
BEAM: Bilevel Evaluation and Analysis of
Multi-Object-Tracking under Latency

Erik Bauer1, Yue Yin2,3, Mohamed Ayeb3, Christoph Krause2, Ludwig Brabetz3

Abstract— Environmental perception, particularly multi-
object-tracking, is a crucial part of autonomous vehicles.
However, system-level disturbances like latencies and jittering
sampling rates can highly degrade the performance of multi-
object-tracking (MOT) systems, which in turn compromises the
functionality and safety of the vehicle. In this work, we propose
BEAM, a novel framework for evaluating MOT performance
with respect to system-level disturbances such as perception
latency. BEAM utilizes a bilevel evaluation scheme: first, a
tracking state error distribution is computed for both the
disturbed and undisturbed system. The relative change of
the two distributions is measured using the Jensen-Shannon-
divergence, from which we distill an easily interpretable eval-
uation score. In extensive experiments, we evaluate a state-of-
the-art MOT tracking system on a real-world dataset (KITTI)
both with and without a spatio-temporal latency compensator,
injecting different perception latencies. Comparing BEAM to
current MOT evaluation metrics, we show that our proposed
framework is able to provide meaningful evaluation scores
under latency where other metrics begin to fail. With our work,
we present a novel disturbance-focused evaluation framework
which explicitly evaluates both state precision and robustness
against adverse system-level conditions. By introducing BEAM,
we aim to contribute to more robust, safer perception systems
through disturbance-focused evaluation.

I. INTRODUCTION

As we are progressing towards a future with autonomous
cars roaming our streets, it is crucial that these autonomous
systems can safely navigate through their environments and
avoid collisions with other traffic participants. One of the
critical tasks to achieve safe, collision-free navigation is
detecting and tracking all other traffic participants (multi-
object-tracking, or MOT) [35].

Research on MOT relies heavily on public large-scale
datasets [8], [3], [41], [36] to evaluate proposed methods with
metrics like HOTA (Higher Order Tracking Accuracy) [23]
and CLEAR (CLassification of Events, Activities, and Re-
lationships) [1]. These metrics provide valuable insights
on the performance of object tracking and are integral to
establishing a baseline performance evaluation for different
tracking approaches. However, evaluating MOT systems is
a complex task, and there is no one metric to rule them
all, capturing all information about a system that is relevant
for every potential use case. Instead, a landscape of different
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Fig. 1. BEAM evaluation methodology: first, multi-object-tracking is
performed with and without system-level disturbance. The respective error
distributions of the tracking results to the ground truth (GT) for both
cases are computed by aggregation over objects and time and can be
used for analysis. For comparative evaluation, the Jensen-Shannon-Distance
(JSD) is computed in between the distributions as measure of performance
degradation due to the disturbance. From the individual JSD values for each
state dimension, a BEAM Disturbance Score (BDS) is computed, which
serves as evaluation metric.

metrics has developed in the research community, going from
general-purpose metrics like HOTA to task-centric metrics
like PKL [29].

In this work, we aim to fill an empty spot in this land-
scape by introducing BEAM, a novel disturbance-focused
evaluation framework for MOT systems (cf. Fig. 1). With
this framework, we aim to complement existing metrics and
offer a new perspective: systematically evaluating perfor-
mance degradation with respect to disturbances, based on the
statistical comparison of tracking state error distributions.

To evaluate the robustness of a MOT system with respect
to a system-level disturbance, we introduce a bilevel evalua-
tion scheme. First, we compute the state error distribution
for true positive tracked objects, which is similar to the
MOTP metric from CLEAR [1]. We compute these error
distributions for both the undisturbed system and the dis-
turbed system. Secondly, we introduce a comparative metric
to evaluate the impact of the disturbance on the state error
distributions. To this end, we compute the Jensen-Shannon-
Divergence (JSD) [22] of the undisturbed and disturbed error
distributions. From the computed divergences, we derive the
BEAM Disturbance Score (BDS (cf. Fig. 1).

