the data-derived setting, we sample tasks
from diverse domains: GSM8K [36] (mathematical reasoning), CommonsenseQA [37] (implicit
knowledge), and BoolQ [38] (evidence-based binary inference), each presenting unique challenges.
Experts are instantiated as LLMs with varying reasoning capabilities (see Appendix [C.I).



Propose-then-Vote: Datasets used in our experiments, such as CommonsenseQA [37]] , BoolQ
[38] etc., constitute structured labelled data, that is the catalogue of answers is provided to the
LLM to choose from (note Remark [T)). But as we tackle unstructured open-ended tasks for experts,
we need to standardize the vote aggregation functions with proper structure in order to elicit the
appropriate expert feedback. One solution is to use the MoE to generate each individually their top
responses to a prompt. By default, this is added to the admissible catalogue and the expert votes for
their own response among the candidate responses. This, propose-then-vote, mechanism essentially
uses the committee to first determine the answer catalogue, and then vote on it. (For additional
details and a complete set of comprehensive experiments please refer to Appendix [C.5])

Results Summary: We analyze SEE (Algorithm [I)) and §-WMV (Algorithm [2)) in terms of ex-
pected aggregate accuracy Ppa;(&, 67) (Eq. 2-7)) and cumulative regret Ry (Def. @ As base-
lines, we compare against combinatorial UCB bandits and the zooming algorithm [39]] , which serve
as no-regret benchmarks. Further details — including prompting strategies (chain-of-thought), expert
LLM specifications, baseline implementations, and ablation studies — are provided in Appendix

5 Conclusion

We introduce a new no-regret learning framework for online decision-making with voting-based
expert ensembles, unifying online learning and social choice theory as a key contribution. Our al-
gorithms—SEE for egalitarian voting and -WMYV for weighted majority voting—provide provable
cumulative regret guarantees with UCB-style analysis, accompanied by definitive empirical per-
formance. There are of course, also some limitations. First, although we consider up to a modest
number of experts, the -WMYV algorithm depends on the solution to a mixed-integer program which
could become overly complex when a large number of experts is introduced. Second, we did not
consider the additional use of contextual and/or side information for the MoE framework to enhance
regret minimization performance. Nevertheless, both learning algorithms offer practical advantages
for ensemble MoE systems, particularly in LLM applications as demonstrated. This work estab-
lishes both theoretical foundations and practical tools for voting-based ensemble learning, opening
new directions at the intersection of online learning and collective decision-making.
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6 ChecKklist

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims of the paper are clearly presented in the abstract and intro-
duction, with supporting theory and empirical evidence.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are mentioned in the Conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Assumptions are clearly stated in Section[2]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental results are clearly presented in the paper, with reproduction
data in Appendix [C]

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The methods and procedures to reproduce the results are clearly outlined in
Algorithm [T and 2] Moreover, implementation details are outlined in Appendix [C]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide full details in Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Uncertainty estimates are provided in all graphs presented in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ~’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Experimental hardware specifications can be found in Appendix [C|
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research complies with all ethical guidelines, in no way do we have intent
or motivation to produce harmful or unethical output detrimental to humanity.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the introduction of the paper we discuss several applications of the paper,
including LLM alignment and achieving better understanding of efficient agent learning.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There exists no potential for high risk misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Code and methodology can be openly used with proper credits given to au-
thors.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

17



13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: No digital assets were used in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing was used in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No study participants were used in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM’s were not used as any important, original, or non-standard component
of the core methods in this research.

Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs for Core Theory

A.1 Proof for Lemma[2.1]

Top-K Ordinality of Experts: The optimal expert committee £* C £ is a subset of Top-K experts
based on their competencies, for 0 < K < N.

Proof. Suppose there is an expert ¢ in the optimal committee £* and another expert j with a higher
competency, i.e., p; < pj whois not included in the optimal expert committee. In this case, replacing
experts ¢ and j results in a new committee with higher average score, leading to a contradiction. We
prove it for when the size of the optimal committee is odd. Similar proof can be written for when it
is even. Let || = 25 + 1 for some s, 7 € £* but j ¢ £* and p; < p;. We form a new committee
& = EXU{j}\{i}. Let S;(k) be the event that precisely k experts in £* are correct including expert
i. We also define S¢ (k) to be the event that 4 is incorrect but & — 1 other experts voted correctly
in £*. Similarly, we define S5 (k) and S5 (k) in committee &. It is straightforward to see that the
probability of either S§(k) or S;(k) occurs in committee £* is equal to the probability of either
S¢(k) or Sj(k) occurs in & forall k € {s+2,...,2s + 1}. This implies the sum of these events are
the same for both committees in (2.5). Note that when k& = s + 1, both events S¢(k) and S5 (k) will
not appear in the average scoring in as in both of these events s experts are correct and s + 1
are incorrect. Moreover, the probability that event S} (s + 1) occurs is higher than the probability of
the event S;(s + 1) since in the former expert j is correct and in the latter expert ¢ and p; > p;. [

A.2 Proof for Lemma

Majority Voting Dominance over Egalitarian Voting: For any set of experts, the optimal majority
weighted voting method will always yield a stronger or equal predictive accuracy then the plurality
vote of the committee.

Proof. Suppose £* denotes the OEC where |£*| = M. In this case, we define 6 such that 6; = 1 if
i € £ and zero, otherwise. Next, we show that Py.;(E,0) > Pra;(E€*), where the quota is @ rather
than |£*|/2 as in 2.5). Let S; = SN E*, So = SN (E%)C, then,

Paay (£,0) = Zn(S,0) | [[ v T (0 —p))

SCe i€s  jese
= > > yN (108, 0) [ [Twe JI -2 | {II2e TI (-2
S1CE* S2C(E7) €51 jeEn\s Q€S jE(ET)\Ss

Note that,

FN(SO=I|)0,>Q| =1e[SNE|=]%]>Q,

jeS

This implies that the nonzero terms in the above summation are those with |.S1| > @. Therefore, we
can simplify the summation as

maJ E 0 Z Z sz H (1_p]) sz H (1_pj)
\SSI1IQ>£Q SaC(Ex)e \i€S1  jEE\S) i€S2  jJE(E*)°\S2

=S (II» I] a-»») X (II» II -»»

S1CE* \i€S1 je&E*\S SaC(E*)e \i€S2  jE(E*)c\S2
\S1|>Q
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= > (Ile» II a-p)] =Pus&).

Sicet \i€S:  jeEn\Sy
[S11>Q

A.3  Proof for Proposition 2.1]

Discrete Image: Many configurations of ¢ can lead to the same result for P.;(&, 6).

Proof. Ppa;(&,0) is a function with finite number of discontinuities (jumps), which is bounded by
2/ | the number of possible committees.

Let = [0y, ...,0N] be a set of weights and S = {51, ..., Sk} be all the set of configurations for
which 37, s 0; > @Q forall i € [K]. Let S; be the configuration which has the lowest sum of
weights, i.e., S; = arg min; ZjeSi 6;. Then, define 6° to be a new set of weights in which some of
the weights in S; are dist.urb.ed l.)y e.such that Zj.e s 03; = ZjE s, 05 and the remainiflg weights are
left unchanged. After this distribution, some weights in S7 are reduced by €, some increased, and
some are left unchanged. Let So = argmaxggs ;e 0;. Then, sete <min{d ;¢ 0; — Q. Q —
> jes, 03}/N. Clearly, by this choice of €, all the configurations in S will pass the aggregation
criterion and no other configurations will be added to the S, that is Pp,; (€, 0) = Praj (€, 0°). O

A.4 Remark[3; Wedge Property

Remark 3. Wedge Property: Provided expert competencies, p1,ps . .., DN, with the ordering p; >
P2 -+ > PN, there exists an optimal solution with parameters 0* that maximizes IP’,,,a]-(S ,0) and are
constrained by the ordering, 01 > ...,> 0On.

