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Abstract001

Word sense disambiguation (WSD) is a key002
task in natural language processing and lexical003
semantics. Pre-trained language models with004
contextualized word embeddings have signifi-005
cantly improved performance in regular WSD006
tasks. However, these models still struggle007
with recognizing semantic boundaries and of-008
ten misclassify homonyms in adversarial con-009
text. Therefore, we propose FOOL: FOur-fold010
Obscure Lexical, a new coarse-grained WSD011
dataset, which includes four different test sets012
designed to assess the robustness of language013
models in WSD tasks. Two sets feature typical014
WSD scenarios, while the other two include015
sentences with opposing contexts to challenge016
the models further.017

We tested two types of models on the proposed018
dataset: models with encoders, such as the019
BERT and T5 series of varying sizes by prob-020
ing their embeddings, and state-of-the-art large021
decoder models like GPT-4o and the LlaMA3022
family, using zero shot prompting. Across dif-023
ferent state-of-the-art language models, we ob-024
served a decrease in performance in the latter025
two sets compared to the first two, with some026
models being affected more than others. We027
show interesting findings where small models028
like T5-large and BERT-large performed better029
than GPT-4o on Set 3 of the dataset. This in-030
dicates that, despite excelling in regular WSD031
tasks, these models still struggle to correctly032
disambiguate homonyms in artificial (Set 3) or033
realistic adversarial contexts (Set 4).034

1 Introduction035

The task of word sense disambiguation (WSD) is036

a fundamental challenge in natural language pro-037

cessing (NLP). Homonyms, which are formally038

identical words with completely independent mean-039

ings (Kempson, 1977, p. 80), present a challenge in040

tasks like machine translation, text annotation, and041

question answering (Agirre and Edmonds, 2007).042

In order to comprehend the intended meaning of 043

homonyms, it is necessary to consider the context, 044

in which they are used. Consequently, the accurate 045

disambiguation of homonyms provides evidence of 046

the model’s comprehension of the context and, in 047

turn, of language. 048

Contextualized language models, such as BERT 049

(Devlin et al., 2019), produce word embeddings 050

that reflect the word’s meaning based on its con- 051

text (Wiedemann et al., 2019). This has led to 052

significant improvements in WSD performance in 053

both fine-grained or coarse-grained WSD (Wiede- 054

mann et al., 2019; Reif et al., 2019; Loureiro et al., 055

2021). While fine-grained WSD addresses the 056

nuanced senses a word can have, coarse-grained 057

WSD focuses on broader, unrelated word mean- 058

ings (Haber and Poesio, 2024). The emergence 059

of context-based language models suggests that 060

the challenge of regular WSD has largely been 061

resolved. However, it is still unclear if these mod- 062

els can understand context well enough to disam- 063

biguate homonyms effectively. Let us consider the 064

following sentence: 065

"I eat an apple while holding my iPhone." 066

For a human it is clear that "apple" refers to the 067

fruit, and not the technology company. The ques- 068

tion remains whether today’s language models can 069

differentiate these senses in this adversarial con- 070

text. 071

Even though there are many existing WSD 072

benchmarks, such as the Unified Evaluation Frame- 073

work by Raganato et al. (2017) or CoarseWSD-20 074

by Loureiro et al. (2021), none of them considers 075

the distinction between different types of context 076

nor the use of opposing context in the sentences. 077

For this purpose we introduce FOOL, a coarse- 078

grained WSD dataset that differentiates between 079

four distinct categories of context changes. The 080

dataset includes one training set and four test sets 081
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Senses Example Sentence for apple
Train Set apple_apple_inc "the ipod is first introduced by apple."

apple_fruit "the surrounding area produces 20% of patagonia’s apple and 28% of its pear .
Set 1 apple_apple_inc "I downloaded the latest app from the Apple App Store."

apple_fruit "An apple is a refreshing snack on a hot summer day."
Set 2 apple_apple_inc "I downloaded the latest app from the innovative Apple App Store."

apple_fruit "A crisp apple is a refreshing snack on a hot summer day."
Set 3 apple_apple_inc "I downloaded the latest app from the crisp Apple App Store."

apple_fruit "An innovative apple is a refreshing snack on a hot summer day."
Set 4 apple_apple_inc "The cafeteria at Apple Headquarters serves delicious pie."

apple_fruit "Holding an apple, I scrolled through news about rival tech companies."

Table 1: Example sentences from the dataset for the word apple.

