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ABSTRACT

Training LLM agents for complex multi-turn decision-making tasks requires ex-
tensive exploration within their environment, with reinforcement learning (RL)
as a natural way. However, the open-source community currently lacks a unified
RL framework capable of training agents from scratch across diverse and realis-
tic environments. To bridge this gap, we introduce AgentGym-RL, a modular
and decoupled framework specifically designed for RL-based agent in multi-turn
decision-making tasks. It offers high flexibility and extensibility, supports main-
stream RL algorithms, and spans a broad range of real-world scenarios. To ef-
fectively train agents for challenging tasks, we argue that they are required to
expand external interactions with the environment, rather than relying solely on
internal reasoning. Nevertheless, training agents for long-horizon interaction with
vanilla methods often faces challenges like training instability. To this end, we
propose ScalingInter-RL, a staged training approach for stable long-horizon RL
training. It starts with short-horizon interaction to establish foundational policies
and progressively expands them to encourage deeper exploration. Extensive ex-
periments show that agents trained with our method achieve performance on par
with—or even surpass—commercial counterparts like OpenAI o3 and Gemini-
2.5-Pro across 27 tasks in diverse environments. We share key insights and will
release the full framework, including code and datasets, to empower the commu-
nity in building the next generation of intelligent agents.
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Figure 1: Left: Performance of proprietary models, open-source models, and our RL models across
different agentic tasks. Right: Performance w.r.t model scale.

1 INTRODUCTION

As Large Language Models (LLMs) rapidly advance (OpenAI, 2023; Anthropic, 2024; DeepSeek-
AI et al., 2024; Team et al., 2023; Yang et al., 2025b), their applications have extended from chatbots
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Figure 2: Overview of the AgentGym-RL framework. It features a decoupled, flexible, and exten-
sible architecture, comprising three primary modules—the environment, the agent, and the training
module. It supports diverse scenarios, environments, and algorithms.

to autonomous agents addressing long-horizon real-world decision-making tasks (Xi et al., 2025a;
Moonshot AI, 2025). Analogous to human cognitive development, LLM agents are expected to
acquire new knowledge and skills by actively exploring with the environment (Xi et al., 2025b;
OpenAI, 2025).

Reinforcement learning (RL) is a natural choice for achieving this, demonstrating success in LLM
reasoning (DeepSeek-AI et al., 2025; Jaech et al., 2024; Xi et al., 2024a; Trung et al., 2024; Team
et al., 2025; He et al., 2025). While recent efforts have sought to extend RL methodologies to develop
LLM agents with multi-turn interaction capabilities (Zhou et al., 2024b; Chen et al., 2025; Wang
et al., 2025; Qi et al., 2025; Jin et al., 2025b; Cao et al., 2025), they still struggle with limited task
complexity and insufficient environmental diversity. Critically, the open-source community lacks
unified RL framework capable of training agents from scratch across diverse, realistic environments.

To bridge this gap, we introduce AgentGym-RL (§3), a unified framework designed for training
LLM agents through RL in multi-turn interactive decision-making tasks (Figure 2). With a mod-
ular and decoupled architecture, AgentGym-RL enables clean separation of agents, environments,
and learning algorithms, offering high extensibility and flexibility for diverse research needs. The
framework supports mainstream RL algorithms, and covers a wide range of real-world scenarios,
e.g., web navigation (Zhou et al., 2024a; Yao et al., 2022), deep search (Wei et al., 2025; Jin et al.,
2025b), digital games (Prasad et al., 2024; Fan et al., 2022), embodied tasks (Chevalier-Boisvert
et al., 2019; Shridhar et al., 2021), and scientific tasks (Wang et al., 2022; Starace et al., 2025).

Furthermore, to enhance agents’ ability to tackle challenging tasks, we argue that expanding their
interactions with the environment is crucial, rather than relying solely on internal reasoning. How-
ever, our preliminary experiments show that directly training agents for long-horizon interaction
often faces instability. To address this, we propose ScalingInter-RL (§4) based on AgentGym-RL.
This progressively scaling interaction enables the agent to avoid repetitive and unproductive actions,
enhance deeper exploration of environments, and ultimately achieve more effective and efficient task
completion while maintaining training stability.

Extensive experiments (§5) demonstrate that ScalingInter-RL within AgentGym-RL framework de-
livers significant performance gains across 27 tasks spanning 5 diverse scenarios (Figure 1(Left)).
Open-source models , e.g., Qwen-2.5-7B (Yang et al., 2024), achieve an average improvement of
33.65 points, matching or even surpassing larger commercial models such as OpenAI-o3 (OpenAI,
2025) and Gemini-2.5-Pro (Comanici et al., 2025). In addition, we conduct extensive analytical
experiments to provide key insights (§6), showing that scaling both post-training and test-time in-
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teractions holds substantial potential for advancing agentic intelligence (Figure 1(Right)). We hope
our work will serve as a valuable contribution to the community’s progress.

2 PRELIMINARIES

2.1 FORMULATION

In this work, we study the multi-turn interactive decision-making tasks, i.e., agentic tasks, and we
model them as a Partially Observable Markov Decision Process (POMDP) (U ,S,A,O, T , r) like
(Xi et al., 2025b; Zhou et al., 2024b), where A,U ,S,O, T : S ×A → S, r: U × S → R represents
the instruction space, the state space, the action space, the observation space, the deterministic state
transition function, and the reward function, respectively.

Given a task instruction u ∈ U , the agentic task requires the LLM agent to generate a sequence of
actions aTk ∼ πθ(·|sk) based on its policy πθ parameterized by θ to complete the given task, where
ak ∈ A, and sk ∈ S, and T is the reasoning path (Yao et al., 2023). The agent then receives an
observation ok ∈ O from the environment, and the state is then transitioned to T (sk, ak) = sk+1.
Finally after N turns of interactions, the environment e provides an outcome reward r(τ) ∈ [0, 1] to
describe the completion of the multi-turn interactive decision-making tasks.

2.2 POLICY GRADIENT

We utilize policy gradient (PG) methods (Sutton et al., 1999) that optimizes our policy agent. They
perform gradient ascent according to the objective J(θ), which is a function of the policy param-
eters θ. Specifically, J(θ) represents the expected cumulative reward the agent anticipates receiv-
ing when following policy πθ and interacting with the environment. Mathematically, this is ex-
pressed as the expectation of the total reward r(τ) over trajectories τ generated by the policy:
J(θ) = Eτ∼πθ

[r(τ)]. To perform optimization on J(θ), we require the policy gradient ∇θJ(θ).
In the vanilla policy gradient methods, the policy gradient can be estimated by:

∇θJ(θ) = Eτ∼πθ

[
r(τ)

K∑
k=0

∇θ log πθ(ak|sk)

]
(1)

where πθ is the policy parameterized by θ, τ represents a trajectory consisting of a sequence of states
and actions, ak and sk are the action and state at time step k, and r(τ) is the reward of the trajectory
τ . Mainstream RL algorithms for training LLMs include PPO (Schulman et al., 2017), GRPO (Shao
et al., 2024), and REINFORCE++ (Hu, 2025)—all of which are integrated into our framework.

3 THE AGENTGYM-RL FRAMEWORK

3.1 ARCHITECTURE OVERVIEW

AgentGym-RL adopts a modular design with well-defined responsibilities for each module, allowing
for extensibility. As shown in Figure 2, the framework is organized into three core modules.

Environment module. In this module, each environment is encapsulated as an independent ser-
vice with the option of deploying multiple replicas to support parallel requests. An environment
client communicates with the environment server via HTTP and exposes APIs to the agent, includ-
ing /observation to get the current observation, /available actions to get the currently
available actions, /step to perform an action, and /reset to reset the environment. Currently,
AgentGym-RL covers five major scenario categories. This modular server–client design allows new
environments to provide comprehensive environment and data support for LLM agent training.

Agent module. The agent module encapsulates the reasoning–action loop of LLM-based agents.
It receives observations from the environment, performs reasoning over multiple turns, and outputs
actions (e.g., invoking provided APIs). The module supports different prompting strategies and
sampling configurations.

3
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# Stage 1: Generate responses
task_ids = expand(task_ids, sample_num)
envs = create_env_clients(task_ids, “webarena”, base_url)

Do in parallel:
for (env, task_id) in zip(envs, task_ids):
 env.reset(task_id)

handlers =[
RolloutHandler().add_user_message(env.observe()) 
for env in envs]

for i in range(max_rounds)
prompts = [h.get_prompt() for h in handlers]
responses = actor.generate(prompts)

results = thread_safe_list()
Do in parallel:
 for (env, response) in zip (envs, responses):

   results.append(env.step(response))

for (h, r, res) in zip(handlers, responses, results):
h.add_assistant_message(r)
h.add_user_message(res.state)
h.score = res.score

if all_done(handlers): break

# Stage 2: Prepare experience
batch = gen_batch_from_rollout_handlers(handlers)
batch = actor.compute_log_prob(batch)
batch = reference.compute_ref_log_prob(batch)
batch = compute_advantages(batch, method="grpo")

# Stage 3: Actor training
actor.update_actor(batch)

Figure 3: Pseudocode demonstrating the example usage of our proposed framework (provided APIs
marked orange), alongside a simplified diagram illustrating the agent-environment interaction and
training pipeline.

Training module. The training module provides a unified reinforcement learning (RL) pipeline
that supports both online and offline algorithms, offering researchers a flexible foundation for large-
scale LLM agent training. The module manages the entire RL lifecycle: trajectory collection, ad-
vantage estimation, policy optimization, and reward shaping.

Workflow. The overall workflow and pseudocode are shown in Figure 3. Given a batch of queries
and initial environment states, the framework initializes multiple parallel environment clients. Each
client serves a single agent, ensuring isolated execution. At every step, the agent generates an action,
the environment returns the updated state and reward, and the trajectories are collected concurrently
for training updates.

