
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GAVEL: AGENT MEETS CHECKLIST FOR EVALUATING
LLMS ON LONG-CONTEXT LEGAL SUMMARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly applied in legal practice, with
case summarization being a key long-context task where cases often exceed 100K
tokens across multiple documents. Existing evaluation methods rely on check-
list comparisons but use coarse-grained extraction that merges multiple values
into single text blocks, missing partial matches when comparing them. They also
overlook content beyond predefined checklist categories and lack writing style
evaluation. In this paper, we introduce GAVEL-REF, a reference-based evalua-
tion framework that improves checklist evaluation through multi-value extraction
with supporting text, and further incorporates residual fact and writing-style as-
sessments. Using GAVEL-REF, we move beyond the single aggregate scores re-
ported in prior work to systematically evaluate 12 frontier LLMs on legal cases
ranging from 32K to 512K tokens, primarily from 2025. Our detailed analysis re-
veals Gemini 2.5 Flash, GPT-5, and Claude Sonnet 4 achieve the best performance
(around 50 SGAVEL-REF), showing the difficulty of the task. These top models show
consistent patterns: they succeed on simple checklist items (e.g., filing date) but
struggle on multi-value or rare ones such as settlements and monitor reports. As
LLMs keep improving and may eventually surpass human summaries, we also
explore checklist extraction directly from case documents. We experiment with
three different methods: end-to-end with long-context LLM, chunk-by-chunk ex-
traction, and our newly developed autonomous agent scaffold, GAVEL-AGENT.
Results show a trade-off between performance and efficiency: GPT-4.1 end-to-
end performs best, while GAVEL-AGENT with Qwen3 reduces token usage by
about 50%. We will release our code and annotations publicly to facilitate future
research on long-context legal summarization.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Achiam et al., 2023) are now widely adopted
across various industries and professions. The legal sector has been particularly active (Frankenreiter
& Nyarko, 2022; Ziffer, 2023), with startups such as Harvey building AI for lawyers. Among legal
applications, court document summarization stands out as both practically important and technically
challenging. A single litigation case can easily involve dozens of court documents, including com-
plaints, orders, and rulings, with a combined length exceeding 100,000 tokens, roughly equivalent to
80 news articles or a 300-page novel. Unlike news summarization, where lead sentences often suf-
fice (Narayan et al., 2018; Liu & Lapata, 2019), or fiction books, where events can be summarized
sequentially (Chang et al., 2024), legal cases require tracking interconnected arguments across mul-
tiple documents. It requires maintaining exact chronology, preserving relationships between parties,
claims, and rulings, and ensuring that cross-references between filings remain accurate. Moreover,
a collection of expert-written case summaries is available (Shen et al., 2022) to serve as a gold stan-
dard for this task. The combination of these factors makes legal summarization an ideal testbed for
assessing LLMs’ long-context capabilities; yet, it also calls for more reliable and comprehensive
evaluation methodologies than those currently in use.

To evaluate summarization, researchers have moved beyond traditional n-gram metrics such as
ROUGE (Lin, 2004) and BLEU (Papineni et al., 2002), developing checklist-based methods with
LLM-as-judge (Min et al., 2023; Pereira et al., 2024; Lee et al., 2024; Lin et al., 2025). The most
relevant recent work is ExpertLongBench (Ruan et al., 2025), which includes legal summarization

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

On February 28, 2023, the United States of America, on behalf of the
Environmental Protection Agency (EPA), filed a lawsuit in the U.S. District Court
for the Eastern District of Louisiana against a neoprene manufacturer and its
landlord. The government was represented by the Department of Justice and
EPA counsel, while the defendants retained private counsel.  

The lawsuit was brought under the "imminent and substantial endangerment"
provision of the Clean Air Act, 42 U.S.C. § 7603. The United States alleged that
the manufacturer's facility in LaPlace, Louisiana—the only one of its kind in the
country—was emitting the chemical chloroprene at levels that posed an
unacceptably high cancer risk to the surrounding community, ...

This case challenges the carcinogenic chloroprene emissions from Denka
Performance Elastomer, LLC’s (Denka’s) neoprene manufacturing facility at the
Pontchartrain Works Site in St. John the Baptist Parish, Louisiana, as being
unacceptably high under EPA regulations. Denka's facility produced neoprene, a
synthetic rubber, emitting chloroprene—a chemical classified by the EPA in 2010
as likely carcinogenic to humans. Air monitoring near the facility reportedly
detected chloroprene concentrations up to 14 times the EPA's recommended
levels, posing a risk to the majority-Black population surrounding the facility.  

On February 28, 2023, the United States government filed a lawsuit in the U.S.
District Court for the Eastern District of Louisiana. Plaintiff sued Denka
Performance Elastomer LLC, the owner and operator of a neoprene
manufacturing facility, and DuPont Specialty Products, the owner of the land on
which the neoprene manufacturing facility was located and leased to Defendant
Denka. Plaintiff sued Defendant Denka under Section 303 of the Clean Air Act,
42 U.S.C. § 7603, alleging that Defendant Denka's chloroprene ...

Gemini 2.5 Pro

Human Summary

Extract checklist items Compare checklist items

492 words

1,277 words

Docket
Complaint Motion

Motion MotionMotion

...14

documents

Filing Date: February 28, 2023

Remedy Sought (2 values):

Filing Date: February 28, 2023

Remedy Sought (4 values):

Parties (3 values): Plaintiff: United States government

Parties (3 values):

Dates of All Decrees (1 value):

Dates of All Decrees (4 values):

LLM

LLM

LLM

LLM

22 more checklist items

Equals

LLM summary doesn’t
contain the names

LLM summary misses 2
remedies including one
sought by the defendants

LLM summary only covers
1 out of 4 decrees

：70 / 100：38 / 100

Equal

Missing Hallucination

2

2 4

2

Not Equal

Contains

7 Partial Match2

March 10, 2025: order of dismissal.

March 10, 2025: the case was dismissed.July 2024: ...

January 10, 2025: ...August 30, 2023: ...

Denka’s counterclaim ...

Injunction ... the manufacturer
Preliminary injunction ...

On May 16, 2024, the EPA
published a final rule regulating ...

Preliminary injunction ...

Injunctive relief ordering Dupont ...

Defendant: the manufacturer’s landlord ...

Plaintiff: The United States of America

Injunctive relief directing Denka ...

Defendant: Denka Performance ...

Defendant: A neoprene manufacturer ...

Defendant: Dupont ...

checklist style

：25 / 100residual

19 applicable items:

Residual Facts Evaluation

Writing Style Evaluation

Checklist Evaluation

And compare them
Extract residual facts

Get text that are not covered by the checklist items

by values and supporting text of each extracted item

From Human Summary:

12 residual facts4 residual facts

From Model Summary:

Following the EPA rule, the district-
court case was held in abeyance.

...

Sentence Structure & Voice: 3

Citation & Reference Style: 4

Formatting & Layout: 5

Narrative Order: 4

Readability & Jargon Level: 3

Avg: 3.8

rescale

rescale

1-5 Likert Scale
on Similarity

Figure 1: Example of evaluating a Gemini 2.5 Pro summary with GAVEL-REF, which contains:
checklist evaluation supporting both string-wise and list-wise comparisons, residual fact evaluation,
and writing-style evaluation. An interesting finding is that many modern LLMs tend to omits specific
names of people or organizations—in this case, the defendant companies; and in other cases even
the U.S. president’s name. Light green background indicates matched values.

in its benchmark. They ask legal experts to define 26 checklist items commonly found in legal case
summaries (e.g., filing date, remedy sought, decrees), and an LLM is used to extract these items
from both human- and model-generated summaries for item-by-item comparison. This marks an
important step toward structured and interpretable evaluation, but the approach still has two key
limitations: (i) many checklist items (e.g., remedy sought) may contain multiple distinct values (see
Figure 1), yet existing method treats them as a single text block, making it difficult to capture partial
matches. (ii) the evaluation is restricted to predefined checklist items, overlooking additional use-
ful content outside the checklist and other qualities such as readability or formatting. Furthermore,
ExpertLongBench and other existing benchmarks (Yen et al., 2024; Ruan et al., 2025) treat legal
summarization as just one task among many, reporting a single score per task. As a result, we lack
detailed insights into how modern LLMs actually perform; for example, which checklist items mod-
els systematically struggle with or whether they capture non-checklist information as human experts
often do. Finally, as LLMs continue to advance, they may surpass human-written summaries. This
motivates deriving checklists directly from case documents to reduce reliance on human references
while enabling test-time feedback. However, it is unclear from existing work whether current LLMs
or agent-based methods can effectively handle this long-context extraction task.

In this paper, we address all three gaps. Firstly, we introduce GAVEL-REF (see Figure 1), which
improves checklist evaluation by enabling list-wise comparison, and we further extend it with as-
sessments of residual facts (information beyond the 26 checklist items) and writing style. We com-
pare GAVEL-REF, with different LLMs as its backbone, against human annotators who perform the
same task. Specifically, we collect 2,934 item-level annotations on 20 long summaries (averaging
over 1,000 words each), 450 checklist comparison judgments, and 375 style similarity ratings, total-
ing 111 hours of human effort. Our results show that GAVEL-REF using open-source GPT-oss 20B
(Agarwal et al., 2025) and Qwen3 (Yang et al., 2025) models achieves performance comparable to
GPT-5, demonstrating that large-scale automatic evaluation can be both reliable and cost-effective.