The BDS serves as simple indicator of robustness: the
higher the score, the lower the disturbance-induced error
and the more robust is the algorithm against the disturbance.
We position BEAM with the BDS next to existing metrics
as complementary evaluation framework, offering a new
perspective specifically focused on robustness and precision.
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1) Contribution: Our contribution is twofold and is sum-
marized as follows:

1) We propose BEAM, a novel bilevel methodology for
evaluating the performance of MOT systems with
respect to general system-level disturbances.

2) We motivate the consideration of robustness against
latency as key performance indicator in evaluating
MOT systems and show an exemplary application of
BEAM with latency as disturbance on a real-world
dataset, using different variations of a MOT system.

II. RELATED WORK

MOT is a prominent problem in the computer vision
research community. Consequently, the evaluation of MOT
systems has been a research topic for considerable time.
We provide an overview of selected MOT tracking methods
and different evaluation paradigms and place our proposed
methodology in the context of existing works.

1) MOT datasets: Research in MOT relies heavily on
open datasets (KITTI [8], Argoverse [5], nuScenes [3],
Waymo [36], Argoverse 2 [41]), which serve as benchmarks
for measuring and comparing the performance of different
MOT methods. For evaluation, some metrics like the CLEAR
metrics are shared across datasets while other metrics such
as HOTA are implemented only on single datasets.

In the context of latency, current datasets for MOT offer
(near) perfectly synchronized data from different sensors.
Temporal alignment of the data is done offline after record-
ing. In contrast, this assumption of data synchronization and
timely availability is easily violated in real-world applica-
tions. As we are reaching a state of increasing maturity
for MOT systems under the assumptions given by current
datasets, loosening these assumptions to explore robustness
naturally presents the next challenge for the research com-
munity.

2) Multi-object-tracking: MOT considers the problem
of detecting and subsequently tracking objects across
frames [24], [14]. The two key problems are detection and
association. In MOT research, detection is usually done on
visual observations, using learning-based object detectors on
LiDAR data (light detection and ranging) [26], [37], [34],
[43], [39], or camera data [31], [30], [4]. In the automotive
industry, radar sensors are often used, allowing for precise
velocity sensing using the micro-Doppler effect [28]. The
observations obtained from detectors is often formulated as
detection list containing the hypothetical detections and their
attributes (position, dimension, . . . ).

Association for online trackers is most commonly framed
as an N -to-M -assignment problem, where N detections are
associated to M tracks from frame k−1 to k, subject to some
matching cost function [42], [11], [40], [17]. For evaluation,
a wide variety of paradigms can be considered [16]. In the
following, we will give a short overview of the most relevant
metrics.

3) HOTA and CLEAR metrics: The HOTA [23] and
CLEAR [1] metric families are considered the de-facto
standard for MOT evaluation. Scores are computed based

on the classification of tracking results as true positive (TP)
or false positive (FP). To assign tracks as TP or FP, the
intersection of union (IoU) of image-space bounding boxes
is used: given the bounding box of an estimated track
and a ground truth track, the value of the IoU is used as
quality factor of the potential match, higher IoU indicating
a better match. Then, the Hungarian algorithm [19] can be
used to establish a maximum-quality matching of estimated
to ground truth tracks. Having established this matching,
classification metrics such as accuracy (HOTA/MOTA) and
spatial errors like the mean localization error of TP tracks
(MOTP) can be computed. Both of HOTA and CLEAR
metrics are agnostic of the downstream task, instead aiming
for highly general performance assessments.

4) Task-centric metrics: Task-centric metrics consider the
effect of the MOT system on downstream tasks such as
autonomous driving. This family of metrics evaluates a
task-specific performance given a perception system. Then,
different perception systems can be compared with respect
to their impact on task-specific performance.

