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Abstract001

Previous studies primarily utilize MLP neu-002
rons as units of analysis for understanding003
the mechanisms of factual knowledge in Lan-004
guage Models (LMs); however, neurons suffer005
from polysemanticity, leading to limited knowl-006
edge expression and poor interpretability. In007
this paper, we first conduct preliminary exper-008
iments to validate that Sparse Autoencoders009
(SAE) can effectively decompose neurons into010
features, which serve as alternative analytical011
units. With this established, our core findings012
reveal three key advantages of features over013
neurons: (1) Features exhibit stronger influence014
on knowledge expression and superior inter-015
pretability. (2) Features demonstrate enhanced016
monosemanticity, showing distinct activation017
patterns between related and unrelated facts.018
(3) Features achieve better privacy protection019
than neurons, demonstrated through our pro-020
posed FeatureEdit method, which significantly021
outperforms existing neuron-based approaches022
in erasing privacy-sensitive information from023
LMs.1.024

1 Introduction025

Language Models (LMs) have demonstrated re-026

markable capabilities in storing and expressing fac-027

tual knowledge (Anthropic, 2024; OpenAI et al.,028

2024; Team et al., 2024). However, the underlying029

mechanisms remains unclear. Mechanistic inter-030

pretability of factual knowledge in neural networks031

aims to decompose these systems into interpretable032

units to understand how facts are stored and re-033

trieved (Chen et al., 2024b). The critical first step034

in this investigation is to identify the appropriate035

analytical units. One mainstream approach is the036

neuron-based research method (Geva et al., 2021a;037

Dai et al., 2022; Chen et al., 2024a), which posits038

that LMs recall facts through multilayer perceptron039

(MLP) weights and conceptualizes the responsible040

1Code and dataset will be available.
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Figure 1: Comparison of research units for factual
knowledge mechanisms in LMs: (a) neurons and (b)
features. Colors in neurons (or features) correspond to
the facts they store, illustrating how specific facts are
encoded in particular units.

knowledge storage units as knowledge neurons. Al- 041

though using neurons as the research unit is highly 042

intuitive, this kind of approach still has some no- 043

table limitations (Hase et al., 2023; Niu et al., 2024; 044

Chen et al., 2024b). 045

In particular, a significant issue with neuron- 046

based approaches is the phenomenon of polyse- 047

manticity (Bricken et al., 2023; Cunningham et al., 048

2023), where neurons respond to mixtures of seem- 049

ingly unrelated facts. Intuitively, the number of 050

factual knowledge items stored in LMs often ex- 051

ceeds the number of neurons2, necessitating that 052

a single neuron must be associated with multiple 053

facts. As shown in Figure 1(a), a fact may be dis- 054

persedly stored in a fragmented manner across nu- 055

merous neurons, resulting in inseparable sets of 056

neurons corresponding to Fact1 and Fact2. This 057

fundamental characteristic leads to two challenges. 058

(1) Limited Knowledge Expression: Since fac- 059

tual knowledge can be dispersedly stored across 060

numerous neurons, with some neurons potentially 061

contributing only minimal information, these weak 062

and distributed signals result in identified neurons 063

having limited impact on knowledge expression. 064

(2) Poor Interpretability: The coupling of neu- 065

rons representing different facts, makes it difficult 066

2For example, Gemma-2 2B has 26× 9216 ≈ 230k neu-
rons but is trained on approximately 2 trillion tokens of data.
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to accurately describe the function of individual067

neurons, hindering our ability to gain deep insights068

into the mechanisms of factual knowledge.069

Bricken et al. (2023) suggests that polyseman-070

ticity arises from superposition, where neural net-071

works represent more independent features through072

linear combinations of neurons. Their work demon-073

strates that Sparse Autoencoders (SAE) can effec-074

tively decompose neurons into interpretable fea-075

tures. As shown in Figure 1, SAE transforms a076

“low-dimensional” neuronal space (a) into a “high-077

dimensional” feature space (b), making previously078

inseparable problems separable. This motivates us079

to explore whether such transformation could ben-080

efit the understanding of factual knowledge, where081

the transformed feature-level units might exhibit082

both stronger impact on knowledge expression and083

superior interpretability compared to their neuron-084

level counterparts.085

Building on this foundation, we first investigate086

a preliminary question: Can neurons be effectively087

decomposed into features in the domain of factual088

knowledge, and is SAE a suitable technique for089

this decomposition? Then, we further explore three090

core research questions:091

Q1: Can feature-based research methods address092

the dual challenges of Limited Knowledge Expres-093

sion and Poor Interpretability? Q2: Given that the094

key limitation of neurons lies in their polysemantic-095

ity, do features in the factual domain exhibit better096

monosemanticity? Q3: Do features outperform097

neurons in downstream tasks?098

Our investigation into these questions yields one099

preliminary finding and three core findings:100

Preliminary Finding (§3): SAE demonstrates101

superior effectiveness in decomposing neurons102

into features compared to other methods, mak-103

ing them suitable alternative research units for104

studying factual knowledge mechanisms.105

Core Findings: (1) Features as research units106

address the challenges of Limited Knowledge107

Expression and Poor Interpretability (§4.1 and108

§4.2). Through comparison of different modules109

(post-attention residuals, MLP activations, and110

post-MLP residuals), we find that features con-111

sistently show better interpretability than neurons,112

with post-MLP residual features having the greatest113

impact on knowledge expression.114

(2) Features exhibit stronger monosemantic-115

ity than neurons (§4.3). Features strongly acti-116

vate only when encountering related facts and re-117

main inactive for unrelated ones, resulting in dis-118

tinct separation in their activation distributions. In 119

contrast, neurons lack such separation, indicating 120

their susceptibility to activation by unrelated facts 121

and weaker monosemanticity, while features better 122

align with the ideal scenario in Figure 1(b). 123

These two findings complement each other: the 124

superior interpretability of features naturally arises 125

from their stronger monosemanticity property. 126

(3) Feature-based method demonstrates su- 127

perior performance in knowledge erasure for 128

privacy protection (§5). We propose FeatureEdit, 129

the first feature-based model editing method, and 130

evaluate it on our newly constructed privacy knowl- 131

edge dataset PrivacyParaRel. Compared to 132

neuron-based approaches, FeatureEdit achieves 133

higher success rates in erasing privacy-sensitive 134

knowledge from LMs while maintaining better gen- 135

eralization across semantically equivalent rephrase 136

queries. Moreover, it causes less damage to the 137

model’s general capabilities. 138

2 Dataset, Models and Evaluation metrics 139

Our experiments leverage Gemma Scope 140

(Lieberum et al., 2024), a comprehensive suite of 141

SAEs trained on Gemma-2 models (Team et al., 142

2024). We study the 2B and 9B variants as they 143

have SAEs for all layers. Regarding the dataset, 144

consistent with other neuron-based methods (Dai 145

et al., 2022; Chen et al., 2024a), we employ the 146

ParaRel dataset (Elazar et al., 2021). For details to 147

the dataset, see Table 1 in Appendix A. 148

We introduce two evaluation metrics most fre- 149

quently used in this paper. (1) ∆Prob, the de- 150

creasing value of answer probability after fea- 151

tures/neurons ablation, which assesses the impact 152

of knowledge storage units on knowledge expres- 153

sion. For neurons, we directly set their activations 154

to zero. For features, we aim to perform a similar 155

operation. However, since features do not exist ex- 156

plicitly in LMs, we propose a reconstruction-based 157

method (detailed in Appendix C.1). Briefly, given 158

an activation (h), we obtain its corresponding fea- 159

tures, set target features to zero, reconstruct the 160

activation (h′), and replace h with h′. We then 161

measure the change in the probability of the correct 162

answer before (Probb) and after (Proba) ablation: 163

∆Prob = Probb−Proba
Probb

. 164

(2) IS, Interpretability Score, which measures 165

the interpretability of features. We modify the 166

method from Bills et al. (2023) to adapt it to our 167

task (detailed in Appendix C.2). Briefly, for fea- 168
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tures or neurons, we ask Large LMs (this paper169