as illustrated in Table 1.1 The first two test sets082

provide sentences for regular WSD, while the other083

two contain sentences with additional context that084

opposes the anticipated meaning of the homonym.085

This structure allows for the testing of state-of-086

the-art (SOTA) language models in both regular087

homonym disambiguation settings and adversarial088

context settings. Therefore, this dataset can be used089

to investigate the robustness of language models to090

different context changes.091

We investigated two types of language models:092

models with encoders, from which we probed their093

embeddings using kNN algorithm, and state-of-the-094

art models that we prompted to classify the target095

word into one of two possible meanings. Our find-096

ings indicate that current SOTA models struggle to097

accurately disambiguate coarse-grained homonyms098

when adversarial contexts are added. We observed099

a performance decrease across all models when100

comparing results from Set 1 with those from Sets101

3 and 4.102

In models containing encoders, this effect is103

most significant in smaller models like BERT-base104

and T5-base, and less significant in larger mod-105

els like T5-FLAN-xxl. Conversely, advanced and106

larger language models such as GPT-3.5 Turbo and107

LlaMA3-70b show a dramatic performance decline108

when faced with adversarial context changes, with109

performance drops of 25.6% and 10.4%, respec-110

tively in Set 4 compared to Set 1. However, models111

like GPT-4o exhibit more robustness against re-112

alistic opposing context examples (Set 4), with a113

performance drop of only around 4%, but more114

vulnerability for adding adversarial adjective (Set115

3). Additionally, our findings suggest that models116

that contain encoder, such as those from the BERT117

or T5 family, tend to perform better in these tasks,118

1The full dataset can be downloaded from:
https://drive.google.com/file/d/1WOUml_
GGUrUXvKMt3ywBjK-lI_lsEydi/view?usp=sharing

specifically in Set 3. For instance, the BERT-large 119

model with 340 million parameters outperformed 120

the LlaMA3-8b model, which has around 8 billion 121

parameters on both adversarial tasks (Set 3 and 4). 122

In addition, T5-large and BERT-large performed 123

better than GPT-4o on Set 3 of the dataset. To 124

conclude, our contributions can be summarized as 125

follows: 126

• We introduce FOOL, a new coarse-grained 127

WSD dataset that features various test sets 128

with added adversarial context to assess the 129

robustness of pre-trained language models 130

• We perform an extensive analysis on various 131

SOTA language models in WSD with experi- 132

ments on our proposed dataset 133

• We show that current state-of-the-art language 134

models are prone to misclassification when 135

faced with adversarial and opposing realistic 136

context 137

2 Related Work 138

Word Sense Disambiguation (WSD) is a well- 139

studied task in natural language processing, focus- 140

ing on fine-grained polysemy disambiguation. The 141

majority of standard WSD benchmarks, such as the 142

Unified Evaluation Framework by Raganato et al. 143

(2017), heavily rely on WordNet (Miller, 1994). 144

This dependence on WordNet, known for its fine- 145

grained classification, poses a challenge even for 146

humans to distinguish all possible senses. To tackle 147

this issue, Loureiro et al. (2021) introduced the 148

dataset "CoarseWSD-20", which extracts sentences 149

from Wikipedia articles to create a coarse-grained 150

sense inventory WSD dataset. 151

The performance of pre-trained language models 152

has been tested on both fine-grained and coarse- 153

grained datasets. Especially, BERT (Devlin et al., 154

2019) achieved overall good results with over 94% 155
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accuracy in coarse-grained WSD (Loureiro et al.,156