For the downstream task of autonomous driving, special
consideration is placed upon criteria such as safety [25],
[38] or the predicted trajectory [29], [13]. Particularly,
Philion et al. [29] introduce the idea of comparing met-
rics obtained via ground truth observations to metrics ob-
tained with imperfect perception systems using the Kullback-
Leibler-Divergence (KL-Divergence), resulting in the PKL
(Planning-KL-Divergence) metric for 3D object detection.
Gog et al. [9] build upon the CARLA simulator [6] to
present a platform for investigating the impact of latency
on algorithms for autonomous driving.

Li et al. [21] introduce the term of streaming perception
and propose a metric to evaluate the realtime capabilities
of MOT systems, given simulated online time constraints.
Our work shares their focus on evaluating MOT systems
in a simulated real-time scenario under latency. However,
we differentiate our work in two ways: an explicitly prob-
abilistic error formulation, where we view the disturbance
as conditioning and the introduction of the Jensen-Shannon-
Divergence to compute an evaluation metric.

III. METHODOLOGY

In the following, we will briefly give a background on
latency in real-world scenarios and define the MOT problem
in the context of disturbance-focused evaluation. Then, we
introduce the two levels of the BEAM framework: the com-
putation of error distributions and the subsequent use of their
divergence as indicator for performance degradation. Finally,
we consider latency as concrete example of a disturbance.

A. Background: Latency in Real-World Scenarios

Our proposed evaluation framework is designed to support
various types of disturbances. In this work, we choose to
place our focus on the issue of online perception, as it
is a traditionally underrepresented research field, but has
a high impact on real-world applications. Particularly for
safety-critical downstream tasks like autonomous driving, it
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Fig. 2. A flowchart for the dataflow of the typical MOT system with latency L = 1 discrete timestep (equivalent to 100ms for a frequency of f = 10Hz).
We introduce a latency L on the visual observations, modelling the high latency that object detectors can incur. Green dotted box indicates the available
information for MOT system at timestep k.

is imperative that systems can be systematically evaluated
under adverse conditions. In the scope of this work, we focus
on latency. At the junction of non-realtime computing with
real-time control systems, it can have a significant impact on
both the performance and safety of the overall system [7],
[35]. Furthermore, Li et al. [21] find that online perception,
and thereby exposure to issues such as latency, poses a
significantly harder challenge than the offline perception
tasks most current benchmarks rely on. Yet, nearly all real-
world applications of MOT systems have strong requirements
for accurate online perception systems.

In the following, we provide a brief characterization of
latency in real-world use cases and its potential impact.

1) Latency in autonomous systems: In most autonomous
systems, there are various sources of latencies which can
differ by order of magnitudes depending on the sensors
and algorithms used [7], [10]. For applications such as
autonomous driving, LiDAR sensors are commonly used
for environmental perception [2], [32]. On modern desktop
computers, inference times for object detection algorithms
for LiDAR data average around 100ms [26], and on mobile
platforms with resource-constrained computing hardware, la-
tencies tend to only increase. For sensor fusion, latency could
be mitigated by matching timestamps from data coming from
different sensors. However, for systems with hard real-time
constraints, control performance and safety can potentially
be put at risk due to consequently increased response times.

2) Latency in dynamic maneuvers: Autonomous systems
are the most vulnerable to latency during highly dynamic
maneuvers. For example, an AEB (Automated Emergency
Braking) system in cars is designed to trigger a braking ma-
neuver to avoid or mitigate collisions in safety-critial driving
situations. Given the hard real-time constraints present in
these scenarios, latency in perception, planning and actuation
leads to performance degradations or even safety-relevant
failures. For instance, the CCRs-scenario (Car-to-Car Rear
Stationary) in NCAP (New Car Assessment Program ) for
AEB Inter-Urban requires the ego vehicle to drive towards
a stationary object at a speed of 80 km/h [33]. A 300ms
latency in environmental perception without any counter-
measure results in a reduction of approximately 6.67m of
distance available for the ego vehicle to decelerate and stop
safely - significantly more than the length of an average car.

