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Abstract

This paper proposes a novel learning method to leverage multi-
ple representations effectively. Aggregated features after indi-
vidual training or after going through extra complicated heads
are prone to cause redundancy in the feature space. Instead,
we explicitly push the representations to be less correlated
during training. Specifically, networks learn different represen-
tations of the target task with lowered redundancy by explicitly
training with the proposed decorrelation loss. Furthermore, we
propose a new network architecture consisting of lightweight
sub-networks, which is turned out to be efficient yet has high
capability compared with the prior arts using heavy head archi-
tectures. It collaborates with the proposed learning method to
learn more less-correlated features. We additionally provide an
analysis to reveal the relationship between the less-correlated
features and performance. Finally, our proposed model outper-
forms recent state-of-the-art models with higher throughput
evaluated on ImageNet. We believe the resultant model is a
positive byproduct of the collaboration of less-correlated fea-
ture learning with the efficient architecture design. Our code
will be publicly released.

Introduction

Over the past decade, numerous methods (Newell, Yang,
and Deng 2016; Lin et al. 2017; Yu et al. 2018; Sun et al.
2018; Ryu, Yang, and Lim 2018; Du et al. 2020) have been
proposed to achieve better performance on various tasks.
They fall into a single line of study which aggregates multiple
extracted features and aim to predict class labels (Yu et al.
2018; Sun et al. 2018) or bounding boxes/masks (Lin et al.
2017; Du et al. 2020; Liu et al. 2018; Tan, Pang, and Le 2020).
Although the traditional methods have been proven to be
simple yet effective, the features are prone to be trained with
a high correlation, as disclosed in the literature (Srivastava
et al. 2014; Cogswell et al. 2015; Ryu et al. 2019; Huang
et al. 2018; Hua et al. 2021). Therefore, the architecture may
not have maximal expressiveness.

From the architectural design perspective, features are
usually extracted at different stages of a network to embed

diverse architectural properties in the learned representation.

Therefore, the architectures (Newell, Yang, and Deng 2016;
Lin et al. 2017; Sun et al. 2018; Du et al. 2020) incorporate
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many trainable layers to refine the features to be diversified.
For example, a well-designed architecture (Lin et al. 2017)
successfully improves task performance due to learning more
discriminative features by the new architectural design with
many additional parameters. Therefore, it consumes substan-
tial computational overheads of training due to the compli-
cated extra layers that provide the feature extraction points
to aggregate multiple features. However, whether it really
learns by reducing the correlation of the representation has
not been well investigated.

In this paper, we present a new learning method with a
network architecture aiming to learn less-correlated features
for improved performance. First, we introduce a learning
technique that forces the shallow individual sub-networks
to learn different representations of each other. Second, we
propose an efficient architecture with multiple shallow sub-
networks to learn more diversified multi-level features instead
of heavily incorporating many trainable layers to refine fea-
tures. Overall, our proposed method compels the lightweight
sub-networks to learn different yet strong representations,
resulting in the improved capability of the final feature. We
empirically found that our learning technique and network
architecture effectively lower the correlation between the
output features compared with the method of aggregating
features straightforwardly.

We further analyze the proposed method regarding the
strength and correlation theory (Ryu et al. 2019; Breiman
2001) with the generalization error bound. According to the
literature, an aggregated network is generalized when the
correlation is lowered while the strength is increased. It is
known that the correlation and strength are interconnected,
but interestingly, training with our proposed method of lower-
ing correlation will eventually increase strength, as similarly
shown in Ryu et al. (2019). In addition, the generalization er-
ror bound gets decreased as we gradually append our design
elements and train with the proposed learning technique.

Finally, we perform experimental evaluations with our pro-
posed method trained on the CIFAR (Krizhevsky 2009) and
ImageNet (Russakovsky et al. 2015) datasets to show the
effectiveness. We systematically compare the models with
similar computational budgets, including throughput; ours
beat the competing network architectures in the accuracy and
throughput trade-off. Furthermore, we validate our ImageNet-
pretrained models by fine-tuning on the fine-grained visual



classification datasets, including CUB-200 (Wah et al. 2011),
Food-101 (Bossard, Guillaumin, and Van Gool 2014), Stan-
ford Cars (Krause et al. 2013), FGVC Aircraft (Maji et al.
2013), and Oxford Flowers-102 (Nilsback and Zisserman
2008)". Our contributions are summarized as follows:

(1) We propose a learning technique with a new decorrela-
tion loss that regularizes multiple networks to yield less-
correlated features to each other.