Secondly, using GAVEL-REF, we evaluate 12 LLMs, including proprietary models (GPT-5 and
Gemini 2.5) and open-source models (GPT-oss and Qwen3), on 50 cases spanning 32K to 512K
tokens, far beyond the 128K limit of prior work. To reduce data contamination, 90% of cases are
new from 2025 and likely unseen by the models. Our main findings are: (i) Gemini 2.5 Flash,
GPT-5, and Claude Sonnet 4 achieve the best summaries with SGAVEL-REF score of 50 out of 100,
underscoring the difficulty of long-context legal summarization. (ii) Proprietary models outperform
open-source ones at the 30B scale, with open-source models such as Gemma3 (Team et al., 2025)
and Qwen3 degrading more drastically as case length increases. (iii) GPT-5 best captures residual
facts but tends to produce checklist-like text even when prompted for narrative style, while Claude
models most closely match human style. (iv) Top models handle single-value items well, multi-value
items less reliably, and struggle most with related cases and monitoring reports.

Thirdly, for extracting checklists directly from case documents, beyond standard approaches such as
feeding all documents into a long-context LLM or chunking them and extracting items iteratively,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

we develop a novel agent scaffold, GAVEL-AGENT. It equips LLMs with six tools for autonomously
navigating documents and locating checklist items, emulating how humans process case documents.
Our experiments show that end-to-end extraction with GPT-4.1 outperforms both chunk-by-chunk
processing and the agent approach with Qwen3. The advantage of GAVEL-AGENT is efficiency: it
uses about 50% fewer tokens than the other methods, highlighting a trade-off between performance
and cost. Compared to extracting from summaries, checklist extraction from full documents still
lags significantly, pointing to future work on long-context LLMs and long-horizon agents.

2 GAVEL-REF—A REFERENCE-BASED EVALUATION FRAMEWORK

We introduce GAVEL-REF (Fig. 1), an automatic, reference-based evaluation framework for legal
summarization with three complementary components. First, checklist evaluation extracts values
and supporting text for 26 items(e.g., filing date, parties, decrees). Second, residual facts evaluation
captures and scores content beyond the checklist. Third, writing style evaluation compares model
summaries’ similarity to human references across five aspects. Prompts are in App. G.

2.1 METHOD DESCRIPTION

Checklist Evaluation. ExpertLongBench (Ruan et al., 2025) presents a checklist-based evaluation
framework for long-form generation, where legal experts create a checklist of 26 key items for legal
summaries. For each item ci, an LLM extracts the corresponding information H(ci) from the model
summary and R(ci) from the reference, then determines containment relationships between them.
While this provides a solid foundation, we identify limitations and improve it as follows:

Improvement 1: Multi-value extraction with supporting text. We find that checklist items contain
multiple values 76% of the time (e.g., several filings or factual bases in a case). However, prior
method extracts all information as a single text block and performs a binary comparison. This
misses partial overlaps—for example, five filings vs. five different filings with three overlaps is
scored the same as a total mismatch.

To address this limitation, we restructure extraction so that each checklist item ci yields a list of val-
ues with supporting text: H(ci) = {(vi,1, si,1), (vi,2, si,2), . . . , (vi,n, si,n)}, where vi,j is the j-th
extracted value for checklist item ci, and si,j is a set of verbatim snippets grounding it. Supporting
text not only justifies values but also helps us later identify residual facts that fall outside the check-
list. For comparison, single-value items are judged by an LLM as equal, A contains B, B contains
A, or different, while multi-value items use element-wise matching to identify overlaps and uniques.

Improvement 2: Score aggregation. When some checklist item doesn’t exist in the case documents,
both the model and human naturally won’t include it in their summaries. However, the original
method counts it as a correct match. This inflates the denominator and reduces the penalty for actual
errors. As non-applicable items dilute the score calculation, errors like hallucinations or omissions
of key items have less impact on the final score.

To address this issue, we compute scores based only on applicable items, defined as those present in
at least one summary. The final score is: Schecklist =

100
|A|

∑
ci∈A mi, where A is the set of applicable

checklist items, and the matching score mi is defined as:

mi =



1 if H(ci) = R(ci)

0.5 if H(ci) ⊂ R(ci) or H(ci) ⊃ R(ci)

0 otherwise
if single-value

F1(H(ci), R(ci)) if multi-value

(1)

For single-value items, we assign full points for equality, half points for containment, and zero
otherwise. For multi-value items, we use F1 as the matching score.

Residual Facts Evaluation. While the checklist captures essential case information, summaries
sometimes include details beyond these 26 items. To evaluate this additional content, we first iden-
tify text segments not covered by the checklist. We use two-stage matching to precisely identify
uncovered text: first against the extracted values alone, then against their supporting sentences if un-
matched. This prevents over-coverage—such as when a filing date’s support text also contains other

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

legal facts. We then use an LLM to extract atomic facts (termed “residual facts”) from these uncov-
ered segments and evaluate them using the same list-wise comparison method as in our checklist
evaluation. The resulting F1 score (scaled to 0-100) is the Sresidual.

Writing Style Evaluation. Beyond content, we measure how closely model summaries match
human ones in writing style. We emphasize similarity over quality, as quality is subjective (e.g.,
preference for narratives vs. bullet points). Five aspects are rated on a 1–5 Likert scale (1 = com-
pletely different, 5 = identical): Readability & Jargon Level, Narrative Order, Sentence Structure &
Voice, Formatting & Layout, Citation & Reference Style. We average these scores, subtract 1, and
multiply by 25 to obtain Sstyle on a 0-100 scale. See Appendix C for definitions of each aspect.

2.2 THE OVERALL GAVEL-REF SCORE

To combine all three components into a final score for benchmarking LLMs or use as a reward
signal, we compute a weighted linear combination:

SGAVEL-REF = (1− r) · α · Schecklist + r · α · Sresidual + (1− α) · Sstyle (2)

where α controls the balance between content and style, and r is the proportion of residual content
in the reference summary (total residual text spans length divided by summary length). This dy-
namically weights Schecklist and Sresidual based on their relative importance in each summary—more
residual content increases the weight on Sresidual. We set α as 0.9 throughout our paper.

2.3 META-EVALUATION OF GAVEL-REF

To validate that GAVEL-REF accurately captures summary quality, we recruit four in-house anno-
tators with legal expertise to perform the same evaluation tasks as the LLM—extracting checklist
items, comparing checklist item values, and rating writing style similarity—then measure the agree-
ment between LLM and human annotations.

Collecting Human Annotations. To evaluate LLMs’ ability to extract checklist items, we annotate
20 long case summaries (avg. 1,093 words), as shorter ones pose a simpler challenge. Since extract-
ing all 26 checklist items from scratch is time-consuming, annotators start from GPT-5’s extractions.
Using our paragraph-by-paragraph review interface modified from Thresh (Heineman et al., 2023),
annotators add missing values, correct extractions and supporting text, or delete incorrect values.
Each summary annotation takes approximately one hour. We collect 35 total summary annotations
covering 2,934 item-level annotations. The five longest summaries (averaging 1,780 words) receive
triple annotations, with adjudication by a fourth annotator. The remaining 15 summaries receive
single annotations. To evaluate LLMs’ ability to compare checklist values, annotators assess 150
item pairs from model and reference summaries (100 multi-value, 50 single-value), drawn from di-
verse LLMs for generalizability. For single-value pairs, they perform 4-class classification: equal,
A contains B, B contains A, or different. For multi-value pairs, they match elements from list A to
list B. Annotations are aggregated by majority vote: for single-value items, we take the class with
≥ two votes (no cases had all three labels differ); for multi-value items, we keep matches identified
by ≥ two annotators. To evaluate LLM’s ability to rate writing style similarity, we annotate 25
model-reference summary pairs. Annotators rate similarity across five style aspects using 1-5 Likert
scales, with three annotations per pair. Final scores are the median across annotators.

All annotators are paid $18 USD per hour, with a total cost of $2K USD. Appendix D provides
inter-annotator agreement results and screenshots of the annotation interfaces.

Metrics. For checklist comparison, we use accuracy for single-value items (4-class classification)
and matching-pairs F1 for multi-value items, which measures how accurately the LLM identifies
correct matches between two lists. The best comparison model is then used to evaluate checklist
extraction, computing Schecklist against human-extracted checklist from the same summary. We
also compute word-level coverage agreement on supporting text, measuring how often model and
human agree on whether words are covered by checklist items or are residual. For writing style
rating, we report Cohen’s Kappa for LLM-human agreement.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Checklist Extraction Checklist Comparison Style

Model Schecklist Coverage Single Multi Rating

GPT-5 70.8 92.9% 0.567 0.847 0.115
GPT-oss 20B 65.5 85.9% 0.567 0.801 0.157
Gemma3 27B 49.8 82.0% 0.740 0.841 0.091
Qwen3 32B 60.1 70.6% 0.600 0.820 0.084
Qwen3 30B-A3B 59.3 66.4% 0.700 0.854 -0.011

Table 1: Meta-evaluation results of five models in
GAVEL-REF: Checklist Extraction (Schecklist and
word-level coverage agreement), Checklist Com-
parison (accuracy for single-value, matching F1

for multi-value), and Writing Style Rating (Co-
hen’s κ). Bold: best, italic: second best.

