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ABSTRACT

In recent years, diffusion-based models have demonstrated exceptional performance
in searching for simultaneously stable, unique, and novel (S.U.N.) crystalline
materials. However, most of these models don’t have the ability to change the
number of atoms in the crystal during the generation process, which limits the
variability of model sampling trajectories. In this paper, we demonstrate the severity
of this restriction and introduce a simple yet powerful technique, mirage infusion,
which enables diffusion models to change the state of the atoms that make up the
crystal from existent to non-existent (mirage) and vice versa. We show that this
technique improves model quality by up to ×2.5 compared to the same model
without this modification. The resulting model, Mirage Atom Diffusion (MiAD), is
an equivariant joint diffusion model for de novo crystal generation that is capable
of altering the number of atoms during the generation process. MiAD achieves
an 8.2% S.U.N. rate on the MP-20 dataset, which substantially exceeds existing
state-of-the-art approaches.

1 INTRODUCTION

Deep generative modeling opens new horizons of possibilities across various fields. Its impact is
particularly profound in the natural sciences, where generative models can act as powerful exploration
engines (Jumper et al., 2021) capable of dramatically accelerating scientific and technological
progress. One area where this potential is especially evident is materials science. Despite the vast
number of hypothetically possible materials, only a small fraction are capable of stable existence
under physical constraints, the underlying principles of which remain largely unknown; this poses a
significant challenge to the discovery of new materials.

Several approaches to deep generative modeling, including Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014; Karras et al., 2019), Variational Autoencoders (VAEs) (Kingma & Welling,
2013), Large Language Models (LLMs) (Devlin et al., 2019; Touvron et al., 2023), as well as
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020; Vahdat et al., 2021)
and Flow-Matching models (Lipman et al., 2022) shown strong performance in generating complex
objects. The latter two paradigms have demonstrated their potential in handling the trade-off between
object quality and generation diversity (Xiao et al., 2022). These models are the same in organizing
the generation process as a trainable, iterative process, which progressively refines the output over a
sequence of steps.

Applying diffusion models to data from the natural sciences is non-trivial due to the need to encap-
sulate specific properties within a trainable dynamic framework. Multiple approaches are tailored
for this objective, each addressing a particular class of properties. Currently, diffusion models can
operate in non-Euclidean spaces (Huang et al., 2022; De Bortoli et al., 2022; Chen & Lipman, 2023;
Okhotin et al., 2023; Hoogeboom et al., 2021) and exhibit symmetrical properties (Hoogeboom et al.,
2022; Klein et al., 2023).

In recent years, diffusion models have demonstrated their potential in the domain of material science.
The DiffCSP model (Jiao et al., 2024a) has shown ability to generate 3D crystal structures while
effectively capturing the intrinsic regularities of the crystal manifold. Additionally, the MatterGen
model (Zeni et al., 2024) demonstrated that diffusion models can generate stable and novel materials
– an essential quality characteristic in this task (Kazeev et al., 2025). While it is natural to expect
generative models to generalize beyond the training data and create novel samples, this objective
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can sometimes conflict with the training loss, which often emphasizes fidelity to the observed data
distribution. Such tension can negatively influence the model’s ability to explore new regions of the
data space.

However, by design, these models are restricted to generating crystals with a fixed number of atoms,
which limits their ability to perform intuitive operations such as adding or removing specific atoms
during generation. As we show in Section 6, this constraint reduces the model’s flexibility and hinders
its ability to explore a broader range of plausible crystal structures, impacting both the diversity and
quality of the generated outputs.

In this paper, we present the next steps toward improving diffusion models for crystal generation and
demonstrate their significance in the search for novel and stable materials:

• We propose a simple yet powerful technique, mirage infusion, which broadens the original
space of 3D crystal structures, enabling the diffusion model to modify the number of atoms
in the crystal during the generation process.

• We examine the sensitive parameters of the proposed technique and their impact on the
quality of the generative model through a series of experiments.

• We demonstrate that the proposed approach significantly enhances the performance of the
base joint diffusion model and substantially surpasses the previous state-of-the-art model.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

A diffusion model is a generative model that consists of forward and backward processes:

q(x0:T ) = q(x0)

T∏
t=1

q(xt|xt−1), pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt),

where q(x0) represents the data distribution, q(xt|xt−1) denotes the transition kernel which gradually
adds noise to data objects, p(xT ) is the prior distribution from which the diffusion model begins
generation, and pθ(xt−1|xt) is the trainable transition kernel used for step-by-step object denoising
during the sampling procedure. The original training objective for the backward process is the
Evidence Lower Bound (ELBO). Alternatively, in continuous spaces, diffusion models can be
reformulated using score-matching. In this framework, the model is trained to approximate the
conditional score ∇xt

log q(xt|x0), while sampling relies on the unconditional score ∇xt
log q(xt).

Finally, for data with complex internal structures, one can factorize objects into several components
and define a separate diffusion process for each of them. As an example, crystals can be factorized
into three components: lattice matrix, fractional coordinates of atoms and atom types, where each
component belongs to a space with a specific geometry that differs from the others. In the model,
which we extend in this work, the crystal structure is decomposed into a lattice matrix, fractional
atomic coordinates, and atom types — each residing in a space with distinct geometric properties.
In this setting, the sampling procedure requires simultaneous denoising of all these components.
Therefore, we can use a single neural network, which takes the noisy versions of all object components
and denoises them according to their respective diffusion processes. In this way, the diffusion model
for each component is conditioned on the noisy versions of all object components forming a joint
diffusion model. The resulting training objective is a weighted sum of the objectives from all diffusion
processes.

2.2 CRYSTAL REPRESENTATION

The representation of a 3D crystal can be reduced to the representation of a unit cell, with the
entire crystal being an infinite repetition of its unit cell. A unit cell is represented by the lattice
L = [l1, l2, l3] ∈ R3×3 — three basis vectors that define its geometry, F ∈ [0, 1)Natoms×3 — the
fractional coordinates of atoms within the unit cell, and A ∈ {1, . . . , Ntypes}Natoms — the types of
atoms. The number of atoms in the unit cell, Natoms ∈ N+, varies depending on the specific crystal.
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The entire crystal is an infinite periodic structure, defined as a set of atoms given by:

{(ai, xi) | xi = (fi + k)L, ∀k ∈ Z3},

where each atom is represented by a pair consisting of its type ai and its Cartesian coordinates xi.
Thus, the task of generating a crystal reduces to generating the tripletM = (L,F,A).

2.3 DIFFUSION MODEL FOR CRYSTALS

The joint diffusion model over crystal structuresM = (L,F,A) is proposed in Jiao et al. (2024a);
Zeni et al. (2024). In this model, the forward process is factorized across the lattice L, fractional
coordinates F , and atoms types A:

q(Mt|Mt−1) = q(Lt|Lt−1)q(Ft|Ft−1)q(At|At−1),

whereM0 = (L0, F0, A0) denotes a clean crystal, whileMt = (Lt, Ft, At) represents an interme-
diate noisy version of the crystal.

2.3.1 DIFFUSION COMPONENTS

Lattice Given that L0 ∈ R3×3, we can employ DDPM (Ho et al., 2020) with Gaussian distributions:

q(Lt|Lt−1) = N
(
Lt|

√
βtLt−1,

√
1− βtI

)
p(LT ) = N (LT |0, I)

pθ(Lt−1|Mt) = N
(
Lt−1|µθ(Mt, t), σ

2
t I

)
,

where βt ∈ R+ – sets the scale of noise for step t and pθ(Lt−1|Mt) is conditioned on the noisy
versions of all crystal components, as it is a joint diffusion model. The training objective for this
diffusion component is defined as a weighted ELBO, which reduces to the following form:

LL =

T∑
t=2

γtEM0∼q(M0),Mt∼q(Mt|M0)DKL [ q(Lt−1|Lt, L0) || pθ(Lt−1|Mt) ]

Fractional coordinates The space of fractional coordinates is periodic. Therefore, we need to
utilize a diffusion model that can accommodate data of this nature. One possible option is to use a
Wrapped Normal distribution for each coordinate of each atom:

q(Ft|Ft−1) =WN
(
Ft|Ft−1, (σ

2
t − σ2

t−1)I
)

p(FT ) = U (FT |0, 1) ,

where σt ∈ R+ – set the scale of noise for step t. A particularly suitable and efficient method for
training the backward process in this model is to adopt Riemannian score matching (De Bortoli et al.,
2022) with the following objective:

LF = EM0∼q(M0),t∼U(1,T ),Mt∼q(Mt|M0)||∇Ft log q(Ft|F0)− sθ(Mt, t)||22,

where sθ is a neural network that approximates the unconditional score for the generating procedure
proposed by Jiao et al. (2024a)

Atom types The atom type is a discrete variable drawn from a fixed set of Ntypes possible elements.
We use D3PM (Austin et al., 2023) for this component:

q(At,i|At−1,i) = Cat
(
At,i|QtA

onehot
t−1,i

)
p(AT,i) = Cat (AT,i|1/Ntypes)

pθ(At−1,i|Mt) = Cat (At−1,i|cθ,i(Mt, t)) ,

where At,i – the atom i in the crystalMt, Aonehot
t−1,i – zero vector of size Ntypes with 1 on position

At−1,i, 1 – unit vector of size Ntypes, Qt ∈ RNtypes×Ntypes
+ – matrix that gradually spreads probability

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the proposed mirage infusion technique.

mass across all types on each step t, cθ,i – prediction of probabilities of each type for atom i. The
training objective takes the following form:

LA =

T∑
t=2

EM0∼q(M0),Mt∼q(Mt|M0)

Natoms∑
i=1

DKL [ q(At−1,i|At,i, A0,i) || pθ(At−1,i|Mt) ]

Although the model is capable of generating crystals with different numbers of atoms, this number
must be specified before the generation process begins.