The intuition behind Remark [3|hinges on the idea that more competent voters would contribute more
in terms of voting power in the expert committee compared to less competent experts. Voting power
can be measured by various metrics such as the Shapley-Shubik Index or Banzhaf Power Index,
which measures the amount of contribution that each voter contributes to swinging the collective
decision. Having more weight, or allocated votes, to the expert reflects this property. Therefore
we can expect a monotone increasing wedge property on the expert weight 6; proportional to the
ordering on p;. Enabling this as a constraint for any optimization program will tighten the search
space for optimal solutions, making it more computationally efficient.

A.5 Proof for Lemma

Weights Satisfied at Equality: When solving for the optimal 6* for #-weighted majority voting,

we can replace the constraint () < Zfil 0;, from Eq. (2.8), with a binding equality Z@Z\; 0; =20,
to obtain a valid solution. (Proof is available in Appendix [A.5])

Proof. We can begin by considering 2@, or two times the quota, as the total number of votes in
an electorate. We would like to allocate the total number of allowable votes among the voters to
ensure total representation, allocating any less could end up with suboptimalities. If the quota, @,
is too high in comparison to the total number of votes allotted, then it could be the case that some
participants who would have contributed optimally to the voting committee, are unable to participate
due to quota limitations. In order to ensure majority voting, more than half of the total votes must
pass for any certain choice - by definition. Therefore, between () and 2(Q), the objective Pya;(6)
is strictly non-decreasing, as more useful voters could potentially be included in the voting pool
without sacrificing exclusion of others. Since the objective function is strictly non-decreasing w.r.t.
in put 6, then for any mixed-integer program, the constraint () < Zf\;l < 2@ can be replaced by a
binding constraint Zfil 0; = 2Q.

O
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A.6 Proof for Lemma

PAC Sample Complexity: For any two distributions for experts ¢ and j, if the number of samples ¢
and shrinkage term UCB;(¢), satisfies,

M LS 16(c? +032)10g(4/5)

ij = =
t ’ J €2

UCB! =

then, with probability at least 1 — 4, § € (0, 1), the breakage condition, Bf;, will be met.

Proof. Without loss of generality, let us consider ¢ = 1 and j7 = 2. Let there exist two sub-Gaussian
distributions parameterized with means p;, p and variances a%, 0%, respectively. Given ¢ € (0,1),
we seek the minimal number of samples ¢ required to distinguish between the two distributions with
probability at least 1 — §. Due to Hoeffding’s inequality, with respect to the number of samples ¢,
the empirical means 5} and pb must satisfy,

t (UCBE)?

2
20;

P (|ﬁ§ 7pi| > UCB:) < Qexp ( > ) i€ {1a2}

Let us set the confidence bound shrinkage parameter UCB!, as,
202 log(4/6)
t b

The condition for breakage, Bﬁj, is indicated by non-overlapping confidence intervals, can be ex-
pressed as,

UCB! := i€ {1,2}.

D1 — D] > e1(t) + ea(?).
Therefore, with probability at least 1 — 4, the intervals are separated when

2 2
Agy > 2\/4(‘71 + ‘722 log(4/0)

Solving for t; ; yields the sample complexity:

3202 log(4/8) _ 16(07 4 07)log(4/9)
ij = S > = .
€ €

Z 2 (61(t> + 62(t)) .

where A;; := |p; — pj

, € = min;z; Ayj, and o; > o for all 4. O

A.7 Proof for Theorem[I]

Regret Bound for SEE Algorithm: The SEE algorithm achieves a total regret R bounded by,
N
€

Proof. Pairwise Comparison Regret: During execution, there exist (1;’ ) possible pairwise com-
parisons leading to expert elimination, but the algorithm would encounter at most N — 1 elimination
events. For each elimination round, we can expect the most samples to be drawn when A;; be-
tween experts, ¢ and j, is minimized, therefore, the maximum sample complexity to achieve full
breakage among all experts is upper-bounded by the sum over ¢; ;1 from ¢ goes from 1 to NV — 1.
Furthermore, we also impose conditions to limit the sub-optimal inclusion of experts under conser-
vative advantage function estimates (Def. |A.2), so long as the UCB is sufficiently sampled such that
2UCB < ¢y, (illustrated by Condition As a consequence Lemma will still hold by the
same derivation, but we take the smaller of two gaps, where we define ey, as,

€nin = MIn{é, €gaj }.

where € = min;«; A;; and epa; can be computationally derived per Def. @ Leveraging the
sample complexity result from Lemma [3.1] the regret decomposes as,
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2

—1 2 2
16(o; + o1 1) log(4/9) <
Rr < = + §TA |. (A1)

min

<
Il
-

Failure Cost

Exploration Cost
Here, we apply the fact that the optimality gap is upper bounded, Pya; (€, 0%) — Ppaj (€, 6;) < 1.

In order to translate the sample complexity result from Lemma [3.1] into a regret bound, we must
realize that we expect to play suboptimally with probability 1 — §. Next, d represents the probability
where a catastrophic breakage even could happen (i.e. the algorithm eliminated expert ¢ from the
committee, even though they were supposed to be part of the optimal expert committee). If catas-
trophic breakage were to occur, we could obtain a upper bounded worst-case regret of T'A, where
A < 1 (the maximum expert competency difference) - so essentially a regret of T'. Therefore, we
select 6 = 1/T to offset this issue. By selecting 6 = 1/7, the failure cost is effectively an up-
per bounded by a constant (in this case 1), and the exploration cost scales logarithmically with the
number of samples 7. We can further express Eq. (A.T) as,

2

N-1
202 N
Rr <y (3;’ log(4T) + 1) € o( Z log(T)).
i=1

€min min
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A.8 Mixed Integer Program Formulation for Optimal Weights

Problem Formulation: Let6 = [f1,0,,...,0y]be a continuous positive vector, where 6; > 0 for
alli =1,2,...,2N. Letx = [71, %9, . .., To~ ] be a given fixed vector. Define z = [Z;, Z, ... Zon]
as a binary vector corresponding to each scenario S, as determined by the following if-else condition,

ZS:{l lei~0>Q

0 otherwise.

where () € RT is a given constant, and Zg is the indicator of the specific scenario. Then, the
objective in (2:10) can be written as the dot product z' p, where p = [p1, .. .,p|s|] and ps, with a
slight abuse of notation, is defined by,

Ps = le H (]- 7pj)a S e Sa

i€S  jeSe

where S is the size of all scenarios of size 2%V.

Mixed Integer Linear Program Formulation: The problem can be formulated as a mixed-
integer linear program (MIP) as follows:

max > Zs[[pi [T 0 -py) (A2)

Ses i€eS  jese

subject to:

N

> 20 - Q > euZs, VS eS (A.3)
j=1

N

> 20, — Q < MZs, VS eS (A.4)
j=1

N

> 0; =20, (A.5)
j=1
0 — O > € Vi ke{l,2,....N},j <k, (A.6)
Zs+Zge <1, VS € S, where x;, = 1 — x;, (A7)
Zs € {0,1}, VS eS. (A.8)

As standard notation for indicator variable Z, we define M as a very large number, and eyrp as a
very small number, such that the indicator condition in Eq. (A.2) will hold as specified.