(ii)) We propose a new design regime incorporating
lightweight sub-networks instead of multiple backbones
or complicated heads. Refined features by the sub-
networks are architecturally less-correlated and further
adjusted by the proposed less-correlated feature learning.
Intriguingly, the learning method shows a much faster
convergence speed than the traditional training one.

(iii)) We provide an analysis to reveal the effectiveness of the
proposed method based on the correlation and strength
with the generalization bound.

Related work

Network architectures with feature aggregation. Incep-
tions (Szegedy et al. 2015; Ioffe and Szegedy 2015; Szegedy
et al. 2016; Szegedy, loffe, and Vanhoucke 2016) showed
aggregating multiple features could further improve the per-
formance. Veit, Wilber, and Belongie (2016) interpreted
ResNet (He et al. 2016) as an ensemble of numerous shallow
neural networks, resulting in learning various features intrin-
sically. Some operations including group convolution (Xie
et al. 2017; Gao et al. 2019), channel attentions (Hu, Shen,
and Sun 2018; Woo et al. 2018; Tan and Le 2019; Han et al.
2021a), and channel shuffle (Zhang et al. 2018b; Ma et al.
2018) led the network to have improved performance, which
can be interpreted as learning diverse and less-correlated fea-
tures in terms of architectural operation. Inspired by Newell,
Yang, and Deng (2016); Lin et al. (2017), many previous
works (Yu et al. 2018; Sun et al. 2018; Ryu, Yang, and Lim
2018; Du et al. 2020; Liu et al. 2018; Tan, Pang, and Le 2020)
proposed to design advanced architectures by aggregating
multiple features. They heavily rely on multi-path connec-
tions with extra trainable layers as a head architecture. Albeit
they showed outstanding task performance, the models are
computationally heavy due to additional learnable param-
eters; the multiple paths may learn similar representations
without explicit regularization. Our work shares a similar
concept of aggregating features, but the difference is that
we leverage a lightweight design regime for sub-networks
instead of a complicated head architecture for a strong predic-
tion through the aggregation. Furthermore, it turns out that
our lighter model consisting of the operations above achieves
better discriminative powers with less correlated features.

Towards diverse and less-correlated features. Despite
the architectural advances, it has been reported that learned
features are usually in high correlation (Srivastava et al. 2014;
Cogswell et al. 2015; Huang et al. 2018; Zhang, Zhang, and
Li 2018; Ryu et al. 2019; Hua et al. 2021). Algorithmic

"Experimental results of the corresponding downstream tasks
are found in the supplementary material.

ways of training the features having a low correlation are
also addressed in the literature (Cogswell et al. 2015; Xiong
et al. 2016; Gu et al. 2018; Zhu, Zhou, and Li 2018). Our
method has, in a similar line to Cogswell et al. (2015); Zhu,
Zhou, and Li (2018) which proposed distinctive losses that
explicitly promote decorrelation at activation or filter, respec-
tively. On the other hand, ours learn less-correlated features
for aggregation in an inter-feature (or inter-layer) manner, di-
rectly affecting the final classifier. Lan, Zhu, and Gong (2018)
initially promoted to ensemble branches by knowledge dis-
tillation, but the learned features were found to be highly
correlated with each other. Finally, it also turns out that our
proposed architecture cooperates with the proposed learning
technique towards improving less-correlation property.

Method

We start the section by first stating the motivation. Then we
present the proposed learning method to learn less-correlated
features and an efficient network architecture equipped with
multiple sub-networks for the proposed learning method.