2021). For example, Du et al. (2019) fine-tuned157

BERT on a WSD task and tested it on a variety of158

different fine-grained WSD benchmarks (Edmonds159

and Cotton, 2001; Moro and Navigli, 2015; Nav-160

igli et al., 2013; Pradhan et al., 2007; Snyder and161

Palmer, 2004), achieving promising results with162

accuracies ranging from 74% to 78%.163

Additionally, without fine-tuning Wiedemann164

et al. (2019) and Reif et al. (2019) showed that165

BERT can effectively perform fine-grained WSD166

by combining its contextualized word embeddings167

with a kNN classification algorithm. Moreover,168

Loureiro et al. (2021) employed a kNN BERT169

classifier and reported human-like performance170

on their coarse-grained noun WSD dataset, with171

over 94% accuracy. More recently, Proietti et al.172

(2024) tested different BERT-based models, in-173

cluding BERT (Devlin et al., 2019) and RoBERTa174

(Liu et al., 2019) on coarse-grained WSD. They175

clustered WordNet senses to match coarse-grained176

homonym sense distinction and found that BERT’s177

accuracy is as high as 95%.178

In our work, we conduct an extensive analysis179

on two types of models. On the one hand, we tested180

models that include encoder, such as the BERT and181

T5 family (Raffel et al., 2020), by probing their182

word embeddings. On the other hand, we analyzed183

state-of-the-art language models including GPT-184

3.5 Turbo (OpenAI, 2022), GPT-4 Turbo (OpenAI,185

2023) , and GPT-4o (OpenAI, 2024), LlAMA3-186

8b, LlAMA3-70b (Meta, 2024) and Mixtral-8x7b187

(Jiang et al., 2024) using prompts in zero shot set-188

tings. While Kocoń et al. (2023) investigated GPT-189

3.5’s performance on WSD among other tasks, our190

work significantly differs in that we have created a191

new coarse-grained adversarial dataset and tested192

various models from different families. To the best193

of our knowledge, this paper is the first to con-194

duct an extensive analysis comparing models like195

BERT and T5 with models like GPT and Llama on196

adversarial WSD tasks.197

Furthermore, it is evident that there is no existing198

dataset that aligns with the one proposed in this pa-199

per. Despite this, there have been some attempts to200

test models on adversarial sentences. For example,201

Emelin et al. (2020) considered adversarial attacks202

in WSD. They changed adjectives in sentences in203

front of homonyms and checked the performance204

in a machine translation task. These changes lead205

to translation errors in LSTM (Luong et al., 2015),206

Transformer (Vaswani et al., 2017) and ConvS2S207

(Gehring et al., 2017). Inspired by Emelin et al. 208

(2020) approach, we adopted the idea of modifying 209

adjectives in order to test the resilience of more 210

recent pre-trained language models based on their 211

contextualized word embeddings. 212

Moreover, Reif et al. (2019) incorporated oppos- 213

ing context words in their study. In their paper, the 214

authors analyzed the performance of pre-trained 215

language models, primarily BERT, on SemCor 216

(Miller et al., 1993), a fine-grained sense dataset. 217

While they succeeded in this task, they also com- 218

bined two sentences with distinct meanings of a 219

homonym to create sentences with opposing con- 220

texts. Thereby they found a higher number of clas- 221

sification errors than in normal conditions. This 222

test was done using fine-grained senses of words. 223

Although this represents a promising initial step, 224

there is a need to further extend this idea. We 225

analyze coarse-grained WSD performances of dif- 226

ferent state-of-the-art models beyond BERT and 227

have developed an entire human-made test set to 228

evaluate our approach. 229

3 Dataset 230

In this section, we introduce our dataset FOOL, 231

a coarse-grained WSD dataset that is designed to 232

differentiate between four different categories of 233

context changes. This design allows us to test both 234

regular homonym disambiguation settings and ad- 235

versarial context settings. Therefore, this dataset 236

serves as a tool to evaluate the robustness of large 237

language models against different context changes 238

and their ability to discern between various coarse- 239

grained homonym senses. 240

3.1 Dataset Split 241

In order to assess the efficacy of distinct pre-trained 242

models across different levels of contextual com- 243

plexity, four different sets of sentences were cre- 244

ated, with an additional set designated as the train- 245

ing set. Each set is associated with a specific con- 246

text and serves a unique purpose. Examples from 247

these sets are illustrated in Table 1. 248

• Train Set: The training dataset consists of 249

sentences that use the homonym in its antici- 250

pated context. This ensures a solid foundation 251

for fitting the classification algorithm. 252

• Set 1: Similar to the training set, the homon- 253

nyms are used in its anticipated context. This 254

set serves as the baseline for testing regular 255

WSD performances. 256
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• Set 2: This set extends the sentences from257

