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Abstract

Low-dose computed tomography (LDCT) enables imaging with minimal radiation expo-
sure but typically results in noisy outputs. Deep learning algorithms have been emerging
as popular tools for denoising LDCT images, where they typically rely on large data sets
requiring data from multiple centers. However, LDCT images collected from different cen-
ters (clients) can present significant data heterogeneity, and the sharing of them between
clients is also constrained by privacy regulations. In this work, we propose a personalized
federated learning (FL) approach for enhancing model generalization across different or-
gan images from multiple local clients while preserving data privacy. Empirically, we find
that earlier FL methods tend to underperform single-set models on non-IID LDCT data
due to the presence of data heterogeneity characterized by varying frequency patterns. To
address this, we introduce a Federated Learning with Frequency Domain Decomposition
(FedFDD) approach, which decomposes images into different frequency components and
then updates high-frequency signals in an FL setting while preserving local low-frequency
characteristics. Specifically, we leverage an adaptive frequency mask with discrete co-
sine transformation for the frequency domain decomposition. The proposed algorithm is
evaluated on LDCT datasets of different organs and our experimental results show that
FedFDD can surpass state-of-the-art FL methods as well as both localized and central-
ized models, especially on challenging LDCT denoising cases. Our code is available at
https://github.com/xuhang2019/FedFDD.
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1. Introduction

Federated learning (FL) is a decentralized approach that can integrate data from multiple
local clients for training machine learning models in a privacy-preserving way (Pati et al.,
2022). FL is particularly well-suited for medical imaging tasks that require extensive data,
where privacy is a major concern. For example, FL has been discussed for applications
including COVID-19 classification (Dayan et al., 2021), skin lesion classification (Yan et al.,
2023), and human activity recognition (Rieke et al., 2020; Rauniyar et al., 2023).
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Machine learning models typically rely on large training data sets for achieving good
generalization capability. Low-dose Computed Tomography (LDCT) denoising models have
been shown to perform better by expanding the training dataset with samples from different
sources and various anatomies (Yang et al., 2023; Immonen et al., 2022). Nevertheless, a
centralized training paradigm may not be always feasible, as local clients may be reluctant
to share data due to privacy concerns. Hence, in this study, we propose to investigate a novel
LDCT denoising method that can leverage data from diverse clients in a privacy-preserving
way, with each personalized local model specializing in different anatomical regions.

Related works. Fruitful research has been proposed in the LDCT denoising field. RED
CNN (Chen et al., 2017) adopts residual skip connection and small convolution kernels to en-
able smooth variation on different layers of feature maps for LDCT denoising. Transformer-
related works have also been proposed to utilize the pretrained data (Jing et al., 2022) and
enrich the diversity and effectiveness of features (Wang et al., 2023). Similarly, adversar-
ial learning methods (Wolterink et al., 2017; Han et al., 2022) have also been studied to
learn the denoising task. However, few of them addressed the CT denoising issue in the FL
settings. Current FL approaches mainly focus on addressing classification or segmentation
challenges rather than tasks related to image restoration. FedAvg (McMahan et al., 2017)
proposed to iteratively average the model weights from local models following each local up-
date step, assuming that all clients have independent and identically distributed (IID) data,
which however is often not the case in real-world scenarios. To mitigate the sub-optimal
performance caused by non-IID data, FedProx (Li et al., 2020) integrated a proximal term
to the objective function to guide the local updates to align with the global model, thereby
improving convergence with heterogeneous data. FedBN (Li et al.) was proposed to freeze
the Batch Normalization layer when training the domain-shifted medical data for stabilizing
the training and thus improving the averaging model. Besides, MOON (Li et al., 2021) has
added a contrastive loss from the latent vector of each client to the global model, which
aims to alleviate the global optimal parameter deviation issue by reducing the imbalanced
gradient drift.

