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Abstract

Foundation segmentation models like Segment Anything (SAM) exhibit strong
generalization on natural images but struggle with localized failures in medical
imaging, especially on fine-grained structures such as vessels with complex mor-
phology and indistinct boundaries. To address this, we propose FineSAM++, a
structure-aware sparse expert framework designed to refine SAM outputs by in-
troducing a confidence-driven soft Routing Module. This module dynamically
identifies structurally uncertain regions and activates a lightweight Residual Expert
to model and correct residual structural errors only within these areas, thereby
achieving efficient "refinement over retraining." Extensive experiments on five
public vascular segmentation datasets demonstrate that FineSAM++ consistently
outperforms both SAM-adapted baselines and task-specific models in terms of
accuracy, topological consistency. Our results highlight the effectiveness of sparse,
structure-driven Mixture-of-Experts (MoE) strategies for enhancing the reliability
of foundation vision models in clinical image understanding tasks.

1 Introduction

Figure 1: Illustration of the core motivation behind FineSAM++.

Foundation vision models such as Segment Anything Model (SAM)[26] have demonstrated remark-
able prompt responsiveness and zero-shot generalization capabilities for natural image segmentation
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tasks. With the increasing popularity of SAM in general-purpose computer vision, recent efforts
have explored its adaptation to medical image segmentation [14, 35, 21]. However, empirical studies
consistently report substantial performance degradation when SAM is applied to medical structures,
especially for fine-grained targets like vessels, where predictions often suffer from topological errors,
including disconnections, boundary ambiguity, and local omissions [21, 41] (see Fig.1).

To bridge the domain gap between natural and medical images, existing approaches have explored
domain adaptation strategies including Adapters [61, 50], LoRA [11], prompt generation [30], and
SAM-CLIP hybrid models [53, 1] (see Fig.2). Nevertheless, these methods primarily focus on
aligning global semantic representations, leaving structurally ambiguous or uncertain regions under-
modeled [41, 21]. As a result, they fail to resolve the persistent issue of local structural degradation.
We further observe that mispredictions in medical images predominantly occur around blurred
boundaries or fine structural details, which typically manifest as high uncertainty or large residual
deviations from the ground truth. This suggests that a unified global adaptation scheme inherently
struggles to satisfy both semantic alignment and structural recovery, as the modeling objectives
present a natural conflict.

Figure 2: Comparison of SAM-based adaptation methods for medical image segmentation.

Inspired by the sparse activation of Mixture-of-Experts (MoE) architectures in large model design
[46, 42, 29], we argue that MoE provides a promising paradigm for fine-grained structure modeling.
By dynamically activating expert pathways only where necessary, an MoE-inspired framework can
focus modeling capacity on local difficult regions without sacrificing overall efficiency. Based on this
principle, we propose FineSAM++, a structure-enhanced framework following the MoE philosophy.
FineSAM++ introduces two expert modules: a global LoRA Expert for domain adaptation and
a Residual Expert for local residual correction and structural refinement. Their activation and
cooperation are jointly controlled by an uncertainty-aware Gating Module, resulting in an efficient
shared-backbone + localized refinement strategy. Our main contributions are summarized as follows.

• We propose FineSAM++, the structure-aware sparse MoE framework that integrates multiple
localized residual correction pathways into frozen foundation segmentation models like
SAM, addressing their systematic failures on fine-grained medical structures.

• We design a spatially-aware soft routing mechanism that jointly predicts spatial uncertainty
masks and fractional expert routing weights, dynamically activating only a small subset of
residual experts for structurally ambiguous regions.

• We conduct extensive experiments to validate the effectiveness of the proposed module and
achieve state-of-the-art performance on five public vessel datasets covering three distinct
imaging modalities.

2 Related Work

2.1 Foundation Models for Medical Image Segmentation

Foundation vision models such as the SAM [26] have demonstrated strong generalization and zero-
shot capabilities in natural image segmentation. However, their performance degrades significantly in
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medical imaging tasks, particularly for fine-grained structures like vessels and retinal layers, due to
domain shifts and a lack of priors for thin, low-contrast anatomy[20, 40]. To bridge this gap, recent
studies have explored adapter-based tuning [61, 50], LoRA-based silent fine-tuning [11], automatic
prompt generation [30], and hybrid approaches combining SAM with CLIP [53, 1], as well as methods
that improve boundary accuracy through high-quality priors and edge-aware refinement [24]. While
these methods improve global adaptability, they often overlook localized structural failures—such
as vessel discontinuities, blurred edges, and fragmented predictions—that are critical in clinical
applications [57]. FineSAM++ addresses this limitation by introducing a sparse residual expert
framework guided by uncertainty-aware gating, enabling selective correction of structurally uncertain
regions while preserving global semantic consistency.

2.2 Mixture-of-Experts Architectures in Vision Modeling

Mixture-of-Experts (MoE) architectures have emerged as a powerful paradigm for scaling deep
networks while maintaining efficiency [46, 42]. In vision, recent works have explored various
MoE formulations for different purposes. Switch Transformers [13] propose token-based routing
to conditionally activate expert blocks in large-scale transformers. Expert Choice Routing [29] and
SwitchHead [12] further improve routing efficiency and stability by optimizing expert selection and
assignment. CuMo [31] introduces co-upcycled expert reuse to scale multimodal models, achieving
strong performance with limited expert redundancy. Neural Experts [5] and related vision-specific
MoE designs have focused primarily on large-scale classification and vision-language pretraining
tasks. However, these works focus on token or patch-level routing for classification or vision-language
tasks, and have not explored dense prediction or fine-grained structural correction. FineSAM++ to
systematically integrate sparse expert routing into a dense segmentation pipeline. By introducing
a soft Gating Module and Residual Expert, FineSAM++ applies MoE principles to address local
structural inconsistencies in medical vessel segmentation, which remains largely underexplored in
prior vision MoE literature.

Figure 3: Overview of the FineSAM++ architecture.