Results. We select models based on two cri-
teria: state-of-the-art performance and open-
source availability. We prioritize open-source
models for cost-efficient large-scale evaluation
in Section 3. We evaluate five LLMs: GPT-
5 and four open-source models—Qwen3 32B,
Qwen3 30B-A3B, GPT-oss 20B, and Gemma3
27B. Table 1 presents the results. GPT-5 per-
forms best at checklist extraction with GPT-oss-
20B second. Reasoning models perform bet-
ter than Gemma3 27B on this task. However,
Gemma3 27B outperforms all reasoning mod-
els on single string comparison and achieves
comparable performance on list-wise comparison. GPT-oss 20B achieves the best alignment with
human ratings of writing style. We use GPT-oss 20B for checklist extraction and style rating, and
Gemma3 27B for checklist comparison in Section 3 to evaluate LLM summaries.

3 EVALUATION OF LLM LEGAL SUMMARIZATION WITH GAVEL-REF

Prior work (Yen et al., 2024; Ruan et al., 2025) have evaluated LLM legal summarization on legal
cases up to 128K that are before 2024. As the latest LLMs now handle 1M tokens and have pre-
trained knowledge up to 2025, in this work, we want to shed light on how these modern models
perform on much longer context using 2025 legal cases beyond their training cutoffs. With GAVEL-
REF, we evaluate 12 LLMs that span both proprietary and open-source models across 5 different
case length scales: 32K, 64K, 128K, 256K, 512K tokens (measured by the GPT-4o tokenizer). For
each scale, we select 10 cases whose token counts fall within ±20% of the target length. All cases
selected are filed in 2025, except in the 512K bin where 5 cases are from before 2024 due to limited
availability. Since the models have varying context limits and some cases exceed these limits, we
truncate by proportionally removing tokens from the end of each document, following prior work.

3.1 BENCHMARKING RESULTS FOR 12 MODELS

Figure 2 shows GAVEL-REF evaluation results for 12 models across different case length bins.

Gemini 2.5 Flash, GPT-5 and Claude Sonnet 4 are the top three models. Proprietary models
consistently outperform open-source ones by a notable margin, with GPT-oss 20B leading among
open-source models. Interestingly, smaller models from the Gemini and Claude families outperform
their larger siblings—Gemini 2.5 Flash beats Pro, and Claude Sonnet 4 beats Opus 4.1. This suggests
that once models can handle long contexts effectively, the additional scaling on reasoning doesn’t
improve summarization much, unlike in reasoning-heavy tasks like coding or mathematics.

Proprietary models maintain stable checklist performance across lengths while most open-
source models degrade as case length increases. All six proprietary models plus GPT-oss-20B
show consistent performance regardless of length. However, Qwen3 and Gemma3 models experi-
ence significant drops on cases exceeding their native context windows.

GPT-5 performs the best on residual facts evaluation, but have diverges in writing style. GPT-5
captures more details than other models, especially on 32K-128K cases, which leads to summaries
much longer than what humans write. These extra details explain why GPT-5 scores much higher
Sresidual in the 64K and 128K bins. However, it often ignores instructions to write in narrative form,
instead producing section-based summaries organized by checklist items, which lowers its Format-
ting & Layout scores. Interestingly though, this issue fades on very long cases (256K-512K bins),
where GPT-5 better follows the narrative format.

Claude models have the most human-like writing style, though all models struggle with style
on very long cases. Claude Opus 4.1 leads with Sstyle of 71.7, followed by Claude Sonnet 4 at 70.7.
All models perform best on 64K-128K cases for style similarity. However, on longer cases (256K-
512K), every model’s writing becomes less human-like, with similar drops across the board. This
suggests that maintaining human-like narrative becomes increasingly difficult as case length grows.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Benchmarking results of 12 LLMs on long-context legal summarization with our GAVEL-
REF framework across case lengths from 32K to 512K tokens. Models are ordered by SGAVEL-REF on
all cases. Gemini 2.5 Flash leads, with all top six positions held by proprietary models.

3.2 HOW TOP MODELS HANDLE DIFFERENT CHECKLIST INFORMATION

Figure 3: Top-5 LLMs’ performance across
checklist groups, showing struggles with multi-
value items (filings, decrees, etc.) and rare items
(related cases, monitor reports).

Figure 3 shows performance of the top five
models across nine checklist groups, using the
matching score mi (Eq. 1). All models follow
a similar pattern. They are good at extract-
ing basic case information, legal foundations,
and judge details, scoring above 0.6. This
makes sense as these groups contain mostly
single-value items like filing date, cause of ac-
tion, type of counsel, and judge name. Per-
formance drops noticeably for multi-value
items. Court rulings, decrees, settlements, and
factual basis (context) prove more challenging,
with scores around 0.4-0.5. Models must track
multiple related pieces of information scattered
across lengthy documents and determine which
ones are important enough to include. The
models struggle most with related cases and
monitor reports, scoring below 0.2. These
items appear infrequently in the documents and
often require connecting subtle references.

3.3 DISSECTING THE TOP PERFORMER: ITEM-LEVEL ANALYSIS

Figure 4 analyzes Gemini 2.5 Flash’s item-level performance, showing its top and bottom 5 checklist
items plus consistently over- and under-specified items (see Appendix Figure 6 for top-3 models).

Single-value items are Gemini’s strength, while settlement details and monitor reports are its
blind spots. Filing date leads with a near-perfect 0.99 matching score, followed by other straightfor-
ward items like monitor name (0.83) and judge name (0.76). The model’s median score across all 26
items sits at 0.49. However, it struggles dramatically with settlement-related information—scoring
just 0.11, 0.04, and 0.00 on various settlement items—while monitor reports score only 0.03.

Gemini 2.5 Flash tends to overspecify and underspecify checklist items with multiple values
in its summaries. Important filings and trials appear in both the top-5 over&under-specified lists.
This reveals that when faced with multiple values to choose from, model struggles to match human
judgment about what’s important. Monitor reports and settlement disputes are under-specified 100%
of the time, meaning model either misses them entirely or provides less detail than humans include.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Gemini 2.5 Flash performance breakdown: top/bottom 5 checklist items by matching score
and most frequently over/under-specified items. Overspecification measured as frequency across all
50 cases; underspecification as frequency among cases where human summary includes that item.
Dashed lines are medians: 0.49 matching score, 59% overspecification, 70% underspecification.

4 EXTRACTING CHECKLIST FROM CASE DOCUMENTS

While reference-based evaluation effectively benchmarks summarization models, it requires hours
of legal expert time per case to create human summaries, which cannot serve as a long-term gold
standard once LLMs begin to surpass humans. Directly extracting checklists from case documents
removes this dependency, enabling scalable evaluation, testing of superhuman models, and grounded
suggestions during inference. To this end, we experiment with three methods: end-to-end extraction
with long-context LLMs, processing the case documents chunk by chunk, and GAVEL-AGENT—an
autonomous agent framework we develop to test whether LLMs can efficiently extract information
by strategically searching and skimming rather than reading every word.

4.1 METHODS

End-to-end. We concatenate all case documents in chronological order and feed them to long-
context LLMs. Instead of extracting all 26 checklist items at once, we query each item individually,
which gives more accurate results.

Chunk-by-chunk. We split each document into 16K-token chunks, long enough to capture most
documents while fitting within modern LLM context windows (32K+). At each step, the model
receives the chunk text and current checklist state, then outputs an updated state—retaining existing
values or adding new ones. Like end-to-end, we process documents chronologically and extract all
26 items. This mirrors multi-agent long-context methods (Zhang et al., 2024; Zhao et al., 2024),
which segment text and process chunks independently.

GAVEL-AGENT. Unlike end-to-end or chunk-by-chunk methods that make models to read every-
thing, human experts strategically search and skim for relevant information. To mimic this, we
develop GAVEL-AGENT, an agent scaffold that lets LLMs navigate documents and extract checklist
items autonomously. GAVEL-AGENT provides the LLM with six tools such as read a document, run
regex searches across documents, and update checklist items. At each step, the model chooses a tool
or issues a stop action based on the current state and history. Standard scaffolds append each tool
call and response to agent’s context. While working for short tasks, this approach breaks down in
long cases (256K+ tokens, 50+ calls), where the context quickly balloons and the model must track
information across an increasingly unwieldy history. Instead, GAVEL-AGENT refreshes the state
after each tool call, giving LLM a clean snapshot including documents explored state, recent action
details, etc. GAVEL-AGENT is fully customizable: users can define any checklist items, making it
easy to transfer to domains like biomedical or financial extraction.