More recently, FL methods in low-level medical imaging tasks have also raised attention,
such as in image reconstruction. For instance, FedMRI (Feng et al., 2023b) has proposed to
divide the reconstruction model into a global-shared encoder and separate local-preserved
decoders with a weighted contrastive regularization, which has been shown to improve the
efficiency and accuracy of MRI reconstruction tasks. FedPR (Feng et al., 2023a) further pro-
posed a federated paradigm to only communicate the pre-trained-model-generated prompts
and optimize them in an approximate null space of global prompts. Of particular relevance
to our work, HyperFed (Yang et al., 2022) has proposed to utilize localized hypernetworks
based on simulated geometric parameters and dose levels to guide the CT reconstruction
task, i.e., reconstructing the projection data to the imaging data. In contrast, our work
focuses on the LDCT denoising with various anatomies in an FL setting, and the design of
our proposed model is inherently inspired by the denoising nature.

Our contributions. We propose a Federated Learning with Frequency Domain Decom-
position (FedFDD) strategy for training the LDCT denoising model in a privacy-preserving
way. FedFDD is motivated by the observation that LDCT images share common patterns
across different anatomies, particularly in high-frequency components (i.e., noises). There-
fore, we aim to leverage that and enhance the learning of the denoising task in the general
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high-frequency domain using an FL approach while preserving individual low-frequency
components (i.e. semantic anatomical structures) (Yang et al., 2022) for each local client.

Our contributions are mainly threefold: 1) We introduce a novel dual-path FL strategy
with frequency domain decomposition to split the feature space for training and maintain
gradient stability during model aggregation under non-IID conditions. 2) We propose to
leverage data from different anatomies in LDCT denoising tasks, to mitigate data scarcity
in FL settings. 3) We demonstrate that selectively updating high-frequency components
in a dual setting significantly enhances the model’s performance in LDCT denoising tasks,
with competitive performance against state-of-the-art FL methods. Our proposed approach
aligns with the nature of noise removal and indicates a promising direction in FL for imaging.

2. Methods

2.1. Federated Learning Problem Formulation

The main goal of our FL method is to utilize datasets from different clients in a privacy-
preserving way. Specifically, we aim to construct a model that outperforms localized models,
i.e., models trained on local datasets. In order to prevent privacy leakage, we follow the
setting that data from different clients cannot be communicated (i.e., different hospitals
do not allow patient data transmission). Given that there are N clients with their own
datasets Di, i = 1, 2, ..., N and the optimization loss function as L, we want to achieve:

argmin
ωglobal

(
N∑
k=1

pkL(Dk;ωglobal)), (1)

where ωglobal denotes parameters of a global model, and pk is the weight of each local

dataset, defined as pk = ||Dk||/
∑N

i=1 ||Dk|| where ||Dk|| is the size of the k-th dataset.

Previous research (Xu et al., 2023) mentioned that the conventional mini-batch gradient
descent method aimed to update the model parameters at j+1 time step on the client k by
ωj+1
k = ωj

k − η∇L(Dk;ωj
k), where η is the learning rate and ∇ calculates the gradient w.r.t

ωj
k. In this way, the global model parameters can be aggregated by ωj+1

global =
∑N

i=1 piω
j+1
k .

However, the non-IID property of Dk would generate varying directions of ∇L(Dk;ωj
k) and

the weighted operation would therefore drift the global parameter to a sub-optimal solution
(McMahan et al., 2017).

In our LDCT denoising setting with images of various anatomies from different clients,
we observed that the mainstream FL scheme suffered from the drifted direction caused by
data of different anatomical regions. Therefore, we aim to alleviate the misleading impact
of the varying anatomical structures on the denoising task and guide the model to learn the
denoising essence. To achieve this, we propose to decompose the denoising task into two
paths: one path consists of part of the model that updates the local parameters ωanatomy

corresponding to refining each anatomical structure, and the other specifically deals with
the noise reduction part with model weights of ωdenoise. In this way, the global model
will only be updated with the gradient direction of the denoising part ∇L(Dk;ωj

k,denoise),

without the negative influence from the aggregation of the drifted item ∇L(Dk;ωj
k,anatomy).

The model parameter at the client k can then be viewed as ωk = ωk,anatomy ∪ ωk,denoise.
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Figure 1: The conceptual diagram of the proposed personalized federated learning models
with two frequency fusion methods. The LDCT images are split into different
frequency components and the model will update high-frequency signals in an
FL setting (the network branch colored in orange) while preserving local low-
frequency characteristics (the network branch colored in blue). Both frequency
components are then fused to form the output.