3 Method

Inspired by the success of sparse MoE in scaling LLMs and vision models [46, 42], we propose
FineSAM++, a sparse expert framework designed for fine-grained targets. Fine-grained target
segmentation naturally fits the MoE paradigm due to the extreme sparsity, topology irregularity,
and strong locality of error-prone regions. Our framework incorporates two specialized lightweight
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experts: a global LoRA Expert for domain adaptation and a Residual Expert for structure-aware
local residual correction. A differentiable Gating Module inspired by Expert Choice Routing [31]
coordinates dynamic activation of experts.

3.1 Overview

Given an input image x ∈ RH×W×3, FineSAM++ first generates a coarse segmentation prediction
ŷSAM ∈ [0, 1]H×W using a LoRA-SAM model with degraded inputs (see Sec. 3.3 for details).
Here, LoRA-SAM refers to a frozen SAM backbone augmented with LoRA adapters, following the
parameter-efficient fine-tuning strategy in [14]. Additionally, for the prompt encoder in LoRA-SAM,
FineSAM++ does not require any manual prompts; instead, it learns a fixed default embedding during
training. While the coarse prediction is generally effective, it often exhibits topological inconsistencies
in challenging regions such as vascular bifurcations, blurred boundaries, and disconnected thin
structures.

To address this, FineSAM++ introduces a modular sparse refinement pathway consisting of (1) a
Gating Module to estimate spatial uncertainty and expert routing weights, and (2) J lightweight
Residual Experts to perform localized residual correction (see Fig.3). Each Residual Expert receives
a perturbed variant of the coarse mask to promote specialization. The final output is obtained by
fusing the original SAM prediction with the aggregated residual corrections:

ŷ = σ

ŷSAM +m⊙

 J∑
j=1

wj · r(j)
 , (1)

where m is the uncertainty mask, wj are routing weights, and r(j) are the expert outputs. ⊙ denotes
element-wise multiplication.

3.2 Gating Module

Classical MoE architectures rely on token-level routing based on dense embedding vectors [46, 13].
However, dense vision transformers like SAM produce structured 2D feature maps, where localized
spatial uncertainty plays a critical role. To address this gap, FineSAM++ introduces a spatially-
aware soft routing mechanism via a dedicated Gating module. Our Gating module gθ serves two
purposes: (1) generate a soft mask m ∈ [0, 1]H×W indicating spatial uncertainty at each pixel, and
(2) output fractional routing weights {wj} for J parallel Residual Experts. The module receives
the concatenation of the image x and coarse mask ŷSAM as input, capturing both appearance and
prediction context:

m, {wj} = gθ(Concat(x, ŷSAM)). (2)

This design is fundamentally different from standard MoE routers, which treat each input as inde-
pendent. Instead, our Gating module explicitly leverages spatial correlations, identifying localized
regions that require residual correction. By assigning soft weights to multiple experts, the routing
mechanism enables fine-grained specialization without hard top-k decisions, which are known to
suffer from instability and expert imbalance [29, 5].

We supervise the Gating module using pseudo-labels derived from backbone prediction errors. A
binary pseudo-label mask gt is first generated by thresholding the absolute error between the SAM
coarse prediction ŷSAM and the ground truth label y:

gt(i) = I (|ŷSAM(i)− y(i)| > δ) , (3)

where I(·) is the indicator function that outputs 1 if the condition holds and 0 otherwise, and δ is a
pre-defined error threshold. The Gating module is trained to predict a router map m ∈ [0, 1]H×W ,
where higher values indicate greater structural uncertainty. We optimize the Gating output using the
standard binary cross-entropy (BCE) loss:

Lgate = − 1

N

∑
i

[gt(i) logm(i) + (1− gt(i)) log(1−m(i))] , (4)

where N is the total number of pixels. This loss encourages the Gating module to activate only
in regions where the backbone prediction is structurally unreliable, while suppressing unnecessary
expert invocation elsewhere.
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3.3 Residual Experts

Conventional segmentation refinement frameworks either retrain the full model or introduce a single
auxiliary head for residual prediction [11, 14]. In contrast, FineSAM++ proposes a diverse multi-
expert residual correction scheme. Inspired by MoE principles of expert specialization, we deploy
J parallel Residual Experts f (j)

α , each receiving a slightly degraded version of the coarse mask:

ŷ
(j)
SAM = Degrade(ŷSAM, ηj), (5)

where Degrade(·) applies random masking, noise injection, or occlusion perturbations to promote
input diversity. This novel perturbation-based expert diversification allows each expert to specialize
in correcting specific structural failures, such as disconnections, thin vessel loss, or noisy edges.

Each expert predicts residual corrections conditioned on both the perturbed coarse mask ŷ
(j)
SAM and

input image x:

r(j) = f (j)
α (x, ŷ

(j)
SAM), (6)

where r(j) ∈ RH×W denotes the residual correction map predicted by the j-th expert. This formu-
lation allows each expert to focus on different perturbation patterns and promotes specialization.
Unlike prior works that produce complete segmentation masks, our experts focus exclusively on
local residual correction. We supervise this process using a gated mean squared error (MSE) loss
between the fused expert output and the ground truth:

Lres =
1

N

∑
i

(m ·
J∑

j=1

wj · r(j))(i) + (ŷSAM(i)− y(i))

2

, (7)

where N is the total number of pixels, m(i) ∈ [0, 1] is the soft spatial uncertainty mask from the
Gating Module at pixel i, wj are the normalized routing weights for each expert, and y(i) is the
ground truth label.

3.4 Progressive Optimization with Dynamic Weighting

Training strategy with two-phase adaptive learning. The Residual Expert strongly depends on
stable backbone predictions to avoid overfitting to noisy residual targets. Therefore, we design a
two-phase adaptive training strategy. In Phase 1, we freeze both the Gating Module and Residual
Expert and train only the SAM backbone until LSAM falls below a threshold ϵ for k consecutive
epochs. This warm-up stage stabilizes the coarse prediction output.