Set 1 by adding an adjective directly before258

the homonym, which aligns with the antici-259

pated meaning of the homonym in that sen-260

tence.261

• Set 3: This set modifies the sentences from262

Set 2 by changing the adjectives preceding the263

homonyms. The new adjectives are typically264

associated with the opposite meaning of the265

homonym, introducing an artificial adversarial266

context.267

• Set 4: This set includes sentences that have268

been specifically crafted with realistic con-269

text that opposes the anticipated meaning of270

the homonym, further challenging the models’271

disambiguation capabilities.272

While the context provided in Sets 1 and 2 is273

designed to facilitate the models’ ability to distin-274

guish between homonym senses, Sets 3 and 4 in-275

clude adversarial examples to challenge the models.276

The dataset allows testing models in regular WSD277

with coarse-grained homonym senses and assess-278

ing their response to adversarial examples. This279

dual approach tests not only basic disambiguation280

capabilities but also the resilience of models under281

more complex and potentially confusing linguistic282

scenarios.283

3.2 Statistics284

Table 2 shows an overview of all words used in the285

dataset, which comprises 20 homonyms in total.286

Each homonym is confined to exactly two broad287

word senses that are unrelated to each other. It is288

crucial that in both senses, the word remains a noun,289

which is essential for the application of adjectives290

in Sets 2 and 3. The distribution of sentences per291

word sense is well balanced across each set. In Set 1292

to 3 the number of sentences ranges from 40 to 60293

sentences per word sense in each set. Set 4 consists294

of 25 to 30 sentences per word sense, reflecting the295

higher complexity and cost associated with creating296

these sentences. The training data includes 20 to 40297

sentences per word sense. This structured approach298

ensures that each sense is adequately represented299

and tested throughout the dataset. Table 5 in the300

Appendix shows the full statistics of the dataset301

with the number of sentences for every word sense302

in each set is shown.303

3.3 Data Collection 304

The construction of the dataset is mostly done by 305

manually creating and revising sentences that are 306

suitable for the desired sense of the homonym. No- 307

tably, Set 4 is entirely crafted by hand to include 308

homonyms in their anticipated use along with op- 309

posing context—a task that cannot be automated 310

using tools like ChatGPT or sourced from existing 311

literature. This manual approach ensures that the 312

sentences are fluent and meaningful, fulfilling their 313

intended purpose in the dataset. 314

For our Training Set, we utilized the exist- 315

ing coarse-grained dataset “CoarseWSD-20” by 316

Loureiro et al. (2021). Where there was an overlap 317

of words between our dataset and CoarseWSD-20, 318

we selected the most appropriate sentences for in- 319

clusion in our dataset. However, for words not 320

covered by CoarseWSD-20, we sourced example 321

sentences from platforms like Word Hippo (Kat IP 322

Pty Ltd) and YourDictionary (LoveToKnow Me- 323

dia), which were then adapted to meet our criteria. 324

Additionally, Set 1 was generated using both ex- 325

amples from these platforms and sentences created 326

with ChatGPT (OpenAI, 2022) and GPT 4 (Ope- 327

nAI, 2023) . Nevertheless, the adjectives in Set 2 328

and 3 are manually added by humans to ensure a 329

diverse and contextually appropriate use of adjec- 330

tives, tailored to our specific needs. Furthermore, 331

all labels for the above mentioned sentences were 332

generated by human annotators. 333

4 Word Embeddings Classification 334

4.1 Contextualized Language Models 335

For our evaluation we selected a variety of known 336

language models that are proven to be efficient in 337

WSD tasks. Besides well tested BERT-based mod- 338

els like BERT (Devlin et al., 2019), RoBERTa (Liu 339

et al., 2019), Distil-BERT and Distil-RoBERTa 340

(Sanh et al., 2020), we included T5 (Raffel et al., 341

2020) and FLAN-T5 (Chung et al., 2022). 342

The T5-based models have an encoder-decoder 343

architecture which proved to be useful in different 344

benchmark tasks (Raffel et al., 2020). T5 models 345

have been pre-trained on 750GB of cleaned data, 346

significantly more than the 16GB and 160GB used 347

for BERT and RoBERTa, respectively. 348

To get a comprehensive overview of all models, 349

we tested different sizes from small to xxl in T5 350

and FLAN-T5 and distil, base and large in BERT 351

and RoBERTa. The parameters and embedding 352

vector sizes are detailed in Table 3. All models are 353
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Word Senses
apple apple_inc

apple_fruit
bank bank_bank

bank_river
bat bat_mammal

bat_equipment
cell cell_prison

cell_biology
crane crane_machine

crane_bird

Word Senses
date date_fruit

date_romantic
digit digit_number

digit_anatomy
gum gum_bubblegum

gum_mouth
java java_program

java_island
letter letter_alphabet

letter_mail

Word Senses
match match_sports

match_lighter
nail nail_metal

nail_finger
pitcher pitcher_jug

pitcher_sports
pupil pupil_student

pupil_eye
ring ring_arena

ring_jewelry

Word Senses
rock rock_music

rock_stone
ruler ruler_governor

ruler_measure
seal seal_animal

seal_close
spring spring_season

spring_device
trunk trunk_botany

trunk_car

Table 2: All homonyms used in the dataset listed with their senses.

B
E

R
T

Set 1 Set 2 Set 3 Set 4

T
5

Figure 1: The visualization depicts the word embeddings of the word "crane" produced by BERT-base (first row)
and T5-base (second row) for different sentences in each Set 1 to 4. Orange depicts all embeddings with the label
"crane_bird" and blue all the ones labeled "crane_machine". We used tSNE (Van der Maaten and Hinton, 2008) for
dimensionality reduction. One can see that the models are able to cluster the different senses in Set 1 and 2, while
they struggle to differentiate them in Set 3 and 4.

utilized in their original, unmodified form from the354

HuggingFace library (Wolf et al., 2019) and were355

not specifically fine-tuned for this purpose.356

4.2 Experimental Settings357

To evaluate the performance of all models on the358

introduced dataset, a binary classification task is359

employed. All of the following is performed for360

each model in each set. For each sentence in a361

set, all words are converted to lower case, and the362

embedding vector for the homonym is extracted.363

To ensure the best results, it is recommended to364

sum and average the word embeddings from the365

final four layers of the encoder in BERT (Loureiro366

et al., 2021). This approach is also adopted for T5367

and FLAN-T5 to ensure better comparability. We368

visualized the word embeddings of the homonym369

"crane" produced by BERT-base (first row) and370

T5-base (second row) in Figure 1 for every test 371

set, with embeddings color-coded by their correct 372

label. We include in the Appendix more visualiza- 373

tions of different words and models (figs. 2 to 7) 374

The averaged word embeddings are categorized 375

into one of the designated labels using k-nearest 376

neighbor (kNN) algorithm (Cover and Hart, 1967), 377

which uses our training data as a basis for classi- 378

fication. This algorithm takes a plurality vote of 379

a sample’s nearest labeled neighbors, in our case 380

k = 3, and decide based on the 3 nearest neigh- 381

bors which sense to assign the homonym to. Tests 382

varying k showed no significant differences on the 383

outcome, which is consistent with the findings of 384

Wiedemann et al. (2019). Cosine similarity was 385

used as the distance measure, and the macro F1- 386

score as the performance measure. The kNN model 387
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Models #Parameter VecSize Set 1 Set 2 Set 3 Set 4
distil-BERT 66M 768 0.945 0.948 0.867 0.617
BERT-base 110M 768 0.962 0.976 0.869 0.662
BERT-large 340M 1024 0.97 0.978 0.874 0.689
distil-RoBERTa 82M 768 0.920 0.950 0.856 0.634
RoBERTa-base 125M 768 0.945 0.969 0.888 0.715
T5-small 60M 512 0.877 0.916 0.768 0.609
T5-base 220M 768 0.978 0.982 0.866 0.611
T5-large 770M 1024 0.984 0.987 0.896 0.691
T5-xl 3B 1024 0.991 0.992 0.907 0.71
T5-xxl 11B 1024 0.993 0.995 0.910 0.786
FLAN-T5-small 80M 512 0.906 0.938 0.803 0.575
FLAN-T5-base 250M 768 0.980 0.987 0.907 0.621
FLAN-T5-large 780M 1024 0.948 0.953 0.852 0.663
FLAN-T5-xl 3B 1024 0.955 0.958 0.881 0.718
FLAN-T5-xxl 11B 1024 0.994 0.996 0.932 0.778