uses gpt-4o-mini) to predict their activations. The170

correlation between the model’s predicted activa-171

tions and the actual activations is the interpretabil-172

ity score.173

3 Preliminary Experiment174

3.1 SAE Shows Superior Performance175

We first address the preliminary question raised176

in §1: whether neurons can be decomposed into177

features when studying the mechanism of factual178

knowledge, and which method performs best. The179

candidate methods include: Sparse Autoencoders180

(SAE), Principal Component Analysis (PCA), Inde-181

pendent Component Analysis (ICA), and random182

directions (RD). The hyperparameters and method-183

ological details are provided in Appendix D. Both184

PCA and ICA perform the decomposition using the185

same amount of data used for training SAEs.186

Experiment settings The preliminary experi-187

ments focus on decomposing MLP activations to188

obtain features. We use pre-trained SAEs from189

Gemma Scope (Lieberum et al., 2024). Given190

MLP activations h at layer l, features are obtained191

through the encoder function:192

f(h) := σ(Wench+ benc) (1)193

where := denotes definition, σ is the JumpReLU194

activation, Wenc is the encoder weight matrix, and195

benc is the encoder bias vector. Each element196

fl,p(h) represents the activation of the feature at197

layer l and position p.198

Structurally, these features in SAEs parallel199

the role of intermediate neurons in LLMs, as200

SAEs are trained to reconstruct LLMs in a higher-201

dimensional space. Taking one MLP layer as an ex-202

ample, both architectures follow a similar encoder-203

intermediate-decoder pattern:204

LLMs :x encoder−−−−→ intermediate neurons decoder−−−−→ y
(2)

205

SAEs :h encoder−−−−→ SAE features decoder−−−−→ h′ (3)206

For a given input, we select highly activated fea-207

tures (Fa) based on their spatial locations:208

Fa = {(l, p) | fl,p(h) > τ1 ·max
l′,p′

fl′,p′(h)} (4)209

where τ1 is the threshold parameter. Using the met-210

rics (∆Prob and IS) defined in §2, we compare211

our SAE-based approach with baseline methods.212

The results are presented in Figure 2.213
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Figure 2: Evaluation of features obtained by different
methods. Top: ∆ Prob after feature ablation. Bottom:
Interpretation scores (IS). Higher values indicate better
performance in both metrics.

Findings SAE demonstrates superior effective- 214

ness in decomposing neurons into features com- 215

pared to other methods. For example, as shown 216

in Figure 4, in Gemma-2 9b, SAE features demon- 217

strate superior performance in both ∆Prob and IS, 218

achieving ∆Prob of ∼ 0.78 and IS of ∼ 0.64, 219

showing increases of ∼ 1.3× in ∆Prob and ∼ 2× 220

in IS over the strongest baseline (ICA). Paired 221

t-tests also confirm that SAE features are more ef- 222

fective for studying factual knowledge mechanisms 223

(see Table 2 in Appendix E). 224

3.2 Feature Distribution Patterns Remain 225

Consistent Across Feature Numbers 226

When extracting features using SAE, we need to 227

determine how many features to use for recon- 228

structing LLM representations. As shown in Equa- 229

tion 2, while LLMs use a fixed number of neu- 230

rons, SAEs map these representations to a higher- 231

dimensional feature space. The number of features 232

(N ) determines this dimensionality, typically set as 233

N = n×dmodel where n is a multiplier and dmodel 234

is the model’s hidden dimension (9216 for Gemma- 235

2 2B). Adjusting N requires resource-intensive re- 236

training. Notably, we observe consistent feature 237

clustering patterns across different values of N . 238

In Figure 3, we visualize feature distributions 239

across four different settings (N = n × 9216) 240

using Gemma-2 2B. The vertical axis represents 241

layers, while the horizontal axis shows positions. 242

The color intensity indicates the feature density 243

in each bin, with darker blue representing higher 244

values. Using 500 randomly sampled facts3, we 245

3This sampling is necessary as visualizing features from
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Figure 3: Distribution plots of activated features under different feature number settings (n× 9216, n = 1, 2, 4, 8)
for Gemma-2 2B. The similar distribution patterns across different n suggest that features consistently fall into
similar regions. It should be noted that these four pictures are not exactly the same, but they are very similar.
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Figure 4: The impact on ∆Prob when ablating features from different transformer components and neurons.
Values show mean ± standard error across 5 bootstrap iterations, with higher values indicating greater influence on
knowledge expression. Note that while ∆Prob ∈ [0, 1], the plots may exceed 1 due to + std.

observe that features consistently cluster in sim-246

ilar regions when fixing the number of bins. As247

N increases, these features undergo hierarchical248

decomposition within their original clusters, with249

larger N values enabling finer-grained representa-250

tions while maintaining the same overall distribu-251

tion structure.252

The results for Gemma-2 9B, along with a253

comprehensive quantitative analysis of the entire254

dataset presented in Appendix F (Table 3 and Fig-255

ure 11), corroborate these findings. One possi-256

ble explanation could be that SAE features are in-257

sensitive to N . Based on this hypothesis, we fix258

N = 4× 9216 for subsequent experiments, elim-259

inating the need to compare different N values in260

each experiment.261

4 Features vs. Neurons262

Building upon §3, this section delves into the mech-263

anism of factual knowledge using features obtained264

through sparse autoencoders (SAE). Our findings265

address the research questions Q1 (§4.1 and §4.2)266

and Q2 (§4.3) raised in §1.267

4.1 Post-MLP Features Have the Strongest268

Impact on Knowledge Expression269

Experiment Settings Following §3, we extend270

our analysis to three components in transformer:271

post-attention residual, MLP activation, and post-272

MLP residual. We apply SAE to extract features273

the entire dataset would result in near-complete coverage of
the feature space.
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Figure 5: The impact on ∆Prob when ablating features
from different transformer components and neurons.

from each component and compare them with 274

knowledge neurons identified using the localization 275

method proposed by Chen et al. (2024a) (detailed 276

in Appendix G), as their approach achieves state- 277

of-the-art performance. We employ the ∆Prob 278

metric (i.e., the decrease in model prediction prob- 279

ability) from §2 and conduct two complementary 280

analyses to compare how features and neurons im- 281

pact knowledge expression, with results shown in 282

Figure 5 and Figure 4. 283

(1) Figure 5: We select features and neurons 284

through a thresholding method on the full dataset, 285

then ablate them and calculate the ∆Prob. For 286

features, the selection follows Equation 4, and a 287

similar thresholding technique with τ1 is applied 288

for neurons. 289

(2) Figure 4: We perform a fine-grained analysis 290

by ranking features based on their activations in 291

descending order and progressively ablating them, 292

calculating ∆Prob at each step. This approach al- 293

lows us to observe the continuous impact of feature 294

ablation without being constrained by any predeter- 295

mined threshold. Since progressive feature ablation 296
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Figure 6: Per-unit interpretation scores (IS) for features from different transformer components and neurons. We
use the same bootstrap samples as Figure 4. Higher scores indicate better interpretability.
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Figure 7: The average interpretability scores (IS) for
features from different components and neurons.