Tools. The following are the definitions of the six tools in GAVEL-AGENT:

• list documents(): Returns all available documents with their metadata such as document
type and token count. It is used to provide an initial catalog of the case.

• read document(doc name, start token, end token): Reads a specific token
range from a document, with a maximum of 10,000 tokens per call.

• search document regex(pattern, doc name/doc names, top k,
context tokens): Searches one, multiple or all documents using regex patterns, returning
the top-k matches with surrounding context (100-1000 tokens).

• get checklist(item/items): Retrieves extracted values for specified checklist items.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• append checklist(patch): Adds new values for specific checklist items, supporting mul-
tiple values per item with required evidence (verbatim text, source document, and location).

• update checklist(patch): Replaces all values for specified checklist items, used for cor-
rections or marking items as ”Not Applicable” when no relevant information exists.

Both append checklist and update checklist use a patch structure that supports batch
operations. Each patch contains an array of checklist keys to update, where each key maps to an
array of extracted values, and every value includes (1) the value itself and (2) an array of supporting
evidence (verbatim text, source document, and location). This structure ensures traceability from
extracted information back to source documents.

Context Management. At each step, the LLM is given a system prompt high-level task instruction
and tool descriptions, and a user prompt that contains user instruction (e.g., “Extract all 26 checklist
items”), the checklist definitions of the items to extract, a document catalog showing which parts
have been explored, a summary of what has been extracted so far, and the recent action history. For
action history, we maintain up to 100 tool calls: the five most recent include full responses (e.g., full
text from read document), while the other 95 are compressed to the tool name and brief outcome
(e.g., “read 3,000 tokens”, “updated filing date”). This gives the model enough awareness to avoid
repeating actions while keeping the prompt compact.

4.2 IMPLEMENTATION DETAILS

Model Selection. For end-to-end extraction, we use GPT-4.1 with its 1M-token context. For chunk-
by-chunk extraction, we test three open-source reasoning models: GPT-oss 20B, Qwen3 32B, and
Qwen3 30B-A3B. For GavelAgent, we use Qwen3 30B-A3B and GPT-oss 20B, as both support
128K+ context natively, sufficient for context management.

GAVEL-AGENT Configurations. It is unclear whether agents perform better extracting multiple
checklist items together—potentially using each document read more efficiently—or focusing on
single items for higher accuracy. To study this trade-off, we test three setups: (1) one agent extracting
all 26 items; (2) 9 agents for grouped items (e.g., filing date, parties, and counsel under “Basic Case
Information”); (3) 26 agents, each handling a single item. See App. B for full checklist definitions.

4.3 META-EVALUATION

Figure 5: Schecklist versus total token usage for dif-
ferent methods extracting from case documents.

Following the evaluation of GAVEL-REF in
Section 2.3, we evaluate extraction quality on
20 long cases. We use Gemma3 27B to com-
pare each method’s extracted checklist against
the human-created checklist from the summary,
computing the Schecklist score. We also measure
token usage (input and output) as efficiency.

Results. Figure 5 shows Schecklist versus total
token usage for each method (input and output
token breakdowns are in Figure 7 in Appendix.)
End-to-end with GPT-4.1 achieves the highest
Schecklist of 43.7 using 4.47M tokens. Chunk-
by-chunk with Qwen3 30B-A3B ranks second
with 35.2 but uses 7.12M tokens. GAVEL-
AGENT’s best configuration—individual agents
with Qwen3 30B-A3B—scores 31.9 while us-
ing only 2.57M tokens, 40% fewer than end-to-end and 60% fewer than chunk-by-chunk. This
performance-efficiency trade-off reflects their main difference: traditional methods read everything
while agents selectively navigate documents. Across models, Qwen3 variants consistently outper-
form GPT-oss 20B in both chunking and agent methods. Notably, all document extraction methods
fall well below the 70.8 achieved by GPT-5 extracting from human summaries in GAVEL-REF,
showing significant headroom for improving both long-context models and long-horizon agents.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Legal Summarization. Several datasets exist for this task. Shukla et al. (2022) release Indian and
UK Supreme Court cases with human-written summaries, and Elaraby & Litman (2022) provide
Canadian court opinions paired with expert summaries. Heddaya et al. (2024) collect U.S. Supreme
Court opinions with their official summaries. These resources focus on single-document summariza-
tion with inputs under 16K tokens. Multi-LexSum (Shen et al., 2022) and ExpertLongBench (Ruan
et al., 2025) extend this to multi-document summaries using cases from the Civil Rights Litigation
Clearinghouse (CRLC), a widely used platform that offers free access to U.S. civil rights cases.
Following them, we also collect cases from CRLC, focusing on 2025 filings to reduce data con-
tamination. To better evaluate long-context capability, we construct five length ranges (32K–512K
tokens) and benchmark 12 state-of-the-art LLMs with our framework GAVEL-REF, which provides
fine-grained analysis of their strengths and weaknesses in long-context legal summarization.

Checklist-based Evaluation. With modern LLMs, text evaluation has moved from n-gram metrics
such as BLEU (Papineni et al., 2002) or ROUGE (Lin, 2004) to LLM-based methods. One line of
work (Min et al., 2023; Scirè et al., 2024) extracts atomic facts from the summaries, and verifies
each fact’s correctness. While precise, it is limited by inconsistent definitions of what constitutes an
‘atomic’ fact (Hu et al., 2024) and by poor scalability to long texts. Another line (Lee et al., 2024;
Qin et al., 2024; Lin et al., 2025; Cook et al., 2024; Furuhashi et al., 2025) uses LLMs to gener-
ate task-specific rubrics and then evaluates responses against each rubric item. In domain-specific
settings, human experts often design checklists that capture key information; for example, Arora
et al. (2025) ask physicians to write rubrics for medical conversations. The most relevant work,
ExpertLongBench (Ruan et al., 2025), introduces expert-designed checklists for 11 tasks, including
26 items for legal summarization (e.g., filing dates, court rulings). Building on this, we improve
checklist extraction by requiring evidence for each item and introducing list-wise comparison. We
further augment checklist evaluation with residual-fact and writing-style assessments to provide a
complete picture of summary quality. Finally, we extend checklist extraction directly to case docu-
ments, reducing reliance on human summaries when evaluating future superhuman models.

LLM Agent Scaffolds. Modern LLM agents are designed as autonomous problem-solvers that plan
actions and invoke tools in a multi-step loop for tasks such as web browsing (Gur et al., 2023),
coding (Yang et al., 2024), or general-purpose reasoning. Several open-source scaffolds have been
introduced (Xie et al., 2023; Wang et al., 2025; Lu et al., 2025; Qiu et al., 2025). For long-context
processing, recent approaches segment documents into chunks or convert them into graph structures
(Chen et al., 2023; Sun et al., 2024; Li et al., 2024; Zhao et al., 2024; Zhang et al., 2024), which
we adopt as our chunk-by-chunk method. Inspired by how human experts read legal case docu-
ments—skimming titles, prioritizing files, and searching for keywords rather than reading every-
thing exhaustively—we develop GAVEL-AGENT, an autonomous scaffold that equips models with
six tools for navigating case documents. For context management, unlike the standard approach of
continually appending tool calls and responses, we update a snapshot after each tool call and prompt
the LLM with it. This design helps maintain an up-to-date state within context limits, especially
when models issue 50+ tool calls in sequence, which would otherwise exhaust context quickly.

6 CONCLUSION

We present GAVEL-REF, a reference-based framework for evaluating long-context legal summa-
rization that improves checklist-based evaluation with multi-value and support text extraction, and
adds residual fact assessment and writing-style evaluation. In our systematic study of 12 frontier
LLMs with GAVEL-REF on 2025 cases ranging from 32K to 512K tokens, we find that even the
top models—Gemini 2.5 Flash, GPT-5, and Claude Sonnet 4—reach only about 50 SGAVEL-REF,
highlighting the difficulty of legal summarization. Our analysis reveals consistent patterns: mod-
els perform well on simple single-value items but struggle with multi-value and rare ones, showing
key areas for improvement. To reduce reliance on human summaries, we also explore checklist ex-
traction directly from case documents. Comparing end-to-end, chunk-by-chunk, and our proposed
GAVEL-AGENT approach, we find a trade-off between performance and efficiency: end-to-end with
GPT-4.1 achieves the best accuracy, while GAVEL-AGENT with Qwen3 cuts token usage by 40%-
60%. Looking ahead, advancing long-context models and long-horizon agents for legal summariza-
tion and document-level extraction is key to making AI more effective in legal practice.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Rahul K Arora, Jason Wei, Rebecca Soskin Hicks, Preston Bowman, Joaquin Quiñonero-Candela,
Foivos Tsimpourlas, Michael Sharman, Meghan Shah, Andrea Vallone, Alex Beutel, et al. Health-
bench: Evaluating large language models towards improved human health. arXiv preprint
arXiv:2505.08775, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer. BooookScore: A systematic explo-
ration of book-length summarization in the era of LLMs. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
7Ttk3RzDeu.