Therefore, the optimization problem can be formulated as:

argmin
ω1,...,ωk

(
N∑
k=1

pkL(Dk;ωk)). (2)

During the aggregation at time step j + 1, ωj+1
denoise and ωj+1

k are updated as ωj+1
denoise =∑N

i=1 piω
j+1
k,denoise and ωj+1

k = ωj+1
denoise ∪ ωj+1

k,anatomy.

2.2. Federated Learning with Frequency Domain Decomposition

Based on the above formulation, we propose a dual-path FL strategy for LDCT denois-
ing, as shown in Fig. 1. Noise in LDCT can be represented using various noise models
including quantum noise from X-ray (Yang et al., 2023), normally distributed stochastic
process noise (Li et al., 2023), and speckle and streak (Yang et al., 2020) noise, which are
commonly corresponding to the high-frequency component in the images. On the other
hand, the anatomical structures can be represented by the low-frequency component of the
images. Motivated by this, we propose to decompose the effects of anatomical structures
and noises through frequency domain decomposition, thereby updating a global denois-
ing model component with high-frequency data across different anatomies while preserving
personalized local low-frequency model components for each client, as seen in Fig. 1.
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Figure 2: Left: The image and frequency space of LDCT image and its two frequency
components. Right: The intensity histogram of different images.

2.2.1. Frequency Decomposition with Adaptive Frequency Mask

In detail, for the frequency domain decomposition, we propose to design a mask to decom-
pose the image and utilize an FL strategy to learn the model parameters for the denoising
part, i.e., ωdenoise. Specifically, the Discrete Cosine Transformation (DCT) is adopted for
the frequency decomposition due to its real-value property (Fig. 2). The majority of the
informative part of the image can then be efficiently condensed into a small number of
coefficients with the DCT, especially in the low-frequency coefficients, distributed in the
upper-left corner of the DCT frequency domain. The low-frequency part mainly includes
semantic-related components of the images (i.e., the structure of anatomies), and the noise
is mainly distributed into the remainder area (Fig. 2).

Therefore, we use a Bernoulli binary mask to separate the semantic component (the
low-frequency component) from the noisy area (the high-frequency component) inspired by
(Yue et al., 2021). This is achieved by setting a low-frequency threshold rl, within which
coefficients are preserved (mask value 1), while those beyond it are determined by a Bernoulli
distribution based on their normalized Euclidean distance ru,v to retain potentially useful
high-frequency information. The mask can be formulated as:

Mu,v =

{
1, 0 ≤ ru,v < rl

Bernoulli(ru,v), rl ≤ ru,v ≤ 1
. (3)

With the defined binary adaptive frequency mask (Appendix A) M and an input X, the low
frequency image partXL and high frequency partXH can be derived as: XL = F−1(F(X)⊙
M), XH = F−1(F(X)⊙(1−M). As both the DCT and the inverse DCT process are linear,
we can have X = XL +XH , which allows for the linear fusion strategy.

2.2.2. The Overall Model Architecture

Fig. 2 demonstrates that the low-frequency components pixel intensity distribution (Low-
f) of LDCT correlates well with the distribution of the NDCT image (i.e., clear, full-
dose imaging), while high-frequency components (High-f) predominantly exhibit noise with
an IID distribution. Motivated by this, we propose to tackle the non-IID distribution
characteristics of the problem by decomposing the model into dual paths, where one network
branch (parameterized by ωk,anatomy) is designed to preserve the anatomy locally and the
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other branch aims to tackle the noise part using FL, leveraging its effectiveness in dealing
with IID data (i.e., high-frequency components in this case).

An illustration of the FedFDD model is shown in Fig. 1. Both the low f and high
f backbone models are inherited from the RED-CNN model (Chen et al., 2017). The
first convolutional layer outputs a single-channel feature map taking both the frequency
component and the original LDCT image as input. This layer can be viewed as a feature
fusion layer. The frequency component, exclusively treated as a residual item added to the
output of the branch, is expected to drive the branch to learn the intrinsic features within
each branch (i.e., anatomies for low frequency and denoising for high frequency). During
the aggregation, the low-frequency path (the blue branch) is reserved for each local client,
and the high-frequency path (the orange branch) is aggregated. The objective is defined by
the Mean Squared Error (MSE) between the reconstructed image and the NDCT standard.
The model is trained in an end-to-end way.