B. Methodology Outline

An architectural outline of our evaluation architecture
is shown in Figure 1. For a given tracking system, we
compute our proposed BDS metric through comparing the
error distributions of the undisturbed baseline system with
the error distribution of the disturbed system. We present
our methodology by defining a standard MOT system, fol-
lowed by the disturbance-informed computation of the error
distributions. Finally, we derive the computation of the BDS
evaluation metric given the two error distributions.

C. Defining the MOT System

We consider an online MOT system ϕ which at dis-
crete timestep k takes in Mk ∈ N0 observations Ok =
(o1

k,o
2
k, . . . ,o

Mk
t ) and ego pose matrix wTe

k ∈ SE (3)
(SE (3): 3D Special Euclidean Group [20]) and maps them
to Nk ∈ N0 tracks Ŝk = (ŝak, ŝ

b
k, . . . , ŝ

c
k) where a, b, . . . , c ∈

N0 are the IDs assigned to the different tracks. The ground
truth for estimated track i is denoted without diacritical mark
(i.e. bar or hat) as sik, if it exists.

All collected observations at time index k are O1:k =
(O1, . . . ,Ok). Similarly, we denote all collected ego poses
and tracks as wTe

1:k and Ŝ1:k, respectively. The superscripts
w and e denote the transformation from world to ego refer-
ence frame. The system ϕ generates tracking state estimates
as follows:

Ŝk = ϕ (O1:k,
wTe

1:k) (1)

We assume the outputs of the MOT system ŝik ∈ R7 to
be constructed from standard 3D bounding boxes which are
defined by 3D position pi

k ∈ R3, dimensions di
k ∈ R3 and

a rotation angle ψi
k ∈ R normal to the ground:

ŝik =
(
p̂i
k d̂i

k ψ̂i
k

)T

(2)

Furthermore, observations and tracks taken at time k are
defined in the corresponding ego reference frame wTe

k.
Additionally, for each estimated track, we have access to a
confidence score. For simplicity, we will assume a constant
frequency. The final timestep is denoted as tend.



D. Applying the BEAM Framework

To evaluate the performance degradation a MOT system
experiences with respect to the disturbance D1:tend

, we
consider the state error of the estimated tracks with respect
to their ground truth. Aggregating state errors for true
positive estimated tracks, we compute the error distribution
with no disturbance, which serves as baseline. Then, in a
similar fashion, we compute the error distribution with a
disturbance applied, and finally consider the JSD (Jensen-
Shannon-Distance [22]) of the two error distributions.

1) Computing track error distributions: Given the match-
ing from detection to ground truth (cf. Sec. III-E.1), we
compute the baseline error distribution with no disturbance.
We can compute the individual state errors as follows:

eik = ŝik − sik (3)

For the estimated tracks with the disturbance introduced
(denoted as s̃ik), we proceed identically, using the similarly
obtained assignments:

ẽik = s̃ik − sik (4)

We recall that the state error is a 7-dimensional vector,
containing the error of the 3D centroid, the dimensions and
the error of the rotation angle normal to the ground at time k.
To then obtain the baseline error distribution and disturbance-
affected error distribution for evaluation, we aggregate all
computed state errors through time, giving us sets of errors
in the j-th state dimension: Ej = {ei,jk }k=tend,i=Nk

k=1,i=1 and
Ẽj = {ẽi,jk }k=tend,i=Nk

k=1,i=1 . From these sets of errors, we
define the baseline error distributions as p(Ej) and the
error distributions conditioned on disturbance D1:tend

as
p(Ẽj |D1:tend

). We compute the Jensen-Shannon-Distance
(JSD) [22] of the individual error distributions as measure of
difference in between the probability distribution functions:

BDSj = 1− JSD(p(Ẽj |D1:tend
) || p(Ej)) (5)