Description of Constraints This MIP is formulated with the objective variable as the dot product
between a binary selection variable which dictates the possible voting outcomes, and a possibility
variable z; which dictates the possibility of this outcome among the constraints . This produces a
valid sum over all possibilities and their individual expected values, over which the summation over
indicates the expectation over the configuration provided a set of weights 6.

* Correct Vote Indicators: The two constraints, (A.3) and (A4), ensure that z; = 1 if
Zé\’:l x;j0; > Q + €, or z; = 0 otherwise.

* Electorate Approval Condition: the two constraints (A.3) and (A.§), the variable z; is
binary and is determined by the condition Z;Vﬂ x50 > Q + €.

* Equality at Quota: The constraint (A.5) ensures the total sum of §; is fixed to 2¢). Lemma

[2.2] provides constraint tightening which allows to solve address the quota inequality with
a more convenient constraint.
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* é&-Incrementality (Heterogeneous Expert Competencies) and 6-Wedge Property: (A.6)
enforces the Assumption[2.1] and the #-Wedge property in Remark 3] imposing a minimum
difference between all pairs of 0;, §;.

* Proper Outcome Complements: The constraint (A.7) ensures that complementary binary
vectors x; and X cannot both have z; = 1 and z;, = 1. (e.g. a specific outcome where
expert 1,3,4 votes correctly, cannot have any of 1,3, or 4 also voting incorrectly)

A.9 Assumption on Summation of Competencies

Let us denote in shorthand, z(p) := arg max, z' p such that z(p) is the value of z that maximizes
the dot product of any given p. Let p denote the optimistic estimate estimates and p represent the
pessimistic estimates of scenario probabilities based on UCB uncertainty for expert competencies.

Assumption A.1. For scenario probabilities p and scenario indicator vector z € {0,1}°], the
inequality holds such that,

N N

> pi—z'p=) p -z p, (A.9)
i=1 i=1

where, p; and P, refer to the maximum and minimum probabilities subject to UCB bounds over
competency estimates, i.e. p; = UCB, Vp; € p1,...,pN.

To provide additional discourse on Assumption we assume that the variation in z(p) ' p —
Z(E)TE is sufficiently small compared to the fluctuation in the shrinking UCB. In the worst case

scenario, for each 2V~ scenario probabilities, we could add a deviation term of N x UCB for each
scenario (although this is a highly conservative estimate).

Bonferroni Expansion: The Bonferroni inequalities provide a sequence of upper and lower bounds
on the probability of the union of N events, refining the standard inclusion-exclusion principle.
These inequalities alternate between over- and under-estimates as more terms are included, ulti-
mately converging to the exact probability when all N terms are considered.

For events Aj, As, ..., Ay, the exact probability of their union is given by:
N N
P(Ua)-2ene,
i=1 k=1

where Sy, represents the sum of the probabilities of all k-wise intersections:

Sk = > P(A;, NAyN---NA).

1<i1 <ig<--<ip<N

General %k-th Order Bonferroni Inequality: The Bonferroni inequalities state that truncating the
inclusion-exclusion series at the k-th term yields an upper or lower bound depending on whether k
is odd or even. If k is odd, the partial sum is an upper bound,

N k
P(Ua) <2,
i=1 j=1
If £ is even, the partial sum is a lower bound,

N

i=1

a 1
(—1)7*'s;.

k
—

J

Let (A1,A3,As3,...,Any) be N independent events with success probabilities
(P(Al)vp(A2)7P(A3)7 .. 7P(AN))’
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P <U Ai) = P(A1) 4 P(A2) + P(A3)---+ P(An) — P(A1 N Az) — P(A1 N A3) — P(As N A3) . ..

+P(A1DA20A3) ~~~~~~~ :EP(AlmAzﬂA:g'“ﬂAN)

Given expert competencies, we could express,

N N
P (U Ai> =p1+pa+p3-+ PN —p1p2 — P1p3 fpzps-.-+p1p2p3-.-f~~iﬂpi
-~ — i
=1 S, So S3 =1
Sn

If we were to vary p; = UCB, we would incorporate this modification into all of the terms in the
Bonferroni expansion. Given the alternating =+ structure of the Bonferroni expansion, Ass.
posits that the difference between, any two MIP solutions under p; versus p. would entail a difference
of,

N N

2'D—2'p=> Zpi —ZprPs — ZsPrPs — ZsPaPs -+ ZaPrPaPs - — - +Z.][pi
i=1 i=1
N

N
=D Zep; +Zpypy T2l s+ Zspopy = Zepypypy o+ £ 2 [
=1 =1

EN

Higher order terms.

Where p; = p; + UCB, and P, =Pi— UCB, and Z; is the indicator variable for whether the specific

scenario is possible, and equivalent in both the upper and lower bounding formulations. Ass. A
posits that the higher order terms of the Bonferroni expansion serve to cancel each other out, such
that as T — oo, and UCB — 0,

N N
zTﬁ—zT7§Zﬁi—Z£i. (A.10)
i=1 i=1

This is true in most cases where the values of the expert competencies are spread out over [0, 1] and
not highly concentrated around a single number, which is supported by Ass. It also tends to
be true as we have a modest size of experts, as in our setting. It is possible to check, whether Ass.
holds provided p; and p, as UCB-based estimates input into the MIP. Our empirical analysis has

demonstrated that this assumption holds in all tested configurations of expert competencies.

A.10 Bound on Max-Min Probabilities for Weighted Majority Voting

Lemma A.l. Under the Assumption the regret of any learning algorithm (Def. which
provides bounds on the individual agent competencies p; in a majority voting setting can be bounded
by,

N N
reg, <Y pi— Y _p.- (A.11)
i=1 i=1

Proof. Under full-bandit feedback, as we draw more samples the estimate of each individual expert’s
competencies improve, and the confidence bound shrinks, and with high confidence the estimate of
each competency is bounded by, p; = UCB. Recall that the probability of each scenario S € S

denoted by pg is given by,
pe=][]p: [I0-pj). SCS,
i€S  jese

where S contains 2V elements. Let z* be the binary vector that maximizes z ' p for a given p. We
further subject z to a constraint,
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i
1
Zzs < §|3|, VZg €z (A.12)

The constraint in Eq (A-12) represents the restriction on Zg, such that if Zg = 1 then its complement
Zge = 0. Which, giving winning condition for tie-free weighted majority voting Zf\il 0; > @, and
@ > N/2, implies that the summation of Zg over all scenarios cannot be greater than half of all
scenarios 0.5|S], because its scenario complement, S¢, must be not be possible. This constraint is
imposed because Zg € {0, 1}'5‘ represents the possibility of the scenario in the set of all possible
scenarios, and any possible scenario always excludes its complement, S¢, therefore Zg. = 0, and
the sum over S is at most one half of |S|. Let p represent the probability vector of 2%V possible
scenarios in S. Therefore, the regret is expressed as,

reg, = maxz' p* —z(p)' p* (A.13)

Establishing the Inequality: We establish the key inequality to bound our regret,

z(p)'p < z(p)'p" < maxz'p* <z(p)'p. (A.14)

We consider the Bonferroni inequalities, via first order Bonferroni inequality,

N N
maxz p < P (U AZ) < zpi (A.15)
=1

=1

Where A; are defined as probability of success of expert i, for NV experts. The probability of the
union of A;, that is at least one experts predicts correctly, is always greater than or equal to the
probability that at least N/2 experts predict correctly (majority condition). Therefore, for any vector
z adhering to constraints from Eq. (A:12)), we can use the union bound over all expert competencies
to upper bound the majority correct vote probability, leading to upper bounds,

N N
2'p<)y P, 2 P<) p. (A.16)
i=1 =1

From the bound on Eq. (A.T3), combined with constraints on the sensitivity of the competency
estimates as limited by Assumption[A.T| we can obtain bounds on the simple regret of the algorithm
under uncertainty of expert competencies,

N N

reg, < Zﬁi — ZBZ,. (A.17)
i=1 i=1

O

A.11 Proof of Theorem 2]

Regret Bound for /-WMYV Algorithm: An algorithm based on §-MIP weight assignment, such as
in Algorithm achieves a regret bound of R € O (\ /NT log(T)> .