The entire training pipeline can be distributed across multiple nodes, leveraging both multi-process
and multi-node parallelism. Efficient batching and asynchronous logging utilities ensure that system
throughput scales with additional compute resources.

3.2 FEATURES AND CHARACTERISTICS

The AgentGym-RL framework is built on AgentGym (Xi et al., 2025b), which provides several basic
interactive environments for LLM agents. We have further extended it in diversity of environments,
algorithm support, engineering optimizations, open-source availability, and interaction visualization.

Diverse scenarios and environments. To build LLM agents capable of multi-turn decision-
making, AgentGym-RL provides five heterogeneous environments spanning web navigation, deep
search, digital games, embodied control, and scientific tasks. They exhibit significant variance in
state space, action space, and reward structures. This cross-domain heterogeneity creates a testbed
for training and evaluating research artifacts across diverse environments. A more detailed introduc-
tion of the environments we included is shown in Appendix C.

Comprehensive algorithm support. While the original AgentGym (Xi et al., 2025b) focused pri-
marily on SFT, AgentGym-RL places online reinforcement learning at the core of its training stack.
It allows agents to adapt through continual interaction with the environment and move beyond static
demonstration corpora. The framework unifies mainstream RL algorithms such as PPO (Schulman
et al., 2017), GRPO (Shao et al., 2024), RLOO (Chen et al., 2025) and REINFORCE++ (Hu, 2025)
under a single interface, while also supporting complementary offline paradigms including SFT
(Peng et al., 2023), DPO (Rafailov et al., 2023), and self-improvement (Xi et al., 2025b)).
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Figure 4: Training dynamics under different maximum interaction turns in Deep Search environ-
ment. Our ScalingInter-RL method progressively increases the interaction horizon, and ultimately
achieves higher and more efficient long-term performance.

Engineering optimizations. AgentGym-RL incorporates targeted engineering optimizations to
support large-scale reinforcement learning research, with a focus on extensibility, scalability, and
reliability. For extensibility, the framework adopts a modular plug-and-play design, allowing new
environments to be integrated by simple inheritance from base classes. For scalability, we enhance
both computational parallelism and long-horizon training efficiency by introducing optimizations
like subprocess-based architecture and refined environment initialization routines. For reliability,
we address critical issues such as memory leaks and flawed recursive implementations. A more
detailed description of the engineering optimizations is shown in Appendix C.

Open-source availability and Visualization support. AgentGym-RL provides a unified frame-
work with consistent evaluating metrics and reproducible training pipelines. It also offers turnkey
scripts that automate the workflow from environment setup to final assessment, enabling reliable
replication. Additionally, an interactive graphical UI (See Figure 9 in Appendix C) supports visual-
ization of step-by-step inspection and replay of full trajectories.

4 SCALINGINTER-RL: SCALING INTERACTIONS FOR LLM AGENTS
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Figure 5: Scaling test-time interaction turns.

Motivation. Inference–compute scaling in
LLM reasoning shows that additional compu-
tation offers better performance (DeepSeek-AI
et al., 2025; Jaech et al., 2024). However, given
the interactive nature of agent tasks, we ar-
gue that effective progress requires expand-
ing external interactions with the environ-
ment, not merely internal reasoning. To val-
idate this, we investigate the impact of increas-
ing the maximum number of interaction turns
available to the agent, using several baseline
models on Deep Search and SciWorld environments. As shown in Figure 5, all models show im-
provement as the number of interaction turns increases, demonstrating that long-horizon interaction
and sufficient exploration contribute to enhanced agentic performance. However, the performance
gains of the baseline models plateau as the number of interactions continues to grow, indicating their
limited capability to solve complex tasks through long-horizon interactions.

To address this limitation, we further explore leveraging RL to enhance agents’ capabilities in long-
horizon scenarios. Specifically, we vary the maximum number of interaction turns during RL roll-
outs and analyze the resulting training dynamics (Figure 4). We find that larger interaction horizons
(e.g., 10 turns) enable deeper exploration but introduce training instability, often leading to training
collapse, with the model exhibiting redundant interactions and unnecessary repetition. In contrast,
shorter horizons provide stability but cap performance due to limited interaction turns. Therefore,
our core motivation is how to scale interactions at train-time in a stable and effective way.

Method. To this end, we introduce ScalingInter-RL to stably optimize LLM agents for chal-
lenging tasks that require long-horizon interactions. The central idea of ScalingInter-RL lies in a
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Figure 6: Training rewards in different environments leveraging AgentGym-RL framework with the
ScalingInter-RL method.

progressive horizon-scaling strategy that gradually increases the number of interaction turns during
RL training, as illustrated in Figure 8 (Appendix B).

Specifically, the objective is to maximize the expected final reward under a constrained interaction
budget:

J(θ) = Eτ∼πθ
[r (τ)] ,

where each trajectory τ =
(
aT0 , o1, a

T
1 , . . . , a

T
K−1, oK

)
is sampled from the current policy πθ, with

K representing the total number of interaction turns, T representing the reasoning path. To prevent
the training collapse observed in the previously mentioned long-turn setting, we begin training with
a short interaction horizon. By initially limiting the horizon, the agent focuses on exploitation,
mastering fundamental task-solving skills through simpler tasks. This lays a solid foundation for
stable training as the horizon gradually extends in later stages.

As training progresses, we introduce a monotonic schedule {h1 < h2 < · · · < hn}, where ht

defines the maximum number of interaction turns allowed during phase t:

τt ∼ πθ (τ | ht) , subject to Kt ≤ ht.

The horizon ht is updated every ∆ training steps according to a curriculum schedule:

ht+1 = ht + δh,

where δh is an adaptive increment. As the horizon expands, the agent is encouraged to explore
the environment more deeply, thereby enhances the ability to efficiently acquire and leverage in-
formation through more interactions. This staged scaling approach allows the agent to make more
intelligent decisions, enabling deeper exploration of the environment, and ultimately results in more
effective task completion while ensuring training stability.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Scenarios, Environments and Tasks. As mentioned before, we include five scenarios in
AgentGym-RL. Specifically, we include WebArena (Zhou et al., 2024a) for web navigation, a RAG-
based environment (Jin et al., 2025b; Joshi et al., 2017; Ho et al., 2020; Kwiatkowski et al., 2019;
Mallen et al., 2022; Trivedi et al., 2022; Yang et al., 2018; Press et al., 2023) for deep search,
TextCraft (Prasad et al., 2024) for digital games, BabyAI (Chevalier-Boisvert et al., 2019) for em-
bodied tasks, and SciWorld (Wang et al., 2022) for scientific tasks.

Baselines and backbone models. We leverage Qwen-2.5-3B and Qwen-2.5-7B (Yang et al., 2024)
as our backbone models. Additionally, we introduce closed-source commercial models and strong
open-source models as our baselines, as shown in Table 1. Both training and evaluation are con-
ducted using ReAct (Yao et al., 2023) paradigm.

Detailed settings of each environment. Different environments have distinct observation spaces,
action spaces, and reward structures. Due to space limitations, we provide detailed descriptions of
the tools, APIs, and experimental settings for each environment in Appendix E.
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Table 1: Evaluation results on Deep Search benchmark. For each group, the best result is in bold,
and the second-best is underlined. SearchR1-it-v0.3 baseline uses Search-R1-v0.3 models (Jin et al.,
2025a). See Appendix D for results of tasks on other scenarios.

Model NQ TriviaQA PopQA HotpotQA 2Wiki Musique Bamboogle Overall
Proprietary Models

GPT-4o (Hurst et al., 2024) 20.0 70.0 30.0 30.0 32.0 10.0 34.0 26.8
Qwen-Max (Yang et al., 2024) 24.0 52.0 26.0 24.0 16.0 17.0 36.0 29.5
Gemini-2.5-Flash (Comanici et al., 2025) 8.0 60.0 30.0 24.0 16.0 8.0 34.0 23.5
OpenAI o4-mini (OpenAI, 2025) 22.0 68.0 50.0 38.0 44.0 28.0 62.0 42.5
OpenAI o3 (OpenAI, 2025) 28.0 70.0 56.0 46.0 64.0 29.0 74.0 49.5
Gemini-2.5-Pro (Comanici et al., 2025) 22.0 62.0 38.0 28.0 48.0 19.0 56.0 36.5

Open-sourced Models ≥ 100B
Qwen3-235B-A22B (Yang et al., 2025a) 28.0 54.0 30.0 32.0 22.0 14.0 32.0 28.3
DeepSeek-V3-0324 (DeepSeek-AI et al., 2024) 28.0 60.0 24.0 28.0 18.0 11.0 34.0 26.5
DeepSeek-R1-0528 (DeepSeek-AI et al., 2025) 32.0 68.0 42.0 44.0 50.0 21.0 44.0 40.3

Open-sourced Models < 100B
Qwen2.5-3B-Instruct (Yang et al., 2024) 8.0 42.0 22.0 14.0 8.0 2.0 10.0 13.5
Qwen2.5-7B-Instruct (Yang et al., 2024) 18.0 54.0 20.0 18.0 6.0 4.0 26.0 18.8
Qwen2.5-72B-Instruct (Yang et al., 2024) 22.0 52.0 24.0 28.0 24.0 12.0 38.0 26.5
Qwen3-4B (Yang et al., 2025a) 18.0 58.0 26.0 24.0 26.0 5.0 20.0 22.8
Qwen3-8B (Yang et al., 2025a) 26.0 44.0 26.0 22.0 32.0 10.0 32.0 25.3
Qwen3-32B (Yang et al., 2025a) 24.0 54.0 22.0 36.0 28.0 11.0 20.0 25.8
Llama-3.1-8B-Instruct (Dubey et al., 2024) 16.0 26.0 12.0 6.0 2.0 4.0 18.0 11.0
Llama-3.1-70B-Instruct (Dubey et al., 2024) 20.0 44.0 22.0 22.0 18.0 9.0 32.0 22.0
SearchR1-it-3B-v0.3GRPO(Jin et al., 2025b) 20.0 50.0 30.0 28.0 32.0 5.0 14.0 23.0
SearchR1-it-7B-v0.3GRPO(Jin et al., 2025b) 24.0 52.0 30.0 22.0 34.0 6.0 26.0 25.0

Our RL Models
AgentGym-RL-3B 30.0 50.0 30.0 30.0 46.0 4.0 12.0 25.8
AgentGym-RL-7B 44.0 64.0 32.0 40.0 36.0 15.0 26.0 34.0
ScalingInter-7B 52.0 70.0 46.0 42.0 44.0 14.0 24.0 38.3

5.2 MAIN RESULTS

The main results are shown in Figure 1, and the detailed results on Deep Search are shown in Table 1.
See Appendix D for detailed results of tasks on other scenarios.