Here, we use the JSD over the KL-Divergence as it is less
sensitive to outliers and (using base 2 for logarithms) bound
to the interval of [0, 1]. It follows that the BEAM Disturbance
Score (BDS) is bound to the same interval. Intuitively, the
lower the BDS, the larger the deviation from the baseline
error distribution is and the worse the performance is. Finally,
to obtain a single, simply interpretable metric over all states,
we take the mean of the individual scores for all 7 state
dimensions:

BDS =
1

7

7∑
j=1

BDSj (6)

E. Introducing Latency as Disturbance

We introduce desynchronization in between the visual
observations and the ego pose from odometry by imposing a
latency L on the visual observations (cf. Fig. 2). This latency
is a sum of different potential delays such as measurement
latency, processing latency or communication latency. L is

assumed to be known and for now, constant. The new output
tracks of the MOT system under latency will be denoted by
S̃k. Concretely, imposing L, we can write:

S̃k = ϕ(O1:k−L,
wTe

1:k) (7)

At each timestep, we obtain estimated tracks S̃k. These
tracks are obtained by combining delayed observations up to
Ok−L with pose information up to wTe

k (cf. Fig. 2). Given
this definition of our disturbed system, we can move forward
by applying BEAM to evaluate the performance degradation
that latency L incurs.

1) Associating estimated tracks to ground truth: As a
preliminary to computing differences in between estimated
tracks Ŝk (or S̃k) and ground truth tracks Sk, we need
to find an assignment in between them. We first compute
an assignment of observations (object detections) to ground
truth tracks with no disturbance in effect. Concretely, we
find a matching from true positive observations in Ok to the
ground truth Sk.

Then, we perform tracking with ϕ using the observations
Ok or in the case of a latency-disturbed system, Ok−L

to produce estimated tracks Ŝk (respectively S̃k). For the
undisturbed system, we compute an assignment from Ŝk to
Ok, by which we find an assignment from Ŝk to Sk.

For the latency-disturbed system (Eq. (7)), we match from
S̃k to Ok−L. For each true positive estimated track in S̃k, the
matching gives us the ID of the corresponding ground truth
track in Sk−L. However, we aim to compute the error to the
ground truth at timestep k. Taking advantage of persistent
ground truth IDs, we can make a valid association to Sk if
the ground truth ID from k−L is also present at k, otherwise,
we discard the match as invalid.

To find each assignment, we filter out false positive
observations using the detection confidence (threshold 0.8)
and centroid distance to the nearest ground truth (1.5m) as
simple thresholds. We then use the Hungarian algorithm [19]
for graph-based matching with Euclidean centroid distances
as costs.

IV. EXPERIMENTS ON REAL-WORLD DATA

To illustrate the use of BEAM, we apply it with latency as
disturbance on the KITTI Tracking dataset [8]. The KITTI
dataset provides data at 10Hz, which allows us to inject
latencies in increments of 100ms as shown in Fig. 2. Other
modern datasets such as the nuScenes dataset [3] only pro-
vide data at 2Hz, which is insufficient for our purposes. The
issue of application on other datasets with lower framerates
will be left for future work, where interpolation techniques
as shown in by Li et al. [21] could be used.

For performing MOT, we use the provided LiDAR read-
ings, the pose data and the ground truth annotations for cars.
With these experiments, we show 3 key insights:

1) Existing MOT metrics are insufficient to evaluate sys-
tems under disturbances.

2) Generating a probabilistic overview of the error yields
valuable and interpretable results to understand the
MOT system behavior and limitations.
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Fig. 4. A crop of frame 53 of sequence 0002 of the KITTI Tracking
dataset with 300ms latency. The ground truth is shown in green, estimated
tracks in red. We can observe the inconsistency of image-space IoU-based
matching under latency: For the pair 0-11, the image-space IoU is small,
while for the pair 1-12, it is very high. From the bird’s eye view, however,
the 3D-IoU of both pairs is small or zero. In contrast to our method, both
matching methods fail to consistently identify TP matches under latency.

3) Considering the divergence from a baseline error dis-
tribution is a powerful way to distill the probabilistic
error perspective into interpretable scores.