The final objective for this joint diffusion model is a weighted sum of the objectives for the components
L, F , and A:

L = κ1LL + κ2LF + κ3LA → min
θ
,

where the coefficients κi > 0 for i = 1, 2, 3 affect component prioritization, provided that we use the
same neural network for making predictions.

2.3.2 INVARIANCES

The joint diffusion model outlined in the previous section is applied within the domain of crystals,
which possesses distinct properties referred to as symmetries. To ensure these symmetries are
preserved, the model must be parametrized in a particular manner. Further details regarding the
specific types of symmetries present in the domain of crystals, as well as the organization of diffusion
components required to achieve invariance to these symmetries, are provided in Appendix A.

3 MIRAGE INFUSION

Motivation In the joint diffusion model, the number of atoms in a crystal Natoms must be fixed in
advance during the generation procedure to sampleMT from the prior distribution:

MT ∼ p(MT |Natoms) = p(LT , FT , AT |Natoms) = p(LT )p(FT |Natoms)p(AT |Natoms), (1)

where Natoms is typically drawn from a categorical distribution p(Natoms), estimated from the training
data (Jiao et al., 2024a), and it usually spans a limited range of discrete values (e.g., 1 to 20).
Consequently, the number of atoms in a crystal’s unit cell is fixed during the whole process of
generation, which, as we show in the following sections, crucially limits the model’s flexibility. To
address this limitation, we introduce a framework that supports adding or removing atoms during
generation.

Core idea Traditional diffusion models cannot change object size during generation. To enable
this, we reinterpret the addition and removal of atoms as transitions between different types of atoms.
Specifically, we introduce mirage atoms – placeholder atoms that may either materialize into real
atoms or vanish during the generation process.
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In a crystal representation M, mirage atoms are distinguished by assigning them a special type.
Since F is continuous, it cannot be used to flag mirage atoms directly. However, A is discrete, so we
designate a new atom type 0 to represent a mirage atom.

Method To support mirage atoms, we define an expanded crystal domainM = (L,F ,A), where
all objects have a fixed number of atoms Nm that is greater than or equal to the maximum number of
atoms in a crystal in the training dataset. Mirage atoms are simply atoms with type 0 in this domain.

We define two mappings:

• Infusion: Adds mirage atoms to a real crystalM. The original atoms are kept unchanged,
while the additional atoms are initialized with type 0, and fractional coordinates are drawn
from the uniform distribution over the unit cell U(0, 1)3.

• Reduction: Removes mirage atoms from expanded crystalM by filtering out all atoms
with type 0, restoring the original representationM.

Algorithm 1 MiAD Training
1: repeat
2: Sample t ∼ U(1, T )
3: SampleM0 ∼ q(M0)
4: Infuse mirage atomsM0 →M0

5: Add noiseMt ∼ q(Mt|M0)

6: Minimize κ1LL + κ2LM0

F
+ κ3LA

7: until Convergence

Algorithm 2 MiAD Sampling

1: SampleMT ∼ q(MT )
2: for t← T to 1 do
3: DenoiseMt−1 = q(Mt−1|Mt)
4: end for
5: ReduceM0 →M0

Using this setup, we can train a diffusion model in the ex-
panded domain. The model architecture remains nearly
the same, with the only change being an extra atom type
(type 0) in the D3PM diffusion component for atom
types.

In training, crystal from the training dataM0 is infused
with the mirage atoms with randomly initialized frac-
tional coordinates, effectively augmenting the dataset.
The lattice loss remains unchanged. The atom-type loss
remains the same as well, training the model to predict
real and mirage atom types in the final structure. For
fractional coordinates loss, we ignore the mirage atoms
defined by the mirage’s mask M0 = {i | A0,i ̸= 0, i =

1, Nm} for the original crystalM0, since they have no
ground-truth positions. This allows the model to freely
adjust their positions and focus learning only on real
atoms. The loss is masked accordingly:

LM0

F
= EM0∼q(M0),t∼U(1,T ),Mt∼q(Mt|M0)

∑
i∈M0

||∇F t,i
log q(F t|F 0)− sθ,i(Mt, t)||22, (2)

where q(M0) is a distribution of crystals after the infusion of mirage atoms, and sθ,i(Mt, t) is a
score for the fractional coordinates of atom i.

The sampling algorithm remains the same, except for two differences: (1) at the start of generation,
all crystals are sampled with the same number of atoms Nm (not with Natoms ∼ p(Natoms) as in 1),
(2) at the end of generation we need to apply the reduction operator to project the crystal onto the
original domain.

Importantly, this method preserves existing symmetries because lattice representations remain un-
changed and mirage atoms follow the same spatial rules as real atoms.

We call the proposed technique mirage infusion. It expands the space of generative trajectories
available to the model, increasing its flexibility and expressiveness. We outline the training procedure
in Algorithms 1, and the sampling procedure in Algorithm 2, as well as their schematic visualization
in Figure 1.

Discussion There are several design choices when defining the expanded domain. In our setup, we:
(1) initialize mirage atoms with uniformly random coordinates. This choice ensures that mirage atoms
can occupy arbitrary positions in the unit cell and introduces variability into the generation process.
(2) Mask the loss for mirage atoms during training to avoid learning from noise. This allows the
model to focus on denoising atoms that exist in the final structure while giving it the freedom to learn
when and how mirage atoms should transform into real ones during generation. Skipping the mask
would force the model to predict a zero score for mirage atoms, potentially reducing expressiveness.

5
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A similar idea was proposed independently by Schneuing et al. (2025) for structure-based drug
design. In their method, mirage atom coordinates are initialized at the object’s center of mass, and
no loss masking is applied. While both methods share conceptual goals, we argue that our design is
more principled and flexible. Empirical comparisons support this claim, showing that our approach
achieves higher generative quality (see Appendix B.3).

4 RELATED WORK

The field of deep generative modeling in material science has been rapidly growing in recent years.
State-of-the-art approaches use a multi-step procedure for generating crystals. In this review, we
organize the works by their treatment of the number of atoms during this generation process.

Models with a constant number of atoms directly sampled from the prior distribution; their types
and coordinates are gradually refined during the generation process along with the lattice. DiffCSP
(Jiao et al., 2024a) is the first pure diffusion model for crystal generation, our work directly extends
their approach. Most parts of this model are described in Section 2; briefly, it is a joint diffusion
model that operates with the crystal space represented as a triplet of lattice, fractional coordinates,
and atom types. The following models fall within the same paradigm: MatterGen (Zeni et al., 2024),
FlowMM (Miller et al., 2024), CrysBFN (Wu et al., 2025), TGDMat (Das et al., 2025), CrystalFlow
(Luo et al., 2025). DiffCSP++ (Jiao et al., 2024b) is a development of DiffCSP that constrains the
diffusion process so that the crystal has predefined Wyckoff symmetries, for de novo generation they
are sampled from the training dataset. ADiT (Joshi et al., 2025), uses a Transformer instead of a
GNN as the denoising model.

Models with two stages, where the first stage is used to generate an intermediate crystal representation
that includes the number of atoms, from which the structure is reconstructed during the second stage,
where the number of atoms is fixed: CDVAE (Xie et al., 2022), FlowLLM (Sriram et al., 2024),
WyFormer (Kazeev et al., 2025). All these models combine non-diffusion generative models in the
first stage with diffusion-based refinement in the second stage.

Models that change the number of atoms during the entire generation process, i.e., the number of
atoms is generated jointly with all other components of the crystal.

The first subgroup consists of methods for changing the representation of 3D crystal structures,
which allows them to vary the number of atoms during the generation process, Uni-3DAR (Lu et al.,
2025), UniMat (Yang et al., 2024), WyckoffDiff (Kelvinius et al., 2025). Autoregressive models
naturally fall into this subgroup: CrystalFormer (Cao et al., 2024), CrystaLLM (Antunes et al., 2024),
LLaMA-2 (Gruver et al., 2024).

The second subgroup consists of Crystal-GFN (AI4Science et al., 2023) and SHAFT (Nguyen et al.,
2024) – policies, which are trained using reward functions and operate in a space of 3D crystal
representations along with their symmetry groups.

The third subgroup consists of models, which indirectly change the number of atoms during generation
via changing Wyckoff positions site symmetry: SymmCD (Levy et al., 2025) and SymmBFN (Ruple
et al., 2025). The diffusion/flow process, however, only deals with an asymmetric unit of fixed size.

The proposed categorization underscores the inherent limitations of diffusion-like methods in ac-
commodating the insertion and removal of atoms during the generation process. This finding is
particularly noteworthy, as leading approaches such as DiffCSP, FlowLLM, WyFormer, and ADiT
are either partially or entirely based on the diffusion paradigm.