Reinforcement learning generally improves agentic intelligence of open-source LLMs, bring-
ing them on par with proprietary models. As shown in Figure 1, our RL model outperforms
other open-source models by a large margin. It also leads in average success rate over closed-source
models like GPT-4o and Gemini-2.5-Pro across five different scenarios. This demonstrates the ef-
fectiveness of our framework in enabling models to learn and make decisions in complex tasks,
narrowing the gap between open-source and proprietary models

ScalingInter-RL significantly and consistently boosts performance. We set phase transition
points based on the total optimization steps in the RL process, rather than performing extensive
hyperparameter tuning, as it has already proven effective. ScalingInter-RL consistently outperforms
the baseline across various environments. For example, it improves WebArena performance by over
15 points, bringing it closer to closed-source commercial models. It also boosts TextCraft scores
by nealy 50 points, achieving state-of-the-art results. These improvements show that our method
effectively balances exploration and exploitation, enabling the model to interact more intelligently
with the environment, adapt, and complete tasks.

Post-training and test-time compute show higher scaling potential than model size. As shown
in Figure 1 (right), ScalingInter-RL with 7B parameters achieves an average success rate of 61.8%,
significantly surpassing larger models like Llama3.1-70B (46.9%) and Qwen2.5-72B (42.8%). This
shows that simply increasing model size provides limited performance gains, while increasing post-
training and inference-time compute offers better results, providing new insights for future scaling
strategies.

The environment plays a key role in the efficiency of reinforcement learning. The effectiveness
of AgentGym-RL depends on the environment and the type of feedback provided. In simulated
worlds with clear rules and direct cause-and-effect relationships, such as TextCraft, BabyAI, and
SciWorld, RL achieves the greatest performance improvements. For instance, SciWorld’s score
jumps from 1.50% to 50.50%, a remarkable increase of almost 50 points. On the other hand, in
more open-ended environments like WebArena and Deep Search, the performance gains from RL are
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more limited, due to the challenges of task complexity and potential noisy feedback. This provides
valuable insights for the design of environmental feedback and reward structure in the future.

6 DISCUSSION

6.1 TEST-TIME SCALING FOR AGENTS

Scaling interaction turns. As shown in Figure 5, all models improve with more turns, showing
that long-horizon interaction and sufficient exploration contribute to enhanced agentic performance.
Moreover, the ScalingInter-RL-trained agent consistently surpasses the baseline by a substantial
margin, further highlighting its ability in long-horizon scenaios and the effectiveness of our method.
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Figure 7: Pass@K performance.

Scaling parallel sampling. As shown in Fig-
ure 7, increasing the number of samples yields a
marked improvement in Pass@K performance,
signaling the downstream optimization poten-
tial of each model. The ScalingInter-RL trained
model surpasses the baselines even with a small
sampling budget, and as sampling increases, it
continues to outperform the baseline in a stable
and significant manner. Notably, in SciWorld,
the ScalingInter-RL model’s Pass@2 even sur-
passes all baselines’ Pass@64, showcasing the compute-efficiency and superior optimization capa-
bility of our method.

6.2 PERFORMANCE OF DIFFERENT RL ALGORITHMS Table 2: Evaluation results of different
RL algorithms.

RL Algorithms TextCraft BabyAI SearchQA
Qwen2.5-3B-Instruct

GRPO 75.00 93.33 25.75
REINFORCE++ 28.00 70.00 13.25

Qwen2.5-7B-Instruct
GRPO 83.00 92.22 34.00
REINFORCE++ 73.00 84.44 24.00

We compare two mainstream RL algorithms for LLM
post-training, i.e., GRPO and REINFORCE++. As shown
in Table 2, GRPO consistently and substantially outper-
forms REINFORCE++ on the TextCraft, BabyAI, and
Deep Search benchmarks. Notably, 3B-GRPO model
even surpasses the 7B-REINFORCE++ model, highlight-
ing an algorithmic advantage beyond model scale.

The performance difference can be attributed to the way each algorithm calculates the advantage.
GRPO calculates a baseline as the average value of multiple trajectories for a query, and then perform
normalization, which helps reduce the impact of outliers from individual trajectories, leading to
more robust optimization. In contrast, REINFORCE++ normalizes within a batch, which can lead
to high-variance gradients.

6.3 CASE STUDY

We provide a series of case studies on different tasks that highlight both the shortcomings of the
base agent and the improvements achieved by our reinforcement learning agents in Appendix F.

RL agent vs. Base agent. RL-trained agents consistently outperform base agents by complet-
ing tasks more strategically. They can avoid unproductive loops and adapt to challenges. In the
WebArena environment, Figures 13 and 14 show how RL optimization enhances web navigation.
While base agents repeatedly click on ineffective interface elements without making progress, RL-
trained agents recover from mistakes, escape deadlocks, and ultimately complete the task. In the
BabyAI environment, Figures 10 and 11 illustrate a improvement in navigation capabilities. Unlike
the base agent which exhibits repetitive movements, the RL agent demonstrates strategic backtrack-
ing, superior spatial reasoning, eventually accomplishes the task.

Exception Cases. To provide a balanced perspective, we also include two representative failure
cases—in scientific reasoning and in efficient web navigation—that underscore areas for improve-
ment. In the SciWorld environment, Figure 15 shows that while the RL agent can reach task-relevant
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states, it still struggles with execution. Two main issues are identified: substituting factual recall
for necessary experimental procedures during debugging, and prematurely ending exploration by
focusing solely on one animal. These failures demonstrate the agent’s insufficient procedural un-
derstanding required for scientific analysis. In the WebArena environment, Figure 16 illustrate that
though the RL agent successfully reaching the correct target websites, it performs redundant actions
such as unnecessary clicking, hovering and scrolling. These behaviors hinder effective information
extraction, revealing a gap between state-reaching ability and precise, efficient action selection.

7 RELATED WORK

Developing agents with large language models. With the advancement of large language mod-
els (Achiam et al., 2023; Anthropic, 2024; Team et al., 2023), researchers have explored building
agents for multi-turn decision-making (Xi et al., 2025a; Yao, 2024). Current approaches mainly
use prompting to invoke tools (Qin et al., 2025; Ye et al., 2025), often enhanced with self-reflection
(Shinn et al., 2023; Xi et al., 2024b; Xie et al., 2025; Renze & Guven, 2024), long-horizon plan-
ning (Liu et al., 2023; Nayak et al., 2024; Prasad et al., 2024; Sun et al., 2023), and self-correction
(Kamoi et al., 2024; Kumar et al., 2025). Multi-LLM workflows assign specialized roles to different
models (Liang et al., 2024; Wu et al., 2023; Talebirad & Nadiri, 2023; Hong et al., 2024; Guo et al.,
2025), but usually depend on proprietary models (e.g., OpenAI o3) and lack intrinsic agentic train-
ing. Another direction collects expert trajectories for imitation learning (Zhang et al., 2024; Zeng
et al., 2024; Chen et al., 2023; 2024b), which grants skills like API use and planning but is costly,
hard to scale, and limits self-improvement.

Reinforcement learning for large language models. Reinforcement learning is a crucial post-
training technique for LLMs, supporting preference alignment (Ouyang et al., 2022; Zheng et al.,
2023; Xia et al., 2024; Chen et al., 2024a; Ji et al., 2023), improved reasoning (Jaech et al., 2024;
Trung et al., 2024; Xi et al., 2024a; DeepSeek-AI et al., 2025; Qwen Team, 2025; He et al., 2025),
and new scaling strategies (DeepSeek-AI et al., 2025). Algorithms such as PPO (Schulman et al.,
2017), GRPO (Shao et al., 2024), REINFORCE++ (Hu, 2025), and RLOO (Chen et al., 2025) have
been widely adopted. Yet most efforts like DeepSeek-R1 focus on single-turn tasks, limiting multi-
turn interaction with complex environments. Recent advances extend RL to self-reflection (Xie
et al., 2025), tool use (Ye et al., 2024), and long-horizon interaction (Zhou et al., 2024b; Chen et al.,
2025; Wang et al., 2025; Qi et al., 2025; Jin et al., 2025b; Cao et al., 2025), but face challenges
in scalability, task diversity, and optimization stability. To address this, we present a unified RL
framework for multi-turn decision-making across diverse environments, and introduce ScalingInter-
RL, an interaction-scaling method that stabilizes training and enhances agent performance.

Scaling inference compute for language models. Increasing inference compute both at test time
and during RL rollouts yields strong scaling effects (Jaech et al., 2024; DeepSeek-AI et al., 2025;
xAI, 2025; Snell et al., 2024). Techniques like long-chain-of-thought reasoning (Snell et al., 2024;
Xi et al., 2024b), majority voting (Li et al., 2024; Wang et al., 2023), best-of-N sampling (Chow
et al., 2025; Jinnai et al., 2024), beam search (Xie et al., 2023; Zhu et al., 2024), and Monte Carlo
tree search (Chi et al., 2024; Gan et al., 2025). Zhu et al. (2025) address inference-scaling for LLM
agents but they do not investigate inference scaling in RL. TTI (Shen et al., 2025) teaches compute
allocation via rejection sampling. By contrast, we use on-policy RL (e.g., GRPO, REINFORCE++)
to scale interactions without restricting compute to “thinking” or “acting”, letting the agent adap-
tively allocate extra compute to improve exploration, skill acquisition, and performance.