A. Experimental Setup

To demonstrate our key insights, the examples we show
in this work were all obtained with the combination of
the Voxel-RCNN detector [39] pretrained on the KITTI 3D
Object Detection dataset and 3D-MOT tracker [42], which
are a state-of-the-art detector and tracker with open-source
code available for easy use. In addition to evaluating the
barebones tracker, we propose a spatio-temporal latency
compensator module (cf. Sec. IV-D) which can be inserted

in between the detector and tracker in order to compensate
for latency through kinematic predictions.

For evaluation, we use all 21 training sequences of the
KITTI Tracking dataset, which provide hand-labelled ground
truth annotations for vehicles. We investigate the error be-
havior for latencies ranging from 0ms to 500ms.

B. Evaluation with Classical Metrics
The evaluation with classical metrics such as the

HOTA [23] family of metrics shows us that we can see a
clear performance degradation with increasing latency (cf.
Fig. 3). However, this can be attributed to classification of
more tracks as false positives and gives us little intuition of
the nature of the performance degradation.

1) Degradation of TP/FP classification: We can observe
that the ability to consistently match a track to its ground
truth is quickly diminished under disturbances such as la-
tency (cf. Fig. 4) through either small or no image-space
IoU. As more latency incurs larger spatial shifts, traditional
methods like HOTA and CLEAR tend to misclassify tracks
as false positives. This incurs a large performance loss in
classification metrics (cf. Fig. 3).

For metrics like MOTP, which consider the mean local-
ization error of tracks to their ground truth, FP tracks are
discarded. As the number of FP tracks rises, the total number
of samples from which the MOTP is computed decreases,
which in turn diminishes the power of the metric. Comparing
image-space IoU to the 3D-IoU (as introduced by Weng et
al. [40]), the number of TP tracks with correctly associated
ground truth still remains higher as the image-space IoU is
less sensitive to spatial shifts (cf. Fig. 4).

In general, disturbance-unaware evaluation metrics that
depend on a matching to ground truth (”oracle-dependent”
metrics [12]) will experience similar degradations. While
performance in such metrics visibly decreases, their results
lose their interpretability by simply classifying most tracks
as false positives.

2) Our approach: In contrast, BEAM is a disturbance-
aware evaluation framework. Given sufficient knowledge
about the disturbance, we can uphold matching quality and
thereby extract meaningful information about the perfor-
mance degradation. To extract meaningful information, we
use state error distributions. They allow for a fine-grained
overview of the state errors (for true positive objects) instead
of the binary classification used by metrics like HOTA or
MOTA. In comparison to MOTP, our probabilistic approach
allows for divergence-based comparisons using the JSD.
The remaining tradeoff is that BEAM is not considering
classification metrics: false positive detections are discarded
(as they have no ground truth to be compared to) and have no
impact on the score. This underlines that BEAM is designed
to complement existing metrics and provide additional in-
depth information about the precision and robustness of the
evaluated MOT system.

C. Evaluation With BEAM
In Fig. 5, we can observe the BDS scores for latencies up

to 500ms. For brevity, we only show the longitudinal error
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distributions in Fig. 6, which have the highest impact on the
final scores.

We recall that high BDS scores (e.g. close to the maximum
of 1) are indicative of robust performance under latency.
Following expectations, scores achieved with the compen-
sator introduced in Sec. IV-D are significantly higher than
uncompensated scores. With the compensator (Fig. 6c), we
can observe nearly a return to the baseline error distribution
despite 300ms latency. Further discussion follows in Sec. IV-
E.

D. Compensating for Known Latency

In the following, we propose a spatio-temporal compen-
sator Γ for a known latency which relies on simple kinematic
models. To illustrate the use of BEAM in evaluating and
comparing different systems, we will use the previously
shown tracker with the added latency compensator.