Once convergence is detected, Phase 2 activates the residual correction pathway and applies dynamic
loss weighting λres(t):

λres(t) = min

(
1,

t− t0
T

)
, λSAM(t) = 1− λres(t), (8)

where t0 is the warm-up completion epoch and T controls the progressive ramp-up of the Residual
Expert contribution. This two-phase curriculum minimizes early instability and ensures smoother
joint optimization of both the backbone and expert modules.

Overall Loss. The final training objective of FineSAM++ combines the semantic segmentation loss
of the SAM backbone and the structural refinement losses of the Residual Expert:

L = λSAMLSAM + λresLres + λgateLgate, (9)

where LSAM represents the combined Dice and binary cross-entropy loss on the backbone output,
Lres is the masked residual regression loss, and Lgate is the gating supervision loss. The weighting
coefficients λ balance the contributions of each component and are dynamically adjusted as described
above. This formulation enables FineSAM++ to jointly optimize global semantic consistency and
local structural refinement in a stable and interpretable manner.
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Table 1: Quantitative comparison on DRIVE, DCAI, CHUAC and ROSE datasets. The best results
are bolded while the second best are underlined. Other Dataset (FIVES) quantitative comparison
are provided in the supplementary material.

Metric MetricData Method Dice ACC AUC SE SP Data Method Dice ACC AUC SE SP
U-Net 0.7787 0.9616 0.9863 0.7802 0.9792 U-Net 0.7392 0.9741 0.9803 0.7647 0.9851

Att U-Net 0.7808 0.9621 0.9774 0.7931 0.9795 Att U-Net 0.7511 0.9753 0.9834 0.7851 0.9861
U-Net++ 0.7860 0.9635 0.9825 0.7891 0.9850 U-Net++ 0.7766 0.9757 0.9860 0.7932 0.9857
R2U-Net 0.8171 0.9556 0.9784 0.7792 0.9813 CS-Net 0.7790 0.9763 0.9889 0.7895 0.9867

TransUNet 0.7872 0.9577 0.9792 0.7819 0.9788 VSSC Net - 0.9700 0.9831 0.7728 0.9809
CAViT - 0.9700 0.9864 0.7924 0.9872 FR-UNet 0.7736 0.9744 0.9897 0.8344 0.9824

MCDAU-Net 0.8129 0.9589 - 0.8215 0.9739 MedUNAS 0.7820 0.9800 - 0.8089 0.9905
Retina-TransNet 0.7964 - 0.8836 0.7850 0.9821 G2ViT 0.7659 0.9761 0.9904 0.8387 0.9914

MRC-Net - 0.9698 0.9825 0.8250 0.9837 HRNet 0.7919 0.9777 0.9899 0.8007 0.9876
Gupta et al 0.7978 0.9677 0.8843 0.7863 0.9824 Gupta et al 0.7938 0.9681 0.9911 0.8853 0.9891
RETFound 0.8020 0.9649 0.8830 0.7796 0.9821 RETFound 0.7948 0.9685 0.9923 0.8857 0.9872

nnUnet 0.8220 0.9698 0.8940 0.8019 0.9862 nnUnet 0.8045 0.9584 0.9903 0.8264 0.9879
SAM Aapter 0.4498 0.9311 0.9204 0.7577 0.9377 SAM Aapter 0.7583 0.9727 0.9408 0.7882 0.9836

H-SAM 0.6622 0.9485 0.7824 0.5808 0.9840 H-SAM 0.6374 0.9661 0.7810 0.5732 0.9887
AutoSAm 0.6603 0.9414 0.9872 0.8368 0.9822 AutoSAm 0.7175 0.9693 0.8483 0.7120 0.9760
SAMed 0.6170 0.9450 0.9600 0.5070 0.9880 SAMed 0.5750 0.9540 0.9550 0.5750 0.9760

HQ-SAM 0.7978 0.9697 0.8824 0.8033 0.9824 HQ-SAM 0.7880 0.9770 0.8890 0.7890 0.988

DRIVE

Ours 0.8231 0.9790 0.9870 0.8366 0.9834

DCAI

Ours 0.8127 0.9775 0.9931 0.8479 0.9872
U-Net 0.6768 0.9744 0.9582 0.5801 0.9941 U-Net 0.7116 0.8955 0.9218 0.7867 0.8780

Att U-Net 0.6941 0.9803 0.9515 0.6420 0.9922 CS-Net 0.7608 0.9152 0.9392 0.8631 0.9112
U-Net++ 0.7000 0.9802 0.9669 0.6109 0.9949 CE-Net 0.7511 0.9121 0.9292 - -
CS-Net 0.7171 0.9796 0.9747 0.6735 0.9918 COSFIRE 0.7517 0.9227 0.9286 - -

VSSC Net - 0.9721 0.9757 0.7892 0.9797 COOF 0.6606 0.8530 0.8689 - -
FR-UNet 0.7543 0.9740 0.9786 0.7836 0.9867 ResU-Net 0.7461 0.9098 0.9252 - -

MedUNAS 0.7456 0.9807 - 0.7829 0.9912 DUNet 0.7505 0.9118 0.9334 - -
G2ViT 0.7612 0.9809 0.9858 0.7908 0.9950 three-stage 0.7663 0.9179 0.9179 - -
HRNet 0.7526 0.9811 0.9906 0.7456 0.9906 OCTA-Net 0.7697 0.9182 0.9453 - -

Gupta et al 0.7168 0.9799 0.9739 0.6728 0.9907 Gupta et al 0.7601 0.9164 0.9399 0.8563 0.9109
RETFound 0.7636 0.9604 0.9904 0.7325 0.9906 RETFound 0.7126 0.9197 0.9337 0.8563 0.9193

nnUnet 0.7814 0.9776 0.8842 0.7788 0.9896 nnUnet 0.8270 0.9470 0.9310 0.8650 0.9940
SAM Aapter 0.7636 0.9784 0.9359 0.7583 0.9902 SAM Aapter 0.6316 0.8578 0.8451 0.6503 0.9801