Proof. Provided the result from Lemma [A.T] we simply account for the uncertainty difference be-

tween the two estimated sums for 25:1 p; and 25:1 ;. Let Sy, = 25:1 p;, denotes the true
summed competencies, thus any deviation from Sy, via estimating p; will give the PAC bound of

vazl (p; — pi)- Let us express the uncertain quantity as UCB, where,
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UCBy =

N
> b — x|

i=1

PAC Bounds for Summation of Binomial Trials: The UCBy represents the radius that the es-
timate Zf\; p; should fall within with probability 1 — §. Consider /N independent binomial ex-

periments, where the ¢-th experiment consists of n; trials with success probability p;. Let p; = Z—

denote the empirical probability of success, where k; is the number of successes observed in the i-th
experiment. We are interested in deriving a 1 — § PAC bound for the sum of the true probabilities

N
SZ :Zi:1p’i'

Hoeffding’s Inequality for Unequal n,: Using Hoeffding’s inequality, the deviation of the em-
pirical sum Zf\il p; from the true sum Ss; can be bounded. Let { X; ;}}*, be independent Bernoulli
random variables with parameter p; € [0,1], fori = 1,..., N. That is, for each fixed 1,

X;; ~ Bernoulli(p;), iid.forj=1,...,n,

and the samples are independent across different i. Our goal is to establish a concentration inequality
for the sum of these empirical means, Sy, around its expectation, ;. Where,

1 n; N N
Pii=—> Xij  Spi=) P p=) pe (A.18)
vj=1 i=1 i=1

Each p; is an average of n; independent Bernoulli random variables bounded in [0, 1]. Hence, p;
itself lies in the interval [0, 1]. We can write,

N N 1 7
EDS - > Xij
i=1 i=1 " j=1

Consider the collection of all M := Zfil n, independent random variables {X; ;}. The sum S'is a
weighted sum of these variables, where each X ; is multiplied by 1/n;.

Hoeffding-Type Concentration Bound: For any € > 0, it holds that (see Lemma|A.4),

2 2
i Zz’:lE

N N
> b= pi
i=1 i=1

To achieve a 1 — § PAC bound, we set the right-hand side to § and solve for e:

§=2 ( 2¢ (A.19)
= Z€Xp _Nil s € = .
Zi:l n;
Thus, with probability at least 1 — 4:
N
> hi— s (A.20)
i=1

The term Zf\;l # captures the variability introduced by the unequal number of trials n;. Experi-

ments with smaller n; contribute more to the bound due to their higher uncertainty, while experi-
ments with larger n; contribute less due to their lower uncertainty.

Suppose in the complete full bandit feedback, we always play every single arm,, therefore at each
time interval, we would play each expert exactly N times, therefore n; = ¢, for all experts at round
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t. We can then use an integral to bound a summation as,

In(2/0)

To solve for the definite integral,

1 T 1/2
—dt = t/ = dt (A.21)
/1 Vit 1
T
[2,51/2} =272 — ()2 = 2v/T — 2 (A22)
1

Putting this back into the original inequality,

N
1n(§/5) Zni . Wwﬁ (VT -1) (A23)

i=1

Eq. (A.25) bounds the high probability estimation uncertainty of the algorithm, where at each time
step the regret can be bounded in the high probability regime. Therefore, we can express the expected
regret from 1 to T as,

Ry < /2N 1n(2/3) (\FT _ 1) +TAS (A24)

We can choose § = %, allowing it to vanish. Therefore, the expected regret is bounded by,

RreO ( NT 1og(T)) (A.25)

Worst-Case Bound: It is possible to check, whether Ass. Elholds provided p; and P, and should

this condition not hold, the algorithm will still retain its no-regret properties, however, it will incur
a looser regret bound, illustrated in Appendix

A.12  Proof for Corollary [3.1]

Targeted-m Setting: An algorithm exists that allows for the regret bounds of Theorems|I]and [2]to
hold with an additional multiplicative N/m factor (e.g., SEE’s regret becomes O mN—; logT')).

Proof. The algorithms presented in the previous sections were developed under the assumption that
all experts could be queried at each round. However, this assumption may be restrictive in certain
applications where only m experts are available at any round. We refer to this setting as targeted-m,
and in the following, we propose an extension of the previous algorithm to address this constraint

A simple modification of the previous algorithm can be applied to the targeted-m setting. Specifi-
cally, we partition the N experts into (N/m) groups of size m each. Then, we run a burn-in period
during which all experts within each group are queried for ¢( rounds, where % is defined in Lemma
This results in the total o - (V/m) number of queries. The purpose of the burn-in period is
to ensure that any breakage event, if it occurs, does so with high probability. Afterwards, we apply
Algorithms [T] or 2] for assembling the OEC or finding the optimal weights in the weighted majority
voting problem, respectively. Therefore, the regret bounds of Theorems|T]and [2]remain valid with an

additional factor of N/m, e.g., the regret of SEE in the Targeted-m setting will be O( g; logT). O
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A.13 Binary Outcome Expert Weighting

Lemma A.2. Optimal Majority Voting Expert Weights for Binary Classification: From Nitzan

and Paroush [24] , in a weighted majority voting scenario, as described in Sec. when the space

of outcomes is binary (binary classification), the optimal weighting that maximizes the combined

predictive accuracy for all experts combined is,

B = log 2.
—Di

Where p; is the competency of expert i (the probability that the expert predicts correctly.)

(A.26)

Proof. We begin with a few key assumptions. First as stated, that the space of predictive outcomes
is binary, the expert predicts true, they receive a value of 1, and false a value of 0. Let y denote
a set of outcomes (i.e. y = [1,0,1,1,0] indicates that experts 1, 3, 5 selected the correct answer
out of 5 experts). Due to the binary aspect of the outcomes, if an expert consistently predicts the
incorrect outcome, we can always negate their prediction (predict the opposite) to obtain a equally
consistently correct outcome. Further, let us define an aggregation function f(y) : y — {0,1} that
takes any outcome and aggregates all individual outcomes to form a single outcome in {0, 1}.

Pairing with Compliments: Suppose we impose an arbitrary pairing over outcomes. Let A(y)
denote the selection over y where we impose as the positive outcomes voters. Let B(y) denote its
compliment. Thus for any outcome y = A(y)U B(y). This implies that if all outcomes are 1 in A(y)
the outcome of f(y) will result in an overall positive outcome y = 1, Vy € A(y) = f(y) = 1.
The compliment, B(y) is by definition mutually exclusive from A(y) therefore it is not possible to
include both in the selection voting criteria (either A(y) or B(y) for any outcome y.) We also can
see that there is a deterministic relations that maps any selection A(y) to its compliment B(y) (i.e.
if A(y) =1[1,0,1,1,0] = B(y) = [0,1,0,0,1].) Therefore, the set of all outcomes ) is paired
in such a way. Let us denote this as (A (y), B (y)) for each pair.