Table 3: Results (F1-Scores) for all encoder models, including their parameters and embedding sizes, are presented

was trained on the averaged embeddings produced388

by the corresponding model for the Train Set of389

our dataset. Accordingly, the k-nearest neighbor390

(kNN) algorithm is employed to classify the data391

from the four test sets. For each word in a set, the392

F1-score is calculated and then averaged over all393

words in a set, resulting in four different F1-scores394

for each model395

4.3 Results396

All results are listed in the Table 3 together with397

the corresponding number of parameters and the398

embedding vector size of each model. In general,399

all models show good performances in Set 1 and400

Set 2. Almost all models score higher than 90% in401

the first two settings and some T5-based models402

even up to 99%. The T5-based model score in403

general higher than the BERT-based models with404

the same size.405

Model Size In almost all cases, it is noticeable406

that as model size increases, so do the outcomes407

across all four sets. While T5-small achieves only408

87.7%, T5-xxl shows results as good as 99.3%.409

This effect is seen in all models except in FLAN-410

T5-large and FLAN-T5-xl which show worse re-411

sults in setting 1, and 3 than FLAN-T5-base.412

Settings As previously stated, all models demon-413

strate a good performance on Sets 1 and 2. How-414

ever, the performance of the models declines when415

evaluated on Sets 3 and 4. A comparison of the416

results observed in Set 1 with those in Set 3 re-417

veals a decline in the F1-Score from 6% to up to418

11%, even though only one additional adjective is419

introduced in this setting. Nevertheless, the per-420

formance drops from Set 1 to Set 4 are even more421

severe, with a decrease ranging from 20% to 33%. 422

The most significant effect is observed in smaller 423

model sizes, while in larger models, the difference 424

between Set 1 and Set 4 is smaller, with approxi- 425

mately 20%. Overall the best performance is shown 426

in FLAN-T5-xxl which has the best performance 427

in all four settings and one of the smallest perfor- 428

mance drop to Set 4. 429

5 Prompt-based Classification 430

5.1 Experimental Settings 431

We evaluate FOOL, using state-of-the-art large lan- 432

guage models including GPT-3.5 Turbo (OpenAI, 433

2022), GPT-4 Turbo (OpenAI, 2023) , and GPT- 434

4o (OpenAI, 2024), LlAMA3-8b, LlAMA3-70b 435

(Meta, 2024) and Mixtral-8x7b (Jiang et al., 2024). 436

Since these models are decoder models, we utilized 437

prompt-based classification for testing. We input 438

each sentence from the set and ask the model to 439

classify the target word by providing two choices. 440

For example, to classify the meaning of the word 441

"apple" the prompt for GPT-4o would be: 442

"In this sentence: ‘She used iCloud to store photos 443

from her visit to the apple orchard, ensuring she 444

never lost a memory’, classify the occurrence of 445

the word ‘apple’ for fruit or for a company. 446

Answer only by one of these options: fruit or 447

company." 448

The outputs were manually evaluated by humans 449

because, although models like GPT-4o and GPT-4 450

Turbo strictly adhere to instructions by outputting 451

only "fruit" or "company," other models such as 452

GPT-3.5 Turbo occasionally respond with explana- 453

tions that include both categories complicating the 454

extraction of the correct answer. Such responses 455
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Model Set 1 Set 2 Set 3 Set 4
GPT-3.5 Turbo 0.981 0.990 0.786 0.725
GPT-4 Turbo 0.998 0.999 0.907 0.922
GPT-4o 0.998 0.999 0.860 0.956
Llama-3 8b 0.986 0.990 0.790 0.687
Llama-3 70b 0.994 0.998 0.907 0.890
Mixtral-7bx8 0.987 0.993 0.820 0.714

Table 4: F1-Scores showing the performance of large
decoder models on FOOL using prompt-based classifi-
cation