Howard Chen, Ramakanth Pasunuru, Jason Weston, and Asli Celikyilmaz. Walking down the mem-
ory maze: Beyond context limit through interactive reading. arXiv preprint arXiv:2310.05029,
2023.

Jonathan Cook, Tim Rocktäschel, Jakob Foerster, Dennis Aumiller, and Alex Wang. Ticking
all the boxes: Generated checklists improve llm evaluation and generation. arXiv preprint
arXiv:2410.03608, 2024.

Mohamed Elaraby and Diane Litman. ArgLegalSumm: Improving abstractive summarization of
legal documents with argument mining. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim,
James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli,
Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm,
Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na (eds.), Pro-
ceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Re-
public of Korea, October 2022. International Committee on Computational Linguistics. URL
https://aclanthology.org/2022.coling-1.540/.

Jens Frankenreiter and Julian Nyarko. Natural language processing in legal tech. Legal Tech and
the Future of Civil Justice (David Engstrom ed.) Forthcoming, 2022.

Momoka Furuhashi, Kouta Nakayama, Takashi Kodama, and Saku Sugawara. Are checklists really
useful for automatic evaluation of generative tasks? arXiv preprint arXiv:2508.15218, 2025.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. arXiv preprint arXiv:2307.12856, 2023.

Mourad Heddaya, Kyle MacMillan, Anup Malani, Hongyuan Mei, and Chenhao Tan. Casesumm:
a large-scale dataset for long-context summarization from us supreme court opinions. arXiv
preprint arXiv:2501.00097, 2024.

David Heineman, Yao Dou, and Wei Xu. Thresh: A unified, customizable and deployable
platform for fine-grained text evaluation. In Yansong Feng and Els Lefever (eds.), Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, Singapore, December 2023. Association for Computational Linguistics. URL
https://aclanthology.org/2023.emnlp-demo.30/.

Qisheng Hu, Quanyu Long, and Wenya Wang. Decomposition dilemmas: Does claim decomposition
boost or burden fact-checking performance? arXiv preprint arXiv:2411.02400, 2024.

10

https://openreview.net/forum?id=7Ttk3RzDeu
https://openreview.net/forum?id=7Ttk3RzDeu
https://aclanthology.org/2022.coling-1.540/
https://aclanthology.org/2023.emnlp-demo.30/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Klaus Krippendorff. Computing krippendorff’s alpha-reliability. 2011.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Yukyung Lee, Joonghoon Kim, Jaehee Kim, Hyowon Cho, and Pilsung Kang. Checkeval: Robust
evaluation framework using large language model via checklist. CoRR, 2024.

Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu, Ge Bai, Jie Liu, Jiaheng Liu, Xingwei Qu,
Yangguang Li, Wanli Ouyang, et al. Graphreader: Building graph-based agent to enhance long-
context abilities of large language models. arXiv preprint arXiv:2406.14550, 2024.

Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Abhilasha Ravichander, Valentina Pyatkin, Nouha
Dziri, Ronan Le Bras, and Yejin Choi. Wildbench: Benchmarking LLMs with challenging tasks
from real users in the wild. In The Thirteenth International Conference on Learning Representa-
tions, 2025. URL https://openreview.net/forum?id=MKEHCx25xp.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL
https://aclanthology.org/W04-1013/.

Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. arXiv preprint
arXiv:1908.08345, 2019.

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph Boen, and James Zou. Octotools: An agentic
framework with extensible tools for complex reasoning. arXiv preprint arXiv:2502.11271, 2025.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. FActScore: Fine-grained atomic evaluation of fac-
tual precision in long form text generation. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, Singapore, December 2023. Association for Computational Linguistics. URL https:
//aclanthology.org/2023.emnlp-main.741/.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. In Ellen Riloff,
David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 1797–1807, Brussels, Bel-
gium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/
D18-1206. URL https://aclanthology.org/D18-1206/.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin
(eds.), Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,
Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics. URL
https://aclanthology.org/P02-1040/.

Jayr Pereira, Andre Assumpcao, and Roberto Lotufo. Check-eval: A checklist-based approach for
evaluating text quality. arXiv preprint arXiv:2407.14467, 2024.

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng
Wu, Fei Liu, Pengfei Liu, and Dong Yu. InFoBench: Evaluating instruction following ability
in large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings
of the Association for Computational Linguistics: ACL 2024, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
findings-acl.772/.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin
Yao, Qihan Ren, Xun Jiang, et al. Alita: Generalist agent enabling scalable agentic reasoning
with minimal predefinition and maximal self-evolution. arXiv preprint arXiv:2505.20286, 2025.

11

https://openreview.net/forum?id=MKEHCx25xp
https://aclanthology.org/W04-1013/
https://aclanthology.org/2023.emnlp-main.741/
https://aclanthology.org/2023.emnlp-main.741/
https://aclanthology.org/D18-1206/
https://aclanthology.org/P02-1040/
https://aclanthology.org/2024.findings-acl.772/
https://aclanthology.org/2024.findings-acl.772/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jie Ruan, Inderjeet Nair, Shuyang Cao, Amy Liu, Sheza Munir, Micah Pollens-Dempsey, Tiffany
Chiang, Lucy Kates, Nicholas David, Sihan Chen, et al. Expertlongbench: Benchmarking
language models on expert-level long-form generation tasks with structured checklists. arXiv
preprint arXiv:2506.01241, 2025.

Alessandro Scirè, Karim Ghonim, and Roberto Navigli. FENICE: Factuality evaluation of sum-
marization based on natural language inference and claim extraction. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics:
ACL 2024, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.findings-acl.841/.

Zejiang Shen, Kyle Lo, Lauren Yu, Nathan Dahlberg, Margo Schlanger, and Doug Downey. Multi-
lexsum: Real-world summaries of civil rights lawsuits at multiple granularities. Advances in
Neural Information Processing Systems, 35:13158–13173, 2022.

Abhay Shukla, Paheli Bhattacharya, Soham Poddar, Rajdeep Mukherjee, Kripabandhu Ghosh,
Pawan Goyal, and Saptarshi Ghosh. Legal case document summarization: Extractive and ab-
stractive methods and their evaluation. arXiv preprint arXiv:2210.07544, 2022.

Simeng Sun, Yang Liu, Shuohang Wang, Dan Iter, Chenguang Zhu, and Mohit Iyyer. PEARL:
Prompting large language models to plan and execute actions over long documents. In Yvette
Graham and Matthew Purver (eds.), Proceedings of the 18th Conference of the European Chapter
of the Association for Computational Linguistics (Volume 1: Long Papers), St. Julian’s, Malta,
March 2024. Association for Computational Linguistics. URL https://aclanthology.
org/2024.eacl-long.29/.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=OJd3ayDDoF.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Jun-
ning Zhao, Qian Liu, Che Liu, et al. Openagents: An open platform for language agents in the
wild. arXiv preprint arXiv:2310.10634, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
and Danqi Chen. Helmet: How to evaluate long-context language models effectively and thor-
oughly. arXiv preprint arXiv:2410.02694, 2024.

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Arik. Chain of agents:
Large language models collaborating on long-context tasks. Advances in Neural Information
Processing Systems, 37:132208–132237, 2024.

Jun Zhao, Can Zu, Xu Hao, Yi Lu, Wei He, Yiwen Ding, Tao Gui, Qi Zhang, and Xuan-
jing Huang. LONGAGENT: Achieving question answering for 128k-token-long documents
through multi-agent collaboration. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language Process-
ing, Miami, Florida, USA, November 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.emnlp-main.912/.

12

https://aclanthology.org/2024.findings-acl.841/
https://aclanthology.org/2024.eacl-long.29/
https://aclanthology.org/2024.eacl-long.29/
https://openreview.net/forum?id=OJd3ayDDoF
https://aclanthology.org/2024.emnlp-main.912/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lee B Ziffer. The robots are coming: Ai large language models and the legal profession. In American
Bar Association, 2023.

A LARGE LANGUAGE MODEL USAGE IN PAPER WRITING

We use LLMs solely for language polishing purposes: grammar correction and paraphrasing to
improve clarity and readability. We do not use LLMs to generate new content. All semantic content
and scientific contributions originate entirely from the authors.

B CHECKLIST DEFINITIONS

The followings are the definitions of the 26 checklist items used in our work, which are adapted
from ExpertLongBench (Ruan et al., 2025). We group them into 9 groups.