8 CONCLUSION

In this work, we present AgentGym-RL, a unified reinforcement learning framework for training
LLM agents in long-horizon, multi-turn decision-making tasks. The framework offers diverse en-
vironments and scenarios, integrates mainstream RL algorithms, and provides a high degree of ex-
tensibility, making it a versatile and powerful resource for the community. Building on this, we
introduce ScalingInter-RL, a staged training approach that progressively scales agent–environment
interactions and achieves strong final performance. Extensive experiments demonstrate the effec-
tiveness of both the framework and the method. We hope our work offers valuable insights and
supports the development of next-generation intelligent agents.
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A THE USE OF LARGE LANGUAGE MODELS

LLMs are utilized in this manuscript for partial grammatical checks and language polishing. The
authors are fully responsible for the final content.

B ILLUSTRATION OF SCALINGINTER-RL

Our ScalingInter-RL is illustrated in Figure 8.

Figure 8: Illustration of ScalingInter-RL to scale up agent-environment interactions progressively.

C DETAILS OF THE FEATURES AND CHARACTERISTICS OF AGENTGYM-RL
FRAMEWORK

Diverse scenarios and environments. The environment’s anisotropic complexity ensures that
successful policies must develop domain-agnostic reasoning capabilities rather than task-specific
heuristics, making it an ideal benchmark for evaluating the generalization robustness of our
ScalingInter-RL methodology. It includes:

• Web Navigation: Interacting with dynamic websites for tasks such as booking flights or extracting
structured information, which requires agents to follow instructions, interpret textual and visual
content, manipulate dynamic interfaces, and plan multi-step actions.

• Deep Search: Performing multi-step, goal-directed queries with tools like browsers or Python
interpreters, demanding strong information-seeking, multi-hop reasoning, long-term memory, and
knowledge synthesis across sources.

• Digital Games: Exploring and solving problems in interactive game-like environments, empha-
sizing real-time decision-making, strategy development, and adaptability to complex, dynamic
settings.

• Embodied Tasks: Controlling virtual or physical bodies for navigation, manipulation, and task
execution, which calls for goal-directed planning, spatial reasoning, and robust perception–action
grounding.

• Scientific Tasks: Conducting experiments and solving problems in physically grounded,
knowledge-intensive settings, requiring precise execution, dynamic interpretation of feedback,
evidence-based reasoning, and iterative hypothesis refinement.
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Extensibility is essential for advancing research, enabling a framework to incorporate new en-
vironments, agent architectures, and training methods without modifying existing components.
AgentGym-RL adopts a modular and decoupled design, where the core components, Environment,
Agent, and Training are fully plug-and-play. This extensible design allows researchers to incorpo-
rate novel environments through simple inheritance from base classes (e.g., BaseEnvClient),
and implementing the required methods such as reset(), step(), and observe().

Scalability addresses the growing demands of large-scale reinforcement learning training that re-
quires massive data processing and extended interaction sequences. AgentGym-RL implements
comprehensive architectural optimizations to enhance both computational parallelism and training
duration capabilities. For example, we replaced WebArena’s single-browser-per-process design with
a subprocess-based architecture enabling concurrent Chromium instance management. These op-
timizations collectively enable effective scaling for large-scale training and diverse experimental
requirements.

Reliability ensures consistent operation during extended multi-turn agent training by preventing fail-
ures and managing critical resources effectively. AgentGym-RL implements targeted optimizations
to address system vulnerabilities that could disrupt long-horizon training. For example, we resolved
TextCraft’s memory leak in its recursive crafting tree implementation, where redundant self-
replication caused exponential memory growth and training crashes by refactoring the recursion
to eliminate redundant copies. These optimizations provide a stable foundation for uninterrupted
operation across extended interaction sequences.

Figure 9: An overview of the visualized user interface of our framework.

Standardized evaluation and reproducibility. AgentGym-RL is designed to be user-friendly
for the community. To systematically address reproducibility challenges in LLM-based reinforce-
ment learning, AgentGym-RL institutes a standardized evaluation process and reproducible training
pipelines. This design enforces uniform metrics and consistent experimental procedures to ensure
fair comparisons. We provide easy-to-setup reproduction scripts that automate the entire workflow,
from environment configuration to final evaluation. This design enables researchers to replicate
prior findings with high fidelity and significantly lowers the barrier for building upon existing work,
thereby promoting verifiable research standards.

Visualized observability and analysis. An interactive graphical UI supports step-by-step inspec-
tion and replay of full interaction trajectories, visualizing observations, internal reasoning, and ac-
tions to reveal performance and failure modes and accelerate iterative development.

D DETAILED TASK PERFORMANCE ACROSS ENVIRONMENTS

Web navigation. As shown in Table 3, our models demonstrate highly competitive performance
on the WebArena benchmark. In particular, the ScalingInter-7B model achieves an overall accuracy
of 26.00%, significantly surpassing top-tier proprietary models like GPT-4o (16.00%) and perform-
ing on par with larger models like DeepSeek-R1-0528 (28.00%) and Gemini-2.5-Pro (28.00%).
Furthermore, another 7B model of ours, AgentGym-RL-7B, also achieved an overall score of
22.00%, surpassing the performance of GPT-4o. This strong overall performance is underpinned by
ScalingInter-7B’s state-of-the-art proficiency in structured web navigation, where it achieved scores
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Table 3: Evaluation results on WebArena benchmark. For each group, the best result is in bold, and
the second-best is underlined. In the first row, G & R means GitLab and Reddit.

Model Shopping CMS Maps G & R Overall
Proprietary Models

GPT-4o 20.00 13.33 10.00 20.00 16.00
Qwen-Max 20.00 13.33 20.00 30.00 20.00
Gemini-2.5-Flash 26.67 20.00 10.00 30.00 22.00
OpenAI o4-mini 33.33 26.67 20.00 70.00 36.00
OpenAI o3 33.33 0.00 40.00 80.00 34.00
Gemini-2.5-Pro 26.67 26.67 0.00 60.00 28.00

Open-sourced Models ≥ 100B
Qwen3-235B-A22B 20.00 20.00 20.00 20.00 20.00
DeepSeek-V3-0324 20.00 13.33 10.00 30.00 18.00
DeepSeek-R1-0528 33.33 6.67 30.00 50.00 28.00

Open-sourced Models < 100B
Qwen2.5-3B-Instruct 13.33 6.67 10.00 10.00 10.00
Qwen2.5-7B-Instruct 14.29 6.67 0.00 16.67 9.76
Qwen2.5-72B-Instruct 13.33 13.33 0.00 20.00 12.00
Qwen3-4B 13.33 6.67 10.00 20.00 12.00
Qwen3-8B 20.00 20.00 0.00 10.00 14.00
Qwen3-32B 20.00 6.67 20.00 0.00 12.00
Llama-3.1-8B-Instruct 13.33 0.00 20.00 30.00 14.00
Llama-3.1-70B-Instruct 26.67 6.67 20.00 10.00 16.00

Our RL Models
AgentGym-RL-3B 20.00 26.67 10.00 10.00 18.00
AgentGym-RL-7B 20.00 33.33 0.00 30.00 22.00
ScalingInter-7B 33.33 26.67 20.00 20.00 26.00

of 33.33% in Shopping and 26.67% in CMS, matching the best performance among all models
in these categories. However, a significant performance gap remains when compared to the top-
performing OpenAI o3 (34.00%) and o4-mini (36.00%), a disparity almost entirely concentrated in
the ”GitLab & Reddit” sub-task.

Deep search. The evaluation results in Table 1 show the importance of sophisticated reasoning
abilities, where proprietary models—particularly the OpenAI ’o’ series—currently set the perfor-
mance benchmark, with OpenAI o3 achieving the highest overall score of 49.50%. Against this com-
petitive landscape, our models demonstrate exceptional performance. Specifically, our ScalingInter-
7B model achieved an excellent overall score of 38.25%, not only surpassing top-tier proprietary
models like GPT-4o (26.75%) and Gemini-2.5-Pro (36.50%) but also performing comparably to the
strongest open-source model, DeepSeek-R1-0528 (40.25%). Its strengths are particularly salient
in key domains: it achieved the highest score overall on the NQ task (52.00%) and tied for first
place on TriviaQA (70.00%) with GPT-4o. Furthermore, our AgentGym-RL-7B (34.00%) and
AgentGym-RL-3B (25.75%) models also delivered strong results, each significantly outperform-
ing open-source counterparts of similar or even larger scales. These results provide strong evidence
that our reinforcement learning approach effectively unlocks the model’s inherent reasoning ca-
pabilities, enabling it to reach or even exceed the performance of elite reasoning models in key
scenarios–crucially, without the need for explicit additional long-reasoning.

Digital game. The TextCraft benchmark effectively assesses model capabilities across a wide
spectrum of difficulty, as detailed in Table 4. At shallow depths (Depth 1), tasks are largely solved
by top models. Conversely, the challenge becomes nearly insurmountable at maximum complexity
(Depth 4), creating a performance cliff for most agents. It is at these intermediate and highest dif-
ficulties that the efficacy of our models becomes particularly evident. Our ScalingInter-7B model
achieves an outstanding overall score of 91.00%, puuting it on par with the top-tier proprietary and
large open-source models (93.00%-94.00%). Critically, it is one of only a few models to achieve
a non-zero score at Depth 4, scoring 33.33% and demonstrating a unique robustness at maximum
complexity. Our AgentGym-RL-7B also excels with a score of 89.00, surpassing prominent models
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Table 4: Evaluation results on TextCraft benchmark. For each group, the best result is in bold, and
the second-best is underlined.