on the full dataset is computationally intensive, we297

employ bootstrap sampling with 5 independent it-298

erations (300 instances each, with replacement).299

Findings Post-MLP features have the300

strongest impact on knowledge expression. In301

Figure 5, the post-MLP features show a substantial302

impact with ∆Prob of ∼ 0.85, which is approx-303

imately 10% higher than the strongest baseline304

(MLP features) and ∼ 1.9× that of neurons. Figure305

4 provides more granular evidence, showing that306

ablating just a few highly-activated features307

significantly impairs the model’s ability to express308

knowledge. Ablating a single post-MLP feature309

yields a ∆Prob of ∼ 0.6, substantially higher than310

the strongest baseline (MLP features) and ∼ 3×311

that of neurons. The statistical significance test312

results are in Appendix H.1 (Table 3), confirming313

that the superior knowledge expression capabilities314

of post-MLP features over other features (or315

neurons) are significant.316

4.2 Features Demonstrate Superior317

Interpretability Compared to Neurons318

Experiment Settings We employ the inter-319

pretability score (IS) metric introduced in §2 to320

evaluate the features and neurons, with results321

shown in Figure 7 and Figure 6.322

(1) Figure 7: After obtaining features and neu-323

rons through the thresholding technique, we evalu-324

ate the interpretability scores (IS) of these selected325

units on the full dataset.326

(2) Figure 6: We first rank features in descend-327

ing order based on their activations using the same328

1000 sampled facts, then evaluate IS for each fea- 329

ture/neuron individually. Unlike the batch ablation 330

analysis in Figure 4, this approach assesses one 331

unit at a time. In this analysis, evaluating units indi- 332

vidually holds greater significance beyond merely 333

eliminating the influence of threshold. Since a sin- 334

gle fact typically activates a larger number of neu- 335

rons (can reach 20 or more) compared to features, 336

averaging IS across neurons would bias the score 337

toward lower values. Therefore, evaluating each 338

unit individually ensures a more equitable compari- 339

son. Note that we only evaluate up to the 50th unit, 340

as the IS approaches or falls below zero near this 341

point, making further evaluation unnecessary. 342

Findings (1) Features demonstrate superior in- 343

terpretability compared to neurons. In Figure 344

7, post-MLP features achieve IS values of ∼ 0.6, 345

∼ 4× that of neurons. A fine-grained analysis in 346

Figure 6 further validates this conclusion, showing 347

that even when compared individually, highly acti- 348

vated neurons consistently exhibit lower IS values 349

(< 0.4) than highly activated features (∼ 0.7). 350

(2) Post-MLP features are a better choice when 351

considering both metrics. While MLP and post- 352

attention features show comparable interpretability 353

scores (IS ∼ 0.6 and ∼ 0.5 respectively), post- 354

MLP features consistently perform well in both 355

interpretability and knowledge expression. The 356

statistical significance test results are presented in 357

Appendix H.1 (Table 3), showing that post-MLP 358

features significantly outperform neurons in inter- 359

pretability, and perform similarly to other features. 360

Let’s review Q1: §4.1 and §4.2 demonstrate that 361

features, as research units, effectively address 362

the dual challenges of limited knowledge expres- 363

sion and poor interpretability. 364

4.3 Features Exhibit Stronger 365

Monosemanticity 366

Motivation While our previous analyses demon- 367

strate features’ superior performance in both knowl- 368

edge expression and interpretability, these find- 369
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Figure 8: Post-MLP feature activations corresponding to relation-facts under varying input compositions (0% to
100% relation-facts). Top: Activation score distributions. Bottom: Mean activation values.

ings indirectly suggest stronger monosemanticity370

of features. We now seek direct evidence to verify371

whether features better align with our desired sce-372

nario illustrated in Figure 1(b). This would further373

support our findings in §4.1 and §4.24.374

Experiment Settings To evaluate monoseman-375

ticity, we expect features corresponding to specific376

facts to show high activation values for those facts377

and low activation values for others. However, this378

evaluation presents two key challenges:379

(1) Individual fact analysis is unreliable because380

each fact activates only a small subset of features.381

This sparsity means features corresponding to dif-382

ferent facts might appear separated by chance,383

rather than due to true monosemanticity. (2) Ana-384

lyzing all facts simultaneously would involve too385

many features, likely producing high activation val-386

ues for some features regardless of input facts. This387

noise would mask the underlying feature-fact rela-388

tionships we aim to study.389

We address these challenges through a three-step390

approach: (1) Relation Selection: We select 5 rela-391

tions (P39, P264, P37, P108, P131; see Appendix392

A) and designate these facts as relation-facts.393

(2) Input Construction: We maintain a constant394

total input size (2,591 facts) while varying the pro-395

portion of relation-facts from 0% to 100% in 20%396

increments. For example, the “40%” configuration397

contains 1,036 randomly sampled relation-facts398

and 1,555 non-relation facts.399

(3) Activation Analysis: For each configuration,400

we: (a) Record activation values from features (or401

4Based on the analysis in §4.1 and §4.2, we focus our
comparison specifically on post-MLP features and neurons.

neurons) associated with relation-facts. (b) Visu- 402

alize distributions using kernel density estimation 403

(KDE), , where the x-axis is activation scores and 404

the y-axis shows feature density. (c) Plot mean 405

activation values for clearer interpretation. 406

In this setup, stronger monosemanticity is char- 407

acterized by clear distribution separation across 408

different input configurations and higher activation 409

scores when relation-fact proportions increase. Re- 410

sults are shown in Figure 8. 411

Findings We resolve Q2: features exhibit supe- 412

rior monosemanticity compared to neurons. (1) 413

Features display distinct, well-separated activation 414

waves that correlate with relation-fact proportions. 415

In contrast, neurons show overlapping distributions 416

and activation even without relevant inputs, i.e., 0% 417

condition (Top of Figure 8). 418

(2) Feature activation values increase systemat- 419

ically with relation-fact proportion, while neuron 420

mean activation values start notably above zero and 421

show minimal variation, especially between 60% 422

and 100% (Bottom of Figure 8). 423

These findings demonstrate that features exhibit 424

stronger fact-specific correspondence by remain- 425

ing unresponsive to irrelevant inputs. Statistical 426

analysis confirms this separation (all p < 0.001, 427

Cohen’s d> 0.8; see Appendix H.2). 428

5 Feature-based Knowledge Erasure 429

We evaluate our feature-based method against 430

neuron-based approaches in erasing privacy-related 431

information from LMs. This downstream applica- 432

tion addresses Q3 raised in §1, further validates our 433

previous analysis, and demonstrates the practical 434
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value of our findings and analysis.435

5.1 Dataset436

We construct PrivacyParaRel, a dataset containing437

synthetic privacy-sensitive information, following438

the triple format used by Elazar et al. (2021). Each439

entry is structured as ⟨subject, relation, object⟩,440

such as ⟨Alice, Social Security Number, 123-45-441

6789⟩, with multiple query variations generated for442

each fact. This format maintains consistency with443

factual knowledge datasets, enabling direct method444

transfer while addressing privacy concerns through445

synthetic data. We generate 1,500 different facts,446

each accompanied by six different query variations,447

resulting in 9,000 total entries. Further details in448

Appendix I.449

5.2 Experiment Settings450

To erase specific knowledge from LMs, we first per-451

form incremental fine-tuning on our privacy dataset,452

allowing the model to learn the private information.453

For erasure, we extract neurons and post-MLP fea-454

tures, then explore two approaches based on neu-455

rons and features respectively. In both approaches,456

we modify weights in the MLP layers to ensure fair457

comparison, as neuron-based methods operate on458

MLP weights. Note that this weight modification459

differs from the activation-zeroing approach used460

in ∆Prob calculation.461

Neuron-based approach Following existing462

neuron-based knowledge editing methods (Dai463

et al., 2022; Chen et al., 2024b), for each identified464

neuron ni
l in layer l, we set the i-th column to zero465

in W
(2)
l ∈ Rdio×dm , where W

(2)
l is the second466

linear transformation matrix in the l-th MLP layer.467

Here, dio denotes the input/output dimension, and468

dm represents the intermediate dimension.469

Feature-based approach We propose Fea-470

tureEdit, a reconstruction-based approach for471

feature-based model editing. Since features are472

not naturally exist in LMs, directly using them for473

model editing poses challenges. To address this,474

FeatureEdit presents the first feature-based editing475

method, inspired by the activation reconstruction476

method used for ∆Prob (Appendix C.1). For each477

identified feature f i
l in the l-th MLP layer, we cre-478

ate a one-hot probe vector (pi
j):479

pi
j =

{
1 if j = i

0 otherwise
(5)480

Let We ∈ Rdf×dm be the encoding matrix learned 481

by SAE. By reconstructing through its transpose 482

(decoder matrix) WT
e , we obtain the feature’s con- 483

tribution pattern in the original MLP activation 484

space: 485

hi = WT
e p

i, hi ∈ Rdm (6) 486

The reconstructed vector hi reveals the feature’s 487

distributed influence. We traverse all features f i
l , 488

and identify significant positions in the weight ma- 489

trix W
(2)
l by thresholding: 490

P = {(l, c, i)
∣∣∣|hi

c| > τ2, for all i, l} (7) 491

where (l, c, i) represents the position in layer l, the 492

c-th column and i-th row of W(2)
l , h(i)