5 METRICS

De novo crystal generation serves as the first step of the material discovery pipeline. Xie et al. (2022)
proposed several metrics for evaluating generative models in this task: Structural and Compositional
Validity, Coverage-Recall, Coverage-Precision, and Wasserstein distances between the distributions
of various properties in the training set and those of crystals produced by the model. Although
these metrics have become widespread tools for model comparison, they have severe limitations
that constrain their applicability to analyzing the performance of modern generative models. We
report MiAD’s results under these metrics, as well as our arguments against their use in their current
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form, in Appendix E. Among existing approaches for comparing generative models in de novo
crystal generation, we focus on S.U.N. (Zeni et al., 2024) — the proportion of materials that are
simultaneously stable, unique and novel. This is one of the most reasonable measures of a generative
model’s performance, as it directly quantifies the model’s utility for materials discovery.

Novelty Represents the fraction of the generated materials that are not present in the training dataset.
Following all the baselines, we use StructureMatcher from the pymatgen package (Ong et al.,
2013) with the default parameters.

Uniqueness As the number of generated materials grows, a model starts to repeat itself. Uniqueness
is the fraction of unique materials among generated, also estimated with StructureMatcher.

Stability To be useful, a material must actually exist under normal conditions. Ab initio prediction
of experimental stability is an open research question (Tolborg et al., 2022; Sun et al., 2016) with
various trade-offs between the accuracy and computational cost possible. Again, we follow state-of-
the-art ML baselines (Miller et al., 2024; Kazeev et al., 2025; Zeni et al., 2024; Joshi et al., 2025) and
use energy above convex hull Ehull as the stability measure. There are two important nuances.

(1) Stability condition If a material has positive Ehull, this indicates that the same set of atoms can
be rearranged into a known different configuration with a lower potential energy. This, however,
does not necessarily mean that the higher-energy material will not exist under normal conditions; for
example, both graphite and diamond do. We, therefore, measure the number of both stable materials
with Ehull < 0 eV that are highly likely to exist; and metastable materials with Ehull < 0.1 eV, which
are likely, but not certain to exist; the choice of the threshold follows Joshi et al. (2025).

(2) Energy computation method Density Functional Theory (DFT) (Kohn & Sham, 1965) is the ab
initio method that has been used to obtain the energy values and structures in Materials Project (Jain
et al., 2013b), used both as training data and convex hull. We use DFT to support the main claims
of our paper, to evaluate the performance of MiAD, and compare it to the baselines in Table 1; the
computation details are described in Appendix D. Due to the large computational cost of DFT, not all
baseline works use it for stability evaluation, some opt for Machine Learning Interatomic Potentials
(MLIPs). MLIPs are a rapidly advancing research area, useful for stability estimation (Riebesell et al.,
2023), but still fall short of DFT accuracy (Deng et al., 2025), as evident by S.U.N. values difference
for the same models in Tables 1 and 2. We use two MLIP models, CHGNet (Deng et al., 2023) and
eq-V2 (Barroso-Luque et al., 2024), for ablation studies and for a supplementary comparison with
baseline methods for which DFT data are not available. In the cases of DFT or CHGNet, we first
prerelax crystals via CHGNet for 1500 steps, while in the cases of eq-V2, we prerelax via eq-V2 for
100 steps.
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Figure 2: Comparison of MiAD (DiffCSP with
mirage infusion) and DiffCSP in terms of stabil-
ity, uniqueness, novelty, and S.U.N. Stability is
estimated via eq-V2.

In our experimental evaluation, we aim to high-
light the importance of the model’s capability to
modify the number of atoms during the genera-
tive process. The proposed approach is a combi-
nation of the DiffCSP model Jiao et al. (2024a)
with the proposed mirage infusion technique (see
Section 3). To isolate the effect of this technique,
we retain an identical neural network architecture,
thereby minimizing confounding variables.

However, it should be noted that the proposed
model incurs higher computational costs, at-
tributable to the increased average number of
atoms per generated crystal. Additionally, mi-
rage infusion necessitates a greater number of
optimization iterations to attain optimal perfor-
mance. All experiments are conducted using the
MP-20 dataset (Jain et al., 2013a), and results are
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Table 1: Crystal generation comparison via S.U.N. based on DFT. We report metastability,
M.S.U.N., stability, and S.U.N. for 10 000 sampled crystals. For clarity in evaluating the model’s
quality, we also report the Unique&Novel rate separately for metastable and stable crystals, respec-
tively. MiAD outperforms all existing approaches in terms of M.S.U.N. and S.U.N. DiffCSP &
FlowMM results are taken from Miller et al. (2024), FlowLLM Sriram et al. (2024), ADiT Joshi et al.
(2025); WyFormer computed by us from the DFT structures provided by the authors.

Metastability (Ehull < 0.1) Stability (Ehull < 0.0)

Model Metastable (%) ↑ Unique&Novel (%) ↑ M.S.U.N. (%) ↑ Stable (%) ↑ Unique&Novel (%) ↑ S.U.N. (%) ↑

DiffCSP - - - 5.0 66.0 3.3
FlowMM 30.6 73.5 22.5 4.6 60.9 2.8
FlowLLM 66.9 39.3 26.3 13.9 33.8 4.7
WyFormer 30.5 89.8 27.4 5.2 92.3 4.8

MP20-only ADiT 81.6 31.8 25.9 14.1 33.3 4.7
MP20-only ADiT (32M) 71.1 53.6 38.1 12.8 50.8 6.5

Jointly trained ADiT 81.0 34.8 28.2 15.4 34.4 5.3

MiAD 73.5 59.4 43.6 12.5 65.2 8.2

Table 2: Crystal generation comparison via S.U.N. based on MLIPs. We report stability and
S.U.N. estimated using CHGNet and eq-V2 for 10 000 sampled crystals. For clarity in evaluating the
model’s quality, we also report the Unique&Novel rate among stable crystals. MiAD outperforms all
existing approaches in terms of both variants of S.U.N. Results for eq-V2 are computed by us from
the structures provided by the authors, whereas results for CHGNet are taken from Levy et al. (2025)
and Ruple et al. (2025).

eq-V2 (Ehull < 0.0) CHGNet (Ehull < 0.0)

Model Stable (%) ↑ Unique&Novel (%) ↑ S.U.N. (%) ↑ Stable (%) ↑ Unique&Novel (%) ↑ S.U.N. (%) ↑

CDVAE - - - 4.4 96.4 4.3
DiffCSP 3.8 66.6 2.5 11.3 78.8 8.9

DiffCSP++ 2.9 73.5 2.1 11.4 75.9 8.6
FlowMM 2.0 70.4 1.4 9.1 71.7 6.5
SymmCD 2.8 70.3 2.0 9.3 73.5 6.9

SymmBFN - - - 11.8 75.4 8.9
MatterGen MP-20 2.5 73.6 1.8 9.7 83.5 8.1

MiAD 9.7 57.0 5.5 19.8 65.2 12.9

assessed using various versions of the S.U.N. metric (see Section 5). Other experimental details are
provided in Appendix C.

Appendix B provides a detailed exposition of key design choices underlying the mirage infusion
technique. Specifically, we illustrate that, within the proposed definition of the expanded domain,
there exists flexibility in selecting Nm, the total number of real and mirage atoms for crystals in the
expanded domain. Moreover, mirage infusion influences the scaling of loss terms associated with
fractional coordinates and atom types. Our analysis reveals that suboptimal weighting of these loss
components in the joint diffusion model can have a nontrivial impact on overall model quality. As
discussed in Section 4, alternative formulations of mirage infusion have been proposed. We present
a comparison between our definition and a contemporary variant, underscoring the critical role of
expanded domain design and loss function modifications. Lastly, we compare the final version of
mirage infusion with the baseline model without these modifications, thereby demonstrating the
substantial benefits of the proposed approach simultaneously in stability, uniqueness, and novelty
rate (see Figure 3). This ablation is performed using S.U.N., where stability is estimated using
eq-V2 (Barroso-Luque et al., 2024) due to computational constraints.

We designate the finalized model as MiAD (Mirage Atom Diffusion) and benchmark its performance
against state-of-the-art methods for de novo crystal generation. Multiple versions of the S.U.N. metric
are employed to facilitate comprehensive comparisons across a broad range of existing models. It
should be noted that we do not compare against studies that lack S.U.N. metric evaluations.

Comparison in Table 1 presents the results, demonstrating MiAD performance against existing
approaches, with respect to the S.U.N. metric, where stability is assessed via DFT (Kohn & Sham,
1965) according to the protocol described in Appendix D. As outlined in Section 5, this configuration
represents the most rigorous S.U.N. evaluation and currently prevails over all other approaches. While
MiAD exhibits a lower fraction of stable crystals compared to ADiT (Joshi et al., 2025), this is

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

attributable to the tendency of this model to replicate training set samples. Consequently, stability
alone is insufficient as a measure of generative model quality. At the same time, MiAD exhibits a
lower fraction of unique and novel crystals among stable compared to WyFormer, while exceeding
the last one in terms of stability rate. Therefore, MiAD achieves superior overall S.U.N. performance
relative to all baselines (+25% relative to the closest competing method) due to the best trade-off
between stability, uniqueness, and novelty. Another significant observation is that the incorporation
of mirage infusion enhances the performance of the original DiffCSP model by up to ×2.5 times,
representing a substantial improvement.