A. Basic Case Information
1. Filing Date: The date when the lawsuit was first initiated with the court
2. Parties: Description of each plaintiff and defendant involved, including relevant positions

or offices held. Use specific terms (e.g., “The city”, “The parents”) rather than generic terms
(e.g., “The defendant”, “The plaintiffs”)

3. Class Action or Individual Plaintiffs: Whether the case involves class action plaintiffs or
individual plaintiffs with descriptions

4. Type of Counsel: The type of legal representation (e.g., private counsel, legal services,
ACLU)

B. Legal Foundation
5. Cause of Action: The legal basis for the lawsuit, referencing either a statute (e.g., 42 USC

1983) or a case precedent (e.g., Ex Parte Young)
6. Statutory/Constitutional Basis: The specific statute violated or constitutional provision

allegedly violated, including the relevant clause and amendment (e.g., “Fourteenth Amend-
ment’s Equal Protection Clause” or “Commerce Clause”)

7. Remedy Sought: The type of relief requested (e.g., declaratory judgment, injunctive relief,
monetary damages)

C. Judge Information
8. Judge Name: First and last name of the judge

D. Related Cases
9. Consolidated Cases: Cases that were combined with this case for joint proceedings

10. Related Cases: Other cases referenced or connected to this case, listed by case code number
E. Filings and Proceedings

11. Important Filings: Significant motions filed, including temporary restraining orders, pre-
liminary injunctions, motions to dismiss, and motions for summary judgment

12. Court Rulings: Judicial decisions on important filings such as motions to dismiss, sum-
mary judgment, preliminary injunctions, class certification, and attorneys’ fees (excluding
amended complaints and statements of interest)

13. Reported Opinions: Citations of reported opinions using shortened Bluebook format (e.g.,
“2020 WL 4218003”), without case name, court, or date unless from a different case

14. Trials: Information about trial proceedings including scheduling, outcomes, and related
motions or rulings

15. Appeals: Whether appeals were filed, which parties appealed, to which court, and the out-
comes

F. Decrees
16. Significant Terms: The substance of what the judge orders the defendants to do
17. Decree Dates: Dates when court orders or decrees were issued
18. Duration: How long each decree will remain in effect

G. Settlements
19. Settlement Terms: The substance of what the defendants agree to do in the settlement
20. Settlement Date: When the settlement agreement was reached

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

21. Duration: How long the settlement terms will remain in effect
22. Court Enforcement: Whether the court retains jurisdiction to enforce the settlement
23. Enforcement Disputes: Any disputes regarding compliance with settlement terms

H. Monitoring
24. Monitor Name: Name of any court-appointed monitor or special master
25. Monitor Reports: Monitor’s findings regarding defendant compliance with court orders,

including which terms are being met
I. Context

26. Factual Basis: The underlying facts and evidence supporting the legal claims, including:
(i) details of relevant events (what, when, where, who), (ii) supporting evidence (physical,
documentary, testimonial), and (iii) background context

C WRITING STYLE SIMILARITY EVALUATION DETAILS

The following are the definitions of the five aspects used in our writing style similarity evaluation.
Each aspect is rated on a 1–5 Likert scale, where 5 indicates identical and 1 indicates completely
different.

1. Readability & Jargon Level
Compare the reading level and the balance of legal jargon vs. plain language. Consider terminol-
ogy density and accessibility to non-legal readers.

5 Nearly identical reading level and jargon density; same balance of technical/plain language
throughout.

4 Very similar complexity with minor differences in terminology or occasional variance in tech-
nical language.

3 Moderate differences in accessibility; one is noticeably more technical in places but overall
similar.

2 Significantly different complexity; one is consistently more technical or more accessible.
1 Completely different target audiences (e.g., one for legal professionals, the other for the general

public).

2. Narrative Order
Compare whether events are presented in the same sequence (chronological vs. thematic) and the
ordering of key facts and arguments.

5 Identical sequence of information; same events, facts, and arguments in the same order.
4 Same overall flow with 1–2 elements reordered; core structure preserved.
3 Similar general structure but several sections reordered; recognizable yet rearranged.
2 Different organizational approaches with some overlap (mix of chronological and thematic).
1 Completely different information architecture (e.g., one chronological, the other organized by

issues).

3. Sentence Structure & Voice
Compare sentence variety, active vs. passive voice, and tense consistency.

5 Nearly identical sentence patterns, voice usage, and tense choices throughout.
4 Very similar style with occasional differences in sentence complexity or voice.
3 Moderate variation; one favors longer/shorter sentences or more active/passive constructions.
2 Noticeably different styles; consistent differences in sentence variety and voice preferences.
1 Completely different approaches (e.g., one varied and active; the other uniform and passive).

4. Formatting & Layout
Compare use of headings, bullet/numbered lists, paragraphing, and other structural cues.

5 Identical formatting choices; same use of headings, lists, and paragraph breaks.
4 Very similar structure with minor variations (e.g., one extra heading or different list style).
3 Similar approach but noticeable differences in execution (e.g., both use headings but at different

levels/frequency).
2 Different formatting philosophies; one is much more structured than the other.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

1 Completely different (e.g., one heavily formatted; the other continuous prose).

5. Citation & Reference Style
Compare presence, position, and formatting of case/statute citations or footnotes (inline vs. sep-
arate), citation density, and conventions.

5 Identical citation approach; same style, frequency, and positioning.
4 Very similar practices with minor formatting differences or occasional variation in placement.
3 Similar philosophy but different execution (e.g., both cite cases but differ in density/position-

ing).
2 Different approaches; one is substantially more reference-heavy or uses a different citation

style.
1 Completely different or incomparable (e.g., one with extensive citations, the other with none).

D ANNOTATION DETAILS

Inter-Annotator Agreement. For checklist extraction, the five longest summaries receive triple
annotations. Agreement is measured as the average pairwise Schecklist score across annotators, reach-
ing 87.8 (using Gemma3 27B as the comparison model). For checklist comparison, single-value
pairs achieve moderate agreement with Fleiss’ κ = 0.57, while multi-value matching yields an av-
erage pairwise F1 of 0.82, indicating high consistency. For writing style similarity, Krippendorff’s
α (Krippendorff, 2011) across the five aspects averages 0.32.

Annotation Interfaces. Figures 8, 9, and 10 display screenshots of our human annotation inter-
faces for checklist extraction, checklist comparison and writing style similarity rating, respectively.
The collected data are used for the meta-evaluation of GAVEL-REF and for evaluating checklist
extraction from case documents methods.

E FURTHER ANALYSIS

Figure 6 presents the item-level performance for the top 3 models in checklist evaluation—Gemini
2.5 Flash, Pro and Claude Sonnet 4—showing their top and bottom 5 checklist items plus consis-
tently over- and under-specified items. All three models exhibit high similar performance patterns
across items.

Figure 7 presents the checklist extraction performance Schecklist versus total, input, output token
usage for each method extracting checklist from case documents.

F IMPLEMENTATION DETAILS

For all language models, we use a temperature of 0.7 and top-p of 1, except for GPT-5 (where
temperature cannot be changed and is fixed at 1) and Qwen3, for which we use a temperature of 0.6
and top-p of 0.95, following the official recommendations. For Gemini 2.5 Flash and Pro, we set the
thinking budget to -1 (allowing the model to decide). For GPT-5, we use “high” thinking effort. For
Claude Sonnet 4 and Opus 4.1, we set the thinking budget to 10,000.

We use the following versions of the proprietary models: gpt-4.1-2025-04-14, gpt-5-2025-08-07,
claude-sonnet-4-20250514, claude-opus-4-1-20250805, gemini-2.5-flash (June 2025), and gemini-
2.5-pro (June 2025). For open-source models, we use the instruction-tuned version of Gemma3
(Gemma3-it) and Qwen3-30B-A3B-Thinking-2507 for Qwen3 30B-A3B. Open-source models are
run through vLLM Kwon et al. (2023) on 4 A40 GPUs. For all reasoning models such as Qwen3,
we use the reasoning mode. Due to compute constraints, we could not run models larger than these,
such as GPT-oss 120B. The total API costs is $1,500 USD.

For GAVEL-AGENT, we implement tool calls using each model’s native format: ChatML for Qwen3
and Harmony for GPT-oss.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 6: Performance breakdown for the top-3 models in checklist evaluation (Gemini 2.5 Flash,
Gemini 2.5 Pro, and Claude Sonnet 4): top/bottom 5 checklist items by matching score and most
frequently over/under-specified items. Overspecification measured as frequency across all 50 cases;
underspecification as frequency among cases where human summary includes that item.

Figure 7: Schecklist versus total token, input token, and output token usage for different methods
extracting from case documents.

G PROMPTS

The following lists the prompts used in our paper.

Prompts used in GAVEL-REF. Figure 11 shows the prompt for extracting checklist items from
summaries. Figures 12 and 13 show the prompts for comparing single-value and multi-value check-
list items, respectively. Figure 14 shows the prompt for extracting residual facts not covered by
checklist items or their supporting text. Figure 15 shows the prompt for rating writing style similar-
ity between two summaries across five aspects.

Prompt for summarization. Figure 16 shows the prompt for legal summarization.