c is the c-th 493

value of h(i), and τ2 is a hyperparameter (Appendix 494

D.5). Finally, we zero out these specific weights: 495

W
(2)
l,c,i = 0, ∀(l, c, i) ∈ P (8) 496

Notably, this method achieves finer granularity 497

than neuron-based approaches by enabling selec- 498

tive modification of specific weight positions rather 499

than entire column vectors. 500

Evaluation Metrics We employ four metrics to 501

assess knowledge erasure performance (Yao et al., 502

2024; Chen et al., 2024b): (1) Reliability (Rel): 503

The probability that the model fails to correctly an- 504

swer privacy-related queries after erasure. (2) Gen- 505

eralization (Gen): The probability that the model 506

fails to answer privacy-related queries with differ- 507

ent phrasings. This metric is crucial as high Relia- 508

bility with low Generalization indicates potential 509

“jailbreak” (Wei et al., 2023) phenomenon where 510

models reveal private data in specific contexts. (3) 511

Locality (Loc): The probability that the model cor- 512

rectly answers unrelated queries. This metric en- 513

sures that knowledge erasure maintains other model 514

capabilities. (4) Perplexity: Measures the impact 515

on the model’s general text generation ability. We 516

use ∆PPL to quantify the perplexity change before 517

(b) and after (a) erasure: ∆PPL = PPLb−PPLa

PPLb
. 518

5.3 Findings 519

We resolve Q3: Feature-based model editing 520

outperforms neuron-based methods in privacy 521

knowledge erasure. As shown in Figure 9, fea- 522

tures achieve higher Rel scores (∼ 0.8) compared 523

to neurons (∼ 0.65), indicating better erasure ef- 524

fectiveness. The substantially higher Gen score 525

for features (∼ 0.7 vs. ∼ 0.25) demonstrates sig- 526

nificant mitigation of the “jailbreak” phenomenon. 527

7



Rel

Gen

Loc

0.81
0.62

0.77

0.25

0.60

0.19

Gemma 2 2B

Rel

Gen

Loc

0.70
0.58

0.67

0.20

0.65

0.20

Gemma 2 9B

Gemma 2 2B Gemma 2 9B
0.0

0.1

0.2

0.3

0.4

0.5

PP
L 

(%
)

0.128
0.082

0.366

0.234

Perplexity Comparison
Feature
Neuron

Feature
Neuron

Figure 9: Results of knowledge erasure for privacy protection. For the radar chart metrics (Rel, Gen and Loc),
higher values indicate better performance, while lower values in the bar chart indicate better performance.

Moreover, features exhibit fewer side effects, ev-528

idenced by higher Loc scores (∼ 0.7 vs. ∼ 0.2529

for neurons), indicating minimal impact on other530

facts, and lower ∆PPL (∼ 0.1 vs. ∼ 0.3), sug-531

gesting better preservation of model generation ca-532

pabilities. These findings align with our previous533

conclusions: features exert stronger influence on534

knowledge expression (higher Rel and Gen) while535

exhibiting superior monosemanticity, thus requir-536

ing fewer editing locations (better Loc and ∆PPL).537

6 Related Works538

Knowledge Neurons Theory and its Limitations539

In studying the factual knowledge mechanisms of540

LMs, researchers often employ the knowledge neu-541

ron (KN) theory. Initially, Geva et al. (2021b) pro-542

pose that MLP modules simulate key-value mem-543

ories to store information, while Dai et al. (2022)544

introduce the concept of knowledge neurons, sug-545

gesting that these neurons can store “knowledge”.546

The success of KN-inspired model editing meth-547

ods (Meng et al., 2022, 2023) further supports the548

plausibility of the KN theory. However, the KN549

theory has its limitations. Niu et al. (2024) argue550

that it oversimplifies the real situation, while Hase551

et al. (2023) suggest that the location of knowl-552

edge localization may not align with the location553

of greatest impact on knowledge expression. Chen554

et al. (2024b) further challenge the fundamental555

assumptions of KN theory, suggesting facts are556

distributed across neurons and different queries557

about the same fact may activate different KNs.558

Additionally, Bricken et al. (2023) find that the559

activation of a single neuron can have different560

meanings in different contexts. Limitations in KN-561

inspired knowledge editing methods have also been562

identified (Li et al., 2024; Yao et al., 2023; Cohen563

et al., 2024; Hoelscher-Obermaier et al., 2023; Pin-564

ter and Elhadad, 2023; Zhang et al., 2024). These565

model editing methods may fail to edit successfully566

or impair the LMs’ general capabilities, indirectly 567

suggesting limitations with the KN thesis. 568

Decomposing Neurons into Features In the do- 569

main of general text processing, numerous studies 570

have explored the properties of features. Elhage 571

et al. (2022) demonstrate in toy neural networks, 572

a layer of dimension N may linearly represent 573

many more than N feature, showing that a large 574

set of sparse features can be represented in a lower- 575

dimensional space. Bricken et al. (2023) advance 576

the theory by decomposing neurons into more fine- 577

grained features, arguing for their superiority as 578

units of analysis. Using sparse autoencoders (SAE), 579

they confirm that features correspond to patterns 580

of neuron activations. Subsequently, researchers 581

have improved the SAE method, proposing SAE 582

variants with enhanced performance (Rajamanoha- 583

ran et al., 2024; Gao et al., 2024). Additionally, 584

Huben et al. (2024) extend this approach to larger- 585

scale LMs, while Templeton et al. (2024) discover 586

highly abstract features that both respond to and 587

cause abstract behaviors. However, research on 588

factual knowledge mechanisms has not yet adopted 589

the features perspective. This paper focuses on 590

transforming the unit of analysis, aiming to address 591

some problems in the domain of factual knowledge. 592

7 Conclusion 593

We investigate the mechanism of factual knowledge 594

in LMs and propose a shift from neuron-based to 595

feature-based analysis. Drawing inspiration from 596

feature extraction methods, we first validate the ef- 597

fectiveness of SAE in extracting features for factual 598

knowledge. Based on this new analysis unit, we 599

make several key findings: Features exhibit greater 600

influence on knowledge expressing than neurons, 601

offer enhanced interpretability, and demonstrate su- 602

perior monosemanticity. Additionally, our feature- 603

based approach demonstrates better performance 604

in erasing privacy-sensitive knowledge from LMs. 605
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8 Limitations606

A significant challenge lies in the increased com-607

plexity of feature-based methods compared to608

neuron-based approaches, as features do not con-609

stitute natural units of analysis. While neurons are610

inherent components of LLM architecture, features611

require additional training of SAE for extraction.612

Consequently, although we can derive deeper in-613

sights using features, translating these insights into614

model performance improvements presents con-615

siderable challenges. For instance, while feature616

ablation is straightforward, such operations do not617

modify model parameters. Mapping external fea-618

tures back to model parameters may require an619

additional mapping layer to establish correspon-620

dence between features and weights. Our prelimi-621

nary approach is based on reconstruction methods,622

consistent with activation ablation, but this is sub-623

optimal. Therefore, mapping back to weights likely624

requires further algorithmic innovation.625

Additionally, we observe an intriguing clustering626

phenomenon of SAE features that merits further627

investigation. While our current analysis confirms628

that features undergo progressive decomposition629

with increasing N while maintaining their clus-630

ter structure, more fundamental questions remain631

unexplored. Specifically, we aim to investigate632

whether the SAE feature space possesses an inher-633

ent stable structure and whether it is truly insensi-634

tive to N . Such investigations could provide deeper635

insights into the nature of SAE feature representa-636

tions.637
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A Experimental Dataset Introduction958