Maximizing E[f(y)]: In order to maximize the probability that f(y) = 1, for each pair
(Ax(y), Br(y)) we must determine a selection rule that selects the greater of P(Ag(y)) or
P(By(y)). For notation purposes, we impose that,

P(Ar(y)) = P(Bi(y)), VkeK = E[f(y)] = E[f"(y)] (A.27)

Should a selection rule be found such that Eq. holds, then the value E[f(y)] is maximized.
This simply holds because all outcomes are assigned to pairs, and events in each are mutually exclu-
sive (or condition), and events between pairs are not (and condition). We can express this probability
as,

PAW) = [ [T —2) = [T ~p) [ 2s = P(BW)). (A.28)
i€A  jeB i€A jEB
This forms a sufficient condition, so long as the selection rule fulfills Eq. (A.28).

Selection Rule: It just so happens that our selection rule f(y) selects f(y) = 1, then the weighted
sum of outcomes in A(y) must exceed that of B(y) by definition. Thus,

Z Biyi > Z B;F1lip(y;) (A.29)
i€A JjE€B
Where Flip represents the bitwise not operator (for example [1,1,0] — [0,0,1]). This forms a
necessary condition for the selection rule to output f(y) = 1.

Log-Odds Weights: Given the sufficient and necessary conditions to produce E[f*(y)] outlined in
Eq. (A.28) and Eq. (A.29). We can readjust Eq. (A.28) such that,

P pj
== 11 (A0

i€A jeB 1= pj)
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Taking the logarithm, we obtain,

Z log

i€A

i Dpj
>N log —2 (A31)
G- > 25 =)

The optimal weights therefore are equivalent to,

pi
(1—pi)
Likewise for j as well, mutatis mutandis. To summarize, the sufficient and necessary conditions
from Eq. (A28) and Eq. (A.29) enforce a single unique solution for the optimality condition of

E[f(y)] expressed in (A.32).

Bi = log (A.32)

O

A.14 Relation Between the Optimal Binary Classification and Weighted Majority Voting

The setting of Nitzan and Paroush [24] considers first, arbitrary neutral decision rules, whereas we
restrict our analysis to a specific class of majority voting systems operating over sub-committees.
Consequently, the binary voting framework of Nitzan and Paroush [24] encompasses a strictly
larger set of decision rules, which allows the approach to achieve superior performance only in the
binary classification setting.

For example, consider a simple setting in which there are only two experts with competencies {p; >
pe > 0.5}. According to Nitzan and Paroush [24]] , the optimal neutral decision rule is given by
fx1,x0) = sign(wix1 + wexs), where w; = log(p;/(1 — p;)) > 0and x; € {1, —1} is the expert
1’s decision. The success probability of this decision rule will be,

P(f(x1,22) =1) = P (sign(wix1 + wexe) =1) =P (z1 =1L,z =1)+ P(x1 = 1,20 = —1)
=pip2 +p1(1 —p2) = p1.
This performance can be achieved using the WMV scheme by considering §; = 1 and 3 = 0 and
quota ) = 0.5 in (2.7). In this case, (2.7)) will be
Puaj(€,6) = p1p2 + p1(1 —p2) = p1.
Now, suppose {p1 > 0.5 > po} such that wy; < |wsy|. For example, p; = 0.6 and po = 0.1.
In this case, f(x1,z2) will always flip the decision of expert 2 and ignore expert 1 which leads to
the success probability of 1 — ps = 0.9. But this performance cannot be achieved by the WMV.

Because, if the optimal committee is only expert 1, then the success probability is 0.6. If the optimal
committee contains both of them, then the success is 0.6 - 0.1 +0.6 - 0.9 +0.4 - 0.1 = 0.64.

A.15 Non-Contradiction of Expert Inclusion

Definition A.1. Inclusion Signal: The inclusion signal of the advantage function F(E1,E>) is de-
fined as,

1(3(817 82) > O)
Given & and &, are disjoint subsets of £, 1(F (&1, E2) > 0) serves an indicator representing whether

the advantage function is positive. This indicates if it is advantageous to retain the expert set £ in
the original £ = &; U &; or truncate it to &;.

Definition A.2. Conservative Advantage Function: Given two mutually exclusive subsets £ C &
and E; C &, where £, N E1 = (), for optimistic and pessimistic estimates expert competencies of p;,
denoted as p; and D, respectively, the conservative advantage function is defined as

8(§1a§2)7
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such that,

E=1{p1,....,Pn}, Q:{Bl,...,BN}.

That is, £ represents the egalitarian voting committee substituting the optimistic estimates of the ex-
pert competencies p;, and £ represents the egalitarian voting committee substituting the pessimistic
estimates of expert competencies, D,

Remark 4. Guarantee on Consistent Exclusion: Given a bisection %, that divides two an or-
dering over a set of experts, £, into two ordered sets, £, and E, where p; > pj for all i € & and
J € &, it follows that,

§(£1,E2) <0 = F(&1, &) <0.

We begin by asserting that any committee with dominant competencies for all experts (i.e. N
experts, all experts have higher competencies in one committee than another) will result in
Praj (£) < Puaj(€), and it follows, Pra;j (€1, E2) < Praj(&1,E2). When we are provided a condition
F(&1,E2) < 0 this implies Pyaj (&1, &) < Pnaj(£1), by the definition from Eq. (2.6). Therefore,
]P)maj (51752) S IP)maj (51752) _S ]P)maj (gl) - IP)maLj (51782) S IP)maLj (gl) — S<517€2) S 0.
We can conclude that, F(£1,&) < 0 = F(&1,&) < 0. Notice that during breakage B;;, the
bisection property ;2 naturally divides £ into two sets at the barrier between 4 and j (see Diagram
[2). and we can be free to select £; from within £ without contradicting the bisection property (i.e.
p; > pj foralli € & and j € &). Therefore, it holds that,

F(E1,82) <0 = F(£1,&) <0.

In other words, if a conservative advantage function is applied, when this conservative advantage
function, §(&;,&2) signals to exclude & from & U &, then with high probability 1 — 4§, this
exclusion of & from the optimal committee is valid.

Condition A.1. Consistent Inclusion: Provided an egalitarian voting committee with experts &,
and their respective competencies py . . . pn, where two mutually exclusive subsets E1, Es are formed
from the breakage event, Byj, such that p; > p;, Vi € £1,Vj € & (see Diagram[2), and sufficient
samples are drawn, such that 2UCB < €pa;, it follows that the inclusion signal (see Def. of the
conservative advantage function, (€, E2), must be consistent with the inclusion signal computed
under the true competencies, §(&1,&s), i.e.,

F(E,,82) >0 <= F(E1,&) > 0.

Note that the expert elimination condition checks the condition F(€;, E2) < 0 for any candidate set,
where p; > p;, Vi € £,,Vj € & with high probability, 1 — §. It is therefore not possible to falsely
eliminate & from £ with high confidence, as we are stipulating the lowest estimates of competence
for £ (group with higher competence) and highest estimates of competence for £ (group with
lower competence) - if no advantage exists here, then we can confidently eliminate & from £. In the
reverse situation without additional constraints, the inclusion signal under the conservative estimate
of F(&,,E2) may be inconsistent with the inclusion signal under true competencies §(&1, &) (i.e.
the signs of the two signals are different). Therefore, we next define €. as a property of the expert
configuration such that consistency is achieved, per Condition[A.T]

Definition A.3. €,,;-Consistent Gap: We denote a consistency gap, €nq; € [0, 1], as the maximum
value such that Condition[A_1 holds.