H-SAM 0.6951 0.9707 0.8310 0.6758 0.9862 H-SAM 0.6968 0.8973 0.7965 0.6335 0.9595
AutoSAm 0.6833 0.9654 0.8614 0.7457 0.9772 AutoSAM 0.6954 0.8949 0.8054 0.6557 0.9684
SAMed 0.7520 0.9790 0.9880 0.7040 0.9920 SAMed 0.6390 0.8810 0.8830 0.5600 0.9570

HQ-SAM 0.7050 0.8940 0.8120 0.6760 0.9480 HQ-SAM 0.7520 0.9609 textbf0.9904 0.7940 0.9887

CHUAC

Ours 0.7768 0.9807 0.9951 0.7567 0.9932

ROSE

Ours 0.8220 0.9483 0.9827 0.9485 0.9823

4 Experiments

4.1 Implementation Details

Dataset. We evaluate FineSAM++ across five publicly available vascular segmentation datasets
spanning three imaging modalities. The DRIVE dataset [47] contains two-dimensional retinal fundus
images with ground truth vessel masks. ROSE [36] provides retinal vessel segmentation from 2D
optical coherence tomography angiography (OCTA) scans. FIVES [22] includes 800 high-resolution
multi-disease color fundus photographs annotated for vessel structures. DCA1 [17] and CHUAC [7]
are coronary angiography datasets containing fluoroscopic X-ray vessel images. We select these
datasets to cover the full spectrum of challenges targeted by FineSAM++, including variations in
anatomical regions (retina vs. coronary arteries), imaging modalities (fundus photography, OCTA,
X-ray angiography), and segmentation difficulties (low contrast, thin structures, fragmented vessels).
Detailed dataset statistics and preprocessing steps are provided in the supplementary material.

Beyond vascular segmentation. To further assess cross-domain generalization, we additionally
evaluate multi-class abdominal organ segmentation on the Synapse Multi-Organ CT dataset (eight
organs), demonstrating that FineSAM++ maintains strong performance outside the vascular domain.
Detailed dataset statistics and results are provided in the supplementary material.

Training settings. All experiments are implemented using PyTorch and trained on two NVIDIA RTX
4090 GPUs. Data augmentation includes random elastic deformation, rotation, scaling, and intensity
jittering. For the backbone, we follow [14] and integrate LoRA adapters into the frozen SAM encoder
with a rank of 4. We adopt the ViT-B configuration of SAM as the base encoder. For fair comparison
across datasets, all images are resized to 512× 512 resolution. The maximum training epoch is set to
300. We use the AdamW optimizer with β1 = 0.9, β2 = 0.999, and weight decay of 0.1. The initial
learning rate is set to 5× 10−5 and decayed using a cosine annealing schedule. All hyperparameters
are fixed across datasets without additional tuning to ensure fair comparison and reproducibility.

Evaluation metrics. To comprehensively assess model performance, we evaluate FineSAM++ and
all baselines across standard segmentation accuracy metrics and specialized structural consistency
metrics tailored for vascular image analysis. The primary evaluation metrics include Dice, accuracy
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Figure 4: Qualitative comparison of FineSAM++ against H-SAM, SAM Adapter, and SAMed across
five datasets. FineSAM++ provides more continuous and complete vessel segmentation with fewer
false positives and fragmentation artifacts.

(ACC), sensitivity (SE), specificity (SP), connectivity (C), overlapping area (A), vessel length
consistency (L), and centerline Dice (clDice). For completeness and reproducibility, detailed
definitions for all metrics are provided in the supplementary material.

Compared methods. In this study, we comprehensively benchmark FineSAM++ against a wide
range of state-of-the-art (SOTA) methods previously reported on the evaluated datasets. The baselines
include both classical CNN-based and modern Transformer-based segmentation models, topology-
aware segmentation method, as well as several recent SAM-variant foundation model adaptations.
For clarity and reproducibility, the full list of compared methods and corresponding references
are provided in the supplementary material.

4.2 Main Results

Quantitative Comparisons. Tab. 1 summarizes the performance comparison across four datasets.
FineSAM++ consistently achieves superior results over both CNN- and Transformer-based baselines
as well as recent SAM-derived methods. On DRIVE and DCAI, FineSAM++ sets new state-of-the-art
Dice scores of 0.8231 and 0.8127, respectively, substantially outperforming AutoSAM (0.6603 and
0.7175) and H-SAM (0.6622 and 0.6374). On CHUAC and ROSE, our method also delivers the
highest Dice scores (0.7768 and 0.8220), demonstrating robust generalization across diverse vascular
modalities. These results validate the effectiveness of our multi-expert sparse refinement strategy in
addressing localized structural failures of foundation segmentation models while maintaining high
global consistency.

Qualitative Results. Fig. 4 shows representative qualitative comparisons of FineSAM++ against
leading SAM-variant methods (H-SAM, SAM Adapter, SAMed) across five datasets. Our method
consistently produces sharper and more continuous vessel structures with fewer false positives and
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Table 2: Quantitative comparison on DRIVE, FIVES, DCAI, CHUAC and ROSE datasets. Metrics
include connectivity (C), area accuracy (A), length similarity (L), and centerline Dice (ClDice). The
best results are bolded and the second best are underlined.