Furthermore, some works only report S.U.N. computed with MLIPs, presumably due to computational
constraints. MiAD comparison to them is presented in Table 2; that MiAD shows the best performance
there as well.

Finally, we provide additional analyses of the diversity of MiAD’s generations. In Appendix F, we
demonstrate that MiAD changes the number of atoms during generation and successfully produces
S.U.N. crystals with varying numbers of atoms. In Appendix G, we provide the distributions of
space groups for modern generative models and verify that MiAD preserves diversity in these terms.
The scalability of the proposed model on larger datasets is demonstrated in Appendix H, where we
compare MiAD with MatterGen on the Alex-MP20 dataset (Zeni et al., 2024).

7 DISCUSSION

Conclusion The categorization provided in Section 4 offers valuable insights into the potential
applicability of the proposed technique across a range of models within the domain of de novo
material generation. Beyond DiffCSP, which serves as the foundation for the model introduced
in this work, the mirage infusion technique can be directly implemented, without modification,
in MatterGen, FlowMM, and CrystalFlow, given that these models employ an identical crystal
representation and share the same factorization of the loss function. Additionally, we hypothesize that
an adapted version of this technique could be extended to models such as ADiT, CDVAE, FlowLLM,
SymmCD, and SymmBFN, although further investigation is required to assess its effectiveness, and
the eventual impact in these cases remains uncertain. At the same time, in Section 6 we present MiAD,
demonstrating that mirage infusion gives a substantial boost in quality for the base joint diffusion
model and outperforms existing state-of-the-art approaches. This improvement demonstrates the
potential of approaches directed at the modification of the space with which a particular diffusion
model works.

Limitations The proposed technique, mirage infusion, demonstrates a substantial improvement in
the specific joint diffusion model for crystal generation, as evidenced by the S.U.N. metric. Neverthe-
less, further research is essential to investigate various adaptations of this technique, particularly its
application to other established generative models in the domain of de novo crystal generation, as
well as in other areas of generative modeling, to more comprehensively assess the methodology’s
position within the broader field. Additionally, the field of de novo crystal generation requires the
development of new metrics capable of evaluating the diversity of existing generative models from a
wider range of perspectives, thereby enhancing the understanding of the properties of both existing
and newly generative models. At present, the most effective available metric is employed to assess
the impact of the proposed technique, with a primary focus on illustrating its effects in this particular
context.

Societal impact Mirage Atom Diffusion advances de novo crystalline material generation by letting
diffusion models vary atom counts during synthesis, boosting diversity and quality and accelerating
discoveries for clean energy, electronics, and medicine. Its compatibility with multiple generative
frameworks broadens access. But greater flexibility brings risks: potential design of hazardous
or harmful materials without strong oversight, bias from narrow metrics like S.U.N., and high
environmental and financial costs to validate many candidates. Growing model complexity also
heightens concerns over interpretability, reproducibility, and equitable compute access.

9
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Daniel Levy, Siba Smarak Panigrahi, Sékou-Oumar Kaba, Qiang Zhu, Kin Long Kelvin Lee, Mikhail
Galkin, Santiago Miret, and Siamak Ravanbakhsh. Symmcd: Symmetry-preserving crystal
generation with diffusion models, 2025. URL https://arxiv.org/abs/2502.03638.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Shuqi Lu, Haowei Lin, Lin Yao, Zhifeng Gao, Xiaohong Ji, Weinan E, Linfeng Zhang, and Guolin
Ke. Uni-3dar: Unified 3d generation and understanding via autoregression on compressed spatial
tokens, 2025. URL https://arxiv.org/abs/2503.16278.

Xiaoshan Luo, Zhenyu Wang, Qingchang Wang, Jian Lv, Lei Wang, Yanchao Wang, and Yanming
Ma. Crystalflow: A flow-based generative model for crystalline materials, 2025. URL https:
//arxiv.org/abs/2412.11693.

Benjamin Kurt Miller, Ricky T. Q. Chen, Anuroop Sriram, and Brandon M Wood. Flowmm:
Generating materials with riemannian flow matching, 2024. URL https://arxiv.org/
abs/2406.04713.

Tri Minh Nguyen, Sherif Abdulkader Tawfik, Truyen Tran, Sunil Gupta, Santu Rana, and Svetha
Venkatesh. Efficient symmetry-aware materials generation via hierarchical generative flow net-
works, 2024. URL https://arxiv.org/abs/2411.04323.

Andrey Okhotin, Dmitry Molchanov, Vladimir Arkhipkin, Grigory Bartosh, Viktor Ohanesian, Aibek
Alanov, and Dmitry Vetrov. Star-shaped denoising diffusion probabilistic models, 2023. URL
https://arxiv.org/abs/2302.05259.

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher,
Shreyas Cholia, Dan Gunter, Vincent L Chevrier, Kristin A Persson, and Gerbrand Ceder. Python
Materials Genomics (pymatgen): A robust, open-source python library for materials analysis.
Computational Materials Science, 68:314–319, 2013.

Janosh Riebesell, Rhys EA Goodall, Philipp Benner, Yuan Chiang, Bowen Deng, Alpha A Lee,
Anubhav Jain, and Kristin A Persson. Matbench Discovery–a framework to evaluate machine
learning crystal stability predictions. arXiv preprint arXiv:2308.14920, 2023.

Laura Ruple, Luca Torresi, Henrik Schopmans, and Pascal Friederich. Symmetry-aware bayesian
flow networks for crystal generation, 2025. URL https://arxiv.org/abs/2502.03146.

Arne Schneuing, Ilia Igashov, Adrian W. Dobbelstein, Thomas Castiglione, Michael M. Bronstein,
and Bruno Correia. Multi-domain distribution learning for de novo drug design. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=g3VCIM94ke.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Anuroop Sriram, Benjamin Kurt Miller, Ricky T. Q. Chen, and Brandon M. Wood. Flowllm: Flow
matching for material generation with large language models as base distributions, 2024. URL
https://arxiv.org/abs/2410.23405.

Wenhao Sun, Stephen T Dacek, Shyue Ping Ong, Geoffroy Hautier, Anubhav Jain, William D
Richards, Anthony C Gamst, Kristin A Persson, and Gerbrand Ceder. The thermodynamic scale of
inorganic crystalline metastability. Science advances, 2(11):e1600225, 2016.

12

https://link.aps.org/doi/10.1103/PhysRevB.54.11169
https://arxiv.org/abs/2502.03638
https://arxiv.org/abs/2503.16278
https://arxiv.org/abs/2412.11693
https://arxiv.org/abs/2412.11693
https://arxiv.org/abs/2406.04713
https://arxiv.org/abs/2406.04713
https://arxiv.org/abs/2411.04323
https://arxiv.org/abs/2302.05259
https://arxiv.org/abs/2502.03146
https://openreview.net/forum?id=g3VCIM94ke
https://openreview.net/forum?id=g3VCIM94ke
https://arxiv.org/abs/2410.23405


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kasper Tolborg, Johan Klarbring, Alex M Ganose, and Aron Walsh. Free energy predictions for
crystal stability and synthesisability. Digital Discovery, 1(5):586–595, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023. URL https://arxiv.org/abs/2302.13971.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34, 2021.

Hanlin Wu, Yuxuan Song, Jingjing Gong, Ziyao Cao, Yawen Ouyang, Jianbing Zhang, Hao Zhou,
Wei-Ying Ma, and Jingjing Liu. A periodic bayesian flow for material generation, 2025. URL
https://arxiv.org/abs/2502.02016.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion gans, 2022. URL https://arxiv.org/abs/2112.07804.

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crystal diffusion
variational autoencoder for periodic material generation, 2022. URL https://arxiv.org/
abs/2110.06197.

Sherry Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor Mordatch,
and Ekin Dogus Cubuk. Scalable diffusion for materials generation, 2024. URL https://
arxiv.org/abs/2311.09235.
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A CRYSTAL INVARIANCES

A.1 SYMMETRIES OF CRYSTAL STRUCTURE DISTRIBUTION

The space of 3D crystal structures is governed by symmetries that impose stringent constraints
and play a crucial role in directing the generation process from the distribution p(M). The model,
proposed in Jiao et al. (2024a) and described in Section 2.3, focuses on the following symmetries:

Permutation invariance: ∀ permutation P ∈ SN =⇒ p(L,FP,AP ) = p(L,F,A)

O(3) invariance: ∀ orthogonal transformation Q ∈ R3×3 =⇒ p(QL,F,A) = p(L,F,A)

Periodic translation invariance: ∀ translation τ ∈ R1×3 =⇒ p(L,w(F + 1τ), A) = p(L,F,A)

Where w(F ) = F − ⌊F ⌋ ∈ [0, 1)Natoms×3 returns the fractional part of each element in F and
1 ∈ RNatoms×1 is a unit vector.

Informally, each symmetry signifies that performing a particular transformation on a crystal does not
alter its likelihood under the distribution p(M). These properties provide a strong inductive bias and
can be methodically integrated into the diffusion model by design.