For any configuration of experts, there must exist a €g,j such that Condition[A;f]holds, as there are
no constraints on how small €;.; can be. When we draw enough samples such that 2UCB < €gaj,
then we will obtain a consistent elimination function, when our confidence of expert competencies
is less than the gap needed for always computing inclusion-consistent advantage functions with high
confidence. Given the properties of the problem, i.e. expert competency arrangements {p;}, an
exact computation can be performed to determine €45, and the value of €45 is independent of the
number of the number of experts N or number of samples 7'. Let { )2} denote the set of bisections
of £ (i.e. division of the set of experts into two sets post breakage, where p; > p; forall ¢ € &; and
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j € &). The range of admissible €n.; values can be expressed as,
g(f) = {UCB € R+| Slgl’l (S(él,gz)) = Slgn (3(51,52))} s V(gl,gg) € {%12} (A33)
We express €pa;j as,
€naj = argMax €. (A.34)

UCBEG(E)

A.16 Alternative Bound for Theorem 2]

We provide an alternative upper bound for Theorem [2| which upper bounds the regret of -WMV
algorithm. As preliminaries, we introduce the definition for S(6) and Lemma which stipulate
that any two sets in S(6) cannot be disjoint.

Definition A.4. For a given set of weights, we denote by S(0) the collection {S1, ..., Sk} of all
configurations of experts such that Zke& 0r > Q foralliand S; £ S; for all i # j.

Lemma A.3. Any two sets in S(0) have non-empty intersection.

Proof. Otherwise, we have at least ¢ and j such that S; N .S; = (). Then, > kes;us, Or > 2Q while
due to constraint ||f|| < 2Q. This is a contradiction. O

Theorem 3. Regret Bound for 6-WMYV: An algorithm based on 0-MIP weight assignment, such as
in Algorithm achieves a regret bound of Ry € O (ZN NT log (NT)).

Proof. Let p! be the empirical estimate of p; after collecting ¢ i.i.d. samples, then due to Hoeffding’s
inequality, we have,

D t2 t2
P (|p! — pi| > €) < 2exp (—2‘;2) < 2exp (—2;> .

K3

where ¢ = max; g;. Recall that at each round, we collect samples from all experts. Thus, after ¢
rounds, we have collected precisely ¢ samples from each expert. Using Union bound, we have

]P(|]at.—p-y<ev2‘e{1 N}) > 1— 2N exp _te (A.35)
I3 1l =% PREES) = 20_2 . .

Using the inclusion-exclusion principle, and the definition of S(6) = {5, ..., Sk}, we have
k
Ps€) =3 - Y I wt-
in=1j€S,, i1#ia=1jES;, USi,

When |p; — pt| < e for all experts, i.e., i € [IN], for any given 6, we obtain,

HJJmaj (57 9) maJ (5 0) ‘

(i I » - Z I1 pj+...)—(i Me- > 1 i)

ilzljesil il;éiQ:leSilUSiz i1:1j€Si1 ilséiQ:leSL'IUSiz
Z Z -1 Z
p] — -‘ pj 6?
i=1j€8; 2 jES1U...US

where [a] denotes the ceiling of real number a. As shown in Remark [5] for a simple scenario, the
first inequality is tight. The last inequality is due to Lemma [A.3] which implies that the maximum

size of S(0) is (; A ”) and consequently, we have at most ((EIH) repetitions of each p; in the
2 2

above double summation. Knowing that .5 |, s, Pj < N, leads to the bound ([E])N €.
E 2
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Applying the Stirling’s approximation, we can achieve the following,

N
Paas (£,0) — Buay (£.0)| < %Ne — 9VV/Ne.

Applying the concentration result in Eq. (A-33)), we obtain,

P

Now, requiring the probability to be at least 1 — §, we obtain,

P

N te?
Paa (£, 0) — Pony (€, 9)]<2 \Fe)>zp>(]p —p|<evie[N ])21—2Nexp ~5 )

Praj(€,0) — Praj Py (£, 0)‘ < eo) >1-—4. (A.36)

where,

2N4N g2 2N
Eo(t) = \/t ].Og (T>

Let us consider two possible cases at round ¢; (i) Praj(E,0%) — Praj(E,60") > 2¢o(t) and (ii)
Ppaj (€,0%) — Ppaj(E,6") < 2€0(t). Next, we show that case ¢ won’t happen with high proba-

bility. To this end, using the concentration in (A:36), we imply that the following events hold with
probability at least 1 — 24.

Praj (E,0%) — Praj (5 0*)

IPDmaj (5’9:&) - maJ (5 et)

S eo(t),

S €0(t>.

Combining the above inequalities with the assumption of case (i), i.e., 1 > Ppa; (€,0%) —
—t —
Puaj (£,0") > 2€o(t), implies Ppaj (€,0") < Ppaj (€,0%). This is a contradiction with 6" €

¢
arg maxg Ppaj (£,6). Thus, with probability 1 — 24, case (ii) occurs. By letting § = 1/(27),
we could bound the regret as follows,

T to T

R = 3" (Paay (E,67) — Paas £, T+ 3 (Paag(€,6%) = Puay(€,01))

t=1 t=1 t=to+1

(€ 9t)
1 1. &
§t0+?(T—t0)+(17?) Z 2¢o(t)

t=to+1
1 T
gto—i—l—i—(l——)\/8N4N021og(4TN) dteO( NTlog(NT)).
T to \/>
where to := 2N4Vo?log (4TN). Note that during the initial phase, when ¢ < #o, we bound the
instantaneous regrets by their worst scenario that is 1 as the utility function is a probability. [

Remark 5. Let consider N = 3 experts with competencies p1,pa, ps and weights 0 = (1,1,1). In

this case, S(0) = {{1,2},{1,3},{2,3}}. Moreover, let p; = p; + € for all i, where ¢ < min; p;

then

Prai(E,0) — Prai(E,0)] = |p1p2 — P1P2 + p1p3 — P1P3 + paps — P2bs — 2(P1p2ps — P1P2p3)]

= |(p1 + p2)e + (p1 + p3)e + (p2 + p3)e + 3> — 2(p1p2 + P13 + paps)e — 2(p1 + p2 + p3)e” — 26|
= [2(p1 + p2 + p3 — (P1p2 + P1p3 + p2p3))e — (2(p1 + p2 + p3) — 3)€® — 2€%).
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The introduced bound is ([@1“) (Zj651U32U53 pj> € = 2(p1 + p2 + p3)e. Now, lets compare the
exact value and the bound for when p = (.02,.03,.04). In this case,

N -1 _—
( N ) ( Z pj)G — |Paj(E,0) — Pras(€,0)] = 0.18¢ — |0.1748¢ + 2.82¢* — 2¢€7|
’—T—H JES1US2US3s

Note that the above expression can be arbitrary small as p;s tends to zero.