Metrics MetricsData Method C A L ClDice Data Method C A L ClDice
U-Net 0.998 0.712 0.608 0.761 U-Net 0.994 0.897 0.912 0.889

Att U-Net 0.994 0.768 0.732 0.775 Swin-Unet 0.997 0.863 0.871 0.785
U-Net++ 0.994 0.783 0.774 0.801 TransUnet 0.997 0.919 0.923 0.911

SAM Adapter 0.993 0.412 0.321 0.488 SAM Adapter 0.993 0.713 0.654 0.878
H-SAM 0.997 0.631 0.654 0.612 H-SAM 0.994 0.698 0.711 0.645

AutoSAM 0.998 0.597 0.621 0.598 AutoSAM 0.996 0.652 0.675 0.887
SAMed 0.996 0.583 0.561 0.556 SAMed 0.994 0.691 0.712 0.657

DRIVE

Ours 0.998 0.848 0.865 0.832

FIVES

Ours 0.997 0.921 0.925 0.914
U-Net 0.995 0.78 0.812 0.7900 U-Net 0.996 0.723 0.739 0.7100

Att U-Net 0.996 0.812 0.798 0.8050 CS-Net 0.997 0.776 0.789 0.7500
U-Net++ 0.998 0.831 0.813 0.8150 OCTA-Net 0.999 0.781 0.765 0.7550

SAM Adapter 0.998 0.785 0.812 0.8 SAM Adapter 0.992 0.683 0.657 0.6600
H-SAM 0.992 0.732 0.734 0.72 H-SAM 0.994 0.721 0.719 0.7050

AutoSAM 0.995 0.732 0.757 0.735 AutoSAM 0.995 0.736 0.743 0.7150
SAMed 0.997 0.643 0.651 0.65 SAMed 0.997 0.675 0.674 0.6900

DCAI

Ours 0.997 0.903 0.877 0.865

ROSE

Ours 0.997 0.819 0.839 0.8050
U-Net 0.994 0.631 0.629 0.6200 H-SAM 0.994 0.712 0.719 0.7000

Att U-Net 0.995 0.702 0.698 0.6850 AutoSAM 0.993 0.698 0.723 0.6900
U-Net++ 0.996 0.723 0.722 0.7150 SAMed 0.997 0.757 0.739 0.7350CHUAC

SAM Adapter 0.998 0.759 0.768 0.75

CHUAC

Ours 0.998 0.787 0.795 0.7700

disconnected branches. In coronary angiography datasets (CHUAC, DB134), FineSAM++ better
captures thin vessel bifurcations and suppresses background noise. On retinal fundus images (DRIVE,
FIVES), our model recovers small peripheral vessels missed by baselines. For OCTA images (ROSE),
FineSAM++ yields smoother centerlines with significantly reduced fragmentation compared to prior
approaches. These visual improvements highlight the advantage of our multi-expert sparse refinement
design for addressing localized structural errors while preserving global topology.

Topological analysis. Tab. 7 reports connectivity (C), area (A), length (L), and ClDice metrics
across four datasets. FineSAM++ consistently achieves the highest ClDice scores, indicating superior
preservation of vessel topology and centerline continuity. On DRIVE and DCAI, our method
outperforms the strongest baseline by margins of 0.832 vs. 0.801 and 0.865 vs. 0.815 respectively.
Similar trends are observed on CHUAC and ROSE. The strong gains in connectivity (C) and length
(L) further highlight the advantage of our sparse expert refinement design in correcting disconnections
and fragmented vessels present in the coarse backbone predictions. These results demonstrate that
FineSAM++ not only improves segmentation accuracy but also enhances structural fidelity, which is
critical in clinical vascular analysis.

4.3 Ablation Study

Parameter Efficiency.To address concerns about the parameter efficiency of our proposed method
FineSAM++ among SAM-based segmentation approaches, we conducted a comprehensive compari-
son under a standard input resolution of (1, 3, 1024, 1024). Specifically, we measured the number of
parameters, FLOPs (GAMCs), and inference latency, as summarized in Table 3. As shown, Fine-
SAM++ introduces only about 0.7M additional learnable parameters over the SAM backbone (94.4M
vs. 93.7M). Compared with other SAM-based methods—such as SAM Adapter (104.3M), H-SAM
(111.3M), and AutoSAM (135.29M)—FineSAM++ demonstrates substantially higher parameter
efficiency. Moreover, while its total parameter count is higher than lightweight architectures like
Unet, FineSAM++ achieves the highest Dice score (0.8231) among all evaluated methods. These
results indicate that FineSAM++ achieves an excellent balance between parameter efficiency and
segmentation performance.

Ablation Study on the Gating Threshold δ. To assess the sensitivity of the Gating module
to the pre-defined error threshold δ, we conduct an ablation on the DRIVE dataset by varying
δ ∈ {0.3, 0.4, 0.5, 0.6, 0.7}, with results summarized in Table 4. While certain metrics (e.g., SE at
δ = 0.3) are slightly higher, δ = 0.5 delivers the best overall performance across Dice, ACC, AUC,
SE, and SP. Intuitively, a too-small threshold treats most pixels as uncertain, triggering unnecessary
refinement and reducing gating sparsity, whereas a too-large threshold routes only a few pixels and

8



Figure 5: Visualization of the FineSAM++ refinement process.

Table 3: Comparison of model size, computational cost, latency, and segmentation accuracy (Dice
score) across segmentation methods using an input of size (1, 3, 1024, 1024).

Model Params (M) GAMCs (G) Latency (ms) Dice
Unets 34.53 4.08 1.10 0.7787
nnUnet 126.2 1864.9 37.4 0.8220
SAM Adapter 104.3 400.1 127.8 0.4498
H-SAM 111.3 370.6 124.8 0.6622
AutoSAM 135.29 774.16 166.22 0.6603
SAMed 92.2 370.5 117.1 0.6170
SAM 93.7 372.0 116.33 /
Ours (FineSAM++) 94.4 376.8 117.6 0.8231

underutilizes the refinement experts. Balancing these effects, we adopt a fixed threshold of δ = 0.5
across all five public datasets for both accuracy and efficiency.

Table 4: The ablation results of threshold δ in the Gating module.

δ Dice ACC AUC SE SP
0.3 0.8124 0.9712 0.9812 0.8432 0.9601
0.4 0.8187 0.9755 0.9846 0.8410 0.9732
0.5 0.8231 0.9790 0.9870 0.8366 0.9834
0.6 0.8180 0.9767 0.9854 0.8204 0.9807
0.7 0.8129 0.9735 0.9822 0.8083 0.9784

Effect of number of Residual Experts. We evaluate the effect of varying the number of Residual
Experts (J = 1, 2, 4, 6) on the DRIVE dataset, as shown in Tab. 6. Increasing j consistently improves
segmentation performance. The Dice score rises from 0.7501 (1 expert) to 0.8231 (6 experts), with
corresponding gains across all other metrics. Notably, performance gains begin to saturate beyond
j = 4, suggesting that using a moderate number of experts balances accuracy and computational
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efficiency. We adopt j = 4 for all remaining experiments as a trade-off between performance and
resource consumption.