A.2 INVARIANT DIFFUSION MODELS

A diffusion model pθ(x0) is said to be invariant with respect to the symmetry group G if, for any
transformation g ∈ G, it holds that pθ(g · x0) = pθ(x0). Hoogeboom et al. (2022) proposed that
invariance can be encapsulated in the diffusion model if we define:

Invariant prior distribution: ∀ g ∈ G =⇒ p(xT ) = p(g · xT ) (3)
Equivariant transition kernels: ∀ g ∈ G =⇒ pθ(g · xt−1|g · xt) = pθ(xt−1|xt) (4)

q(g · xt|g · xt−1) = q(xt|xt−1) (5)

If conditions 3, 4 hold, then the diffusion model pθ(x0) is invariant with respect to the symmetry
group G:

pθ(g · x0) =
∫
p(g · xT )

T∏
t=1

pθ(g · xt−1|g · xt) dx1:T =

∫
p(xT )

T∏
t=1

pθ(xt−1|xt) dx1:T = pθ(x0),

whereas if conditions 4, 5 hold, then the conditional backward process is equivariant:

q(g · xt−1|g · xt, g · x0) =
q(g · xt|g · xt−1)q(g · xt−1|g · x0)

q(g · xt|g · x0)
=

=
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
= q(xt−1|xt, x0),

and the training objective is invariant:

Lg =

T∑
t=2

γtEg·x0∼q(g·x0),g·xt∼q(g·xt|g·x0)DKL [ q(g · xt−1|g · xt, g · x0) || pθ(g · xt−1|g · xt) ] =

=

T∑
t=2

γtEx0∼q(x0),xt∼q(xt|x0)DKL [ q(xt−1|xt, x0) || pθ(xt−1|xt) ] = L

The same remains true for score-matching objective if in addition to the condition 5 the following
conditions are also satisfied: 6 – equivariance of the score-estimator sθ(xt, t), 7 – distributivity of the
transformations g from the group G, 8 – invariance of l2-norm:

sθ(g · xt, t) = g · sθ(xt, t) (6)
g · x+ g · y = g · (x+ y) (7)

||x||22 = ||g · x||22 (8)
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Then the score-matching objective is invariant with respect to the symmetry group G:
Lg = Eg·x0∼q(g·x0),t∼U(1,T ),g·xt∼q(g·xt|g·x0)||∇g·xt

log p(g · xt|g · x0)− sθ(g · xt, t)||22 =

= Ex0∼q(x0),t∼U(1,T ),xt∼q(xt|x0)||g · ∇xt
log p(xt|x0)− g · sθ(xt, t)||22 =

= Ex0∼q(x0),t∼U(1,T ),xt∼q(xt|x0)||g · (∇xt
log p(xt|x0)− sθ(xt, t))||22 =

= Ex0∼q(x0),t∼U(1,T ),xt∼q(xt|x0)||∇xt
log p(xt|x0)− sθ(xt, t)||22 = L

The definition of the diffusion model in terms of the score function allows for the formulation of
various backward transition kernels, denoted as Kθ:

xt−1 = Kθ(xt)

These kernels incorporate the score estimator sθ in a specific manner and can be either deterministic,
or stochastic. Equivariance with respect to the symmetry group G, in the context of transition kernels
K, implies the following condition in the deterministic case:

∀g ∈ G, K(g · x) = g ·K(x) (9)
In the stochastic case, this equality is sufficient. However, the necessary and sufficient condition
requires equality solely in terms of probability density functions.

A.2.1 INVARIANCES

Jiao et al. (2024a) proposed that symmetric properties outlined in Section A.1 can be encapsulated in
the joint diffusion model described in Section 2.3 via specific neural network parameterization.

Permutation invariance affects the components F and A. The prior distributions for these
components are defined element-wise, and the corresponding transition kernels remain equivariant
as long as the neural network is equivariant. It is achieved using a graph neural network (GNN)
architecture that alternates between message-passing and atom-wise processing layers. The message-
passing layer operates on atom pairs selected based on rules that are independent of their position
in the sequence, i.e., distance cutoff between atoms. As a result, reordering of the input sequence
of atoms results in the same reordering of the output sequence of predictions, ensuring permutation
equivariance.

O(3) invariance affects only the L component of the crystal because the F component defines
coordinates within the unit cell and does not contain any information about the orientation of the unit
cell in space. The prior distribution in DDPM is already invariant. In order to define an equivariant
transition kernel we need to parametrize its mean in the following way:

µθ(Mt, t) = µθ(Lt, Ft, At, t) = LtNNθ(L
T
t Lt, Ft, At, t),

where NNθ :Mt, t → R3×3 – neural network with a linear layer on the top. Then, the following
transition kernel in DDPM:

pθ (Lt−1|Mt) = pθ (Lt−1|Lt, Ft, At) = N (Lt−1|µθ (Lt, Ft, At, t) , σtI)

is O(3) equivariant:
pθ (QLt−1|QLt, Ft, At) = N (QLt−1|µθ (QLt, Ft, At, t) , σtI) =

= N
(
QLt−1|QLtNNθ

(
LT
t Q

TQLt, Ft, At, t
)
, σtI

)
=

= N
(
QLt−1|QLtNNθ

(
LT
t Lt, Ft, At, t

)
, σtI

)
=

= N (QLt−1|Qµθ(Lt, Ft, At, t), σtI) =

= N (Lt−1|µθ(Lt, Ft, At, t), σtI) =

= pθ (Lt−1|Lt, Ft, At)

Periodic translation invariance affects only the F component. The prior distribution in Wrapped
Normal diffusion is already invariant. To ensure that the transition kernel is equivariant, we parame-
terize the score estimator sθ in an invariant form:

sθ(Mt, t) = sθ(Lt, Ft, At, t) = sθ

(
Lt, PairwiseDist(Ft), At, t

)
,

PairwiseDist(Ft) =
{
ψFT (fj − fi)

∣∣ i, j = 1, Natoms, i ̸= j
}
,
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where fi – fractional coordinates of the atom i from the Ft, ψFT : (−1, 1)3 → [−1, 1]3×K

– the Fourier Transformation of the relative fractional coordinate fi − fj , and PairwiseDist :
[0, 1]Natoms×3 → [−1, 1]Natoms×Natoms×K – yields coordinates representation which is invariant to
periodic translations:

PairwiseDist (w (Ft + 1τ)) = PairwiseDist(Ft)

This follows from the fact that pairwise atomic distances remain unchanged when the entire system
of atoms is translated. Further, if we use the following form of the stochastic backward transition
kernel Kθ:

Ft−1 = Kθ(Mt) = Kθ(Lt, Ft, At) = w (atFt + btsθ(Lt, Ft, At, t) + ctϵ) , ϵ ∼ N (0, 1),

where at, bt, ct are a scalar coefficients, then Kθ is periodic translation equivariant (sufficient condi-
tion 9):

Kθ (Lt, w (Ft + 1τ) , At) = w (atw (Ft + 1τ) + btsθ(Lt, w (Ft + 1τ) , At, t) + ctϵ) =

= w (atw (Ft + 1τ) + btsθ(Lt, Ft, At, t) + ctϵ) =

= w (atFt + btsθ(Lt, Ft, At, t) + ctϵ+ 1τ) =

= w (w (atFt + btsθ(Lt, Ft, At, t) + ctϵ) + 1τ) =

= w (Kθ(Lt, Ft, At) + 1τ)

B ABLATION

As discussed in Section 6, several critical steps were undertaken in developing the final version of the
MiAD.

B.1 NUMBER OF MIRAGE ATOMS

The definition of mirage infusion necessitates setting the hyperparameter Nm, which specifies that
crystals are supplemented with mirage atoms until the total number of atoms reaches Nm. Increasing
this hyperparameter results in a greater number of possible atom variants from which the model can
select during crystal construction. Simultaneously, it increases the number of atoms the model must
eliminate during the generation process. The neural network architecture proposed by Jiao et al.
(2024a) has a limit on the number of atoms that can interact efficiently. Beyond a certain number, the
neural network loses the capacity to manage them effectively. We evaluate several variants of Nm
in Table 3 using S.U.N. computed via MLIPs (see Section 5), and select the optimal variant for all
subsequent experiments.