3. Experiments

3.1. Datasets and implementation details

The LDCT and NDCT datasets (Moen et al., 2021) are licensed by The Cancer Image
Archive (TCIA) team. Original data is collected by the Mayo Clinic, containing the ab-
domen, chest, and head regions. We simulated 36 patients with different anatomies as three
clients (Client 1: 12 Abdomen, Client 2: 12 Chest and Client 3: 12 head). We provide
detailed data settings in Appendix B. We divide those datasets into 60% (training), 10%
(validation), and 30% (testing). The modified dual-path network is trained with an MSE
loss with Adam optimizer for a total of 200 epochs. The learning rate is initialized as 10−4

and decayed per 3000 iterations. We stop the training process early if the validation loss
fails to decrease for 10 consecutive epochs (Qian et al., 2024). The rl of the mask is 0.45.
The Hounsfield Units (HU) window of the CT images is [−160, 240] and the images are
normalized to [0, 1] by the minimum of −1024 and a maximum of 3072 (Yang et al., 2022;
Bera and Biswas, 2023). Patch training is adopted with patch size 64 × 64 and a total of
16 per image following (Bera and Biswas, 2021).

3.2. Experimental Results and Discussion

3.2.1. Comparison Study

Limitation of current FL approaches. Contrary to expectations, state-of-the-art FL
methods (e.g., FedAvg, FedProx, MOON, and FedBN) do not surpass localized or central-
ized training in LDCT denoising tasks, as evidenced by Table 1. Typically, FL is expected
to excel by leveraging diverse client data, but the non-IID nature of the LDCT dataset
and notable domain shift (Fig. 2) impede this advantage. Current FL approaches mostly
do not address these specific challenges and thereby exhibit constrained performance in
such scenarios. In contrast, centralized training benefits from comprehensive data expo-
sure, facilitating superior generalization, whereas the effectiveness of localized training is
curtailed by its limited dataset scope. This discrepancy is particularly marked in chest
dataset comparisons, underscoring the limitations of existing FL approaches in handling
non-IID distributions and domain variability.

Comparison results. We compare our proposed FedFDD with state-of-the-art FL algo-
rithms in Table 1. Our method outperforms other methods in terms of PSNR and SSIM in
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Figure 3: Top: Qualitative examples from different federated algorithms. Bottom: The
error maps when compared with the ground truth.

Table 1: Quantitative results of the different methods. The best results are in bold.

Method
Chest Abdomen Head

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
LDCT 15.3388 0.6857 28.3165 0.8213 43.8707 0.9652

Localized 22.1312 0.7443 32.3983 0.8790 44.3414 0.9756
Centralized 22.4649 0.7534 32.4423 0.8809 43.6559 0.9816

FedAvg 21.3752 0.7538 31.8950 0.8735 43.1911 0.9788
FedProx 19.4455 0.7087 28.8216 0.8448 35.4972 0.9638
MOON 21.2922 0.7509 31.4486 0.8641 40.6419 0.9746
FedBN 21.8685 0.7472 31.8466 0.8716 42.2921 0.9786

FedMRI 1 22.1496 0.7452 32.2135 0.8792 42.5368 0.9788
PromptFL 2 21.9730 0.7483 31.9425 0.8715 42.2195 0.9782
FedFDD 22.6209 0.7586 32.4510 0.8823 43.0421 0.9792

most cases, particularly in the more challenging case of Chest CT denoising (McCollough,
2016). Notably, FedFDD brings improvements of up to 7.2 dB PSNR when compared with
original LDCT images and 1.2 dB compared with FedAvg on Chest data. Our experimental
results indicate the effectiveness of the proposed method, which specifically considers the
inherent challenges of LDCT denoising. Undesirable performance in the Head dataset could
be attributed to the subtle discrepancy between LDCT and NDCT (Appendix B) where all
FL approaches do not outperform the localized training. Despite that, our approach can
achieve a higher SSIM compared to baseline methods. In contrast, other advanced FL algo-
rithms underperform the localized training on all three datasets. Furthermore, we visualize
the denoised images and their corresponding error maps in Fig. 3. We find that the error
produced by FedFDD is significantly less than that of others and the denoised image has
well maintained the structural details and textures.