A.17 Scaling Variance of 1/n; for Bernoulli Variables

Lemma A.4. For estimates sums of Bernoulli variables X; € {0,1}, where p; is the probability

of success for variable X;, p; = Z— is the empirical estimate, and n; is the empirical count of
successes, it holds that,

262
>e] <2exp E .
i=1 n;

Proof. Scaling 1/n;: Since each X ; € [0, 1], the range of each scaled variable 24ii s contained
in {0, 1/n;}. Each original Bernoulli random variable X; ; takes values in {0, 1}, thus

Xij € [0, 1].

sz sz

When forming the empirical mean,
1 &
p; = — Xl j s
n; Z J
Jj=1
each summand inside the sum is scaled by 1/n,. Therefore,
X, s 1
e fothcpam
ng ng

This implies the range of each scaled variable is reduced from length 1 to length 1/n;. This scaling
is allows us to applying Hoeffding’s inequality, as the concentration bound depends on the sum of
the squared lengths of these ranges,

N n; N 1 1
35 (5-0) :Z”i'n?zzﬁ

Hence, the variance proxy in the concentration bound is governed by Zl -

Applying Hoeffding’s inequality for sums of independent bounded variables, for any € > 0:

P(|Ss —pul >€) < 2exp | —

Simplifying the denominator,

Hence,
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B Algorithms

B.1 Greedy Algorithm for Constructing Optimal Egalitarian Committee

Algorithm 3 Greedy Algorithm - Construct Optimal Committee with Accuracy Py ;

Require: Set of experts £ and Ecana = 0
Ensure: Optimal Py.; and Egec

1: Sort all experts by their accuracy measure p;, resulting in sorted({p;}).
2: gcand — e1.

3: for j =2to N do

4 if F(Ecana, &) >0, VE € TopK(EZ!,) then > Check the advantage function.
5: Ecana +— EUE".

6: ]P)maj <~ Pmaj (gcand)
7 end if
8: end for
9: 50EC < Ecand
0

10: return Ppa.j, e

B.2 Zooming Algorithm

Algorithm 4 Zooming Algorithm for Lipschitz Bandits

1: Input: Metric space (X, d), Lipschitz constant L > 0, time horizon T’
2: Initialization: Set active arms Active = ()

3: fort=1,2,...,T do

4: Update Confidence Intervals:

5 for x € Active do
6: Compute empirical mean reward:
1 n¢(x)
(i (x) = rs(x
N‘t( ) nt(:v) e ( )
7: Compute confidence radius:
[2logT
Tt (l‘) = " (:L')
8: end for
9: Activate New Arms:
10: for z € X \ Active do
11: if minyeacive d(x,y) > r:(y) then
12: Add z to Active
13: end if
14: end for

15: Select Arm to Play:
x¢ = arg max (fit(z) + re(x))

x €Active
16: Play Arm z;:
17: Observe reward r; and update n:(x¢)
18: end for

The zooming algorithm from Kleinberg, Slivkins, and Upfal [39] adaptively explores and exploits
strategies in a metric space by maintaining confidence intervals around the estimated rewards of
active arms, serving as an appropriate benchmark bandit algorithm for when the reward function
lacks convexity. It dynamically activates new arms that are sufficiently far from existing ones (based
on their confidence radii) and prioritizes arms with high upper confidence bounds. In non-convex
spaces, the algorithm leverages the Lipschitz condition to generalize observations across nearby
arms, ensuring efficient exploration while adapting to the structure of the problem instance.
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C Experiment Details

C.1 LLM Offline Performance Benchmarking (i.e. Expert Competencies)

80
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Figure 4: Visualization of the performance comparison of language models across three benchmarks (GSM8K,
CQA, BoolQ) as a function of parameter count (7B, 8B, 14B).

Model GSMB8K Acc. (%) CQA Acc. (%) BoolQ Acc. (%) Params. (B)
Aya 7.71 9.20 43.00 8
OpenOrca 12.90 12.80 10.40 7
Samantha 15.69 18.50 11.30 7
Notus 25.53 22.90 3.91 7
Qwen 31.25 32.66 48.98 14
Mistral 43.88 43.20 65.31 7
Gemma 47.07 62.68 55.10 7
Deepseek-R1 79.52 73.83 71.43 14
phi-4 92.69 78.90 71.63 14

Table 2: Model performance ranking. Models listed by their accuracy across various domains in the offline
setting, alongside their respective parameter count (billions).

C.2 Description of Datasets for Task Generation in Online Simulation

Dataset

Description

Testing Capabilities and Limitations

GSM8K

CommonsenseQA

BoolQ

Collection of 8.5k middle school-level math
problems from Cobbe et al. [36] solvable by
elementary operations and logical reasoning.

Open-source from benchmark dataset from
Talmor et al. [37] containing 9.26k ques-
tions with common sense yes/no questions.

A question-answering dataset from Clark et
al. [38] that focuses on logical reasoning
and evaluation of boolean expressions. It is
part of the BIG-Bench Hard (BBH) suite.

The collections of questions are relatively
basic and relevant to mathematics. The ex-
pert is allowed to propose any answer they
would like (in this case limited to integers).

This dataset benchmarks the reasoning capa-
bilities of LLMs, and provides a catalogue of
candidate answers to choose from.

This dataset examines the logical reasoning
capabilities of LLMs and provides a cata-
logue of possible answers frue and false.

Table 3: Overview of selected evaluation datasets.
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C.3 Computing Specifications

Component Specification

CPU Intel® Core™i9-9900K @ 3.60 GHz
Cores/Threads 16

GPU NVIDIA GeForce RTX 2080
VRAM 8 GB GDDR6

CUDA Version 11.8

System Memory 64 GB DDR4
Storage NVMe SSD
Python Version 3.8.10
Gurobi Optimizer 9.5.2

Table 4: Computing hardware and software library specifications.

38



C.4 Chain-of-Thought Prompting with Constrained Output Formatting

Structured Chain-of-Thought Prompting: Our approach implements a constrained variant of
chain-of-thought (CoT) prompting [40] with strict output formatting rules. We provide a prompt
template for each of the domains.

C.4.1 GSMSK Prompt Template

### Instructions:

1. Read the question carefully and identify what is being asked.
2. Solve the problem methodically, showing each step clearly.

3. Double-check your calculations before finalizing the answer.
4. Your final output MUST follow EXACTLY this format:

### Reasoning:
[Your step-by-step reasoning here]

### Final Answer: [Numerical Value]

### Required Output Format Rules:

- Only numbers allowed in final answer (e.g., 42, 3.14, 2/3)
- If uncertain, return ### Final Answer: O

- No additional text after final answer

- Final answer must be the last line

### Question:
{question}

### Choices:
{choices}

### Reasoning:

C.4.2 CommonsenseQA Prompt Template

### Instructions:

1. Read the question carefully and identify what is being asked.
2. Solve the problem methodically, showing each step clearly.

3. Double-check your calculations before finalizing the answer.
4. Your final output MUST follow EXACTLY this format:

### Reasoning:
[Your step-by-step reasoning here]

### Final Answer: One of 5 catagories [A, B, C, D, E]

### Required Output Format Rules:

- Only numbers are allowed in the final answer (e.g., A, B, C, D, E)

- If you cannot determine the answer, you MUST pick a random answer from [A, B, C, D, E].
- No additional text, explanations, or characters after the final answer.

- The final answer line must be the very last line of your response.

### Question:
{question}

### Choices:
{choices}

### Reasoning:
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C.4.3 BoolQ Prompt Template

### Instructions:

1. Read the question carefully and identify what is being asked.
2. Solve the problem methodically, showing each step clearly.

3. Double-check your calculations before finalizing the answer.
4. Your final output MUST follow EXACTLY this format:

### Reasoning:
[Your step-by-step reasoning here]

### Final Answer: One of 2 catagories [true, false]

### Required Output Format Rules:

- Only numbers are allowed in the final answer (e.g., true, false)

- If you cannot determine the answer, you MUST pick a random answer from [true, false].
- No additional text, explanations, or characters after the final answer.

- The final answer line must be the very last line of your response.