B.2 LOSS COMPONENT PRIORITIZATION

The application of mirage infusion alters the loss components associated with diffusion in fractional
coordinates and atom types. This, in turn, affects the scale of the gradients and the prioritization
of tasks the neural network must solve concurrently: 1) lattice prediction, 2) fractional coordinates
prediction, and 3) atom types prediction. We discovered that the balance among these tasks, espe-
cially the influence of the loss component associated with atom types LA (see Section 2.3.1), can

Table 3: Ablation study on the number of mirage atoms in MiAD We perform a comparison
of various values for Nm within MiAD: 20, 25, 30, 35. This hyperparameter specifies that crystals
are supplemented with mirage atoms until the total number of atoms reaches Nm. The models are
compared using S.U.N. for 10 000 sampled crystals, where stability is estimated via (left) eq-V2 and
(right) CHGNet.

eq-V2 (Ehull < 0.0) CHGNet (Ehull < 0.0)

Model Stable (%) ↑ Unique (%) ↑ Novel (%) ↑ S.U.N. (%) ↑ Stable (%) ↑ Unique (%) ↑ Novel (%) ↑ S.U.N. (%) ↑

MiAD (20) 8.7 92.0 73.0 5.3 17.4 91.9 72.9 12.0
MiAD (25) 9.7 92.2 71.1 5.5 19.8 92.2 71.3 12.9
MiAD (30) 8.3 93.1 74.1 4.7 16.6 93.2 73.9 11.3
MiAD (35) 8.2 92.3 70.9 4.6 17.9 92.4 70.9 11.8
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Table 4: Ablation study of loss scaling for atom types in MiAD We perform a comparison of
the coefficients 0.5, 1.0, 2.0 applied to the loss function for atom types in MiAD, while maintaining
constant scales for the losses associated with lattice and fractional coordinates. We quantify the
prioritization of the loss components corresponding to (L−F−A) at the end of the training procedure
as a percentage of the total loss. The prioritization for these coefficients are as follows: LA × 0.5:
(40 − 50 − 10), LA × 1.0: (36 − 46 − 18), LA × 2.0: (31 − 39 − 30). The models are compared
using S.U.N. for 10 000 sampled crystals, where stability is estimated via (left) eq-V2 and (right)
CHGNet.

eq-V2 (Ehull < 0.0) CHGNet (Ehull < 0.0)

Model Stable (%) ↑ Unique (%) ↑ Novel (%) ↑ S.U.N. (%) ↑ Stable (%) ↑ Unique (%) ↑ Novel (%) ↑ S.U.N. (%) ↑

MiAD (LA × 0.5) 8.2 93.8 77.6 4.7 17.9 93.8 77.6 12.3
MiAD (LA × 1.0) 9.7 92.2 71.1 5.5 19.8 92.2 71.3 12.9
MiAD (LA × 2.0) 8.9 91.5 67.4 5.0 19.0 91.5 67.4 11.9

Table 5: Ablation study of possible definitions of the mirage infusion We perform a comparison
of the definitions of MiAD in terms of (1) the initialization of fractional coordinates of mirage atoms
in crystals: sampling from the uniform distribution or positioning at the geometric center of mass of
the real atoms, (2) the masking of mirage atoms in the loss for fractional coordinates. The models are
compared using S.U.N. for 10 000 sampled crystals, where stability is estimated via (left) eq-V2 and
(right) CHGNet.

eq-V2 (Ehull < 0.0) CHGNet (Ehull < 0.0)

Model Stable (%) ↑ Unique (%) ↑ Novel (%) ↑ S.U.N. (%) ↑ Stable (%) ↑ Unique (%) ↑ Novel (%) ↑ S.U.N. (%) ↑

MiAD (Uniform + Masked) 9.7 92.2 71.1 5.5 19.8 92.2 71.3 12.9
MiAD (Uniform + NonMasked) 7.7 91.7 65.1 3.8 16.6 91.6 65.2 10.3

MiAD (Center + Masked) 0.5 93.4 93.1 0.4 5.8 92.9 93.0 5.2
MiAD (Center + NonMasked) 2.6 96.3 87.9 1.3 9.9 96.3 87.9 8.1

substantially affect the model’s quality. During our experiments, we did not modify the scales of
the loss components related to lattice and fractional coordinates in order to clearly demonstrate the
impact of the proposed technique. However, the loss associated with atom types is significantly
influenced by the hyperparameter Nm in mirage infusion, which raises the question of whether
additional corrections to this component are necessary. We quantify the prioritization of the loss
components corresponding to (L− F −A) at the end of the training procedure as a percentage of the
total loss. The application of mirage infusion with Nm = 25 reduces by half the loss for atom types,
denoted as LA, and leads to a balance of (36 − 46 − 18) among MiAD components, whereas the
balance among components in the original DiffCSP is (31− 39− 30). Then, in Table 4, we compare
MiAD models, where LA is further increased or decreased by a factor of two, however, it only
diminishes the quality. We considered it essential to illustrate the effects of these adjustments, due to
the scale of an impact on the model’s quality. In Table 4, the impact of LA as a percentage of the total
loss is not precisely doubled or halved because alterations to this component also influence the total
loss. Given the significance of this loss prioritization, we conducted experiments, the results of which
are presented in Table 3, using coefficients for LA that maintain the same balance of (36− 46− 18)
among the loss components by the end of the training procedure.

B.3 DEFINITIONS OF MIRAGE INFUSION

As discussed in Section 3, Schneuing et al. (2025) introduced a related concept involving the
augmentation of original molecular structures with hypothetical (non-existent) components for
structure-based drug design. In this approach, the fractional coordinates of mirage atoms are
initialized at the geometric center of mass of the real atoms, and no masking is applied to the mirage
atoms. Table 5 compares this formulation with the definition of mirage infusion proposed in the
present work, showing that the latter achieves substantially improved performance.

B.4 FINAL IMPACT OF MIRAGE INFUSION

Figure 3 illustrates the comparison between the final version of MiAD and the original DiffCSP. In
this analysis, we employed the optimal variant of Nm = 25 as identified in Table 3 and adhered to the
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Figure 3: Comparison of MiAD (DiffCSP with mirage infusion) in its final version and DiffCSP in
terms of stability, uniqueness, novelty, and S.U.N. Stability is estimated via (left) eq-V2 and (right)
CHGNet. MiAD outperforms DiffCSP across all metrics, especially in terms of stability rate and
S.U.N., achieving the highest quality after 8000 epochs.

default, yet optimal, prioritization of the loss components as specified in Table 4. The incorporation
of mirage infusion notably enhances both stability and novelty; however, it also extends the time
necessary to reach peak performance.

C EXPERIMENTAL DETAILS

Code A zip archive containing the raw code for all the experiments is accessible for download
through this link.

Dataset All experiments were conducted using the MP-20 dataset (Jain et al., 2013a), which
comprises 45,231 stable inorganic materials selected from Material Projects (Jain et al., 2013a). We
employed the same train-validation-test split of 60-20-20 as used in the study by Xie et al. (2022).

Neural network architecture The models utilized the CSPNet neural network architecture pro-
posed by Jiao et al. (2024a), with the following hyperparameters: ”hidden dim” : 512, ”num layers” :
6, ”num freqs” : 128, ”latent dim” : 256, ”max atoms” : 100, ”act fn” : ”silu”, ”dis emb” : ”sin”,
”edge style” : ”fc”, ”max neighbors” : 20, ”cutoff” : 7.0, ”ln” : True, ”ip” : True. The application
of mirage infusion, which necessitates the use of an additional atom type 0 in the D3PM diffusion
module corresponding to atom types (refer to Sections 2.3.1 and 3), does not increase the number of
neural network parameters. This is because the configuration proposed by Jiao et al. (2024a) already
includes several free atom types that can be utilized in the proposed model.

Optimization Jiao et al. (2024a) proposed utilizing a batch size of 256 in conjunction with the
Adam optimizer (Kingma & Ba, 2017) with an initial learning rate of 10−3 and a scheduler that
reduces the learning rate to 10−4 when the validation loss ceases to decrease. We use the same
batch size, but in contrast, we employed the Adam optimizer solely with a learning rate of 10−3,
omitting any schedulers. Our experiments indicated that the validation loss is not strongly correlated
with the quality of the diffusion model once the model performance is sufficiently high. Additional
experiments confirmed that this modification in the optimization procedure does not influence the
quality of the default DiffCSP. We also found that 1000 epochs were adequate for training the
original DiffCSP model, but insufficient for a model after the application of mirage infusion. For the
best-proposed version of mirage infusion, maximum performance (as measured by S.U.N. computed
via eq-V2) was achieved after 8000 epochs (see Figure 3). Due to this increased requirement for the
number of epochs, we removed the scheduler to allow further improvements in the models after the
1000 epochs of training.
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Computational costs The proposed mirage infusion technique (see Section 3) substantially in-
creases the average number of atoms with which the neural network interacts during the training
and sampling procedures, leading to increased time and memory costs. After applying the mirage
infusion technique in its optimal configuration (Nm = 25, which corresponds to approximately a
×2.7 increase in the average number of atoms in the crystals), we observe the following approximate
increases in execution time: training step ×4.3, sampling step ×3.8; and the following approximate
increases in memory consumption: training step ×4.4, sampling step ×4.6. These estimates were
obtained on a single GPU NVIDIA Tesla V100 32 GB with 4 CPU cores Intel Xeon Gold 6152
(2.1–3.7 GHz). In our experiments, MiAD (Nm = 25) required 4 days for the training procedure
(8000 epochs) and 2 hours for the sampling procedure (10 000 crystals) on 2 GPUs NVIDIA Tesla
A100 80 GB with 8 CPU cores AMD EPYC 7702 2-3.35 HHz. The training and sampling procedures
can also be conducted on a single GPU, though this will incur increased time costs.