In our experiments, we selected the ParaRel dataset959

Elazar et al. (2021), a high-quality resource of960

cloze-style query English paraphrases. It contains961

a total of 328 paraphrases for 38 relations. We962

further conducted a basic filtering, excluding 2 re-963

lations that had no paraphrases. Table 1 displays964

these relations and corresponding example data.965

B Experimental Hardware Specification966

and Environment967

All experiments are conducted using a high-968

performance computing system with an Intel(R)969

Xeon(R) CPU E5-2680 v4 (2.40GHz, 56 cores)970

processor and 10 NVIDIA GeForce RTX 3090971

GPUs, each equipped with 24576 MiB of mem-972

ory. The software environment consists of Python973

3.10.10 and PyTorch 2.0.0+cu117 for deep learning974

implementations.975

C Feature Ablation Process and976

Autointerpretation Protocol977

Here we will introduce in detail how we obtain978

∆Prob and IS.979

C.1 Feature Ablation Process980

Let h ∈ Rdm denote the original component acti-981

vation (e.g., MLP activation) at a specific layer.982

Through SAE, we obtain the encoding matrix983

We ∈ Rdf×dm and feature vector f = σ(Weh) ∈984

Rdf , where df is the number of features and σ is985

the activation function. The feature ablation pro-986

cess follows these steps:987

1. Given a set of target features to ablate S, we988

create a masked feature vector f ′:989

f ′i =

{
0 if i ∈ S

fi otherwise
(9)990

2. We reconstruct the activation using the de-991

coder matrix WT
e :992

h′ = WT
e f

′ ∈ Rdm (10)993

3. Replace the original activation h with the re-994

constructed activation h′ in the model’s forward995

computation to obtain the modified probability996

Proba. This process allows us to measure how997

specific features influence the model’s knowledge 998

expression by comparing the original probabil- 999

ity Probb (using h) with the modified probability 1000

Proba (using h′) through the ∆Prob metric. 1001

C.2 Autointerpretation Protocol 1002

We adapt the interpretability evaluation method 1003

from Bills et al. (2023) for our factual knowledge 1004

dataset, which consists of triples in various do- 1005

mains. This method is applied to features extracted 1006

by Sparse Autoencoders (SAE) from LLMs’ post- 1007

MLP residual flow (this paper uses Gemma 2 2B 1008

and Gemma 2 9B). The process for each feature is 1009

as follows: 1010

1. We select 20 diverse samples from our dataset 1011

of factual knowledge triples. Each sample is run 1012

through LLMs, measuring the feature’s activation 1013

(range 0-1). 1014

2. We identify the top 3 samples with highest 1015

feature activation. These high-activation samples 1016

are provided to a large language model. (we use 1017

gpt-4o-mini here5.) 1018

3. Based on this interpretation, we ask gpt-4o- 1019

mini to predict activation levels for 6 new samples: 1020

3 high-activation and 3 random samples from our 1021

dataset. 1022

4. We calculate the correlation between these 1023

predictions and the actual Gemma 2 2B activations, 1024

yielding an interpretability score for the feature. 1025

D Details of SAE, PCA, ICA and 1026

FeatureEdit 1027

This section details the four methods used for 1028

extracting interpretable features: Sparse Autoen- 1029

coders (SAE), Principal Component Analysis 1030

(PCA), Independent Component Analysis (ICA), 1031

and random directions. Assume that the input is 1032

MLP activation. Other inputs are similar. 1033

D.1 JumpReLU Sparse Autoencoders (SAEs) 1034

JumpReLU SAEs are neural networks that learn 1035

sparse representations through a threshold-based 1036

activation mechanism (Lieberum et al., 2024). 1037

Given MLP activations h ∈ Rdm , the encoder and 1038

decoder functions are defined by: 1039

f(h) := σ(Wench+ benc) (11) 1040

1041
ĥ(f) := Wdecf + bdec (12) 1042

5Any large language model can be used, but it is required
that this LLMs can output logprobs.
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Relation
Example data

Example Query Answer

P39 Adrian IV has the position of pope
P264 Purple Hearts is represented by music label Sunshine
P37 The official language of Republic of Ingushetia is Russian
P108 Henry Swanzy works for BBC
P131 Heaton Park is located in Manchester
P103 The native language of Francis Ponge is French
P176 Fiat Grande Punto is produced by Fiat
P30 Somalia is located in Africa
P178 Gain Ground is developed by Sega
P138 International Day for Biological Diversity is named after biodiversity
P47 Ukraine shares border with Poland
P17 Media Development Authority is located in Singapore
P413 Joe Torre plays in [MASK] position. catcher
P27 Edward Wollstonecraft is [MASK] citizen. Australia
P463 Chuck Schuldiner is a member of Death
P364 The original language of NU.nl is Dutch
P495 The Creepshow was created in Canada
P449 Yes Minister was originally aired on BBC
P20 Margaret Cavendish, Duchess of Newcastle-upon-Tyne died in England
P1376 Rumbek is the capital of Lakes
P1001 Minister for Foreign Affairs is a legal term in Australia
P361 propellant is part of cartridge
P36 The capital of Flanders is Brussels
P1303 Ludovico Einaudi plays piano
P530 Brunei maintains diplomatic relations with Australia
P19 Lopo Soares de Albergaria was born in Lisbon
P190 Bratislava and [MASK] are twin cities. Dublin
P740 Shirehorses was founded in Manchester
P136 Frank Mantooth plays [MASK] music. jazz
P127 AVCHD is owned by Sony
P1412 Karl Bodmer used to communicate in French
P407 Zarez was written in Croatian
P140 Leo IX is affiliated with the [MASK] religion. Christianity
P279 quinquina is a subclass of wine
P276 Al-Rifa’i Mosque is located in Cairo
P159 The headquarter of Allied Command Transformation is in Norfolk
P106 Giuseppe Saracco is a [MASK] by profession. politician
P101 Aleksei N . Leontiev works in the field of psychology
P937 Joseph Chamberlain used to work in London

Table 1: Example data of the ParaRel dataset (Elazar et al., 2021).

where Wenc ∈ Rdf×dm , Wdec ∈ Rdm×df , benc ∈1043

Rdf , bdec ∈ Rdm .1044

The JumpReLU activation σ is defined as:1045

σ(z) = JumpReLUθ(z) := z⊙H(z− θ) (13)1046

where θ > 0 is the learnable threshold parameter1047

and H is the Heaviside step function. 1048

The loss function combines reconstruction error 1049

with an L0 sparsity penalty: 1050

L = ∥h− ĥ(f(h))∥22 + λ∥f(h)∥0 (14) 1051

where λ controls the sparsity penalty weight. 1052
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Features are obtained through:1053