Model Depth 1 Depth 2 Depth 3 Depth 4 Overall
Proprietary Models

GPT-4o 100.00 87.80 64.00 0.00 83.00
Qwen-Max 93.55 75.61 36.00 0.00 69.00
Gemini-2.5-Flash 100.00 95.12 40.00 0.00 80.00
OpenAI o4-mini 100.00 100.00 84.00 0.00 93.00
OpenAI o3 100.00 100.00 84.00 0.00 93.00
Gemini-2.5-Pro 100.00 100.00 84.00 33.33 94.00

Open-sourced Models ≥ 100B
Qwen3-235B-A22B 100.00 100.00 84.00 0.00 93.00
DeepSeek-V3-0324 80.65 53.66 40.00 0.00 57.00
DeepSeek-R1-0528 100.00 100.00 84.00 0.00 93.00

Open-sourced Models < 100B
Qwen2.5-3B-Instruct 35.48 7.32 0.00 0.00 14.00
Qwen2.5-7B-Instruct 80.65 41.46 0.00 0.00 42.00
Qwen2.5-72B-Instruct 96.77 85.37 48.00 0.00 77.00
Qwen3-4B 87.10 36.59 12.00 0.00 45.00
Qwen3-8B 100.00 78.05 40.00 33.33 74.00
Qwen3-32B 90.32 92.68 72.00 33.33 85.00
Llama-3.1-8B-Instruct 74.19 56.10 4.00 0.00 47.00
Llama-3.1-70B-Instruct 100.00 100.00 84.00 0.00 93.00

Our RL Models
AgentGym-RL-3B 100.00 90.24 28.00 0.00 75.00
AgentGym-RL-7B 100.00 97.56 72.00 0.00 89.00
ScalingInter-7B 100.00 97.56 76.00 33.33 91.00

like GPT-4o (83.00%). The benefit of our RL training is especially dramatic for smaller models,
where AgentGym-RL-3B obtains a score of 75.00%, vastly outperforming similarly-sized models
like Qwen2.5-3B-Instruct (14.00%). These results showcase that our RL approach elevates our
models to achieve competitive performance on complex, sequential decision-making tasks.

Embodied tasks. As demonstrated in Table 5, our RL model achieves state-of-the-art (SOTA)
performance on the BabyAI benchmark, with an overall score of 96.67%, which is competitive with
the leading proprietary models such as o3 and o4-mini. Notably, our ScalingInter-7B model attains
the highest overall accuracy of 96.67%, outperforming top-tier models such as OpenAI o3 (94.44%)
and GPT-4o (86.67%). This exceptional performance is driven by ScalingInter-7B’s consistent mas-
tery of diverse sub-tasks, achieving perfect scores of 100% in GoTo, ActionObjDoor (AOD), and
SynthLoc, and strong results of 80% in both FindObjS7 (Find) and OneRoomS20 (Room). Simi-
larly, our AgentGym-RL-7B and AgentGym-RL-3B models demonstrate robust capabilities, reach-
ing overall accuracies of 92.22% and 93.33%, respectively, and securing perfect scores in GoTo and
AOD tasks. Compared to other open-sourced models, such as Qwen3-235B-A22B (87.78%) and
DeepSeek-R1-0528 (93.33%), our RL-based models maintain consistently high performance while
effectively handling more challenging sub-tasks like Room and Find, where many LLMs exhibit
notable variability. Overall, these results highlight the strength of our RL-based approaches, partic-
ularly ScalingInter-7B, in achieving state-of-the-art performance on both structured navigation and
object-interaction tasks in the BabyAI benchmark.

Scientific Scenario. Our experiments on the SciWorld benchmark, summarized in Table 6, demon-
strate the advanced performance of our RL-trained models. Our ScalingInter-7B model establishes
a new state-of-the-art with an overall score of 57.00%, which significantly surpasses all open-source
and proprietary models, including the next-best proprietary model, OpenAI o3 (41.50%). This su-
perior performance is primarily attributed to high scores in the ”Find” (88.64%) and ”Test-Cond”
(55.42%) sub-tasks. Furthermore, our AgentGym-RL-7B model also shows strong capabilities,
securing the second-highest overall score (50.50%) and achieving the top score in ”Test-Cond”
(59.04%). These results highlight the effectiveness of our RL method for training agents in explo-
ration and procedural execution tasks. However, our findings also identify a critical limitation shared
across all evaluated models. The ”Chem-Mix” sub-task proved to be intractable, with every model,
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Table 5: Evaluation results on BabyAI benchmark. For each group, the best result is in bold, and
the second-best is underlined. In the first row, AOD means ActionObjDoor, Find means FindObjS7,
Room means OneRoomS20, SLoc means SynthLoc.

Model GoTo Pickup AOD Find Room SLoc Overall
Proprietary Models

GPT-4o 92.73 80.00 100.00 80.00 60.00 60.00 86.67
Qwen-Max 92.73 80.00 80.00 60.00 60.00 80.00 85.56
Gemini-2.5-Flash 92.73 86.67 80.00 20.00 60.00 100.00 85.56
OpenAI o4-mini 96.36 100.00 100.00 80.00 40.00 80.00 92.22
OpenAI o3 98.18 93.33 100.00 80.00 60.00 100.00 94.44
Gemini-2.5-Pro 94.55 93.33 100.00 40.00 60.00 60.00 87.77

Open-sourced Models
Qwen3-235B-A22B 89.09 86.67 100.00 80.00 60.00 100.00 87.78
DeepSeek-V3-0324 67.27 53.33 0.00 20.00 40.00 60.00 56.67
DeepSeek-R1-0528 98.18 86.67 100.00 60.00 80.00 100.00 93.33

Open-sourced Models
Qwen2.5-3B-Instruct 61.82 40.00 20.00 60.00 40.00 20.00 52.22
Qwen2.5-7B-Instruct 70.91 66.67 60.00 80.00 60.00 20.00 66.67
Qwen2.5-72B-Instruct 92.73 93.33 100.00 60.00 60.00 80.00 88.89
Qwen3-4B 60.00 60.00 40.00 40.00 40.00 20.00 54.44
Qwen3-8B 43.64 20.00 40.00 40.00 40.00 40.00 38.89
Qwen3-32B 87.27 80.00 100.00 60.00 40.00 80.00 82.22
Llama-3.1-8B-Instruct 85.45 60.00 100.00 80.00 60.00 40.00 77.78
Llama-3.1-70B-Instruct 89.09 86.67 100.00 60.00 60.00 100.00 86.67

Our RL Models
AgentGym-RL-3B 100.00 100.00 100.00 60.00 60.00 60.00 93.33
AgentGym-RL-7B 100.00 93.33 100.00 60.00 60.00 60.00 92.22
ScalingInter-7B 100.00 93.33 100.00 80.00 80.00 100.00 96.67

including our top performers, scoring zero. This uniform result indicates a systemic challenge for
current language models in tasks requiring complex scientific reasoning and multi-step chemical
simulation, marking this as a crucial area for future research.

E IMPLEMENTATION DETAILS AND SETTINGS OF EACH ENVIRONMENT

We conduct all the experiments on NVIDIA A100 GPUs and Ascend 910B NPUs. The remaining
part of this section shows detailed setting of different environments.

E.1 WEB NAVIGATION SCENARIO

Tools and APIs. In web navigation scenario, the agent simulates human interaction with web
pages to ultimately complete the task. WebArena(Zhou et al., 2024a) supports these interactioins
through a set of tool APIs, allowing agents to perform a variety of real-world tasks, including online
shopping, engaging in discussions on Reddit, collaborating on software development via GitLab,
and managing store content through a CMS. In addition to these online platforms, WebArena also
provides three utility-style tools: a map for navigation and location-based information search, a
calculator, and a scratchpad for note-taking.

A query case of web navigation is shown below:

Web Navigation Example

You are an autonomous intelligent agent tasked with navigating a web browser. You will be
given web-based tasks. These tasks will be accomplished through the use of specific actions
you can issue.
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Table 6: Evaluation results on SciWorld benchmark. For each group, the best result is in bold,
and the second-best is underlined. In the first row, Test-Cond. means test-conductivity, Chem-Mix
means chemistry-mix.

Model Measure Test-Cond. Find Chem-Mix Lifespan Overall
Proprietary Models

GPT-4o 15.09 6.02 38.64 20.00 73.33 21.00
Qwen-Max 9.43 0.00 34.09 20.00 40.00 13.50
Gemini-2.5-Flash 11.32 0.00 54.55 0.00 80.00 21.00
OpenAI o4-mini 20.75 14.46 47.73 0.00 100.00 29.50
OpenAI o3 47.17 25.30 56.82 40.00 66.67 41.50
Gemini-2.5-Pro 9.43 0.00 29.55 0.00 46.67 12.50

Open-sourced Models ≥ 100B
Qwen3-235B-A22B 11.32 4.82 59.09 20.00 66.67 23.50
DeepSeek-V3-0324 0.00 0.00 2.27 0.00 0.00 0.50
DeepSeek-R1-0528 1.89 0.00 11.36 0.00 20.00 4.50

Open-sourced Models < 100B
Qwen2.5-3B-Instruct 3.77 0.00 0.00 0.00 0.00 1.00
Qwen2.5-7B-Instruct 1.89 0.00 0.00 0.00 13.33 1.50
Qwen2.5-72B-Instruct 7.55 1.20 15.91 20.00 40.00 9.50
Qwen3-4B 0.00 0.00 0.00 0.00 33.33 2.50
Qwen3-8B 9.43 0.00 18.18 0.00 46.67 10.00
Qwen3-32B 5.66 1.20 31.82 0.00 66.67 14.00
Llama-3.1-8B-Instruct 9.43 0.00 4.55 20.00 0.00 4.00
Llama-3.1-70B-Instruct 24.53 4.82 40.91 40.00 86.67 25.00

Our RL Models
AgentGym-RL-3B 20.75 28.92 0.00 0.00 66.67 22.50
AgentGym-RL-7B 24.53 59.04 65.91 0.00 66.67 50.50
ScalingInter-7B 33.96 55.42 88.64 0.00 73.33 57.00

Available Information:
• User’s objective: The task to complete
• Accessibility tree: Simplified webpage representation, providing key information.
• Current URL: The active page’s address
• Open tabs: Currently available tabs
• Previous action: Last performed action

Action Categories:
Page Operations:

• click [id]: Click element with ID
• type [id] [content] [0|1]: Input text (1=press Enter)
• hover [id]: Hover over element
• press [key comb]: Simulate key press (e.g., Ctrl+v)
• scroll [down|up]: Scroll page direction

Tab Management:

• new tab: Open new tab
• tab focus [tab index]: Switch to tab
• close tab: Close current tab

URL Navigation:

• goto [url]: Navigate to URL
• go back: Return to previous page
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• go forward: Advance to next page
Completion:

• stop [answer]: Submit final answer (or ”N/A” if you believe the task is im-
possible to complete)

Homepage: If you want to visit other websites, check out the homepage at http://
homepage.com.