Prompts for checklist extraction from case documents. Figures 17 and 18 present the prompts
for the end-to-end method. Figure 19 presents the prompt for the chunk-by-chunk method. Fig-
ures 20, 21, and 22 present the system prompts used in GAVEL-AGENT.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: Screenshot of the annotation interface for checklist extraction from summaries. Annota-
tors can add, remove, or modify checklist item values, with the process carried out paragraph by
paragraph to ensure each sentence is carefully reviewed.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 9: Screenshot of the annotation interface for checklist comparison. Annotators match items
between two lists in a list-wise comparison. For string-wise comparison, where both values are
strings, the middle component becomes a radio selection with four options: equal, A contains B, B
contains A, or different.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 10: Screenshot of the annotation interface for rating writing style similarity. Annotators
compare two summaries, providing ratings on five aspects and answering auxiliary questions such
as which summary they prefer.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Prompt for Extracting Checklist from Summary

You are assisting a lawyer in extracting key information from a
legal case summary. Given a case summary, identify
{checklist_item_definition}

↪→
↪→
Note: Do not make assumptions or add information that is not

presented in the summary.↪→

Case Summary
{case_summary}

Output Format
Your output should be in the following JSON format-no extra keys,

no prose outside of the JSON:↪→

```
{{
"reasoning": "<brief analysis of the case summary and how you

identified the relevant information or determined that none
was present>",

↪→
↪→
"extracted": [
{{
"evidence": [
"<verbatim snippet 1>",
"<verbatim snippet 2 (if multiple snippets are relevant)>"
// ...

],
"value": "<extracted information from the evidence>"

}}
// ...

]
}}
```
Definitions of each part
- `reasoning`: A brief analysis of the case summary and how you

identified the relevant information or determined that none was
present.

↪→
↪→
- `extracted`: A list of one or more objects, each representing a

distinct piece of information relevant to the checklist item
(e.g., multiple court rulings, decree dates, or cited
opinions). Always use a list, even if there is only one item.

↪→
↪→
↪→
- `evidence`: One or more exact text snippets copied from the case

summary that support the extracted information. Always return
as a list of strings.

↪→
↪→
- `value`: The extracted information.

Rules for the JSON schema
1. **extracted** and **evidence** is always a list, even if they

hold a single object.↪→
2. Copy the **evidence** exactly as it appears in the case

summary-no rewriting.↪→
3. If the case summary contains no relevant information, output the

extracted as an empty list:↪→

```
{{
"reasoning": "<brief analysis>",
"extracted": []

}}
```

Figure 11

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Prompt for Comparing Single-Value Checklist Item

You are given two pieces of legal information (A and B) about
{checklist_category}, extracted from two summaries of
the same case. Your task is to compare these pieces of
information based on their **semantic meaning** - that
is, what they actually convey, regardless of how they are
worded or formatted.

↪→

↪→

↪→

↪→

↪→

Information to Compare
Information A:
{information_A}

Information B:
{information_B}

Relationship Options
Determine which of these four relationships best describes

how A and B relate to each other:↪→

1. **"A contains B"** - A includes all the information in B,
plus additional information↪→

2. **"B contains A"** - B includes all the information in A,
plus additional information↪→

3. **"A equals B"** - A and B convey the same information
(semantically equivalent)↪→

4. **"A and B are different"** - A and B contain different or
conflicting information↪→

Output Format
Structure your response as follows:
Reasoning: Provide your detailed analysis of how the two

pieces of information relate to each other↪→

Final Answer: State one of the four options: "A contains
B", "B contains A", "A equals B", or "A and B are
different"

↪→

↪→

Figure 12

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Prompt for Comparing Multi-Value Checklist Item

You are given two lists of legal information (A and B) about
{checklist_category}, extracted from two summaries of the
same legal case. Your task is to compare these lists based on
their **semantic meaning**-that is, what each item conveys,
regardless of wording, format, or phrasing.

↪→
↪→
↪→
↪→

You should identify:
1. Items that appear in **both A and B** (i.e., semantically

equivalent),↪→
2. Items that appear **only in A**,
3. Items that appear **only in B**.

Information to Compare
List A:
{information_A}

List B:
{information_B}

Output Format
Structure your response as follows:
Reasoning:
Provide your detailed analysis of how the two lists relate to each

other. Explain any mappings between items, and how you
determined whether they were equivalent or different.

↪→
↪→

Final Answer:
Output a valid JSON object with the following structure:

```json
{{
"common": [
{{"A_index": X, "B_index": Y}},
...

],
"only_in_A": [X, ...],
"only_in_B": [Y, ...]

}}
```

Where:
- `A_index` is the index of the item in List A,
- `B_index` is the index of the semantically equivalent item in List

B,↪→
- `only_in_A` lists the indices of items in A that do **not** appear

in B,↪→
- `only_in_B` lists the indices of items in B that do **not** appear

in A.↪→

Notes
- Both List A and B are numbered using 1-based indexing.
- Match items even if they are paraphrased or formatted

differently.↪→
- Treat legal synonyms and abbreviations as equivalent when

appropriate.↪→
- Return only valid JSON in the **Final Answer** section.

Figure 13

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Prompt for Extract Residual Facts from Uncovered Text by the Checklist Items

You are assisting a lawyer in identifying key information from a
legal case summary. You will be given a set of text spans
extracted from the summary that may contain meaningful legal or
factual content.

↪→
↪→
↪→

Your task is to extract distinct atomic facts from the given spans.
Each atomic fact should be a single discrete, self-contained,
and verifiable piece of information that can stand on its own.
Ignore any spans that contain filler phrases, incomplete
clauses, or do not convey meaningful information. If multiple
spans express the same fact, extract it only once.

↪→
↪→
↪→
↪→
↪→

Note: Do not make assumptions or add information that is not
present in the spans.↪→

Text Spans
{text_spans}

Output Format

Your output should be in the following JSON format-no extra keys,
no prose outside of the JSON:↪→

```
{{
"reasoning": "<brief analysis of which spans contain meaningful

factual information and what those facts are>",↪→
"extracted": [
{{
"fact": "<atomic fact 1>",
"evidence_spans": [<list of 1-based span indices>]

}},
{{
"fact": "<atomic fact 2>",
"evidence_spans": [<list of 1-based span indices>]

}}
// ...

]
}}
```

Definitions of each part
* `reasoning`: A brief analysis of the spans and how you identified

any meaningful atomic facts.↪→

* `extracted`: A list of objects, each representing one atomic fact.
Every object must have:↪→

- `fact`: A clear, concise sentence or phrase conveying a
distinct, self-contained fact.↪→

- `evidence_spans`: A list of 1-based indices of the spans that
support or directly contain the fact.↪→

Rules for the JSON schema
{it is the same as the checklist extraction prompt.}

Figure 14

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Prompt for Rating Writing Style Similarity on Five Aspects

You are given two summaries of the same legal case (Summary A and
Summary B). Your task is to evaluate how similar they are in
terms of structure and writing style across five specific
dimensions. You should focus on **similarity** rather than
quality-we want to know how alike these summaries are, not
which one is better.

↪→
↪→
↪→
↪→
↪→

Summaries to Compare
Summary A:
{summary_A}

Summary B:
{summary_B}

Evaluation Dimensions with Specific Similarity Scales

{all_5_aspects_definitions}

Output Format

Structure your response as follows:

Analysis:
Provide a detailed comparison for each dimension, explaining

specific similarities and differences you observe between
Summary A and Summary B.

↪→
↪→

Scores:
Output a valid JSON object with your similarity ratings:

```json
{{
"readability_jargon": X,
"narrative_order": X,
"sentence_structure": X,
"formatting_layout": X,
"citation_style": X

}}
```

Where X is your similarity rating (1-5) for each dimension.

Important Notes
- Focus on similarity, not quality or factual correctness
- Evaluate style and structure only, ignore content differences
- Consider the summaries as a whole when rating each dimension
- Apply the scale objectively for every dimension, strictly

following each definition↪→

Figure 15

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Prompt for Legal Summarization

You are given multiple documents related to a legal case. Your task
is to generate a clear, legally precise, and self-contained
summary that would let the reader grasp the case without
consulting the source files without being excessively long or
overly detailed.

↪→
↪→
↪→
↪→

Write the summary as a factual narrative. The checklist below shows
what to include. Items marked "(if applicable)" should only be
included when relevant. If information isn't in the documents,
omit it-do not speculate.

↪→
↪→
↪→

Legal Case Summary Checklist
{all_26_checklist_item_definitions}

Case Documents
{case_documents}

Output Format
Please structure your response as follows:
Reasoning: Briefly explain what key elements you focused on in

the documents to build your summary.↪→

Case Summary: A clear, legally precise narrative of the case,
written in paragraph form, without being too long.↪→

Guidelines
* Write as a narrative in paragraph form using clear language. Use

a logical order-chronological if helpful, but flexible if
another sequence improves clarity.