Motivation

Our work is motivated by the literature (Breiman 2001; Ryu
et al. 2019) that studied aggregating multiple features with a
low correlation. A well-known theory (Breiman 2001) tells
us if weak models are learned from different tasks to di-
versify the features, the resultant aggregated model is im-
proved. The previous works (Lin et al. 2017; Tan, Pang, and
Le 2020; Du et al. 2020; Lan, Zhu, and Gong 2018; Ryu,
Yang, and Lim 2018) handle multiple features, but they un-
derexplored the diversity and correlation among features, so
we consider both strength and correlation (i.e., the discrimi-
native power and diversity) for features. We exclude learning
with multiple or complicated networks but propose branched
lightweight sub-networks following the theory above. We
conjecture that 1) the correlation can be lowered by the effec-
tive learning method; 2) less-correlated representations can
be further learned by the lightweight sub-networks.

Learning Less-correlated Features

Decorrelation loss. Modern network architectures (He et al.
2016; Tan and Le 2019) benefit from stable convergence in
training, where the trained models have similar performance
regardless of weight initialization (Ioffe and Szegedy 2015).
However, in the case of training multiple identical network ar-
chitectures or branches, this may not become a benefit. Since
the models presumably converge to close local minima, the
trained models are likely to learn correlated representations
(see Fig.1a). In this light, we push the networks to learn dis-
tinct representations less-correlated. We begin with the model
averaging loss (i.e., equally weighting the outputs) with the
[-th output prediction as

L=> CE=—Y y" log fi(x), )
% l

where CE; is the cross-entropy loss with the target ground-
truth label y, and f; is the output prediction of the input z
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(a) Traditional method. Training multiple models individually or
complicated heads in a supervised fashion and aggregating features.
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(b) Our method. Training the network with sub-network heads with the
less-correlated feature learning method.

Figure 1: Schematic illustration of the proposed method. (a) The individual features or features from complicated heads are trained using
the task loss only; their output gets close to the ground-truth labels as training progresses; (b) since the decorrelation loss spreads out the
prediction results of the sub-networks, the proposed learning technique lets the individual sub-networks learn features towards a less-correlated
distribution. We argue the aggregated prediction is likely to be closer to the target, overcoming the intrinsic model bias. This is empirically

proven in the experiment and visualized in Fig.3d and Fig.3f.

from each network. n is the total number of networks, and
the final aggregated output is computed by the weighted
summation of each network’s output. Directly minimizing
Eq. (1), the correlation among the predictions f; is likely to be
high, which is analogously stated in the literature (Srivastava
et al. 2014; Cogswell et al. 2015; Ryu et al. 2019; Huang
et al. 2018; Hua et al. 2021). We introduce a new regularizer
to avoid it as follows:

ZyT 10g g (%) + Aaec, )
ANT
st Laee = zi:zj:gj(z) : ( ng 0g gi(# )) ,
3)

where L4, is coined by the decorrelation loss? (see Fig.1b),
and ) is a tunable weighting hyper-parameter Note that we

replace the f;(x) in Eq.(1) with gz( ) where & = fi(z)
and use a negative value only for A in Eq.(2) to realize the
negatively-scaled function as the decorrelation loss.

Dissimilarity with knowledge distillation. One may ar-
gue that the proposed decorrelation loss relates to Kullback
Leibler Divergence used in the knowledge distillations (Hin-
ton, Vinyals, and Dean 2015; Romero et al. 2015). The canon-
ical knowledge distillation methods use a positive value for .
On the other hand, our method assigns a negative A in Eq.(2),
which lets the knowledge from the aggregated prediction be
reversely transferred; therefore, each prediction g; would de-
viate from the center of the aggregated prediction resulting
in less-correlated. We argue that using knowledge distillation
(i.e., using the KD loss (Hinton, Vinyals, and Dean 2015)) to
train individual student networks close to the aggregated pre-
diction cannot achieve maximal performance improvement.
This can be intuitively explained as the positive weighting in
Eq.(2) makes the distance between the aggregated prediction
and each prediction get closer, so the predictions get similar,

2We use the term decorrelation here in the idiomatic sense of
making the output predictions less relevant.

as shown in Fig.1(a).We provide the experimental backup for
this claim by comparing the cases of positive and negative A
in Fig.2c and Fig.3e.