D DFT COMPUTATION DETAILS

We use DFT settings from Materials Project https://docs.materialsproject.
org/methodology/materials-methodology/calculation-details/
gga+u-calculations/parameters-and-convergence for structure relax-
ation and energy computation. In particular, we do GGA and GGA+U calculations
with atomate2.vasp.flows.mp. MPGGADoubleRelaxStaticMaker (Ganose
et al., 2025), which in turn relies on pymatgen.io.vasp.sets.MPRelaxSet and
pymatgen.io.vasp.sets.MPStaticSet (Ong et al., 2013). Computations themselves
were done with VASP (Kresse & Furthmüller, 1996) version 5.4.4. The raw total energies
computed by DFT were corrected with MaterialsProject2020Compatibility before
putting into the PhaseDiagram to obtain the DFT Ehull. We used the MP convex hull
2023-02-07-ppd-mp.pkl.gz distributed by matbench-discovery (Riebesell et al.,
2023) as the reference hull.

E ADDITIONAL METRICS

While S.U.N. remains the principal criterion for evaluating modern generative models in de novo
crystal generation Miller et al. (2024); Sriram et al. (2024); Joshi et al. (2025), it is instructive to
consider additional metrics that are being used in the literature. These include Structure Validity,
Compositional Validity, Coverage (COV-R, COV-P), and distributional distances such as the Wasser-
stein distance of scalar material properties (e.g., density, number of elements), proposed in Xie et al.
(2022). Such metrics provide complementary perspectives on model performance, quantifying local
consistency of atomic structures or alignment with empirical property distributions.

However, these measures exhibit important limitations. Particularly, Validity and Coverage are nearly
saturated for modern models, as shown in Table 6, with reported differences between approaches
often below 1%. More critically, they fail to penalize overfitting. For example, if the MP-20 training
set is itself evaluated as a ”generative model”, it achieves near-optimal values across Validity and
Coverage, underscoring that such metrics can be artificially inflated just by replication of training
data. Consequently, a model that prioritizes memorization over discovery may appear competitive
according to these statistics, despite offering little value for materials discovery.

An illustrative case can be drawn by comparing MiAD with FlowLLM. FlowLLM reports a higher
Compositional Validity (89.05% vs. 84.21%), yet its Uniqueness & Novelty (U&N) rate shown
in Table 1 is markedly lower (33.8% vs. 65.2%). The discrepancy arises because FlowLLM
predominantly reproduces training set compositions, which maximizes apparent validity while
suppressing novelty. In contrast, MiAD sacrifices a small degree of compositional accuracy but
generates a significantly larger proportion of genuinely new materials, which is the central objective
of de novo generation.

To further validate the proposed MiAD approach, we conducted the experiments with small-scale
datasets, Perov-5 and Carbon-24. For both of them, we employed the same mirage infusion con-
figuration as for MP-20, specifically Nm = N + 5, where N is the maximum number of atoms in
crystals in each respective dataset (i.e., Nm = 10 for Perov-5 and Nm = 29 for Carbon-24). All
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Table 6: Evaluation of MiAD on Perov-5, Carbon-24, and MP-20 datasets compared with baseline
models. All results follow the same mirage infusion configuration as for MP-20.

Validity (%)↑ Coverage (%)↑ Property (%)↓

Data Method Struc. Comp. COV-R COV-P dρ delem

Perov-5 DiffCSP 100.00 98.85 99.74 98.27 0.111 0.013
CrysBFN 100.00 98.86 99.52 98.63 0.073 0.010
TGDMat 100.00 98.63 99.83 99.52 0.050 0.009
MiAD 94.82 97.91 98.07 92.82 0.089 0.075

Carbon-24 DiffCSP 100.00 NA 99.90 97.27 0.081 NA
CrysBFN 100.00 NA 99.90 99.12 0.061 NA
TGDMat 100.00 NA 99.99 92.43 0.043 NA
Uni-3DAR 99.99 NA 100.00 98.16 0.066 NA
MiAD 99.85 NA 99.51 99.46 0.061 NA

MP-20 DiffCSP 100.00 83.25 99.71 99.76 0.350 0.340
UniMat 97.20 89.40 99.80 99.70 0.088 0.056
FlowMM 96.85 83.19 99.49 99.58 0.239 0.083
FlowLLM 99.81 89.05 99.06 99.68 0.660 0.090
SymmCD 90.34 85.81 99.58 97.76 0.230 0.400
WyFormer+DiffCSP++ 99.80 81.40 99.51 95.81 0.360 0.079
SymmBFN 94.27 83.93 99.73 99.00 0.083 0.095
CrysBFN 100.00 87.51 99.09 99.79 0.207 0.163
TGDMat 100.00 92.97 99.89 99.95 0.338 0.289
Uni-3DAR 99.89 90.31 99.62 99.83 0.477 0.069
MiAD 99.25 84.21 99.35 99.80 0.233 0.027
MP-20 Train 100.00 90.65 99.81 99.79 0.133 0.025

other hyperparameters (batch size, number of epochs, and neural network architecture) were adopted
directly from DiffCSP.

A comparison of models trained on the Perov-5 and Carbon-24 datasets using the S.U.N. metric is
not meaningful because both datasets contain materials that are thermodynamically unstable under
standard conditions Xie et al. (2022). Consequently, recent studies Zeni et al. (2024); Miller et al.
(2024); Sriram et al. (2024); Joshi et al. (2025); Kazeev et al. (2025) have discontinued the use of
these two datasets for benchmarking de novo generation. Currently, there are no well-established
methods for fair comparison on these datasets that penalize overfitting. Therefore, Validity, Coverage,
and Property could be used only to validate the model’s ability to generate coherent structures, while
ignoring overfitting. In this light, Table 6 shows that MiAD is competitive with the prior baselines.

This analysis highlights why S.U.N. remains the most informative single metric. Unlike isolated
measures, S.U.N. directly evaluates the trade-off between replicating known structures and discover-
ing stable, previously unobserved crystals, thereby capturing the utility of generative models in the
materials discovery pipeline. While auxiliary metrics may still be valuable for diagnostic purposes,
they should be interpreted with caution, as they may obscure or even contradict the overarching goal
of novelty-driven generation.

F DISTRIBUTION OF NUMBER OF ATOMS

Mirage infusion incorporates the ability to insert and remove atoms during the generation process.
However, we must verify that the model actually learns to use this capability. To this end, we report
statistics on the number of atoms in S.U.N. crystals generated by MiAD (see Figure 4).

p(AT,i) = Cat(AT,i | 1/(Ntypes +1)) — atom types (including the mirage type) have a uniform prior
(see Section 2.3.1)), where Ntypes = 100 in practice. Thus, if we use mirage infusion with Nm = 25,
then at the start of generation (t = T ) all atoms in a crystal are real with probability ≈ 0.77, exactly
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Figure 4: Number of atoms in S.U.N. crystals generated by MiAD. We consider only S.U.N. crystals
among the 10 000 crystals generated by MiAD. After generation, crystals are prerelaxed via CHGNet.
Stability is also estimated via CHGNet.

one atom is mirage with probability ≈ 0.19, and so on. This implies that, at the start of generation,
almost all crystals contain more than 23 real atoms. This fact, together with the statistics in Figure 4,
demonstrates that MiAD

• changes the number of atoms in a crystal during generation;

• generates S.U.N. crystals with different numbers of atoms.

Crystals with 3, 7, 11, 13, 17 atoms appear more rarely than others, because crystals with these atom
counts are underrepresented in the training data.

G SPACEGROUP DISTRIBUTION

Diversity is a key aspect of the quality of a generative model. S.U.N. addresses this aspect via U –
uniqueness. However, this is not the only relevant evaluation, because crystals can differ from one
another in various ways. At the same time, many existing diffusion-like models (as well as MiAD)
for crystal generation cannot guarantee that the generated crystals will span different spacegroups
(particularly the more complex ones, such as cubic or hexagonal). The common assumption is that a
diffusion model will learn this from the training data.

To address these concerns, we compare the number of S.U.N. crystals belonging to each spacegroup
among 10 000 crystals generated by different models and prerelaxed using CHGNet (see Figure 5).
Based on this experiment, we can derive the following claims:

• Existing generative models for crystals do not suffer from severe mode collapse;

• MiAD, on average, generates more S.U.N. crystals than other models without exhibiting
mode collapse.

From the application perspective, we argue that the particular shape of the spacegroup distribution
is not one of the primary aspects of generative model quality in materials discovery. A spacegroup
distribution that is closest to the train or test distribution, or that is the most uniform, does not by
itself indicate clear benefits of a particular generative model for the task of inventing novel materials.
At the same time, the shape of such distributions can indicate drawbacks if the generative model
completely ignores crystals from a particular spacegroup. Our main point is that we should not
conflate distribution-based quality criteria with S.U.N., but rather use

• S.U.N. as an averaged quality measure;

• distribution-based metrics as diagnostics to check for the absence of serious diversity issues.
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Figure 5: Comparison of models for de novo crystal generation in terms of numbers of S.U.N.
crystals belonging to main spacegroup families. We categorize only S.U.N. crystals produced by
generative models with a fixed budget of 10 000 generated crystals. After generation, crystals are
prerelaxed via CHGNet. Stability is also estimated via CHGNet. Spacegroup families are identified
via SpacegroupAnalyzer from the pymatgen package with tolerance: 0.1.