F = {f(h) := σ(Wench+ benc)} (15)1054

Selected features are identified using:1055

Fa = {f ∈ F | a(f) > τ1 ·max
f∈F

a(f)} (16)1056

In this equation, a(f) represents the activation1057

value of feature fi, while τ1 serves as the threshold1058

parameter controlling feature selection sensitivity.1059

The term maxf∈F a(f) denotes the maximum acti-1060

vation value across all features.1061

D.2 Principal Component Analysis (PCA)1062

PCA finds orthogonal directions that capture max-1063

imum variance in the data. For MLP activations1064

H = [h1, ...,hdm ]
T , the process involves several1065

key steps. First, we center the data by comput-1066

ing Hc = H − E[H]. Next, we compute the1067

covariance matrix C = 1
nH

T
c Hc. We then per-1068

form eigendecomposition C = VΛVT , where1069

V = [v1, ...,vdm ] contains eigenvectors. Finally,1070

we project the data using F = HcVdf , where Vdf1071

contains top df eigenvectors.1072

Features are obtained through:1073

F = {f(h) := hTVdf } (17)1074

Selected features are identified using Equation1075

16.1076

D.3 Independent Component Analysis (ICA)1077

ICA seeks to find statistically independent compo-1078

nents by maximizing non-Gaussianity. The process1079

begins with whitening, where we transform the1080

data to have unit variance in all directions:1081

Hw = HcVΛ−1/2 (18)1082

We then find the unmixing matrix W ∈ Rdf×dm1083

that maximizes non-Gaussianity:1084

F = HwW (19)1085

The optimization typically uses approximations of1086

negentropy:1087

J(w) = [E{G(wThw)} − E{G(ν)}]2 (20)1088

where G is a non-quadratic function and ν is a1089

standard Gaussian variable.1090

Features are obtained through:1091

F = {f(h) := hT
wW} (21)1092

Selected features are identified using Equation1093

16.1094

D.4 Random Directions (RD) 1095

Random directions serve as a baseline method 1096

through a three-step process. Initially, we generate 1097

a random matrix R ∈ Rdm×df with entries drawn 1098

from N (0, 1/
√
dm). We then apply QR decompo- 1099

sition to obtain an orthonormal basis: 1100

R = QRupper (22) 1101

where Q ∈ Rdm×df is an orthonormal matrix and 1102

Rupper ∈ Rdf×df is an upper triangular matrix. 1103

Finally, we project the data using the orthonormal 1104

matrix: F = HQ. 1105

Features are obtained through: 1106

F = {f(h) := hTQ} (23) 1107

Selected features are identified using Equation 1108

16. 1109

D.5 Method-specific Parameters 1110

The implementation of each method involves spe- 1111

cific parameter settings. For SAE, we use β = 3, 1112

ρ = 0.05, sigmoid activation, and feature dimen- 1113

sion df = n× dm, with n = 4 in this paper. The 1114

training process employs the Adam optimizer with 1115

learning rate 1e−3, batch size 256, and runs for 100 1116

epochs. Early stopping is triggered if validation 1117

loss does not improve for 10 consecutive epochs. 1118

Input activations are standardized to zero mean and 1119

unit variance before training. 1120

PCA employs an explained variance ratio thresh- 1121

old of 0.95, which determines the resulting df fea- 1122

tures. The input data is centered but not scaled, as 1123

variance information is crucial for principal compo- 1124

nent identification. ICA utilizes the FastICA algo- 1125

rithm with cubic G function and feature dimension 1126

df = 4dm, with input data whitened during pre- 1127

processing. The Random method uses Gaussian 1128

initialization with variance scaling and maintains a 1129

feature dimension of df = 4dm. 1130

For feature selection across all methods, we em- 1131

ploy a threshold τ1 = 0.3 to identify significant 1132

features, striking a balance between feature cover- 1133

age and selectivity. This threshold was determined 1134

through preliminary experiments examining the 1135

distribution of feature activations across different 1136

knowledge categories. Specifically, τ1 = 0.3 en- 1137

sures capture of features that demonstrate substan- 1138

tial activation (at least 30% of maximum activation) 1139

while filtering out noise and weakly activated fea- 1140

tures. 1141
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Figure 10: Feature cluster Results for Gemma 2 2B.
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Figure 11: Feature cluster Results for Gemma 2 9B.

For FeatureEdit, we set the reconstruction thresh-1142

old τ2 = 0.1 to identify significant weight posi-1143

tions. This threshold was chosen based on the em-1144

pirical observation of weight contribution distribu-1145

tions in the reconstructed activation space, ensuring1146

that we capture meaningful feature influences while1147

maintaining editing precision. The relatively small1148

threshold value allows us to identify subtle but1149

important feature contributions in the distributed1150

representations.1151

E Paired T-test Results for Preliminary1152

Experiment1153

To rigorously validate the superiority of SAE fea-1154

tures over baseline methods, we conduct paired1155

t-tests using full dataset for each method. For both1156

models (Gemma 2 2B and Gemma 2 9B) and both1157

metrics (∆Prob and IS), we compare SAE with1158

each baseline method (PCA, ICA, and random base-1159

line). The statistical significance of the differences1160

is assessed using paired t-tests, as we compare dif-1161

ferent methods on the same set of instances. Table1162

2 presents the detailed statistical analysis results.1163

Notably, we include Cohen’s d effect size along-1164

side traditional significance testing because p-1165

values alone may not reflect the practical signif-1166

icance of the differences, especially with large sam-1167

ple sizes (all p<0.001). Cohen’s d measures the 1168

standardized difference between two means, where 1169

values above 0.8 indicate large effects. Our results 1170

show substantial effect sizes (Cohen’s d ranging 1171

from 0.38 to 3.81, with most values exceeding 0.8), 1172

confirming not only the statistical significance but 1173

also the practical importance of SAE’s improve- 1174

ments over baseline methods. Particularly strong 1175

effects are observed when comparing SAE with the 1176

random baseline (Cohen’s d > 1.6), and in the IS 1177

metric where almost all comparisons show large 1178

effect sizes (Cohen’s d > 0.7). 1179

F Quantitative Analysis of Feature 1180

Stability Across Different N Values 1181

To further validate our observation that the im- 1182

pact of the number of features (N ) is less signifi- 1183

cant than anticipated, we conduct a comprehensive 1184

quantitative analysis on the entire dataset. This 1185

analysis aims to support our conclusion that our 1186

findings are stable across different values of the 1187

hyperparameter N . 1188

F.1 Methodology 1189

We define N as N = n × len(MLP activation), 1190

where n is a positive integer. We use n = 1 as 1191

the baseline for comparison. This approach yields 1192
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∆Prob

Model Method t-statistic p-value Cohen’s d

Gemma 2 2B SAE vs. PCA 85.15 < 0.001 0.70
Gemma 2 2B SAE vs. ICA 46.33 < 0.001 0.38
Gemma 2 2B SAE vs. Random 359.48 < 0.001 2.94

Gemma 2 9B SAE vs. PCA 120.76 < 0.001 0.99
Gemma 2 9B SAE vs. ICA 77.18 < 0.001 0.63
Gemma 2 9B SAE vs. Random 466.02 < 0.001 3.81

IS

Model Method t-statistic p-value Cohen’s d

Gemma 2 2B SAE vs. PCA 157.64 < 0.001 1.29
Gemma 2 2B SAE vs. ICA 87.19 < 0.001 0.71
Gemma 2 2B SAE vs. Random 200.49 < 0.001 1.64

Gemma 2 9B SAE vs. PCA 155.98 < 0.001 1.27
Gemma 2 9B SAE vs. ICA 104.44 < 0.001 0.85
Gemma 2 9B SAE vs. Random 255.96 < 0.001 2.09

Table 2: Statistical analysis of feature acquisition methods. We report t-statistics, p-values from paired t-tests, and
Cohen’s d effect sizes for comparing SAE with baseline methods (PCA, ICA, and random baseline) across both
metrics (∆Prob and IS).

layer ×N features for each model.1193

Using Gemma 2 2B as an example, our method-1194

ology is as follows:1195

1. For a given fact, when n = 1, we record the1196

positions of activated features as [layer, position].1197

2. For any integer n > 1, based on the n = 11198

case, we expect features to fall within the range1199

[layer, position × n, (position + 1)× n− 1].1200

3. We then compare the actual positions of fea-1201

tures for n > 1 with these expected positions and1202

calculate the overlap ratio.1203

4. We repeat this process for the entire dataset1204

and compute the average overlap ratio.1205

We apply this methodology to both Gemma 21206

2B and Gemma 2 9B models, using n values of 1,1207

2, 4, and 8.1208

F.2 Results1209

Table 3 presents the average overlap ratios for dif-1210

ferent n values across both models. Additionally,1211

Figure 11 complements the results shown in Figure1212

3 from the main text. While Figure 3 only presents1213

the results for Gemma 2 2B, Figure 11 displays the1214

results for both Gemma 2 2B and Gemma 2 9B.1215

The results in Table 3 demonstrate a high degree1216

of overlap between the expected and actual fea-1217

ture positions across different n values. For both1218

Gemma 2 2B and Gemma 2 9B, we observe that1219

even as n increases to 8, the overlap ratio remains 1220

above 0.87, indicating a strong consistency in fea- 1221

ture localization. 1222

This quantitative analysis supports our earlier ob- 1223

servation that as N increases, the original features 1224

are further decomposed but remain aggregated in 1225

consistent regions. The high overlap ratios suggest 1226

that our conclusions about feature behavior and im- 1227

portance are indeed stable and relatively insensitive 1228

to changes in the hyperparameter N . 1229

These findings have important implications for 1230

future research in this area, as they suggest that the 1231

choice of N , within a reasonable range, does not 1232

significantly alter the fundamental patterns of fea- 1233

ture activation and localization in relation to factual 1234

knowledge representation in language models. 1235

G Knowledge Localization Method 1236

We compare the precision of knowledge neuron 1237

localization across different research papers and se- 1238

lect Architecture-adapted Multilingual Integrated 1239

Gradients (Chen et al., 2024a) as our baseline 1240

method, as it demonstrates superior performance 1241

in knowledge neuron localization. 1242

Given a query q, they define the probability of 1243

the correct answer predicted by a PLMs as follows: 1244

F(ŵ
(l)
j ) = p(y∗|q, w(l)