Towards Learning More Less-correlated Features

Network architecture. We propose a network architecture
that promotes the learned features to have a low correlation.
We aim to design the network with lightweight sub-networks
refining the shared features to learn distinguishing representa-
tions. We aggregate the multiple features by similarly adopt-
ing the concept of feature aggregation networks (Lin et al.
2017; Yu et al. 2018) rather than solely using the final feature,
which is to initially collect less-correlated features as the in-
put feature (Zeiler and Fergus 2014).Therefore, we follow a
simple way of extracting less-correlated representations from
different stages (Yu et al. 2018; Sun et al. 2018; Ryu, Yang,
and Lim 2018; Du et al. 2020; Liu et al. 2018; Tan, Pang,
and Le 2020). However, we argue that naively aggregating
the features by appending such heavy extra layers with many
parameters is actually not required. Additionally, we entan-
gle the features to calibrate the aggregated features through
the proposed entanglement layer that further increases the
feature diversity by learning to mix features. Its effectiveness
in practice will be confirmed in Table 2.

Designing sub-network architecture. We alternatively
propose an efficient replacement of the heavy heads (Sun
etal. 2018; Lin et al. 2017; Liu et al. 2018; Tan, Pang, and Le
2020) by introducing lightweight but containing crucial ele-
ments for feature diversity in the sub-networks; we architec-
turally imbue a less-correlation property to each sub-network
training. We use the 1x1 group convolution (Xie et al. 2017)
as the first building layer. Additionally, the channel attention
layer® (Woo et al. 2018) is adopted to calibrate feature maps
with negligible extra costs. Note that we involve the channel
shuffle (Zhang et al. 2018b) at the integrated features for
further feature diversity. Finally, the feature processed with
the bilinear pooling (Lin, RoyChowdhury, and Maji 2015;

3Using other attention modules can be further investigated, but
we do not focus here on searching for a better attention module.
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Figure 2: Empirical studies with our proposed method. (a) We compute the correlation (p) and strength (s) using Eq.(4) and Eq.(5),
respectively, and the upper bound of the generalization error by p(1 — s?)/s>. We visualize the measures versus the architectural elements and
different As in the deccorelation loss; (b) top-1 error versus \ in the deccorelation loss; (c) top-1 error versus the number of the sub-networks.
The left side in (a) shows that our architecture contributes to lowering the generalization error bound, and ) in our less-correlated feature
learning drops the bound on the right side. In (b) and (c), we observe training with the sub-networks with A < 0 drops top-1 error.

¢l dim At BP S Dec| FLOPs #Params Top-1 generalization bouncll (Ryu et al. 2019), we adopt the up-
Err. (%) per bound of generalization error to analyze our model. The
11 32 _ _ _ _ 026G 2.55M 2209 strength is defined by the expectation [E of the margin func-
1132 v - - - 1 0266  255M 21.82 tion between model prediction and ground truth label as
1132 v v - - 0.26G  2.56M 21.16 o “
1|64 v v - - 035G 398M | 19.82 s=Ey, vP(Yy=Y)—-P(Yy=J), (4)
2164 v Vv oo- - 0.26G  2.60M 20.14 N
21128 v v - ; 035G 4.11M 18.39 where Y and Y denote the output of a sub-network and
41128 v v - - 1 026G 2.73M 18.74 the ground-truth labels of the data points, respectively. ¢
81128 v v - - | 022G 2.04M | 13892 indicates a sub-network of our network, and J denotes a set
(128 v v v - 102G 204M 18.65 of the labels with the largest probability among non-correct
81128 v v <« v |0nG 204M 16.88 answers. To compute the correlation p, we first define the raw

Table 1: Factor analysis of sub-network’s elements and decorrela-
tion loss. C and ‘dim’ denote the cardinality and channel dimension
of the group convolution. We verify the impact of attention (‘Att’),
bilinear pooling (‘BP’), and the channel shuffle (S). We further
evaluate the impact of training with the decorrelation loss (‘Dec’).
The experiments are performed with ResNet110 on CIFAR100.

Lin and Maji 2017)* for the following final classifier. One
may consider that a simple single-convolutional head after
the global average pooling at the features is sufficient, but
we argue the sort of too-simple architecture (even with a
heavy head) may not promote a less-correlation property to
the features. We provide the empirical backups with the fac-
tor analyses, including the decorrelation loss on CIFAR in
Table 1. Fig.1b shows the schematic illustration; we dub the
proposed architecture LCFNet.