1. FedMRI (Feng et al., 2023b) is initially not designed for LDCT denoising. We adapted it to our task for
further substantiation. The details can refer to Appendix D.

2. We adapt the idea of HyperFed (Yang et al., 2022) and FedPR (Feng et al., 2023a) to our task, named
as PromptFL. We utilize client-specific text embedding to guide the denoising process, as detailed in
Appendix D.
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Figure 4: Ablation study. Left: Results of different aggregation strategies in frequency-
division methods. Right: Sensitivity analysis of the threshold of the adaptive
frequency mask rl. Results are shown on Chest data.

3.2.2. Ablation study

Effects of FL strategy in different frequencies. Fig. 4 presents the experiments
ascertaining the benefits of exclusively updating the high-frequency components. Here,
FedFDDall represents a learning strategy that updates both the parameters of the dual-
path model during aggregation and FedFDDlf means that we only update the low-frequency
path with the high-frequency path frozen during aggregation. Our proposed approach, i.e.,
FedFDDhf , which only updates the high-frequency components, achieves the best perfor-
mance across all metrics. This indicates that our strategy of focusing on high-frequency
updates and freezing the low-frequency components is effective. In contrast, FedFDDlf

approach shows a slight deterioration in performance compared with FedFDDall. This is
likely due to the reason that the merge of low-frequency components from different clients
could introduce inconsistencies, leading to a potential loss of specific structural details and
thereby affecting the overall image quality. The better performance of FedFDDhf com-
pared with FedFDDall also indicates that the proposed targeted update strategy, focusing
on high-frequency components, can be more effective than a holistic update.

Effects of varying frequency split thresholds. We show the model performance with
varied thresholds rl’s in Fig. 4. Recall that higher rl refers to less information in the
high frequency images. When the threshold is low, the low-frequency component (intrinsic
anatomical area) leaks to high frequency updating procedure, which results in a deteriora-
tion of the model performance. Besides, there is a slight peak around 0.4 to 0.5, suggesting
the optimal value within the range. When rl > 0.6, the performance slightly decreases
because the model would benefit less from FL.

4. Conclusions

In this study, we proposed the FedFDD model and demonstrated its effectiveness on the
LDCT denoising task across different anatomical images. We proposed an FL strategy with
frequency domain decomposition, where only the high-frequency components of the network
are updated during the aggregation process. This ensures that the intrinsic characteristics
of the low-frequency components are preserved locally. Our method achieves up to 1.2 dB
improvement compared with the state-of-the-art FL algorithms. Notably, it also outper-
forms both single-set and centralized training, particularly in more noisy scenarios (e.g., on
Chest data). In the future, we plan to validate FedFDD in an out-of-federation setting for
data from unseen clients.
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Appendix A. Mask Design

Assuming the image size is H ×W , the normalized Euclidean distance of a pixel (u, v) can
be:

ru,v =

√
u2 + v2√

(H − 1)2 + (W − 1)2
.

Mu,v represents the value at the point (u, v) in the binary mask (i.e., Mu,v ∈ {0, 1}).

Figure 5: A detailed illustration of the mask

Appendix B. Detailed Data Information

To ensure the performance, we randomly selected 12 patients in each anatomy. The patient
number below indicates the identifiers of patients in the database. Each client data has CT
images from both SOMATOM Definition AS+ and SOMATOM Definition Flash scanners.

Client 1: Selected patient number: L143, C004, C012, C027, C030, C050, C067, C002,
C016, C021, C052, L506. Each patient has approximately 200 images on average.

Client 2 selected patient number: L067, L096, L192, L286, L310, L033, L049, L056,
L109, L291, L014, L019. Each patient has approximately 320 images on average.

Client 3 selected patient number: N012, N024, N030, N047, N051, N053, N072, N076,
N079, N082, N085, N100. Each patient has approximately 38 images on average.