1) Compensator definition: Let Γ be the compensator,
which takes in the output of the disturbed MOT system ϕ
together with latency L and maps to a corrected tracking
output S̄k. We want to compensate for the displacement
δk|k−L which a tracked vehicle ŝik experiences. As we as-
sume that we have access to ego poses, this largely amounts
to predicting the movement of the tracks under latency Ŝk−L

from timestep k − L to timestep k to compute the spatio-
temporally-aligned tracks S̄k|k−L:

S̄k|k−L = Γ (ϕ(O1:k−L,
wTe

1:k), L) (8)

= Γ
(
Ŝ1:k−L,

wTe
1:k, L

)
(9)

For our approach and the limited scope of this work, we
propose a simple first-order spatio-temporal compensator that
is based upon a constant velocity (CV) assumption. We
define Γ through two operations: first, we perform temporal
alignment and transform each tracked object ŝik−L into the
current ego reference frame wTe

k. Let p̂i
k−L be the position

of the tracked object and (p̂i
k−L)

∗ its position in the updated
reference frame wTe

k:

(p̂i
k−L)

∗ = (wTe
k)

−1 wTe
k−Lp̂

i
k−L (10)

(a) Error distribution without latency present (L = 0).

(b) Error distribution with 300ms latency (L = 3).

(c) Error distribution with 300ms latency (L = 3) and spatio-
temporal compensator.

Fig. 6. Longitudinal error distributions with and without latency, shown
with probability distribution function (PDF) and cumulative distribution
function (CDF). Notably in Figure 6b, the distribution appears to become
multi-modal with one significant peak around zero and one peak around
2m. Using the compensator, we can see in Fig. 6c that the error distribution
returns to its original shape with slightly wider tails.

Similarly, (p̂i
k−L−1)

∗ is the previous position expressed in
wTe

k. Then, we approximate the velocity at time k−L through
backwards-differences:

∂

∂t
(p̂i

k−L)
∗ =

1

T

[
(p̂i

k−L)
∗ − (p̂i

k−L−1)
∗] (11)

with T denoting the duration of a timestep. Finally, we
perform spatial alignment by correcting the object position
with

p̄i
k|k−L ≈ (p̂i

k−L)
∗ + L

∂

∂t
(p̂i

k−L)
∗ (12)

If the object was not detected in the last timestep, we use
the predicted position of the object given by the tracker.

2) Computing derivatives of detected objects: In most
modern cars, radar sensors are commonly used to obtain
highly precise information about velocities of detected ob-
jects [2], [32]. However, radar sensors are not commonly



Method Mean [m] Std. [m] 99th-perc. [m]

Baseline (Fig. 6a) 0.00 0.13 0.54
No comp. (Fig. 6b) 1.48 1.82 7.71
CV comp. (Fig. 6c) 0.00 0.15 0.68

TABLE I
ERROR STATISTICS FOR FIG. 6.

used as modality in MOT datasets and therefore, we rely
on state estimation. We find that for the scope of this
work, using backwards-differences presents a simple solution
to illustrate the potential of the CV model. Alternatively,
common solutions for state estimation that could be used
are Kalman filters [15], differentiable filters [18] or learning-
based velocity estimation [27]. However, these methods
require extensive tuning or large datasets, which position
them outside the scope of this work.

3) Experiments with compensator: We repeat previous
experiments with the added compensator. Evidently, this rel-
atively simple method performs well for the given scenarios
as shown by comparing the error distributions in Fig. 6a and
Fig. 6c and considering the reduced BDS in Fig. 5. Despite
increased tail errors, we still see a reduction in the order of
a magnitude of the 99-th percentile error compared to the
uncompensated case (cf. Tab. I), underlining the potential of
employing even simple models.

E. Discussion

In this section, we showcased the methodology behind our
proposed BEAM framework, differentiating it from current
MOT evaluation metrics [23], [1], [40] (cf. Sec. IV-B) and
showing its capabilities using the KITTI Tracking dataset
with latency as disturbance (cf. Sec. IV-C). Evaluating a
state-of-the-art MOT system with and without a latency
compensator (cf. Sec. IV-D), we show the suitability of
BEAM for effective error analysis and evaluation of system
robustness. In the following, we will discuss the obtained
results with the proposed methods.