Analysis with Generalization Bound

We revisit the foundation theory of the generalization bound
in Breiman (2001) which primitively investigates model aver-
aging principles in terms of correlation and strength; random
forest gets generalized when decision trees are strengthened
individually and less correlated.

Strength and correlation. Inspired by the theoretical anal-
ysis using the degree of strength and correlation with the

“The bilinear pooling computes the channel-wise dot products as
B(X,Y) = Zz’:lh x1y{ that performs a dense feature association.

margin function v as

V(Y6 V) =1(Y, =Y) - 1(Y, =3),
where I(-) is the indicator function. The correlation p is then
computed by averaging the Pearson correlation coefficient of
1) between all combinations of (¢;, ¢;).

Generalization error bound. The generalization error
bound + is compute with the strength S and correlation p as

v < p(l—s%)/s% (6)

As shown in Eq. (6), the correlation and strength are oppo-
site concepts to achieve a low generalization error, but Ryu
et al. (2019) showed that training to decrease the correlation
results in increased strength. This can be considered evidence
that introducing a less-correlation aspect in training improves
performance. Our conjecture will be experimentally proven
by verifying that the upper bound of generalization error is
significantly reduced (see Fig. 2a). Furthermore, the correla-
tion gets consistently lowered as appending the architectural
elements and the degree of the decorrelation (adjusted by \).
We believe this result is because our network architecture
with sub-networks trained with the decorrelation loss pushes
the model to learn less-correlated and diversified features to
improve the performance.

Experiment

In this section, we first provide the image classification results
with an additional factor analysis of network design. The



Elements BP Att S Dec Ent SE/D | Epochs #1325_ #Layers #Channels A’I(c).pz‘l% ) A’E(c).pz‘s%)
Baseline - - - - - - 50 5 (3.4,6,3) 1024 74.76 92.24
+ BP&ALt v ovoo- - - - 50 5 (3,4,6,3) 1024 76.64 93.10
+ Shuffle v v v - - - 50 5 (3.4,6,3) 1024 76.95 93.16
+ Dec. loss v v v - - 50 5 (3,4,6,3) 1024 77.75 93.43
+ Ent. layer v v v v v - 50 5 (3.4,6,3) 1024 79.04 94.10
+SEResNetD | v v v Vv V v 50 5 (3,4,6,3) 1024 80.31 94.98
LCFNet-S |v v v v v v | 300 3 (3.4,6,3) 1024 81.68 | 95.63

Table 2: Factor analysis on ImageNet. BP, Att, S, Dec, Ent, and SE/D denote the bilinear pooling, attention module, channel shuffle, training
with the decorrelation loss, entanglement layer, and SE (Hu, Shen, and Sun 2018) with design tweaks (He et al. 2019), respectively. #Sub-Net.,
#Layers, and #Channels indicate the number of sub-networks, stage configuration, and the channel dimension of the last stage, respectively.

#Sub- Input Throughput FLOPs #Params Top-1 Top-5
Network ‘ Mot sy oayon sl (img/sec) (G) M)  Acc. (%) Acc. (%)
LCFNet-S 3 224 (3,4,6,3) 1024 1279 5.60 28.94 81.68 95.63
LCFNet-M | 5 256 (3,4,6,3) 1024 740 7.35 33.47 82.63 96.27
LCFNet-L 5 288 (4,5,12,3) 1216 471 15.32  51.58 83.55 96.58

Table 3: Specification of our models. Based on LCFNet-S in Table 2, we scale it up to LCFNet-L by adjusting the design elements. Note
that the configurations shown here are not searched exhaustively but are instantly tuned towards larger models, as provided in the model

configurations that are not changed much from the baseline LCFNet-S.

scaled-up architectures are compared with the state-of-the-art
network architectures on ImageNet. Second, we investigate
whether our method actually learns less-correlated features
and whether it relates to performance in further empirical
studies.