Table 7: Comparison of MiAD and MatterGen trained on Alex-MP20 We report stability and
S.U.N. estimated eq-V2 for 10 000 sampled crystals. For clarity in evaluating the model’s quality, we
also report the Unique&Novel rate among stable crystals.

eq-V2 (Ehull < 0.0)

Model Stable (%) ↑ Unique&Novel (%) ↑ S.U.N. (%) ↑

MatterGen 5.2 39.4 2.1

MiAD 7.1 35.3 2.5

H COMPARISON ON ALEX-MP20

To demonstrate the scalability of MiAD, we conduct experiments on the large-scale Alex-MP20
dataset (Zeni et al., 2024) and compare its performance with that of MatterGen. We employ S.U.N.,
estimate stability using eq-V2, and use the same energy hull as in the previous experiments. The
only difference in the evaluation protocol is that novelty is measured relative to the Alex-MP20
training set. Samples from both models are pre-relaxed for 100 steps using eq-V2. MiAD is
trained for 1200 epochs with the same hyperparameters as in the MP-20 experiments. The results in
Table 7 demonstrate that MiAD, without additional hyperparameter tuning, achieves state-of-the-art
performance on one of the largest datasets for de novo crystal generation.

I LLM USAGE

The text of the paper was polished for grammar and style using LLMs.

J QUALITATIVE ANALYSIS OF MIRAGE INFUSION DYNAMICS

The proposed MiAD framework generalizes standard crystal diffusion models by introducing dynamic
atom counts. This approach differs from fixed-size baselines along three primary axes: (1) the
formulation of the generative task, (2) the robustness of generation trajectories, and (3) the expanded
action space available during diffusion. While the first two axes are implicit, the third, the ability to
dynamically add or remove atoms, enables a direct analysis of how the model manages structural
evolution. In this section, we investigate the hypothesis that mirage atoms provide an ”error correction”
mechanism, allowing the model to recover from unstable intermediate states.
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Figure 6: Comparison between the counterfactual structure Mt (left), and the corrected structure
M̂t (right). The corrected structure is thermodynamically stable with a higher symmetry group
(monoclinic) compared to the unstable, triclinic counterfactual.

J.1 METHODOLOGY

To isolate the impact of the mirage mechanism, we focused on ”boundary” cases in the generation
trajectories where the model converts a real atom into a mirage atom (effectively removing it) during
the final stages of the reverse diffusion process. We performed a comparative analysis on these
samples, defined as follows:

The Counterfactual (Mt): The structure at the moment right before the last change in the denoising
trajectory from a real atom to a mirage atom. In this state, the atom remains a real element, simulating
a fixed-size model that cannot delete atoms, even when they are structurally disadvantageous.

The Corrected Structure (M̂t): The crystal structure with the same set of atoms as right after the
model successfully changed the real atom to the mirage atom. To ensure that differences arise solely
from the composition change (and not from stochastic noise or drift), we preserve the exact lattice
parameters and fractional coordinates of all remaining atoms from Mt.

Both Mt and M̂t were subsequently pre-relaxed using CHGNet to evaluate their stability and
symmetry properties.

J.2 EVIDENCE OF ERROR CORRECTION

Our observations reveal that the mirage mechanism functions as a dynamic pruning tool. Out of 1000
generated crystals, we analyzed a subset of 57 that were identified as Stable, Unique, and Novel,
where the transition from a real atom to a mirage occurred after 150 steps of the denoising process
(out of 1000).

The removal of the superfluous atoms in these trajectories resulted in drastic improvements in
thermodynamic stability:

1. The median energy above hull (Ehull) dropped from 0.29 eV/atom for the counterfactuals
(Mt) to 0.033 eV/atom for the corrected structures (M̂t).

2. The median absolute deviation of the energy narrowed significantly from 0.27 to 0.12,
indicating a more consistent convergence toward stable minima.

Furthermore, the structural symmetry improved substantially. Among the 57 crystals, only 14
exhibited non-trivial symmetry groups (cubic, monoclinic, orthorhombic, triclinic, or trigonal) in the
uncorrected state. After the mirage infusion, this number nearly doubled to 27 crystals. This suggests
that the model effectively removes atoms that break symmetry or disrupt the lattice, a capability
structurally impossible for fixed-size diffusion baselines.
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Table 8: Scaling mirage infusion to MPTS-52 MiAD is trained with Nm = 57. MiAD-WRNA is
trained with Nm = Natoms + k, where k ∼ U [0, 10] (+5 mirage atoms in average). The models are
compared using S.U.N. for 10 000 sampled crystals, where stability is estimated via (left) eq-V2 and
(right) CHGNet.

eq-V2 (Ehull < 0.0) CHGNet (Ehull < 0.0)

Model Stable (%) ↑ Unique&Novel (%) ↑ S.U.N. (%) ↑ Stable (%) ↑ Unique&Novel (%) ↑ S.U.N. (%) ↑

DiffCSP 4.3 37.2 1.6 11.8 69.9 8.2
MiAD 5.7 55.6 3.2 13.0 76.2 9.9

MiAD-WRNA 5.6 44.1 2.5 13.0 70.9 9.2

J.3 CASE STUDY

A concrete example illustrates this behavior: in one trajectory(see Figure 6), the model removed a
Boron atom at step 95 (of 1000), shifting the composition from Yb3BAsBr3 (Mt) to Yb3AsBr3 (M̂t).
While both structures initially possessed triclinic symmetry, the pre-relaxed crystal M̂t converged to
a higher-symmetry monoclinic group and achieved thermodynamic stability (negative energy above
hull, −0.083 eV/atom). Conversely, the counterfactual Mt failed to find higher symmetry, remaining
triclinic, and was found to be heavily unstable (0.335 eV/atom).

This confirms that the mirage atoms allow the model to alleviate mistakes made during earlier stages
of generation, dynamically refining the composition to ensure realizability.

K SCALABILITY ON CRYSTALS WITH LARGER NUMBER OF ATOMS

Mirage infusion enables a joint diffusion model operating on the (L,F,A) crystal representation
to change the number of atoms in a crystal during generation. To assess how this procedure scales
when the admissible range of atom counts is wider, we conduct experiments on MPTS-52 – a more
challenging extension of MP-20 (Jain et al., 2013a), comprising 40,476 structures with up to 52 atoms
per cell, ordered by earliest publication year in the literature.

There are several challenges in conducting comparisons on MPTS-52. To our knowledge, prior
works have not reported wide comparisons of S.U.N. metrics for different generative models on
MPTS-52. Metrics such as Structure Validity, Compositional Validity, Coverage (COV-R, COV-P),
and distributional distances (e.g., the Wasserstein distance of scalar material properties such as density
or number of elements) proposed in (Xie et al., 2022) have significant limitations, which we discuss
in Appendix E.

It is important to consider the DiffCSP backbone architecture, which operates most effectively with
crystals containing fewer than 20 atoms. Applying DiffCSP to MPTS-52 places the model in a regime
where performance degrades due to the larger number of atoms. Applying mirage infusion further
increases the number of atoms; thus, when we use the same network architecture, that challenge is
amplified.

We trained the original DiffCSP and MiAD on MPTS-52 for 6k epochs (six times the number of
epochs used in the original DiffCSP for MPTS-52) and selected the best checkpoints by S.U.N. We
use the same neural network as in experiments on MP-20. We did not tune MiAD for MPTS-52, but
instead used the configuration identified as optimal on MP-20:

MP-20: Nm = maximum number of atoms in mp20 + 5 = 20 + 5 = 25

MPTS-52: Nm = maximum number of atoms in mpts52 + 5 = 52 + 5 = 57

The results are presented in Table 8. Here, we observe consistent improvements with mirage infusion
using the same configuration (without finding optimal hyperparameters for dataset). Computational
overhead: 1 epoch of DiffCSP training on MPTS-52: 35 sec, while 1 epoch of MiAD (Nm = 57)
training on MPTS-52: 79 sec (≈ 2.26x compared to DiffCSP). The overhead is smaller than in MP-20
(see Appendix C) because the network is already near its upper limit of effective atomic interactions
(20 atoms); further increases in atom count then lead to approximately linear, not quadratic, scaling.
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Applying mirage infusion to datasets with a broad range of atom counts is a plausible use case in
practical applications. For such datasets, we can vary the number of mirage atoms added per structure
while keeping the rest of the procedure unchanged. We demonstrate this variant on MPTS-52.
Specifically, we set Nm per crystal to Natoms + Uniform[0, 10], i.e., each crystal receives 0-10 mirage
atoms (+5 on average). At generation start, we sample the number of atoms from the training-set
distribution (as in the original DiffCSP), and add a sample from Uniform[0, 10]. The results for
this variant (MiAD-WRNA: MiAD for Wide Ranges of Number of Atoms) presented in Table 8.
MiAD-WRNA still provides substantial gains over DiffCSP, although it performs slightly worse than
the original MiAD with fixed Nm. Its main advantage lies in computational cost: 1 epoch of DiffCSP
training on MPTS-52: 35 sec; 1 epoch of MiAD (Nm = 57) training on MPTS-52: 79 sec (≈ 2.26x
vs DiffCSP); 1 epoch of MiAD-WRNA (+5 avg) training on MPTS-52: 40 sec (≈ 1.14x vs DiffCSP).
Thus, MiAD-WRNA offers a practical trade-off between computational cost and quality.

These MPTS-52 experiments, together with Table 3, support the effectiveness of mirage atoms across
different strategies for incorporating them into crystals.
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