Objective: Among the top 10 post in ”books” forum, show me the book names from posts
that recommand a single book.

Settings. We include five subtasks: E-commence, Reddit, Gitlab, OpenStreetMap (Map), and on-
line store content management system (CMS), comprising a total of 372 training queries and 50 test-
ing queries. These are selected from the origin WebArena dataset, which contains 812 queries across
three categories: Information Seeking, Site Navigation, and Content & Config. To facilitate efficient
parallel rollout, we exclude the Content & Config tasks, which involve insert, update and delete
operations that change the state of the websites. We set the maximum number of agent-environment
interactions to 15 turns in both AgentGym-RL training and evaluation. In ScalingInter-RL, we grad-
ually increase the maximum number of interactions transition from 8 to 12 and then to 15, with each
transition occurring every 80 step. We employ GRPO as the main RL algorithm with a learning rate
of 5 × 10−7 and a KL coefficient of 1 × 10−3. For each query, we sample 4 distinct trajectories
using a temperature of 1.0.

E.2 DEEP SEARCH SCENARIO

Tools and APIs. The deep search senario features a search engine–based environment equipped
with specialized tools and APIs supporting the interaction with search engines. These APIs en-
able agents to dynamically generate search queries during the reasoning process, retrieve relevant
information from external sources, and incorporate the retrieved information into subsequent reason-
ing steps. This setting allows agents to engage in complex reasoning processes that involve iterative
searching and information integration, thereby enhancing their capability to solve intricate problems
where external knowledge is essential.

A query case of Deep Search is shown below:

Deep Search Example

You must always reason inside <think>...</think> first; if you lack knowledge, issue a
<search>...</search> and then stop; do not generate <information> or <answer> yet;
wait for external input between <information>...</information> before continuing; resume
only when new <information> is given; do not skip steps or anticipate answers early.

Question: Who got the first Nobel Prize in Physics?

Settings. We include queries from 7 datasets following the setup of Search-R1 (Jin et al., 2025b):
NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), PopQA (Mallen et al., 2022), Hot-
potQA (Yang et al., 2018), 2wiki (Ho et al., 2020), Musique (Trivedi et al., 2022), and Bamboogle
(Press et al., 2023). To ensure fair comparison and balanced evaluation, we randomly sample 400
examples from the development sets of NQ, TriviaQA, PopQA, HotpotQA, 2wiki, Musique, and
Bamboogle. The maximum number of agent-environment interactions is set to 10 turns in eval-
uation, and to 5 turns in AgentGym-RL training. In ScalingInter-RL, the maximum number of
interactions is initially set to 5, increased to 8 at step 200, and further to 10 at step 300 We employ
GPRO as the main algorithm for reinforcement learning setups with a learning rate of 1 × 10−6, a
KL coefficient of 1× 10−3, and a sampling temperature of 1.0. We sample 8 distinct trajectories for
a single query.
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E.3 DIGITAL GAMES SCENARIO

Environments, Tools and APIs. As for digital games, we introduce TextCraft(Prasad et al., 2024),
a text-based game environment mirroring Minecraft. The APIs in TextCraft include crafting, inven-
tory management, and dynamic narrative generation. These APIs allow agents to execute predefined
crafting recipes, manipulate inventory contents, navigate virtual spaces, dynamically generate quests
and sub-tasks based on natural language objectives, and recursively decompose complex tasks into
achievable sub-goals.

A query case of TextCraft can be seen below:

TextCraft Example

You are given few useful crafting recipes to craft items in Minecraft. Crafting commands
are of the format ”craft [target object] using [input ingredients]”.
Every round I will give you an observation, you have to respond an action based on the state
and instruction. You can ”get” an object (ingredients) from the inventory or the environment,
look-up the game inventory by ”inventory”, or ”craft” (target) using any of the crafting com-
mands. You can use ONLY these crafting commands provided, do not use your own crafting
commands. However, if the crafting command uses a generic ingredient like ”planks”, you
can use special types of the same ingredient e.g. ”dark oak planks” in the command instead.

Goal: Craft flint and steel.

Settings. In TextCraft, task difficulty is measured by the maximum depth of the corresponding
crafting tree. In practice, the benchmark contains tasks with crafting trees of depths 1, 2, 3, and
4. Accordingly, we divide the entire task set into four subsets based on these depths. We set the
maximum number of interactions to 20 turns in evaluation, and set to 30 turns in AgentGym-RL
training. In ScalingInter-RL, we gradually increase the maximum number of interactions transition
from 10 to 20 and then to 30, with each transition occurring every 100 step. We employ GRPO as
the main RL algorithm with a learning rate of 1×10−6, a KL coefficient of 1×10−3, and a sampling
temperature of 1.0. We sample 8 distinct trajectories for a single query.

E.4 EMBODIED SCENARIO

Tools and APIs. We introduce the BabyAI environment as a representative setting for embodied
tasks. It provides APIs that allow agents to navigate a controllable grid world using natural language
instructions. Through these APIs, agents can perform actions such as moving objects, unlocking
doors, and interacting with the environment in response to textual commands.

A query case of BabyAI can be seen below:

BabyAI Example

You are an exploration master that wants to finish every goal you are given. Every round I
will give you an observation, and you have to respond an action and your thought based on
the observation to finish the given task. You are placed in a room and you need to accomplish
the given goal with actions.
You can use the following actions:
- turn right - turn left - move forward - go to obj id - pick up obj id
- go through door id: door must be an open door.
- toggle and go through door id: door can be a closed door or a locked door. If you want to
open a locked door, you need to carry a key that is of the same color as the locked door.
- toggle: there is a closed or locked door right in front of you and you can toggle it.

Your goal: Go to the red ball.
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Settings. Following the original implementation, we divide the tasks into six subsets based on
the final goal. We set the maximum number of interactions to 20 turns in both evaluation and
AgentGym-RL training. In ScalingInter-RL, we gradually increase the maximum number of inter-
actions transition from 6 to 13 and then to 20, with each transition occurring every 100 step. We
employ GRPO as the main RL algorithm with a learning rate of 1 × 10−6, a KL coefficient of
1× 10−3, and a sampling temperature of 1.0. We sample 8 distinct trajectories for a single query.

E.5 SCIENTIFIC SCENARIO

Tools and APIs. SciWorld(Wang et al., 2022) is an agent environment for scientific tasks. It pro-
vides APIs that are designed to support scientific exploration through text-driven reasoning cycles.
These APIs empower agents to conduct experiments by interacting with various scientific appara-
tus and performing actions like measuring temperature, connecting electrical circuits, and mixing
chemicals.

A query case of SciWorld can be seen below:

SciWorld Example

You are an agent for science world. Every round I will give you an observation, you have to
respond an action based on the observation to finish the given task.

Your task is to boil water. For compounds without a boiling point, combusting the substance
is also acceptable. First, focus on the substance. Then, take actions that will cause it to
change its state of matter.

Settings. We select 8 subsets of tasks from the original SciWorld environment. We set the max-
imum number of agent-environment interactions to 20 turns in both AgentGym-RL training and
evaluation. In ScalingInter-RL, we gradually increase the maximum number of interactions transi-
tion from 10 to 15 and then to 20, with each transition occurring every 200 step. We employ GRPO
as the main RL algorithm with a learning rate of 1 × 10−6, a KL coefficient of 1 × 10−3, and a
sampling temperature of 1.0. We sample 8 distinct trajectories for a single query.

F TRAJECTORY EXAMPLES AND VISUALIZATIONS OF OUR RL AGENT

This appendix provides additional trajectory visualizations and detailed analysis across multiple en-
vironments. The figures illustrate the behaviors of both baseline and RL-trained agents, highlighting
the RL model’s superior performance in exploration, task execution, and interaction patterns, while
also revealing common failure modes that remain.

Enhanced navigation. Figure 10 demonstrates a notable improvement in navigation capabilities
within BabyAI environment. While the base agent exhibited suboptimal behavior characterized
by repetitive movement patterns-going through previously explored locations without developing a
strong search strategy for completion, the RL agent manifested more effective exploration strategy.
It demonstrated strategic backtracking capabilities, systematically exiting through doorways before
selecting alternative pathways, ultimately accessing a green door that provided direct access to the
target blue box. This highlights the RL agent’s superior ability in spatial reasoning and its ability to
circumvent unproductive behavioral loops.

Compositional Task Mastery. Figure 12 exemplifies the successful application of reinforcement
learning to complex scientific task execution. The base agent exhibited fundamental deficiencies
in task interpretation, misusing non-interactive objects and generating invalid actions. In contrast,
the RL-optimized agent demonstrated comprehensive task understanding through its systematic ap-
proach: correctly identifying and manipulating a living thing (the banana tree), executing appropriate
inventory management operations, navigating multi-room environments with obstacle resolution ca-
pabilities and successfully completing the objective by depositing the tree in the designated purple
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box. This highlights the RL agent’s enhanced capabilities in reasoning, planning, and sequential
task execution within compositional problem spaces.