ImageNet Classification

Architectural details. We build our model upon ResNet-
50 with some tweaks; we reduce the channel dimension of
the last three residual blocks to 1024 and exploit SE (Hu,
Shen, and Sun 2018) and design tweaks in He et al. (2019).
As shown in Table 1, bilinear pooling, attention module,
channel shuffling, and decorrelation loss are applied to our
baseline model as shown in Table 2. The resultant model is
dubbed LCFNet-S. To augment our model, we increase 1)
the channels of the ResNet backbone and entanglement layer
to 1216; 2) the number of layers in the third group of the
backbone to 12; 3) the input size as 228 x 228. We use five
residual blocks in the entanglement layer with the identical
channel dimension. We dub this augmented large network
LCFNet-L and the other middle size network as LCFNet-M
depending on the model size (see Table 3). Note that training
runs very quickly (requires only 50 epochs); we believe this
is another advantage of our design.

Factor analysis on sub-network design. We showed how
each element works on CIFAR in Table 1, and we now extend
the study to ImageNet. Table 2 fundamentally follows a simi-
lar accuracy trend to Table 1 as elements are added, and the
effectiveness of the new elements of the entanglement layer
and the SE/ResNetD is also observed. All the experiments
are performed with identical network configurations, such as
the stage configuration and channel dimension.

Comparison with state-of-the-arts on ImageNet. We
compare our proposed models with the recent state-of-the-art
network architectures in terms of accuracy, the number of
parameters, and computational complexity. We compare the
proposed LCFNet with recent network architectures, includ-
ing the CNN architectures of ResNeSt (Zhang et al. 2020),
TResNet (Ridnik et al. 2021), RegNet (Radosavovic et al.
2020); the ViT architectures of DeiT (Touvron et al. 2021),
TNT (Han et al. 2021b), ConViT (d’Ascoli et al. 2021), Pool-
Former (Yu et al. 2021), and XCiT (Ali et al. 2021). We
systematically compare our entire models with the compet-
ing models grouped according to the computational bud-
gets, mainly focusing on throughput. Table 4 shows that our
models have clear advantages in throughput over their coun-
terparts and outperform the competing networks, including
TResNet and ViT-based models.

Applicability to other network architectures. We confirm
how the proposed method works well with different back-
bones such as ResNeXt (Xie et al. 2017) and RegNetY (Ra-
dosavovic et al. 2020) using the same training setup. As
shown in Table 5, the performance is greatly improved when
applying our method. This result verifies the generalization
ability of the proposed method, which we expect it further
enhance the performance of other strong backbones.

Training Setups

ImageNet. Recent state-of-the-art networks (Zhang et al.
2020; Ridnik et al. 2021; Wightman, Touvron, and Jégou
2021b; Ali et al. 2021; Han et al. 2021b; Touvron et al. 2021)
exploit similar training regimes with strong data augmenta-
tions, mostly based on the timm library> (Wightman, Tou-

Shttps://github.com/rwightman/pytorch-image-models/



Network Image  Throughput FLOPs  #Params Top-1 Top-5
Size (img/sec) (G) M) Acc. (%)  Acc. (%)
ResNeSt50-4s2x40d (Zhang et al. 2020) 224 861 4.42 30.42 81.11 95.56
TResNet-M (Ridnik et al. 2021) 224 1248 5.74 31.39 80.80 N/A
ResNeSt-50 (Zhang et al. 2020) 224 1040 5.42 27.48 81.13 N/A
ConViT-S (d’Ascoli et al. 2021) 224 1116 5.35 27.78 81.30 95.7
PoolFormer-S36 (Yu et al. 2021) 224 1072 4.99 30.86 81.40 N/A
LCFNet-S 224 1279 5.60 28.94 81.68 95.63
DeiT-B (Touvron et al. 2021) 224 874 16.85 86.57 81.80 N/A
PoolFormer-M36 (Yu et al. 2021) 224 743 8.79 56.17 82.10 N/A
TNT-S (Han et al. 2021b) 224 463 4.83 23.76 81.50 95.70
TResNet-L (Ridnik et al. 2021) 224 653 10.88 55.99 81.50 N/A
ConViT-B (d’Ascoli et al. 2021) 224 586 16.8 86.54 82.40 95.90
LCFNet-M 256 740 7.35 33.47 82.63 96.27
PoolFormer-M48 (Yu et al. 2021) 224 561 11.57 73.47 82.50 N/A
ResNeSt-101 (Zhang et al. 2020) 256 505 13.41 48.28 83.00 N/A
XCiT-L24 (Ali et al. 2021) 224 364 35.46 189.10 82.90 N/A
TNT-B (Han et al. 2021b) 224 360 13.40 65.41 82.90 96.30
DeiT-B (Touvron et al. 2021) 384 236 49.35 86.86 83.10 N/A
TResNet-M (Ridnik et al. 2021) 448 320 22.95 31.39 83.20 N/A
LCFNet-L 288 471 15.32 51.58 83.55 96.58
RegNetY-12GF (Radosavovic et al. 2020) 224 658 12.11 51.82 80.30 N/A
LCFNet-S' 224 1279 5.60 28.94 81.19 95.55
RegNetY-16GF (Radosavovic et al. 2020) 224 601 15.93 83.59 80.40 N/A
LCFNet-S/256" 256 1015 7.32 28.94 81.82 95.74
RegNetY-32GF (Radosavovic et al. 2020) 224 361 32.31 145.05 81.00 N/A
LCFNet-M' 256 740 7.35 33.47 82.10 95.97