j = ŵ
(l)
j ) (24) 1245
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Model
n

1 2 4 8

Gemma 2 2B 1.000 0.927 0.891 0.893
Gemma 2 9B 1.000 0.935 0.908 0.879

Table 3: Average overlap ratios for different n values.

Here, y∗ represents the correct answer, w(l)
j denotes1246

the j-th neuron in the l-th layer, and ŵ
(l)
j is the1247

specific value assigned to w
(l)
j . To calculate the1248

attribution score for each neuron, they employ the1249

technique of integrated gradients. To compute the1250

attribution score of a neuron w
(l)
j , they consider the1251

following formulation:1252

∆w
(l)
j = w

(l)
j − w′(l)

j (25)1253

1254

Attr(w
(l)
j ) = ∆w

(l)
j

∫ 1

0

∂ F(w′(l)
j + α∆w

(l)
j )

∂w
(l)
j

dα

(26)1255

Here, w(l)
j represents the actual value of w(l)

j , w′(l)
j1256

serves as the baseline vector for w(l)
j . The term1257

∂ F(w
′(l)
j +α∆w

(l)
j )

∂w
(l)
j

computes the gradient with re-1258

spect to w
(l)
j . Next, they aim to obtain w′(l)

j .1259

Starting from the sentence q, they acquire a base-1260

line sentence and then encode this sentence as a1261

vector. Let the baseline sentence corresponding1262

to qi be q′i, and q′i consists of m words, main-1263

taining a length consistent with q, denoted as1264

q′i = (q′i1 . . . q
′
ik . . . q

′
im). Since they are using1265

auto-regressive models, according to Chen et al.1266

(2024a), q′ik = ⟨eos⟩, where ⟨eos⟩ represents “end1267

of sequence” in auto-regressive models. The attri-1268

bution score Attri(w
(l)
j ) for each neuron, given the1269

input qi, can be determined using Equation (26).1270

For the computation of the integral, the Riemann1271

approximation method is employed:1272

Attri(w
l
j) ≈

w
(l)
j

N

N∑
k=1

∂F (w′(l)
j + k

N ×∆w
(l)
j

∂w
(l)
j

(27)1273

where N is the number of approximation steps.1274

Then, the attribution scores for each word qi are1275

aggregated and subsequently normalized:1276

Attr(wl
j) =

∑m
i=1Attri(w

l
j)∑n

j=1

∑m
i=1Attri(w

l
j)

(28)1277

Let N be the set of neurons classified as knowl- 1278

edge neurons based on their attribution scores ex- 1279

ceeding a predetermined threshold τ , for a given 1280

input q. This can be formally defined as: 1281

N =
{
w

(l)
j

∣∣∣Attr(w(l)
j ) > τ

}
(29) 1282

where l encompassing all layers and j including all 1283

neurons within each layer. 1284

H Paired T-test Results for Main 1285

Experiment: Features vs. Neurons 1286

H.1 For ∆Prob and IS 1287

To rigorously validate the comparisons between 1288

Post-MLP features and other approaches (Post- 1289

Attention features, MLP features, and neurons), 1290

we conduct paired t-tests using the full dataset. For 1291

both metrics (∆Prob and IS), we compare Post- 1292

MLP features with each alternative method across 1293

both models (Gemma 2 2B and Gemma 2 9B). We 1294

assess the statistical significance using paired t- 1295

tests, as we compare different methods on the same 1296

instances. 1297

The results in Table 4 show varied effect sizes 1298

across different comparisons. For ∆Prob, Post- 1299

MLP features demonstrate strong advantages over 1300

Post-Attention features (Cohen’s d: 0.78-1.24) 1301

and neurons (Cohen’s d > 1.1), while showing 1302

more modest advantages over MLP features (Co- 1303

hen’s d: 0.29-0.46). For interpretability (IS), we 1304

observe particularly strong effects when compar- 1305

ing Post-MLP features with neurons (Cohen’s d > 1306

1.2), while comparisons with other feature types 1307

show smaller effects (|Cohen’s d| ≤ 0.23). All 1308

differences are statistically significant (p < 0.001), 1309

though the practical significance varies as indicated 1310

by the effect sizes. 1311

H.2 For Monosemanticity 1312

To rigorously validate the separation phenomenon 1313

in activation distributions, we conduct paired t-tests 1314

on two types of comparisons: adjacent ratios (e.g., 1315
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∆Prob

Model Method t-statistic p-value Cohen’s d

Gemma 2 2B Post-MLP F vs. Post-Att F 152.29 < 0.001 1.24
Gemma 2 2B Post-MLP F vs. MLP F 56.95 < 0.001 0.46
Gemma 2 2B Post-MLP F vs. Neurons 138.18 < 0.001 1.13

Gemma 2 9B Post-MLP F vs. Post-Att F 95.91 < 0.001 0.78
Gemma 2 9B Post-MLP F vs. MLP F 35.27 < 0.001 0.29
Gemma 2 9B Post-MLP F vs. Neurons 146.42 < 0.001 1.20

IS

Model Method t-statistic p-value Cohen’s d

Gemma 2 2B Post-MLP F vs. Post-Att F 28.41 < 0.001 0.23
Gemma 2 2B Post-MLP F vs. MLP F 12.20 < 0.001 0.10
Gemma 2 2B Post-MLP F vs. Neurons 158.37 < 0.001 1.29

Gemma 2 9B Post-MLP F vs. Post-Att F 12.55 < 0.001 0.10
Gemma 2 9B Post-MLP F vs. MLP F -12.17 < 0.001 -0.10
Gemma 2 9B Post-MLP F vs. Neurons 162.13 < 0.001 1.32

Table 4: Statistical significance test results comparing Post-MLP features with other features or neurons. For each
comparison, we report the t-statistic from paired t-tests, corresponding p-value, and Cohen’s d effect size.