were considered correct if the classification was ac-456

curate. However, outputs that included both classes457

were marked as incorrect guesses. We conducted458

initial testing with multiple runs for the same sen-459

tences and observed little variance; therefore, the460

reported results are from a single run for each word.461

5.2 Results462

The results in Table 4 show that state-of-the-art463

models can distinguish perfectly between two464

homonyms in a regular context. All models465

score above 98%, indicating no difficulty in dis-466

tinguishing homonyms. Adding an adjective to the467

homonym makes the performance even better for468

all models to score almost perfectly with an accu-469

racy around 99.9% for models like GPT-4o. How-470

ever, results from Set 3, where only one adversarial471

adjective is added to the sentences of Set 1, could472

fool the models and affect their performance. For473

example, the score of GPT4-o drops from 99.8% to474

around 87% showing vulnerability to a simple ad-475

versarial context change. However, GPT-4o shows476

more robustness to a realistic opposing context test477

in Set 4 with F1-score of 95.6%. In addition, mod-478

els like GPT-3.5 Turbo, Llama3-8b and Mixtral-479

7bx8 experience significant performance drops in480

Set 4 with F1-score around 70%.481

6 Discussion482

In the following we discuss the main findings and483

open questions that remain after our analysis.484

Set 1/2 vs. Set 3/4 One of the main findings from485

the analysis above is that there is a major perfor-486

mance gap between Set 1 and Set 2 compared to487

Set 3 or Set 4. The significant decline in perfor-488

mance observed between Set 1 and Set 3 in the489

WSD test, despite the only change being the re-490

placement of one adjective, appears to be out of491

proportion. Also the performance decrease in Set 4492

is disproportionate. Adding opposing yet realistic493

context while still remaining the overall meaning494

of the homonym can lead to a decrease in the F1- 495

score to up to 30% even for advanced models like 496

Llama3-8b and GPT-3.5 Turbo. One explanation 497

for the changing results could be that contextu- 498

alised language models do not pay attention to se- 499

mantic boundaries like Reif et al. (2019) mentioned 500

in his paper about BERT. This could be extended by 501

the findings of Tang et al. (2018) who state that lan- 502

guage models do not learn which context words are 503

useful and pay attention mostly to the homonym 504

itself. Unimportant context words, which humans 505

can successfully sort out, have a major impact on 506

the word embedding produced by language models. 507

This could be one factor language models have to 508

improve in order to achieve human-like results also 509

in smaller model sizes. 510

Model Size Another finding is the correlation be- 511

tween model sizes and WSD performance in all 512

four sets. The results indicate a positive correlation 513

between model size and F1-score. Larger mod- 514

els with more parameters store more training data 515

information and have bigger embedding vectors 516

that capture extensive contextual details, improving 517

disambiguation. Furthermore, a decline in perfor- 518

mance is observed in Sets 3 and 4, with smaller 519

models experiencing a larger drop than larger mod- 520

els. This supports the hypothesis that larger models 521

are more robust to adversarial attacks. This robust- 522

ness is likely due to larger models’ ability to recall 523

more information and recognize different contexts. 524

T5 vs. BERT The best overall performance is 525

seen in the encoder of FLAN-T5-xxl. In general, 526

the T5-based models show the best overall results 527

not least because of the bigger model sizes. Even 528

in the base size FLAN-T5 surpasses BERT-large 529

which has more model parameters than FLAN-T5. 530

This may suggest that T5-based language models 531

are an optimal choice for the task of word sense 532

disambiguation. One potential explanation for the 533

enhanced performance is that T5 employs a dis- 534

tinct masking approach distinct from BERT. While 535

BERT can only mask one word at a time, T5 masks 536

multiple words at the same time. Additionally, T5 537

was trained on a larger data corpus than BERT 538

which could also improve the performance in WSD 539

since more knowledge about words in different us- 540

ages is collected. 541

Embeddings vs. Prompt-based Classification 542

In this paper, we tested the performance of two 543

types of models: those that include an encoder, 544
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which provides bi-directional context of the sen-545