Table 5: Ablation study of FineSAM++ modules on the DRIVE dataset.

Lora-SAM Gating Residual Experts Dice ACC AUC SE SP
✓ × × 0.7322 0.9524 0.9711 0.7865 0.9678
✓ × ✓ 0.7871 0.9634 0.9821 0.8147 0.9772
✓ ✓ ✓ 0.8231 0.9790 0.9870 0.8366 0.9834

Qualitative Analysis of Local Structure Refinement. Fig. 5 presents the FineSAM++ refinement
pipeline across multiple vascular segmentation datasets, including fundus, angiography, and OCT-like
images. Starting from the coarse LoRA-SAM prediction, which often suffers from topological errors,
the Gating Module identifies uncertain regions and selectively routes them to Residual Experts for
localized correction. The final output shows improved connectivity and boundary completeness. For
visualization clarity, only the first expert’s outputs are shown, though FineSAM++ operates with a
mixture of experts.

Table 6: Ablation study of the number of Residual Experts (J) on the DRIVE dataset.

Number Dice ACC AUC SE SP
1 0.7501 0.956 0.9751 0.7943 0.9723
2 0.7769 0.9621 0.9803 0.8081 0.9763
4 0.8025 0.9655 0.9811 0.8139 0.9783
6 0.8231 0.9790 0.9870 0.8366 0.9834

Ablation study of modules. Tab. 5 presents the effect of incrementally adding FineSAM++ com-
ponents. Using only the LoRA-SAM backbone yields limited performance (Dice 0.7322). Adding
Residual Experts without the Gating Module, where all J experts are uniformly averaged without
spatial weighting, improves performance to 0.7871 Dice by introducing localized correction. How-
ever, enabling the full pipeline with the Gating Module further increases performance to 0.8231 Dice
and leads to consistent improvements across all metrics. The Gating Module provides a soft spatial
routing mechanism that dynamically assigns different weights to each expert’s output based on local
uncertainty, promoting expert specialization and sparse activation. These results validate that targeted
soft routing is critical for maximizing expert effectiveness and minimizing unnecessary corrections in
confident regions.

5 Conclusion

We presented FineSAM++, a structure-aware sparse expert framework for enhancing foundation seg-
mentation models in fine-grained medical image analysis. By introducing a soft Gating Module with
uncertainty-aware spatial routing and deploying multiple Residual Experts with input perturbation
diversity, our method achieves localized structural refinement while maintaining global consistency.
Extensive experiments on five vascular segmentation benchmarks demonstrate that FineSAM++
consistently outperforms both classical and SAM-adapted baselines across accuracy and topological
continuity. Our results validate the effectiveness of sparse expert activation for addressing localized
segmentation failures. Future work will explore dynamic expert allocation, adaptive perturbation
strategies, and generalization to other medical and natural image dense prediction tasks.
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A Dataset Details and Evaluation Metrics

A.1 Dataset Details

We conduct experiments on five publicly available medical segmentation datasets. The 2D datasets
include DRIVE [47], ROSE [36], FIVES [22], DCA1 [17], and CHUAC [7].

DRIVE [47]. The DRIVE dataset consists of 40 retinal fundus images (584× 565 pixels) for vessel
segmentation. We follow the official split of 20 training and 20 testing images.

ROSE [36]. The ROSE dataset contains 2D retinal optical coherence tomography angiography
(OCTA) scans. We use the ROSE-1 (SVC) subset comprising 30 training and 9 testing images
(304× 304 pixels).

FIVES [22]. The FIVES dataset (Fundus Image Vessel Segmentation) provides 800 high-resolution
color fundus images (2048× 2048 pixels) with pixel-level vessel annotations. The dataset is split
into 600 training and 200 testing images.

DCA1 [17]. The DCA1 dataset contains 134 coronary angiography images (300× 300 pixels). We
follow the dataset’s standard split with 100 training and 34 testing images.

CHUAC [7]. The CHUAC dataset consists of 30 coronary angiography images (189× 189 pixels)
with vessel annotations. Following [55], we split the dataset into 20 training and 10 testing images.

Synapse Dataset. The dataset [28] contains 30 subjects for training and 20 subjects for testing
with abdominal CT scans. It consists of 13 organs, including 8 organs of Synapse, along with
esophagus, inferior vena cava, portal and splenic veins, right and left adrenal gland. Consistent with
the partitioning strategy outlined in [8].

A.2 Compared Methods

We compare FineSAM++ against a comprehensive set of state-of-the-art (SOTA) methods previously
reported on the evaluated datasets. The competing approaches are categorized into three groups:
CNN-based segmentation models, Transformer-based segmentation models, and foundation model
variants.

(1) CNN-based methods. Classical and recent CNN architectures include U-Net [43], Attention U-
Net [38], U-Net++ [60], CS-Net [37], VSSC Net [44], FR-UNet [34], ResU-Net [32], MedUNAS [27],
DUNet [23], HRNet [48], R2U-Net [2], GCN [54], Deeplab V3+ [9], CBAM [49], PSPNet [58],
ENet [39], SK-Net [51], SegNet [4], COSFIRE [3], CE-Net [15], OCTA-Net [36], COOF [56],
MCDAU-Net [59], and MRC-Net [25].

(2) Transformer-based methods. Recent hybrid or fully Transformer architectures include Swin-
Unet [6], TransUNet [8], SGAT-Net [33], Retina-TransNet [45], CAViT [18], and G2ViT [52].