1) Spatio-temporal compensator: Using the BEAM
framework, we observe only a small performance degrada-
tion in the BDS (cf. Fig. 5) and statistical error measures
when using the compensator (cf. Tab. I). It appears the
constant velocity assumption during each timestep is suf-
ficiently robust for most scenarios in the KITTI Tracking
dataset to keep the error distribution close to the baseline.
Nevertheless, the CV assumption would fail in scenarios with
more pronounced acceleration. In more dynamic scenarios, a
constant acceleration model or using a mixture of learning-
based and model-based compensator may prove to be more
robust: however, such scenarios are not considered in the
KITTI Tracking dataset. We present this as future research
opportunity to apply our evaluation method to more dynamic
scenarios where different compensators may be used to cope
with the problem.

2) BEAM versus classical metrics: While we can see a
performance degradation with classical metrics (cf. Sec. IV-

B), we can attribute these performance degradations to
simply classifying most estimated tracks as false positives
instead of correctly associating them to their ground truth and
then considering the occuring error. To eliminate this limita-
tion, we introduce disturbance-aware ground truth matching,
which allows us to consistently match tracks to their ground
truth, even under disturbances like latency.

Being able to consistently match tracks to their ground
truth allows us to perform reliable, meaningful error analysis
that can give us rich insights into the failure modes of the
system under test: in Fig. 6, we can see how the error
distribution degrades from undisturbed baseline to multi-
modal distribution with significantly increased tail errors. In
turn, we can also see how the error distribution of the system
with compensator closely resembles the original distribution.

These changes in the distribution are clearly reflected in
the BDS (cf. Fig. 5), which we can leverage for simple com-
parative evaluation of the performance degradation with re-
spect to an undisturbed baseline. For comparative evaluation,
the BDS distills the more complex probabilistic perspective
into an easy-to-interpret score in between zero and one. The
applications of the BDS are flexible: either comparing the
impact of different disturbances on a system or comparing
different systems under the same disturbance. This could
allow the BDS to be used alongside different standard metrics
for benchmarking different perception systems.

V. CONCLUSION

With technology becoming increasingly complex and ad-
vanced, we need to push the boundaries of evaluation
and certifiable safety. Especially for autonomous driving
tasks, only the most robust systems will gain the trust
and acceptance of their users. With this work, we aim to
showcase BEAM, a method of systematically challenging the
assumptions we are traditionally operating on in perception
benchmarks and how we can evaluate current MOT systems
with respect to system-level disturbances. Focusing on la-
tency as disturbance, we applied BEAM to analyse its impact
on MOT systems and showed how we can counteract latency
with a simple compensator module for state forecasting.

However, there are many more possible disturbances than
latency: there is a vast number of adverse factors that can
impact MOT systems that we lay out as future work to
investigate: jittering sampling rates, message loss and many
more. The formulation of BEAM is flexible by design to ac-
comodate future developments aiming to build a catalogue of
disturbances we can evaluate against. With BEAM, we take
a step towards a unified framework to evaluate perception
robustness, facilitating the future development of more robust
and subsequently safer systems.
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Driving Behavior in Dense Traffic. In 2015 IEEE 18th International
Conference on Intelligent Transportation Systems, pages 1292–1297,
2015.

[11] Jiawei He, Chun yan Fu, and Xiyang Wang. 3D Multi-Object
Tracking Based on Uncertainty-Guided Data Association. ArXiv,
abs/2303.01786, 2023.

[12] Michael Hoss. Checklist to Transparently Define Test Oracles for TP,
FP, and FN Objects in Automated Driving. ArXiv, abs/2308.07106,
2023.

[13] B. Ivanovic and Marco Pavone. Injecting Planning-Awareness into
Prediction and Detection Evaluation. 2022 IEEE Intelligent Vehicles
Symposium (IV), pages 821–828, 2021.
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