tence and thus reflects it in their embeddings, and546

large decoder models known for their ability when547

prompted. It is evident that having bi-directional548

context is an advantage, as reflected in the re-549

sults when comparing models by size. We can550

see that even state-of-the-art models like LlaMA-551

3-8b, which is trained on around 15 trillion tokens,552

perform worse than T5-large, which is trained on553

around 1 trillion tokens and has approximately ten554

times fewer parameters than LlaMA-3-8b. Further-555

more, we believe that the bi-directional context abil-556

ity of T5 and BERT family models makes them less557

vulnerable to simple adversarial context changes,558

such as altering one adjective in a sentence. This559

is evidenced by the less significant performance560

drop in Set 3 compared to decoder models like561

LlaMA-3-8b or even GPT4-o. For example, GPT-562

4o’s performance drops by about 12% from Set 1 to563

Set 3, whereas even a simple BERT-base model’s564

performance drops only by about 9%. Additionally,565

the performance of GPT-4o in Set 3 is comparable566

to that of T5-base and lower than T5-large, which567

have approximately 220 million and 770 million568

parameters, respectively. While the types of mod-569

els were tested differently, one could argue that570

encoder models are better suited to these types of571

tasks. On the other hand, both GPT4o and GPT-4572

Turbo models show greater robustness in realistic573

opposing contexts when tested on Set 4. In this574

scenario, we believe that the set involves more rea-575

soning abilities, which some claim these types of576

models possess, and smaller models like T5-base577

and BERT are less equipped for.578

Error Analysis In this section, we analyze the579

mistakes made by the models and identify specific580

words that the models struggled to disambiguate581

in Set 4. There are many factors that affect model582

performance, but we will discuss a few key ones.583

Firstly, there are words that are predominantly used584

in one meaning and less so in another, such as585

"digit". We observed that performance for these586

types of words is generally lower. Another category587

of challenging words includes those that share sim-588

ilar contexts across different meanings, like "gum"589

and "letter". For instance, "gum" in both mean-590

ings involves the context of the mouth and chewing,591

making it more difficult for the model to distinguish592

between them. Similarly, "letter" involves writing593

in both contexts. Conversely, for words like "Java"594

where we intended two meanings—Java the pro-595

gramming language and Java the island—the mod- 596

els performed well. Even though "Java the island" 597

is not widely used, the contexts of the two mean- 598

ings are completely different, making it harder to 599

create sentences that fool the models. Additionally, 600

some models exhibit a bias towards a particular 601

meaning; for example, Mixtral-7bx8 shows a bias 602

towards interpreting "pitcher" as a container and 603

"rock" as stone. The performance of the models on 604

each word in Set 3, and 4 is detailed in figures 8 605

and 9 in Appendix A.3. 606

7 Conclusion 607

In this paper, we introduce FOOL, a new coarse- 608

grained WSD dataset featuring various types of 609

contexts, which serves as both a benchmark for 610

assessing model performance on WSD tasks and a 611

tool for evaluating context comprehension by mod- 612

els. Our experiments using this dataset demonstrate 613

that SOTA language models still struggle to under- 614

stand context and disambiguate homonyms in the 615

presence of opposing contexts, compared to their 616

performance in regular WSD tasks. This effect is 617

most prominent not only in smaller models like 618

BERT-base and T5-base but also in larger models 619

like Llama-3 and GPT-3.5 Turbo. Among the series 620

of models that include an encoder, our results show 621

that T5, especially FLAN-T5 is a better alterna- 622

tive to BERT-based models. With more than 99% 623

score in Set 1, FLAN-T5-xxl shows human-like 624

disambiguation skills. Furthermore, we showed 625

that models incorporating an encoder are less vul- 626

nerable to adversarial addition of context (Set 3) 627

with the best performing model being FLAN-T5- 628

xxl, which outperforms GPT-4o and GPT-4 Turbo. 629

Interestingly, small models like BERT-large and 630

FLAN-T5-base outperform GPT-4o on the same 631

set. However, these small models struggle with 632

Set 4, which includes realistic opposing context 633

usage of words, which we believe requires a deeper 634

understanding of language and some degree of rea- 635

soning abilities. In the future, we plan to extend 636

the FOOL dataset to include sentences with fine- 637

grained homonyms to investigate how language 638

models perform on them. Additional adversarial 639

settings could also be added to further challenge 640

the models, potentially exposing new weaknesses 641

in their contextual understanding and disambigua- 642

tion capabilities. This will provide further insights 643

into the limitations of current language models and 644

guide the development of more robust systems. 645
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8 Limitations646

While our study presents significant findings in the647

field of Natural Language Processing, several lim-648

itations should be acknowledged to contextualize649

the results.650

Our approach deals with homonymous nouns651

in a coarse-grained manner, which may oversim-652

plify the complexities of word sense disambigua-653

tion. Our coarse-grained homonym resolution does654

not consider the nuanced differences between the655

various meanings of a word that are closely related656

to each other; instead, it focuses on only two dis-657

tinct senses. This limitation might affect the preci-658

sion of our models’ understanding and processing659

of the context. Moreover, the exclusive focus on660

nouns, while ignoring other word types, such as661

verbs, adjectives, or adverbs, may result in limited662

generalizability.663

Furthermore, it would have been beneficial to664

extend the study by testing additional languages,665

models, and a larger dataset.666
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A Appendix 848

A.1 Word Definitions and Dataset Statistics 849

Table 5 lists the number of examples in each subset and Table 6 shows definitions for the 20 homonyms in 850

the FOOL dataset (cmp. Table 2 in the main text). 851

Words Senses Set Train Set 1 - 3 Set 4
apple apple_apple_inc 40 55 25

apple_fruit 40 51 25
bank bank_bank 40 57 25

bank_river 41 54 25
bat bat_mammal 30 56 25

bat_equipment 30 55 25
cell cell_prison 40 40 25

cell_biology 40 40 25
crane crane_machine 40 47 25

crane_bird 40 41 25
date date_fruit 40 40 25

date_romantic 40 40 25
digit digit_number 40 45 30

digit_anatomy 29 45 30
gum gum_bubblegum 40 40 25

gum_mouth 40 40 25
java java_program 40 40 30

java_island 40 41 29
letter letter_alphabet 40 40 25

letter_mail 40 40 25
match match_sports 40 40 25

match_lighter 40 40 25
nail nail_metal 40 40 25

nail_finger 40 40 25
pitcher pitcher_jug 40 40 25

pitcher_sports 41 40 25
pupil pupil_student 40 52 25

pupil_eye 40 52 25
ring ring_arena 40 40 25

ring_jewelry 40 40 25
rock rock_music 20 60 25

rock_stone 30 60 25
ruler ruler_governor 40 40 25

ruler_measure 40 40 25
seal seal_animal 40 50 25

seal_close 40 50 25
spring spring_season 40 56 25

spring_device 40 42 25
trunk trunk_botany 40 40 25

trunk_car 40 41 25

Table 5: Number of sentences for every word sense in each set.