0% vs 20%) and comparisons with the full relation-1316

facts condition (100%).1317

The results in Table 5 demonstrate strong1318

and consistent separation patterns, particularly in1319

feature-based representations. For adjacent ratio1320

comparisons, features show large effect sizes (Co-1321

hen’s d ranging from 0.62 to 5.29) between con-1322

secutive ratios, with particularly strong separation1323

in the middle ranges (20% to 80%). In contrast,1324

neurons exhibit decreasing effect sizes as the ratio1325

increases, with some comparisons showing small1326

effects (Cohen’s d < 0.8) in higher ratios.1327

When compared against the 100% baseline, fea-1328

tures maintain substantial separation across all ra-1329

tios (Cohen’s d ranging from 1.61 to 13.03), indi-1330

cating clear distinctions in activation patterns even1331

at high ratios. Neurons, while showing strong1332

separation at lower ratios (Cohen’s d > 5.0 for1333

0% vs 100%), demonstrate notably smaller ef-1334

fects at higher ratios (Cohen’s d < 1.0 for 80%1335

vs 100%). These patterns quantitatively support1336

the superior monosemanticity of features, as they1337

maintain clearer separation between different pro-1338

portions of relation facts.1339

I Synthetic Privacy Dataset Construction 1340

and Characteristics 1341

Our synthetic privacy dataset comprises 1,500 1342

structured entries of privacy-sensitive informa- 1343

tion, distributed equally across three relation types: 1344

phone numbers (P001), home addresses (P002), 1345

and email addresses (P003). Each entry contains 1346

a universally unique identifier (UUID), a natural 1347

language prompt, the corresponding value, and a re- 1348

lation code. The dataset is specifically designed for 1349

privacy-focused machine learning research while 1350

ensuring zero risk to individual privacy through 1351

complete synthetic generation. 1352

I.1 Dataset Components 1353

The dataset construction employs carefully curated 1354

component lists to ensure both consistency and 1355

variability. We organize our foundational elements 1356

into three main categories: identity components, 1357

location information, and contact details. 1358

I.2 Generation Process 1359

The dataset generation follows a systematic pro- 1360

cess to ensure consistency and quality. Names are 1361

created by combining first and last names from pre- 1362

defined lists, ensuring unique combinations. Val- 1363

ues are generated according to type-specific rules: 1364

phone numbers follow the "555-XXX-XXXX" for- 1365
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mat with random digits, addresses combine random1366

street numbers (1-9999) with component elements,1367

and email addresses merge usernames with random1368

numbers (1-999) and domains.1369

For each privacy fact, we create six variations1370

of natural language queries, covering both declar-1371

ative statements and questions. This approach ex-1372

pands our 1,500 unique facts into 9,000 total query-1373

answer pairs. The dataset maintains equal distri-1374

bution across relation types (500 facts each) and1375

ensures no duplicate entries within each type.1376

Our quality control process focuses on three key1377

aspects. First, we maintain consistent formatting1378

across all entries to ensure data uniformity. Second,1379

we establish strong referential integrity between1380

names and their associated information to maintain1381

data coherence. Third, we ensure reproducibility1382

through systematic component combination, allow-1383

ing for dataset regeneration when needed.1384

I.3 Research Applications1385

This dataset supports various research objectives1386

in privacy-preserving machine learning. It enables1387

thorough model evaluation for information reten-1388

tion and leakage, facilitating the development and1389

evaluation of privacy-protecting mechanisms. The1390

dataset also supports analysis of natural language1391

understanding in the context of structured personal1392

information, while enabling assessment of format1393

learning and consistency in generated content. The1394

synthetic nature of the dataset eliminates privacy1395

concerns while maintaining realistic data patterns1396

and relationships, making it ideal for academic re-1397

search in privacy-preserving technologies.1398
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Adjacent Ratio Comparisons
Model Comparison t-statistic p-value Cohen’s d

Gemma 2 2B Feature 20 vs. 0 27.99 < 0.001 1.25
Gemma 2 2B Feature 40 vs. 20 118.21 < 0.001 5.29
Gemma 2 2B Feature 60 vs. 40 57.74 < 0.001 2.58
Gemma 2 2B Feature 80 vs. 60 67.87 < 0.001 3.04
Gemma 2 2B Feature 100 vs. 80 35.94 < 0.001 1.61

Gemma 2 2B Neuron 20 vs. 0 50.81 < 0.001 2.27
Gemma 2 2B Neuron 40 vs. 20 70.10 < 0.001 3.14
Gemma 2 2B Neuron 60 vs. 40 72.44 < 0.001 3.24
Gemma 2 2B Neuron 80 vs. 60 -2.82 0.005 -0.13
Gemma 2 2B Neuron 100 vs. 80 12.58 < 0.001 0.56

Gemma 2 9B Feature 20 vs. 0 13.83 < 0.001 0.62
Gemma 2 9B Feature 40 vs. 20 106.59 < 0.001 4.77
Gemma 2 9B Feature 60 vs. 40 67.33 < 0.001 3.01
Gemma 2 9B Feature 80 vs. 60 29.32 < 0.001 1.31
Gemma 2 9B Feature 100 vs. 80 88.83 < 0.001 3.97

Gemma 2 9B Neuron 20 vs. 0 56.45 < 0.001 2.53
Gemma 2 9B Neuron 40 vs. 20 29.68 < 0.001 1.33
Gemma 2 9B Neuron 60 vs. 40 19.10 < 0.001 0.85
Gemma 2 9B Neuron 80 vs. 60 9.25 < 0.001 0.41
Gemma 2 9B Neuron 100 vs. 80 17.24 < 0.001 0.77

Comparisons with 100% Baseline
Model Comparison t-statistic p-value Cohen’s d

Gemma 2 2B Feature 100 vs. 0 255.40 < 0.001 11.43
Gemma 2 2B Feature 100 vs. 20 220.35 < 0.001 9.86
Gemma 2 2B Feature 100 vs. 40 148.82 < 0.001 6.66
Gemma 2 2B Feature 100 vs. 60 104.99 < 0.001 4.70
Gemma 2 2B Feature 100 vs. 80 35.94 < 0.001 1.61

Gemma 2 2B Neuron 100 vs. 0 153.64 < 0.001 6.87
Gemma 2 2B Neuron 100 vs. 20 112.58 < 0.001 5.04
Gemma 2 2B Neuron 100 vs. 40 66.82 < 0.001 2.99
Gemma 2 2B Neuron 100 vs. 60 11.51 < 0.001 0.51
Gemma 2 2B Neuron 100 vs. 80 12.58 < 0.001 0.56

Gemma 2 9B Feature 100 vs. 0 272.33 < 0.001 12.18
Gemma 2 9B Feature 100 vs. 20 291.28 < 0.001 13.03
Gemma 2 9B Feature 100 vs. 40 162.05 < 0.001 7.25
Gemma 2 9B Feature 100 vs. 60 120.44 < 0.001 5.39
Gemma 2 9B Feature 100 vs. 80 88.83 < 0.001 3.97

Gemma 2 9B Neuron 100 vs. 0 111.78 < 0.001 5.00
Gemma 2 9B Neuron 100 vs. 20 74.64 < 0.001 3.34
Gemma 2 9B Neuron 100 vs. 40 38.81 < 0.001 1.74
Gemma 2 9B Neuron 100 vs. 60 25.39 < 0.001 1.14
Gemma 2 9B Neuron 100 vs. 80 17.24 < 0.001 0.77

Table 5: Statistical analysis of activation distribution separation. We report t-statistics, p-values, and Cohen’s d effect
sizes for both adjacent ratio comparisons and comparisons with the 100% condition. Adjacent ratio comparisons
show the separation between consecutive ratios, while baseline comparisons demonstrate the differences from the
full relation-facts condition.
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Category Component Type Count Examples

Identity
First Names 30 Alex, Bailey, Casey, Dana, Ellis
Last Names 30 Smith, Johnson, Williams, Brown, Jones

Location
Street Names 30 Maple, Oak, Pine, Cedar, Elm
Cities 30 Springfield, Rivertown, Lakeside, Hillview
State Codes 20 AA, BB, CC, DD, EE

Contact Email Domains 10 example.com, sample.net, test.org

Table 6: Dataset generation components.

Code Type Format Template Example Query Templates

P001 Phone 555-XXX-XXXX "[name]’s phone number is"
"What is [name]’s phone number?"
"How can I reach [name] by phone?"

P002 Address [Number] [Street] St,
[City], [State] [ZIP]

"[name]’s home address is"
"Where does [name] live?"
"What is [name]’s residential address?"

P003 Email [firstname].[lastname]
[number]@[domain]

"[name]’s email address is"
"What’s [name]’s email?"
"How can I contact [name] by email?"

Table 7: Relation types and query templates.

Field Type Description Example

uuid string Unique identifier "550e8400-e29b-41d4-a716-446655440000"
sentence string Natural language prompt "Casey Thompson’s phone number is"
answer string Corresponding value "555-234-5678"
relation string Relation type code "P001"

Table 8: Dataset entry structure.
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