Adaptive Web Navigation Strategies. Figure 13 and Figure14 illustrates the emergence of web
navigation capabilities through reinforcement learning optimization. The base agent persistently
interacted with non-responsive interface elements, specifically engaging in repetitive clicking be-
haviors on ineffective targets without recognizing the futility of these actions. Our RL-trained agent
exhibited markedly superior adaptive behavior: it successfully implemented error recovery mecha-
nisms when encountering a ”Page not found” error, subsequently utilizing the search box to locate
the ”pittsburgh” forum, identifying contextually relevant content within trending posts, and com-
pleting the subscription task successfully—demonstrating enhanced robustness in error handling,
purposeful navigation strategies, and the ability to maintain task focus while avoiding unproductive
behavioral patterns.

Limitations in Scientific Scenario. Figure 15 reveals fundamental procedural execution failures
that persist in SciWorld task completion despite the RL agent’s ability to reach task-relevant game
states. These instances exemplify two distinct failure modalities: first, when confronted with inter-
action failures requiring systematic debugging, the agent inappropriately substitutes direct factual
recall for the intended experimental procedure; second, the agent demonstrates insufficient sys-
tematic exploration, as evidenced by its premature task termination after navigating to the outdoor
environment and focusing only on the chameleon egg rather than analyzing all available animals
that the task demands. These failures collectively indicate that the model lacks the deep procedural
understanding necessary for executing rigorous scientific comparative analyses.

Over-Interaction Patterns in Web Navigation. Figure 16 demonstrates a prevalent failure mode
of excessive and inefficient interaction sequences during web navigation tasks. Despite success-
fully navigating to the correct target websites in both illustrated cases, the RL agent engages in su-
perfluous interaction patterns—including redundant clicking, unnecessary hovering, and excessive
scrolling—that impede successful information extraction from the target pages. These behavioral
patterns suggest that the reinforcement learning process failed to instill the precision and efficiency
required for optimal task completion, indicating a gap between state-reaching capabilities and effec-
tive action selection within those states.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Thought 1: To reach the blue box, I need to move forward, but there is a 
yellow closed door in front of me, blocking the way. …it's more efficient 
to go through the yellow closed door first.
Act 1: toggle and go through yellow closed door 1
Obs 1: There is a green closed door 1 6 steps in front of you and 2 steps 
to your right.  The room has walls around you. You are facing a wall 6 
steps away.

Thought 2: … Now that I have gone through the yellow closed door, 
Since I don't have any keys, I need to toggle and go through this door to 
find the blue box.
Act 2: toggle and go through green closed door 1
Obs 2: There is a grey closed door 1 4 steps in front of you and 3 steps 
to your left.  The room has walls around you. You are facing a wall 6 
steps away. 
……
Thought 4: …my only option is to toggle it and attempt to go through.
Act 4: toggle and go through red closed door 1
Obs 4: The room has walls around you. You are facing a wall 6 steps 
away.
Act 5: move forward
Act 6: go through red open door 1
Act 7: go through grey open door 1
……
Act 13: go through grey open door 1
Act 14: go through red open door 1
……
Thought 15: Given that the room has walls around me and I am not 
carrying anything, it appears I have reached the end of this path. I have 
already explored this area thoroughly and there are no more objects or 
doors to interact with.
Act 15: check available actions
……
Thought 20: Turning left again has brought me to a wall, confirming 
that I have explored all possible directions in this room.
Act 20: check available action

Task: go to the blue box
Obs 0: In front of you in this room, you can see several objects: There is a yellow closed door 1 2 steps 
in front of you and 1 steps to your right.  There is a green closed door 1 3 steps in front of you and 3 
steps to your left.  The room has walls around you. You are facing a wall 3 steps away. You are not 
carrying anything.
Available actions: ["turn left", "turn right", "move forward", "toggle and go through yellow closed door
1", "toggle and go through green closed door 1", "go to yellow closed door 1", "go to green closed door
1", "check available actions"]

Thought 1: … find the blue box 
Act 1: toggle and go through yellow closed door 1 
Obs 1: There is a green closed door 1 6 steps in front of you and 2 steps 
to your right.  The room has walls around you. You are facing a wall 6 
steps away. 

Thought 2: … find the blue box 
Act 2: go to green closed door 1
Obs 2: There is a green closed door 1 right in front of you 1 steps away.  
The room has walls around you. 

Thought 3: … find the blue box 
Act 3: toggle and go through green closed door 1
Obs 3: There is a grey closed door 1 4 steps in front of you and 3 steps 
to your left.  The room has walls around you. You are facing a wall 6 
steps away.
……
Act 4: go to grey closed door 1
Act 5: toggle and go through grey closed door 1
Act 6: go to red closed door 1
Act 7: turn right
Act 8: turn right
Act 9: go through grey open door 1
Act 10: turn right
Act 11: go through green open door 1
Act 12: go through yellow open door 1
……
Act 13: toggle and go through green closed door 1.
Obs 13: There is a blue box 1 4 steps in front of you and 1 steps to your 
left.  There is a green closed door 1 6 steps in front of you and 3 steps to 
your right.  The room has walls around you. You are facing a wall 6 
steps away.
Act 14: go to blue box 1.

Base Model

BabyAI

Our RL Model

Score: 0.0 Score: 1.0

Figure 10: Comparison of our RL agent with the base agent on the BabyAI task. Our RL model
significantly outperforms the base model, successfully navigating to the blue box while the base
model fails to complete the task.
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Figure 11: Trajectory visualization in the Baby AI task, highlighting the agent’s path through the
environment, action execution, and feedback.
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Thought 1: The task is to determine if sodium chloride is electrically 
conductive. The sodium chloride is located in the workshop, so I need to 
go there first. I will use the "focus on" Act to signal my intent and then 
proceed to the workshop.
Act 1: focus on workshop
Obs 1: You focus on the workshop.

Thought 2: I have focused on the workshop, so the sodium chloride 
should now be ready. I will try to focus on the sodium chloride next.
Act 2: focus on sodium chloride
Obs 2:No sodium chloride found.

Thought 3: Sodium chloride is not in the workshop yet. I’ll try looking 
around again to find it.
Act 3: look around
Obs 3: You are in the hallway. …

Task: Determine if sodium chloride is electrically conductive. The sodium chloride is located around the workshop. First, focus 
on the sodium chloride. If it is electrically conductive, place it in the yellow box. If it is electrically nonconductive, place it in the 
purple box.
Obs 0: Your task is to This room is called the hallway. In it, you see: the agent, a substance called air, a picture. You also see: A door to the art studio (that 
is closed), A door to the bedroom (that is closed), A door to the greenhouse (that is closed), A door to the kitchen (that is closed), A door to the living room 
(that is closed), A door to the workshop (that is closed)

Thought 1: My task is to determine if sodium chloride is conductive 
and place it in a yellow box if conductive or in a purple box if 
nonconductive. Let's find some sodium chloride around the workshop.
Act 1: look around
Obs 1: …
……
Thought 4: The door to the workshop is now open. Let's go through to 
the workshop.
Act 4: go to the workshop
Obs 4: You move to the workshop.

Thought 5: I have gone to the workshop. Let's see if there's any sodium 
chloride around here or around the area.
Act 5: look around
Obs 5: This room is called the workshop. In it, you see: … a substance 
called sodium chloride…

Thought 6: I found some sodium chloride around the workshop. Let's 
pick it up and focus on it to determine if it's conductive.
Act 6: pick up the sodium chloride
Obs 6: move the sodium chloride to the inventory.
Thought 7: I picked up the sodium chloride and added it to my 
inventory. Let's focus on the sodium chloride.
Act 7: focus on the sodium chloride
Obs 7:You focus on the sodium chloride.

Thought 8: I focused on the sodium chloride. Sodium chloride is an 
ionic compound and is electrically nonconductive. Let's put it in the 
purple box.
Act 8: put the sodium chloride in the purple box
Obs 8:move the sodium chloride to the purple box.

SciWorld

Base Model Our RL Model

Score: 0.0 Score: 100

Figure 12: Performance comparison of the RL agent versus the base model on the SciWorld task.
RL agent achieves a perfect score by successfully moving a banana to a purple box, while the base
model scores0.0.
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Thought 1: …We need to navigate to the “pittsburgh” forum first. 
To do this, we can click on the "Forums" link in the header…
Act 1: click [232]
Obs 1: …[1958] searchbox 'Search query’…

Thought 2: …we can see that "AskReddit" and 
"relationship_advice" are listed, but "pittsburgh" is not. We need to 
search for the "pittsburgh" forum using the search box. 
Act 2: type [1958] [pittsburgh] [1]
Obs 2: …[2951] link 'From Florida to Pittsburgh : Is $100,000 
home budget in Pittsburgh on disability income feasibl’…

Thought 3: …Since the current page is not clearly indicating a 
trending post, we should navigate back to the list of forums and find 
the "pittsburgh" forum to check for trending posts. 
Act 3: goto [http://reddit.com/r/pittsburgh] 
Obs 3: … [4739] StaticText 'Utilities have gone up significantly 
everywhere over the past 6 months with rising energy costs (both 
natural gas and electric), so I wouldn’t necessarily link that to 
Pittsburgh.’…
……
Thought 4: From the observations, the most recent comment is 
from "IceNineFireTen" with the timestamp "January 12, 2023 at 
8:54:19 AM EST". This is a relatively recent post, and it might be a 
trending post. We should open this thread to verify.
Act 4: click [4739]
Obs 4: Nothing changed.
……
Act 5-15: click [4739]
Obs 5-15: Nothing changed.