(3) SAM foundation model variants. To benchmark against foundation model-based baselines, we
include SAM Adapter [10], H-SAM [11], AutoSAM [19], SAMed [35].

(4) Topology-aware segmentation. the topology-aware adaptation by Gupta et al. [16].

B Evaluation metrics

To comprehensively assess the model’s performance, we introduce the following evaluation metrics:
Dice coefficient (Dice), accuracy (ACC), sensitivity (SE), specificity (SP).

Dice. DICE score is a popular metric which measures the area/volumetric overlap between the
predicted and ground truth discrete masks. It overcomes the class imbalance problem in the pixel-
wise accuracy metric by considering only the foreground classes for measuring the overlap. The
higher the DICE, the better the segmentation.

Accuracy (ACC). ACC measures the overall correctness of the segmentation results, calculating the
proportion of correctly classified pixels or voxels to the total number of pixels or voxels.
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Sensitivity (SE). SE also known as true positive rate or recall, quantifies the model’s ability to
correctly identify positive instances, indicating the proportion of true positives correctly classified
among all actual positives.

Specificity (SP). SP measures the model’s ability to correctly identify negative instances, representing
the proportion of true negatives correctly classified among all actual negatives.

Connectivity (C). Connectivity evaluates the structural consistency between the predicted segmen-
tation and the ground truth. It measures the extent to which the connectivity of predicted regions
matches that of the ground truth, ensuring the preservation of continuous structures, particularly in
medical images.

Overlapping Area (A). Overlapping Area measures the absolute area of intersection between the
predicted segmentation and the ground truth. Unlike IOU, it focuses solely on the shared region size,
often serving as a supplementary metric for segmentation overlap evaluation.

Consistency of Vessel Length (L). L quantifies the similarity in vessel lengths between the pre-
dicted segmentation and the ground truth. This metric is particularly critical in vascular structure
segmentation, ensuring that the predicted vessels maintain accurate geometric proportions.

clDice. A topology-based metric is particularly sensitive to a model’s performance on thin structures.
This metric evaluates the overlap between predicted and ground truth masks while incorporating the
topological features of the segmentation output.

C Experiments Results

C.1 Result on Vessel Segmentation

In this section, we add quantitative comparison on FIVES datasets. As shown in Tables 7, it can be
seen that our method has relatively higher evaluation indicators.

Table 7: Quantitative comparison on FIVES datasets. The best results are bolded while the second
best are underlined.

MetricMethod Dice ACC AUC SP IOU
U-Net 0.8887 0.9866 0.9300 0.9910 0.8077

R2U-Net 0.8492 0.9809 0.9238 0.9899 0.7465
Att Unet 0.8881 0.9868 0.9272 0.9907 0.8073

GCN 0.9002 0.9879 0.9399 0.9922 0.8260
Deeplab V3+ 0.8856 0.9850 0.9485 0.9933 0.8075

SK 0.8835 0.9858 0.9334 0.9912 0.7994
CBAM 0.8850 0.9867 0.9226 0.9901 0.8029
PSPNet 0.8988 0.9878 0.9396 0.9920 0.8235

ENet 0.8909 0.9867 0.9409 0.9922 0.8110
SegNet 0.8509 0.9813 0.9244 0.9899 0.7498

Swin-Unet 0.9013 0.9882 0.9402 0.9922 0.8276
TransU-Net 0.9037 0.9883 0.9447 0.9928 0.8317
SGAT-Net 0.9051 0.9886 0.9467 0.9933 0.8347

SAM Aapter 0.6313 0.8578 0.8451 0.9081 0.4630
H-SAM 0.6696 0.9603 0.7851 0.9887 0.5077

AutoSAM 0.8817 0.9875 0.9843 0.9921 0.7979
SAMed 0.6750 0.9590 0.9720 0.9840 0.5140
Ours 0.9141 0.9963 0.9961 0.9939 0.8258

C.2 Generalization beyond vessel segmentation

To validate that our framework generalizes beyond vessel segmentation, we evaluate multi-class
abdominal organ segmentation on the Synapse Multi-Organ CT dataset (eight organs). Following
prior work [8, 35, 11], we adopt the standard split of 18 training and 12 test volumes and apply the
corresponding preprocessing and augmentation protocols. As summarized in Table 8, our method
attains the highest mean Dice (87.97%) and the lowest Hausdorff Distance (HD; 7.89) among all
compared methods, surpassing strong baselines such as H-SAM and nnU-Net. Notably, our approach
maintains high accuracy on challenging small structures (e.g., pancreas), indicating that FineSAM++
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preserves strong segmentation quality and robustness when extended to more delicate anatomical
targets.

Table 8: Comparison with state-of-the-art models on the Synapse multi-organ CT dataset.

Method Spleen Right Kidney Left Kidney Gallbladder Liver Stomach Aorta Pancreas Mean Dice (%) HD
TransUNet 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62 77.48 31.69
SwinUNet 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60 79.13 21.55
TransDeepLab 86.04 69.16 84.08 79.88 93.53 61.19 89.00 78.40 80.16 21.25
DAE-Former 88.96 72.30 86.08 80.88 94.98 65.12 91.94 79.19 82.43 17.46
MERIT 92.01 84.85 87.79 74.40 95.26 85.38 87.71 71.81 84.90 13.22
nnU-Net 91.68 88.46 83.68 70.82 97.13 83.34 93.04 81.50 87.33 10.78
AutoSAM 80.54 80.02 79.60 41.37 89.24 61.14 82.56 44.22 62.08 27.56
SAM Adapter 83.68 79.00 79.02 57.49 92.67 69.48 77.93 43.07 72.80 33.08
SAMed 87.77 69.11 80.45 79.95 94.80 72.17 88.72 82.06 81.88 20.64
H-SAM 93.34 89.93 91.88 73.49 95.72 87.10 89.38 71.11 86.49 8.18
Ours 94.25 91.53 93.21 71.23 96.89 90.83 92.52 82.23 87.97 7.89

D Ablation study

D.1 Effect of Progressive Optimization with Dynamic Weighting

We evaluate the impact of progressive optimization with dynamic uncertainty-based loss weighting
by comparing three training strategies: (i) Naïve Joint Training, i.e., end-to-end optimization with
uniform loss weights; (ii) Stage-wise (Independent), which freezes the coarse module and trains the
refinement module separately; and (iii) Ours (Progressive), which progressively optimizes the two
modules with dynamic, uncertainty-aware weighting. As summarized in Table 9, the progressive
strategy consistently achieves the best overall performance across Dice, ACC, AUC, SE, and SP.
We attribute these gains to tighter interaction between the coarse and refinement modules and the
reweighting of supervision toward uncertain regions, which improves refinement quality without
overfitting.