852
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Words Senses Definitions
apple apple_apple_inc "Apple Inc. (formerly Apple Computer, Inc.) is an American multinational corporation and

technology company headquartered in Cupertino, California, in Silicon Valley."
apple_fruit “the round fruit of a tree of the rose family, which typically has thin green or red skin and

crisp flesh.”
bank bank_bank "a financial establishment that uses money deposited by customers for investment, pays it out

when required, makes loans at interest, and exchanges currency.."
bank_river "the land alongside or sloping down to a river or lake.."

bat bat_mammal "a mainly nocturnal mammal capable of sustained flight, with membranous wings that extend
between the fingers and limbs.."

bat_equipment "an implement with a handle and a solid surface, typically of wood, used for hitting the ball in
games such as cricket, baseball, and table tennis.."

cell cell_prison "a small room in which a prisoner is locked up or in which a monk or nun sleeps."
cell_biology "the smallest structural and functional unit of an organism, which is typically microscopic and

consists of cytoplasm and a nucleus enclosed in a membrane.
crane crane_machine "a large machine that moves heavy things by lifting them in the air"

crane_bird "a kind of large bird with a long neck and long legs."
date date_fruit "the sweet fruit of various types of palm tree"

date_romantic "a social meeting planned before it happens, especially one between two people who have or
might have a romantic relationship"

digit digit_number "any one of the numbers 0 through 9"
digit_anatomy "one of the fingers or toes"

gum gum_bubblegum "short for chewing gum or bubblegum."
gum_mouth "the firm area of flesh around the roots of the teeth in the upper or lower jaw."

java java_program "a general-purpose computer programming language designed to produce programs that will
run on any computer system."

java_island "a large island that forms part of Indonesia"
letter letter_alphabet "a character representing one or more of the sounds used in speech; any of the symbols of an

alphabet."
letter_mail "a written, typed, or printed communication, sent in an envelope by post or messenger."

match match_sports "a contest in which people or teams compete against each other in a particular sport."
match_lighter "a short, thin piece of wood or cardboard used to light a fire, being tipped with a composition

that ignites when rubbed against a rough surface."
nail nail_metal "a small metal spike with a broadened flat head, driven into wood to join things together or to

serve as a hook."
nail_finger "a horny covering on the upper surface of the tip of the finger and toe in humans and other

primates."
pitcher pitcher_jug "a large, round container for liquids that has a flat base, a handle, and a very narrow raised

opening at the top for pouring"
pitcher_sports "the player who delivers the ball to the batter."

pupil pupil_student "a person who is taught by another, especially a schoolchild or student in relation to a teacher."
pupil_eye "the dark circular opening in the centre of the iris of the eye, which varies in size to regulate

the amount of light reaching the retina."
ring ring_arena "an enclosed space, surrounded by seating for spectators, in which a sport, performance, or

show takes place."
ring_jewelry "a small circular band, typically of precious metal and often set with one or more gemstones,

worn on a finger as an ornament or a token of marriage, engagement, or authority."
rock rock_music "a type of popular music with a strong, loud beat that is usually played with electric guitars

and drums"
rock_stone "the dry solid part of the earth’s surface, or any large piece of this that sticks up out of the

ground or the sea"
ruler ruler_governor "the leader of a country; a person who is in charge of a country"

ruler_measure "a straight strip or cylinder of plastic, wood, metal, or other rigid material, typically marked at
regular intervals and used to draw straight lines or measure distances."

seal seal_animal "a large mammal that eats fish and lives partly in the sea and partly on land or ice"
seal_close "something fixed around the edge of an opening to prevent liquid or gas flowing through it"

spring spring_season "the season after winter and before summer, in which vegetation begins to appear, in the
northern hemisphere from March to May and in the southern hemisphere from September to
November."

spring_device "an elastic device, typically a helical metal coil, that can be pressed or pulled but returns to its
former shape when released, used chiefly to exert constant tension or absorb movement."

trunk trunk_botany "the main woody stem of a tree as distinct from its branches and roots."
trunk_car "an enclosed space at the back of a car for carrying luggage and other goods; a boot."

Table 6: Definitions for all word senses used in our dataset. The definitions are adopted from the Oxford Dictionary.
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A.2 Words Embeddings 853

Figures 2, 3, and 4 complement Figure 1 from the main text by showing the distribution of embeddings 854

for the word “crane” for the other models studied in our experiments. Additionally, Figure 5, 6 and 7 855

show the same distribution for the word ”bank” to supplement our findings. 856
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Figure 2: The embeddings for the word "crane" from BERT in size base and large.
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Figure 3: The embeddings for the word "crane" from T5 in size small, base and large.
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Figure 4: The embeddings for the word "crane" from FLAN-T5 in size small, base and large.
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Figure 5: The embeddings for the word "bank" from BERT in size base and large.
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Figure 6: The embeddings for the word "bank" from T5 in size small, base and large.
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Figure 7: The embeddings for the word "bank" from FLAN-T5 in size small, base and large.
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A.3 Performance on Individual Words857

In this section, the performance of different LLMs is shown. Figure 8 shows the perfomance of the LLMs858

on each word in Test Set 3, while Figure 9 shows the performance of the same LLMs on each word in859

Test Set 4.
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Figure 8: The figures show the error percentages of the different LLMs on each word in Test Set 3.
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Figure 9: The figures show the error percentages of the different LLMs on each word in Test Set 4.
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