Table 4: ImageNet performance comparison. Our models are compared with the competing SOTA networks on ImageNet. We group
the networks according to the computational budgets they consume. Additionally, we match our training epochs for ours' to compare with
RegNetYs trained for 100 epochs (Radosavovic et al. 2020). We report the accuracies of their original papers, except for ResNeSt50-4s2x40d,
taken from (Wightman, Touvron, and Jégou 2021a). We measure the throughput by ourselves, running on an RTX 3090 GPU.

FLOPs #Params Top-1 Top-5
Wgias (G) M)  Acc. (%) Acc. (%)
ResNeXt 427 250 7806  93.92
LCE-ResNeXt 584 301  80.89  96.13
RegNetY-800MF 080 63 7417  91.81
LCF-RegNetY-800MF 097 9.8 7578 92.81

Table 5: More ImageNet results with our methods. We apply
our proposed sub-network design and learning technique to two
renowned networks ResNeXt (Xie et al. 2017) and RegNet (Ra-
dosavovic et al. 2020). This is to show the applicability of our
method, and the improvements are consistently observed.

vron, and Jégou 2021a). We adopt a similar training regime,
which employs Mixup (Zhang et al. 2018a), CutMix (Yun
et al. 2019), and RandAugment (Cubuk et al. 2019) for
data augmentation and use the cosine learning rate schedul-
ing (Loshchilov and Hutter 2017) with 300 epochs®. We use
512 batch sizes in four GPUs for training.

SWe primarily train our models for 50 epochs for the experiments
in Table 2 and Table 5 except for RegNets. RegNets are trained for
100 epochs to compare by following the training setup in the original
paper (Radosavovic et al. 2020).

CIFAR. We follow the standard 300-epochs training pro-
tocol with SGD (Han, Kim, and Kim 2017; Yun et al. 2019)
with the initial learning rate of 1le—3 decaying by 0.1 at 150
and 225 epochs. We use 64 batch sizes in two GPUs for train-
ing. We use ResNet110, and the aggregated feature inputs
are reduced to 128 dimensions for each sub-network, and
the cardinality for the group convolution is 8. The number of
sub-networks is set to 8, and AL .. in Eq.(3) is configured to
—0.7 for the proposed method.

Further Empirical Studies

On learning less-correlated features. First, we investigate
the impact of the decorrelation loss by visualizing the out-
put features with t-SNE (Van der Maaten and Hinton 2008).
Fig.3 shows the clear trend when using A < 0; larger (in
the negative direction) ) let the model learn less-correlated
features; the performance follows the trend. Next, we validate
the performance concerning A in Eq.(2). As shown in Fig.2b,
we achieve the best performance when the A is near -0.7,
and when A > 0 (identical to the traditional KD loss), the
performance is poorer than (A = 0). Additionally, as shown
in Fig.2c, when the decorrelation loss weight A is -0.7 or
-0.9, the performance improves significantly as the number
of sub-networks increases. Interestingly, the performance is
saturated trained only with three sub-networks without the
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(f) Model averaging