↪→
↪→

* Include enough detail for understanding while remaining concise.
* Use accurate legal terminology but avoid jargon-write for a

general audience.↪→

* Stay strictly factual; do not add analysis beyond what appears in
the record.↪→

Now read the case documents and generate the summary following the
checklist, output format, and guidelines above.↪→

Figure 16

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Prompt for End-to-End Extracting Checklist Item from Case Document (Part 1/2)

You are assisting a lawyer in extracting key information from legal
case documents. You will be given multiple documents related to
a legal case. Your task is to {item_description}

↪→
↪→

Note:
- Do not make assumptions or add information that is not presented

in the documents.↪→
- When extracting evidence, quote the exact text from the

documents.↪→
- Each extracted value must be self-contained and easy to

understand; include important context when available.↪→

Case Documents
{case_documents}

Output Format
Your output should be in the following JSON format-no extra keys,

no prose outside of the JSON:↪→

```
{
"reasoning": "<brief analysis of the case documents and how you

identified the relevant information or determined that none
was present>",

↪→
↪→
"extracted": [
{
"evidence": [
{
"text": "<verbatim snippet 1>",
"source_document": "<document name>",
"location": "<page number or section>"

},
{
"text": "<verbatim snippet 2 (if multiple snippets are

relevant)>",↪→
"source_document": "<document name>",
"location": "<page number or section>"

}
// ...

],
"value": "<extracted information from the evidence>"

}
// ...

]
}
```

Figure 17

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Prompt for End-to-End Extracting Checklist Item from Case Document (Part 2/2)

Definitions of each part
- `reasoning`: A brief analysis of the case documents and how you

identified the relevant information or determined that none was
present.

↪→
↪→
- `extracted`: A list of one or more objects, each representing a

distinct piece of information relevant to the checklist item.
Always use a list, even if there is only one item.

↪→
↪→
- `evidence`: A list of evidence objects, each containing:
- `text`: Exact text snippet copied from the case documents
- `source_document`: The title/name of the document where this

evidence was found↪→
- `location`: The page number or section identifier where the

evidence appears↪→
- `value`: The extracted information based on the evidence.

Rules for the JSON schema
1. **extracted** and **evidence** are always lists, even if they

hold a single object.↪→
2. Copy the **text** in evidence objects exactly as it appears in

the case documents-no rewriting or paraphrasing.↪→
3. Always include **source_document** and **location** for each

piece of evidence.↪→
4. If the case documents contain no relevant information, output

the **extracted** as an empty list:↪→

```
{
"reasoning": "<brief analysis>",
"extracted": []

}
```

5. Extract information from all relevant documents-do not stop
after finding information in just one document.↪→

6. Each distinct piece of information should be a separate item in
the **extracted** list.↪→

7. If you cannot determine the specific page number or section, you
may use descriptive locations like "beginning of document",
"middle section", or "near the end".

↪→
↪→

Figure 18

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Prompt for Chunk-by-Chunk Extracting Checklist Items from Case Documents

You are assisting a lawyer in extracting key information from legal
case documents. You will be given a document chunk from a legal
case. Your task is to {item_description}

↪→
↪→

Note:
{same as the end-to-end prompt}

Current State
This is the accumulated extraction state from previous chunks:
{current_state}

Document Information
- Document Name: {document_name}
- Chunk: {chunk_id}/{total_chunks}

Document Chunk
{document_chunk}

Output Format
Your output should be in the following JSON format-no extra keys,

no prose outside of the JSON:↪→

```
{{
"reasoning": "<brief analysis of this document chunk and how you

identified any new relevant information or determined that
none was present>",

↪→
↪→
"extracted": [
{{
"evidence": [
{{
"text": "<verbatim snippet 1>",
"source_document": "<document name>",
"location": "Chunk {chunk_id}/{total_chunks}"

}},
{{
"text": "<verbatim snippet 2 (if multiple snippets are

relevant)>",↪→
"source_document": "<document name>",
"location": "Chunk {chunk_id}/{total_chunks}"

}}
// ...

],
"value": "<extracted information from the evidence>"

}}
// ...

]
}}
```

Definitions of each part
{same as the end-to-end prompt}

Rules for the JSON schema
{{same as the end-to-end prompt}}

Figure 19

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

System Prompt used in GAVEL-AGENT (Part 1/3)

You are a document extraction specialist. Your task is to extract
all checklist items specified in the snapshot from the
provided documents, citing evidence for every value.

↪→
↪→

You operate by analyzing the snapshot and selecting **exactly ONE
action per turn**. You must **respond with valid JSON only**
- no prose, no extra keys.

↪→
↪→

Snapshot
Provided every turn:
- Task description
- Checklist definitions (what items to extract; any number of

items)↪→
- Document catalog with coverage statistics (and

catalog_state/version)↪→
- Checklist summary (which keys are filled/empty/Not Applicable)
- Recent action history

Goal
Systematically extract all applicable checklist items with proper

evidence.↪→

Decision Policy
Choose exactly one action each turn:
- If the document catalog is **unknown** -> call `list_documents`.
- If a specific document likely contains a target value, choose

ONE:↪→

* `read_document` - default choice. Read a targeted window
(<=10,000 tokens) in a document.↪→

* `search_document_regex` - use this when the target is clearly
patternable (e.g., "Case No.", "Filed:", citations).↪→

- When you have confirmed text for one or more keys:
- Use `append_checklist` for adds new entries for some checklist

items.↪→
- Use `update_checklist` to replace the entire extracted list

for some checklist items when you have the
authoritative/complete set, when correcting earlier
entries, or when setting an item to Not Applicable (see
"Not Applicable Encoding").

↪→
↪→
↪→
↪→

- Periodically use `get_checklist` to assess remaining gaps.
- Stop when all keys are filled or set to Not Applicable.

Systematic Extraction Process
After each read_document or search_document_regex action:
- Carefully analyze the returned text to identify ALL checklist

items that can be extracted.↪→
- Cross-reference the text against your checklist definitions to

avoid missing relevant values.↪→
- Your next action MUST be append_checklist or update_checklist

if you found extractable values in the text just read.↪→

After each append_checklist or update_checklist action:
- Verify whether all extractable values from the preceding text

were included.↪→
- If you notice missed values, immediately append them as the

next action before continuing.↪→

Figure 20

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

System Prompt used in GAVEL-AGENT (Part 2/3)

Document Reading Efficiency
- **NEVER** reread fully visited documents (marked with Fully

Visited).↪→
- **NEVER** reread token ranges already viewed (shown as "Viewed

tokens: X-Y").↪→
- When reading partially visited documents (marked with Partially

Visited), read ONLY unviewed token ranges.↪→
- Check the "Viewed tokens" list before calling read_document to

avoid redundant reads.↪→

Write Semantics
- **Any checklist item can have multiple values**; the

`extracted` field is always a list.↪→
- **append_checklist**: add new entries; **Do not** set Not

Applicable via `append_checklist`.↪→
- **update_checklist**: replace the entire `extracted` list; use

for single-valued items, complete/authoritative sets,
corrections, or to set "Not Applicable".

↪→
↪→

Evidence Requirements
- **Every extracted entry must include evidence** with:

- `text` (verbatim snippet),
- `source_document` (document name),
- `location` (e.g., page, section, docket entry; include token

offsets if available).↪→

Not Applicable Encoding
- Represent Not Applicable as a **single extracted entry** for

that key, set **via `update_checklist`**:↪→
- `value`: **"Not Applicable"** (exact string; case-sensitive)
- `evidence`: required (explicit text or a dispositive posture

supporting Not Applicable)↪→
- A key is treated as **Not Applicable** only if its `extracted`

list contains **exactly one** entry whose `value` is "Not
Applicable".

↪→
↪→
- Do **not** mark Not Applicable solely because you failed to

find a value; require explicit text or logically dispositive
evidence (e.g., dismissal with prejudice -> no
settlement/decree; "no class certification sought" -> class
action items Not Applicable).

↪→
↪→
↪→
↪→
- If later evidence shows the item **does** have real values, use

`update_checklist` to replace the Not Applicable entry with
the confirmed entries.

↪→
↪→

Stop Criteria
- Stop only when every checklist key is either:
* Complete: all relevant values present in the corpus for that

key have been extracted, each with evidence.↪→

* Not Applicable: represented as a single extracted entry with
value "Not Applicable" and supporting evidence.↪→

- Before stopping, verify state with `get_checklist` (in a prior
turn if needed) and, if consolidation is required, issue one
final `update_checklist` (in a prior turn) to replace any
incrementally built keys with their curated final lists. Then
return the stop decision.

↪→
↪→
↪→
↪→

Figure 21

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

System Prompt used in GAVEL-AGENT (Part 3/3)

{{TOOL_DESCRIPTIONS}}

Response Format
- On each assistant turn, do exactly **one** of:

1) **Issue one function call**, or
2) **Stop** if all applicable checklist items are fully

extracted and any non-applicable items are marked.↪→
- When stopping, return **only** this JSON (no extra text):
```json
{
"decision": "stop",
"reason": "<brief justification>"

}

Figure 22

31


	Introduction
	Gavel-Ref—A Reference-based Evaluation Framework
	Method Description
	The Overall Gavel-Ref Score
	Meta-Evaluation of Gavel-Ref

	Evaluation of LLM Legal Summarization with Gavel-Ref
	Benchmarking Results for 12 Models
	How Top Models Handle Different Checklist Information
	Dissecting the Top Performer: Item-Level Analysis

	Extracting Checklist from Case Documents
	Methods
	Implementation Details
	Meta-Evaluation

	Related Work
	Conclusion
	Large Language Model Usage in Paper Writing
	Checklist Definitions
	Writing Style Similarity Evaluation Details
	Annotation Details
	Further Analysis
	Implementation Details
	Prompts