### Question:
{question}

### Reasoning:

C.44 Output Parsing Algorithm

The response parsing algorithm enforces strict numerical output constraints through regular expres-
sion matching:

Algorithm 5 Response Parser

1: procedure PARSERESPONSE(R)

2 pattern < “\\\\Final Answer:\s*(-?\d+\.2\d*—[-+]?\d+/\d+)”
3 match < regex_search(R, pattern, IGNORECASE)

4 if match.success then

5: return match.group(1)

6 else

7 return “0”

8 end if

9: end procedure
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C.5 Extended Empirical Results

Algorithm N & Phy € Ry %R] Pnj  Domain Config. Id.
SEE 20 9 0992 0.010 546.2 0921 0.980 Bernoulli SE3
Comb. UCB 20 9 0992 0.010 6932 - 0.370  Bernoulli SC3
SEE 15 3 0985 0.040 649.8 0.867 0.969 Bernoulli SE3
Comb. UCB 15 3 0985 0.040 4906 - 0.549  Bernoulli SC2
SEE 5 3 0.883 0.010 5353 0.719 0.871 Bernoulli SE1
Comb. UCB 5 3 0.883 0.010 1905 - 0.759  Bernoulli SC1
0-WMV 9 9 0.644 0.004 2174 0.545 0.606 Bernoulli WV3
Zooming 9 9 0.644 0.004 4784 - 0.449  Bernoulli WZz3
0-WMV 6 6 0911 0.004 3124 0.331 0.853 Bernoulli wv2
Zooming 6 6 0911 0.004 4670 - 0.765  Bernoulli WwZ2
0-WMV 3 3 0.881 0.106 287.0 0474 0.835 Bernoulli WVl1
Zooming 3 3 0.881 0.106 546 - 0.681  Bernoulli WwWZ1
0-WMV 9 9 0.897 0.023 200.1 0.080 0.828 Bernoulli WS4
SEE 9 9 0.897 0.023 216.0 - 0.806  Bernoulli WES5S
0-WMV 5 5 0.811 0.05 203.8 0.114 0.732 Bernoulli WS5
SEE 5 5 0.811 0.05 230.1 - 0.707  Bernoulli WES
6-WMV 3 3 0.89 0.02 202.6 0.484 0.817 Bernoulli WS6
SEE 3 3 0.68 0.05 3927 - 0.427  Bernoulli WE6
0-WMV 9 9 0927 0.027 587.0 0.829 0.927 GSMSK WG3
Zooming 9 9 0927 0.027 3443 - 0.604 GSM8K 7G3
0-WMV 6 6 0927 0.132 420.6 0.353 0918 GSM8K WG2
Zooming 6 6 0927 0.132  650.2 - 0.891 GSM8K 7ZG2
0-WMV 3 3 0.439 0.057 302.0 0.660 0433 GSM8K WGl1
Zooming 3 3 0.439 0.057 886.0 - 0.369 GSMSK 7G1
SEE 9 4 0.807 0.036 328.2 0939 0.805 CommonsenseQA CS3
Comb. UCB 9 4 0.807 0.036 5437 - 0.293 CommonsenseQA CC3
SEE 5 3 0.810 0.031 6768 0.364 0.810 CommonsenseQA CS2
Comb. UCB 5 3 0.810 0.031 1065 - 0.664 CommonsenseQA CC2
SEE 3 1 0.810 0.051 339.0 0.65 0.807 CommonsenseQA CS1
Comb. UCB 3 1 0.810 0.051 970 - 0.763  CommonsenseQA CS1
0-WMV 9 9 0.763 0.0085 210.1 0402 0.675 BoolQ WB3
Zooming 9 9 0.763  0.0085 3514 - 0.483  BoolQ ZB3
0-WMV 5 5 0.735 0.013 360.9 0.512 0.735 BoolQ WB2
Zooming 5 5 0.735 0.013 7403 - 0.694  BoolQ 7ZB2
0-WMV 4 4 0.735 0.04 183.1 0.225 0.667 BoolQ WB1
Zooming 4 4 0.735 0.04 236.4 - 0.586  BoolQ ZB1

Table 5: Multi-armed bandit experiment results showing consistent performance across environments, with
time horizon T < 10%. Performance metrics show reduced cumulative regret (Rr) and increased empirical

accuracy (Pnqj) across all baselines.
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C.5.1 Empirical Results: Successive Expert Elimination with Bernoulli Experts
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Figure 5: Mean values are calculated over 1,000 trials, with finite time horizon 17" = 10, 000, with shaded

regions representing confidence intervals of +UCB.
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C.5.2 Empirical Results: 6-Weighted Majority Voting with Bernoulli Experts
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Figure 6: Mean values are calculated over 1,000 trials, with finite time horizon 7" = 2000, with shaded regions
representing confidence intervals of £UCB.
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C.5.3 Empirical Results: -WMW vs. SEE Voting with Bernoulli Experts
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Figure 7: Mean values are calculated over 1,000 trials, with finite time horizon 7" = 1000, with shaded regions
representing confidence intervals of 2UCB. To note, for a small batch of experts, the regret performances are
near-identical as, the optimal committee consists of a single best expert among a few. The learning complexity
is not high, and both algorithms converge to the optimal solution quickly. As the number of experts increases,
6-WMV demonstrates a clear advantage in regret minimization, aligning with our theory from Lemma 23]
that the weighted majority voting committee will always yield a superior solution compared to the egalitarian
committee.
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C.5.4 Empirical Results: 6-Weighted Majority Voting with GSM8K Tasks

Cumulative Regret Reward
— WMV
— Zooming
1000 - 0.4 -
800 -
0.3
A ©
2 600 - ©
o 2
& 2 02-
400 -
0.1-
200
— WMV
0- 0.0 - =— Zooming
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration/Time Step Iteration/Time Step
Config. WG1 & ZG1 - LLM Expert Set: [notus, qwen-14b, mistral].
Cumulative Regret Reward
0.5
20004~ WMV
— Zooming
0.4+
1500 -
0.3-
- el
@ &
> 1000 - H
9]
o & 02-
500
0.1-
— WMV
0- 0.0 - = Zooming
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration/Time Step Iteration/Time Step
Config. WG2 & ZG2 - LLM Expert Set: [samantha-mistral, notus, qwen-14b, mistral,
gemma-7b, deepseek-ri1-14b].
Cumulative Regret Reward
—— SEE
3500 - === Comb. UCB
0.8
3000 -
2500 - 064
o °
g 2000 - g
o 9]
o 4
1500 - = 04
1000 -
0.2-
500 -
—— SEE
0- 0.0 4 = Comb. UCB
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration/Time Step Iteration/Time Step

Config. WG3 & ZG3 - LLM Expert Set: [aya, mistral-openorca, samantha-mistral, notus,
qwen-14b, mistral, gemma-7b, deepseek-r1-14b, phi4].

Figure 8: Questions were sampled from the GSM8K dataset . Mean values are calculated over 1,000
trials, with finite time horizon 7" = 10, 000, with shaded regions representing confidence intervals of +UCB.
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C.5.5 Empirical Results: Successive Expert Elimination Voting with CommonsenseQA
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Figure 9: Questions were sampled from the CommonsenseQA dataset . Mean values are calculated over

1,000 trials, with finite time horizon 7' = 10, 000, with shaded regions representing confidence intervals of
+UCB
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C.5.6 Empirical Results: Successive Expert Elimination Voting with BoolQ Tasks
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Figure 10: Questions were sampled from the BoolQ dataset . Mean values are calculated over 1,000 trials,
with finite time horizon 7' = 1, 000, with shaded regions representing confidence intervals of +UCB.
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