Figure 3: t-SNE visualization of features. We visualize how much the proposed learning method scatters the output features of each
sub-network and the features of individually trained networks. We extract the features from the images in the validation set and distinguish
them from different sub-networks by color. We use features of a ResNet110 for (a) to (e) and eight ResNet65s (to match the computational
costs) for (f). Specifically, (a) eight sub-networks without the decorrelation loss (A = 0); (b), (c), (d), and (e) different weighting parameters
A, respectively; (f) model averaging (i.e., late-fusion) of eight individual features. We observe that 1) accuracy is aligned with the feature
correlation; 2) our proposed learning method (i.e., A > 0) works to increase the feature diversity with lowered correlation; 3) individually
trained networks yield the most correlated features as shown in (f); 4) a proper architectural design can improve this, compare (e) and (f); 5) our
network with the less-correlation learning achieve lowered correlation, see (b), (c), and (d). When A = 0.7, the features get more correlated.

decorrelation loss (A = 0).

On sub-network architecture. Fig.3 manifests that fea-
tures can be learned with a lowered correlation induced ar-
chitecturally (similarly shown in Fig.2a). Comparing Fig.3a
and Fig.3f shows that naively fusing the multiple outputs
fails to avoid learning collapsed features. On the other hand,
our model realizes less-correlation features without using the
decorrelation loss, as shown in Fig.3a.

Comparison with multiple feature aggregation method.
Here, we conduct additional experiments comparing a multi-
ple feature aggregation method to show whether our method
with the lightweight sub-network architecture works well
over the method with heavy and complicated heads. Since
such architectures (Lin et al. 2017; Du et al. 2020) aimed at
different tasks, so for comparison, a milestone work (Lan,
Zhu, and Gong 2018) that also uses multiple high-level
branches is chosen. The branches look similar to our sub-
networks; however, ONE-E uses a copy of fractions in a
backbone network, making the overall model computation-
ally heavy. ONE-E training is performed based on knowledge
distillation to learn similar features at the branches of each
other. We argue that the reported accuracy gain may stem
from the heavy branches; it could learn highly expressively
diversified features yet are highly correlated.

We use the identical architecture in the paper (Lan, Zhu,
and Gong 2018) for training, which is in the publicly re-
leased codebase’ with three branches from the middle layer
of ResNets; ResNet32 (R32) and ResNet110 (R110) are used,
which are the standard network architectures of the CIFAR
training. We train the models for ONE-E and ours with the
identical training setup for a fair comparison. Table 6 shows
that our proposed method with the same number of sub-
networks achieves better performance with less computa-
tional demands.

https://github.com/lan1991xu/one_neurips2018

Top-1  Top-5
Method FLOPs (M) Params (M) Err. (%) Err. (%)
ONE-E (R32) 0.12 1.19 23.98 5.64
LCFNet (R32) 0.08 0.75 21.85 5.14
ONE-E (R110) 0.29 2.96 19.86 4.34
LCFNet (R110) 0.22 2.04 19.03 3.94

Table 6: Comparison with ONE-E. We perform an experimental
comparison of our method with Lan, Zhu, and Gong (2018). Two
baselines ResNet32 (R32) and ResNet110 (R110) are used, and ours
consistently outperform the counterparts.

Conclusion

This paper introduces a new learning method with a network
architecture that leverages lightweight sub-networks. Our
learning method with the newly proposed decorrelation loss
makes a network learn less-correlated features, which boosts
performance due to the improved quality of the aggregated
feature. Our proposed network architecture has been designed
to diversify the features more when applying the proposed
learning method. Additionally, unlike popular feature aggre-
gation networks, our architecture aggregates intermediate
features with the lightweight sub-networks, where the com-
putational budget is significantly low. We have analyzed our
proposed method’s effectiveness based on the correlation
and strength theory. We found that the generalization bound
has been consistently reduced for each proposed element;
the strength and correlation are increased and decreased, re-
spectively. Finally, our network architecture has significantly
outperformed the recent state-of-the-art CNNs and ViTs on
ImageNet evaluation. Our proposed method can be applied to
any network architecture to improve performance. We believe
the proposed learning method and design paradigm facilitate
future research.
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