Table 9: Ablation study on training strategies.

Strategy Dice ACC AUC SE SP
Naïve Joint Training 0.7984 0.9641 0.9745 0.8123 0.9632
Stage-wise (Independent) 0.8117 0.9722 0.9810 0.8289 0.9766
Ours (Progressive) 0.8231 0.9790 0.9870 0.8366 0.9834

D.2 Degrade Strategy for Robust Multi-Expert Refinement

Refinement modules may overfit to thin structures, which can increase false positives or degrade
mask quality in regions with weak boundaries or ambiguous textures. To mitigate this, we introduce
a Degrade strategy in FineSAM++: rather than feeding all experts the same coarse mask, we
apply randomized degradations to the coarse mask (see Eq. (5)) to encourage input diversity and
expert specialization. This promotes complementary expertise across residual experts and improves
robustness to structural uncertainty. As summarized in Table 10, enabling the Degrade strategy yields
consistent gains across Dice, ACC, AUC, and SP, while maintaining competitive SE, indicating fewer
false positives and stronger generalization.

Table 10: Ablation study of the Degrade strategy for multi-expert training.

Strategy Dice ACC AUC SE SP
No Degrade 0.8154 0.9735 0.9813 0.8281 0.9720
Degrade 0.8231 0.9790 0.9870 0.8366 0.9834

E Statistical significance.

We assess the statistical significance of our improvements using paired t-tests between our method
and each baseline across all test images and datasets. Table 11 reports the resulting p-values for five
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metrics (Dice, ACC, AUC, SE, SP); values in bold indicate p < 0.05. As shown, the majority of
comparisons reach statistical significance, supporting that our approach yields superior segmentation
accuracy with improved consistency (lower variance) across datasets.

Table 11: Paired t-test p-values comparing our method against baselines. Bold indicates statistical
significance (p < 0.05).

Dataset Method Dice ACC AUC SE SP
DRIVE HQ-SAM 9.86E-03 3.99E-04 2.47E-12 1.55E-01 1.32E-01

nnU-Net 5.50E-02 9.79E-06 2.44E-12 3.62E-03 2.08E-02
RETFound 1.38E-02 9.61E-07 1.38E-13 5.60E-03 5.96E-01

DCAI HQ-SAM 4.53E-07 9.97E-01 1.07E-21 3.28E-06 2.57E-01
nnU-Net 8.79E-04 1.35E-14 2.10E-02 6.22E-03 1.14E-02
RETFound 1.24E-05 1.80E-05 4.79E-01 1.93E-06 1.70E-02

CHUAC HQ-SAM 1.04E-01 8.28E-08 1.71E-04 9.80E-03 6.41E-05
nnU-Net 6.96E-01 2.50E-01 2.50E-03 2.77E-01 4.46E-01
RETFound 3.23E-01 7.69E-04 2.23E-01 3.12E-01 4.02E-01

ROSE HQ-SAM 1.97E-03 3.20E-01 1.25E-01 1.43E-06 7.49E-01
nnU-Net 7.03E-01 3.13E-01 1.65E-01 3.02E-04 8.90E-01
RETFound 1.64E-04 1.51E-03 3.11E-01 6.43E-06 4.93E-02

F Societal impact discussion

FineSAM++ is designed to mitigate localized failures in medical image segmentation—particularly in
fine-grained regions (e.g., vessels with blurred boundaries)—via a structure-aware, sparsely activated
expert mechanism that enhances fidelity with minimal computational overhead. This design advances
two practical goals: (i) improving the reliability of automated tools that support clinical decision-
making, thereby reducing the risk of missed or spurious findings in delicate anatomical structures;
and (ii) enabling a scalable, resource-efficient adaptation strategy that lowers deployment barriers in
low-resource healthcare settings where retraining or maintaining large models is impractical.

G Limitations

While FineSAM++ demonstrates strong performance and robustness across multiple vascular segmen-
tation benchmarks, several limitations remain. First, the current design employs a fixed number of
Residual Experts with pre-defined perturbation settings, which may not fully capture the variability of
structural errors across highly diverse anatomical regions. Future work could explore dynamic expert
allocation or adaptive degradation strategies conditioned on image content. Second, FineSAM++
introduces additional complexity compared to single-expert or fully fine-tuned models. Third, our
study focuses primarily on vascular datasets. Extension to other fine-grained medical segmentation
tasks, such as tumor boundary refinement or organ delineation, remains to be validated. We believe
these directions provide promising opportunities for further improving the generality and applicability
of sparse expert refinement frameworks.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [TODO]
Guidelines: The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: [TODO]
Guidelines: the paper discuss the limitations of the work performed.

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each theoretical result, the paper provide the full set of assumptions and a
complete (and correct) proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: the paper fully disclose all the information needed to reproduce the main
experimental results.
Guidelines:

20



• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper uses publicly available data and provides sufficient explanations to
faithfully reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and testing details needed to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports defined error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For experiments, the paper provides information on the computer resources
needed to reproduce the experiments.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper complies in all respects with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the possible social impact of the work carried out.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [No]

Justification: The paper uses public datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper (e.g., code, data,
models) are appropriately acknowledged, and the licenses and terms of use are clearly
mentioned and appropriately respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: The data used in the paper is a public dataset.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: This study does not involve any significant, original or non-standard LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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