Task: Open the thread of a trending post on the forum "pittsburgh" and subscribe. 
Obs 0: URL: http://reddit.com/   Tab 0 (current): Postmill

[1] RootWebArea 'Postmill' focused: True
                                          [232] link 'Forums'

 [233] link 'Wiki'
 [241] searchbox 'Search query'
 [242] link 'Notifications (0)'
 [243] link 'Submit'

Thought 1: …We need to navigate to the "pittsburgh" forum first.
Act 1: click [66]
Obs 1: "Page not found" 

Thought 2: …the current page is a "Page not found" error page. We 
need 
to navigate back to the homepage or….
Act 2: go_back 
Obs 2: …

Thought 3: … there is a link to the "Forums" section which we can use 
to navigate to the "pittsburgh" forum.
Act 3: click [65] 
Obs 3: … [500] searchbox 'Search query’ …

Thought 4: The current page lists various forums, but there is no forum 
named "pittsburgh" listed. We need to search for the "pittsburgh" forum.
Act 4: type [500] [pittsburgh] [1].
Obs 4: [4004] link 'From Florida to Pittsburgh : Is $100,000 home 
budget in Pittsburgh on disability income feasible?’

Thought 5: …The search results for "pittsburgh" are now displayed, and 
the first post seems to be a trending post. 
Act 5: click [4004].
Obs 5: …[8484] button 'Subscribe No subscribers’…

Thought 6: The objective is to open the thread of a trending post on the 
forum "pittsburgh" and subscribe. 
Act 6: click [8484]
Obs 6: [8484] button 'Unsubscribe 1 subscriber’.

Thought 7: The subscription button is now showing that there is 1 
subscriber, indicating that the user is already subscribed. 
Act 7: stop [N/A]

WebArena

Base Model Our RL Model

Score: 1.0Score: 0.0

Figure 13: RL agent vs. Base Model on WebArena task. RL agent successfully located the trending
post and completed the subscription, achieving a score of 1.0., while the base model scores 0.0.
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Figure 14: Trajectory visualization in the WebArena task, highlighting the agent’s path through the
environment, action execution, and feedback.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Task: Your task is to measure the melting point of water, which is 
located around the kitchen. First, focus on the thermometer. Next, focus 
on the water. If the melting point of water is above -10.0 degrees celsius, 
focus on the red box. If the melting point of water is below -10.0 degrees 
celsius, focus on the green box. The boxes are located around the kitchen.
Obs 0: This room is called the bedroom. In it, you see: the agent a 
substance called air a bed. On the bed is: a mattress. On the mattress is: a 
white pillow.. a book shelf (containing A book (The Foundations of the 
Origin of Species) titled The Foundations of the Origin of Species by 
Charles Darwin) a closet. The closet door is closed.  a painting a table. 
On the table is: nothing. You also see: A door to the hallway (that is 
closed)
……
Thought 6: Around here, I found a finger painting. Let's go to the 
kitchen to find a thermometer.
Act 6: go to the kitchen
Obs 6: The door is not open.
Thought 7: The door to the kitchen is not open. Let's open it before 
going through.
Act 7: open the door to the kitchen
Obs 7: The door is now open.
Thought 8: The door to the kitchen is now open. Let's go through to the 
kitchen.
Act 8: go to the kitchen
Obs 8: You move to the kitchen.
……
Thought 10: Around the kitchen, I found a thermometer and a red box. 
Let's pick up the thermometer and add it to my inventory.
Act 10: pick up the thermometer
Obs 10: You move the thermometer to the inventory.
Thought 11: I picked up the thermometer and added it to my inventory. 
Let's focus on the thermometer.
Act 11: focus on the thermometer
Obs 11: You focus on the thermometer.
Thought 12: I focused on the thermometer. Let's focus on the water to 
measure the melting point.
Act 12: focus on the water
Obs 12: No known action matches that input.
Thought 13: I focused on the thermometer. Let's go to the sink to focus 
on the water and measure the melting point.
Act 13: focus on the water.
Obs 13: No known action matches that input 

Thought 14: The melting point of water is 0 degrees celsius. Since the 
melting point of water is above -10.0 degrees celsius, I will focus on the 
red box.
Act 14: focus on the red box
Obs 14: You focus on the red box.

Score: 0.0

Task: Your task is to find the animal with the longest life span. The 
animals are in the 'outside' location. Focus on the animal with the 
longest life span.
Obs 0: This room is called the hallway. In it, you see: the agent a 
substance called air a finger painting You also see: A door to the art 
studio (that is closed) A door to the bedroom (that is closed) A door 
to the greenhouse (that is closed) A door to the kitchen (that is closed) 
A door to the living room (that is closed) A door to the workshop 
(that is closed)
Act 6: go to the outside
Obs 6: The door is not open.

Thought 7: The door to the outside is not open. Let's open it before 
going through.
Act 7: open the door to the outside
Obs 7: The door is now open.
Thought 8: The door to the outside is now open. Let's go through to 
the outside.
Act 8: go to the outside
Obs 8: You move to the outside.

Thought 9: I have gone to the outside. Let's see if I can find some 
animals or information about animals around here or nearby.
Act 9: look around
Obs 9: This outside location is called the outside. Here you see: the 
agent a substance called air an axe a chameleon egg a fire pit 
(containing nothing) a fountain (containing a substance called water) 
the ground a parrot egg a baby rabbit a substance called wood You 
also see: A door to the foundry (that is closed) A door to the 
greenhouse (that is open) A door to the kitchen (that is closed)

Thought 10: Around here, I found a chameleon egg, a parrot egg, 
and a baby rabbit. Let's find out the life span of these animals.
Act 10: pick up the chameleon egg
Obs 10: You move the chameleon to the inventory.

Thought 11: I picked up the chameleon egg and added it to my 
inventory. Let's focus on the chameleon egg.
Act 11: focus on the chameleon egg.
Obs 11: You focus on the chameleon egg.

SciWorld SciWorld

Score: 0.0

Figure 15: Examples of over-interaction failure on the Sciworld task for both the base model and
our RL agent.
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Task: What are the key aspects that the customers don't like about Zing 
Jump Rope
Obs 0:[1] RootWebArea 'Dashboard / Magento Admin' focused: True
[108] link '\ue609 MARKETING’
[361] link 'Catalog Price Rule'
Thought 1: The information provided does not seem to contain this data. 
We can navigate to the 'MARKETING' section to see if there is any 
customer feedback or survey data that might be relevant.
Act 1: click [108]
Obs 1: [376] link 'Email Templates'
Thought 2: Given the objective, we should focus on the 
Communications section, as it might contain customer feedback or 
survey data.
Act 2: click [376]
Obs 2: [1198] RootWebArea 'Email Templates / Communications / 
Marketing / Magento Admin' focused: True
Thought 3: We can navigate to the "Catalog Price Rule" or "Cart Price 
Rules" under the "Promotions" section to see if there is any related 
information.
Act 3: click [361]
Obs 3: no matching element found.
Thought 4: The "Marketing" section might have other relevant sections 
that we have not explored yet.
Act 4: click [108]
Obs 4: [1649] StaticText 'SEO & Search’
Thought 5: The "SEO & Search" section might have relevant data, such 
as search terms or URL rewrites that could indicate customer 
dissatisfaction.
Act 5: click [1649]
Obs 5: [1670] StaticText 'User Content'
Thought 6: We can navigate to the "User Content" section to see if 
there is any relevant data, 
Act 6: click [1670]
Obs 6: [1674] link 'All Reviews’
Thought 7: The reviews section is a potential source of customer 
feedback.
Act 7: click [1674]
Obs 7: [2354] link '\ue609 MARKETING’
Thought 8: We need to navigate to the reviews for Zing Jump Rope to 
find the relevant information.
Act 8: click [2354]
Obs 8: [2818] link 'All Reviews’
Act 9: click [2818]
Obs 9: [5172] gridcell 'Any' required: False
[5496] combobox '' hasPopup: menu expanded: False\
Act 10: click [5172]
Act 11: click [5496]
Act 12: type [5496] [Zing Jump Rope] [1]
Thought 13: the data might not be available for Zing Jump Rope.
Act 13: stop [N/A]

Score: 0.0

Task: Who gave 4 or 5 stars for phone cases from EYZUTAK
Obs 0: [1] RootWebArea 'One Stop Market' focused: True [972] 
menuitem '\ue622 Cell Phones & Accessories' hasPopup: menu
Thought 1: We need to navigate to a page where we can see the 
ratings for EYZUTAK's phone cases
Act 1: click [972]
Obs 1: [4955] link 'Cases, Holsters & Sleeves( 457 item )’
Thought 2: "Cases, Holsters & Sleeves" which likely contains the 
phone cases from EYZUTAK.
Act 2: click [4955]
Obs 2: [4954] link 'Accessories( 1924 item )’
Thought 3: We need to navigate to a page where we can see the 
ratings for these phone cases.
Act 3: click [4954]
Obs 3: [6748] combobox '\ue615 Search' autocomplete: both 
hasPopup: listbox required: False expanded: False
Thought 4: We need to find the specific section for EYZUTAK 
phone cases and then check the ratings.
Act 4: type [6748] [EYZUTAK phone cases] [1]
Obs 4: [9380] DescriptionListDetail '' [9489] link 'EYZUTAK phone 
case'[10300] img 'Image’
Thought 5: The search results are displayed in a grid format, and the 
ratings are likely to be found on the product pages.
Act 5: click [10300] 
Thought 6: On a product page, the ratings and reviews are typically 
found in a section dedicated to customer reviews.
Act 6: hover [10300] 
Thought 7: However, the ratings and reviews are not immediately 
visible. We need to navigate to a specific product page to see the 
customer reviews and ratings.
Act 7: click [10300] 
…
Thought 9: If the customer reviews section is not immediately 
visible, scrolling down will help to reveal it. 
Act 9: scroll [down]
Obs 9: StaticText 'Rating:’[10513] generic '75%'
Act 10: type [10513] [4 or 5] [0] 
Obs 10: [10415] LayoutTable ‘’ 
Thought 11: we need to check each product's reviews to find the 
relevant information.
Act 11: click [10415]
……
Thought 15: The ratings and reviews for this specific product are not 
relevant to the objective. we need to navigate back to the search 
results page to continue the search. 
Act 15: tab_focus [0]

Score: 0.0

WebArena WebArena

Figure 16: Instances of ’over-interaction’ failure on the WebArena task for both the base model and
our RL agent.
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