An example of the data is:
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Figure 6: Samples in the dataset from three body parts (clients).
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Figure 7: The denoising results of the state-of-the-art FL algorithms with their error map
on Abdomen and Head.
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Appendix C. Generalizability Study

To validate our approach’s generalizability to FL scenarios where each client may contain
data with multiple anatomies, we further perform a client generalization test. Specifically,
we propose the training set setting as below, where client 1 contains data from both the
chest and abdomen, and client 2 and client 3 contain data from the abdomen and head
respectively. It is important to mention that we maintain the test set to be consistent with
the original data setting. Consequently, the results are directly comparable to those in
Table 1.

• Client 1: Chest + Abdomen 1 (Patient’s number: L219, L014, L019)

• Client 2: Abdomen 2 (Patient’s number: L067, L096, L192, L286, L310, L033, L049,
L056, L109, )

• Client 3: Head

We compare our proposed method against three representative FL approaches (as seen
in Table 1) with the new data setting, with the results shown in Table 2. It is observed that
in the new data setting where the client contains data with multiple anatomies, our pro-
posed approach FedFDD can still achieve an overall better performance compared to other
competing methods. This indicates the good generalizability of our method in alternative
data scenarios.

Table 2: Client generalization comparison experiment in the new data setting.

Method
Chest Abdomen Head

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
LDCT 15.3388 0.6857 28.3165 0.8213 43.8707 0.9652

Localized 22.0033 0.7445 32.1983 0.8776 44.3414 0.9756
Centralized 22.4649 0.7534 32.4423 0.8809 43.6559 0.9816

FedAvg 21.5235 0.7492 31.6691 0.8733 43.1827 0.9767
FedBN 21.8890 0.7495 31.6205 0.8701 42.2720 0.9786
FedMRI 22.2771 0.7499 32.2095 0.8780 42.5368 0.9788
FedFDD 22.6056 0.7581 32.4497 0.8821 43.0423 0.9791

Appendix D. Baseline Method Details

Here we introduce how we adapt the FedMRI (Feng et al., 2023b), HyperNet (Yang et al.,
2022) and Fed-PR (Feng et al., 2023a) approaches to our task, as they are not designed
for LDCT denoising task and cannot be directly used for the purpose. However, since they
are also proposed for low-level image reconstruction task, comparisons against them can
further help enhance the evaluation of our proposed method.

FedMRI: Specificity-Preservation (Feng et al., 2023b):

We adapted the idea of freezing the decoder (client-specific) and globally sharing the
encoder as in the FedMRI approach to our task. Specifically, we built this on the base
network architecture, i.e., RED-CNN, which comprises an encoder and decoder. During the
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FL training, we froze each client’s decoder and enabled the communication of the encoder.
Ultimately, each client has its own decoder and a universal encoder.
PromptFL: Hyperparameter Prompts (Yang et al., 2022; Feng et al., 2023a):

As discussed in Related Works, HyperFed (Yang et al., 2022) proposed a personalized
FL approach using localized hypernetwork of the CT scanning physical properties for the
reconstruction of CT projection imaging. However, our task mainly focuses on LDCT
denoising, where we cannot access the physical parameters of the imaging, which therefore
limits us from using that for the hypernetwork training. On the other hand, FedPR (Feng
et al., 2023a) used visual prompts in the null space of global prompt for the FL paradigm,
which is not directly feasible in our case.

However, inspired by both the HyperFed and FedPR, we propose to adapt them to our
task by introducing the client-specific information as hyperparameters/prompts in the task.
Specifically, we proposed to introduce the CLIP representation vector of our client informa-
tion as prompts to inform the denoising process. The CLIP vector of "This is an image

of {anatomy} low dose CT" (anatomy can be chest, abdomen or head) is projected into
a 96-dim vector, in line with the number of channels of the network bottleneck. Then the
bottleneck feature maps are weighed with the softmaxed prompt vector in the channel di-
mension. The whole operation can be regarded as an attention mechanism prioritizing the
specific channels based on the prompts. The denoising network was then trained with the
guided information from the prompts.
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