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ABSTRACT

This paper studies the computational challenges of large-scale attention-based
models in artificial intelligence by introducing innovative sampling methods in the
streaming setting. Inspired by the classical definition of the {5 sampler and the
recent progress of the attention scheme in Large Language Models (LLMs), we
propose the definition of the attention sampler. Our approach significantly reduces
the computational burden of traditional attention mechanisms. We demonstrate
the effectiveness of the attention sampler from a theoretical perspective, including
space and update time. Additionally, our framework exhibits scalability and broad
applicability across various model architectures and domains.

1 INTRODUCTION

In recent years, the field of artificial intelligence has witnessed a significant paradigm shift with the
advent of attention-based models, particularly in the domains of natural language processing and
computer vision (Vaswani et al.,[2017;|Devlin et al.| 2019; |Liu et al., [2019; |Yang et al.}2019; Brown
et al.||2020; Zhang et al.l 2022 Chowdhery et al.| 2023; Touvron et al., [2023azbj lInc., 2023 [Manyika,
2023)). At the heart of these models lies the attention mechanism (Vaswani et al.| 2017), which is a
powerful tool for enhancing the performance of deep learning networks. It enables models to focus
on relevant parts of the input data, thereby facilitating context-aware processing.

However, as these models scale in size and complexity Zeng et al.| (2024)); Reid et al.| (2024); Zhang
et al.|(2024); Dubey et al.[(2024)); Abdin et al.|(2024), the computational demands of the attention
mechanism increase exponentially, posing significant challenges in terms of efficiency and scalability
Fu| (2024). In particular, traditional attention mechanisms used in Transformer models (Vaswani
et al.,[2017) require computing attention weights across all elements of the input sequence, leading
to a quadratic increase in computational complexity with respect to the sequence length (Alman &
Songl 2023} |[Kacham et al., [2023; Han et al., 2024} |[Zandieh et al.| 2023} |Alman & Song, |2024aZb;
2025a)). This computational burden becomes particularly pronounced in large-scale applications. It
hinders the usage of attention-based models in resource-constrained settings and limits their real-time
processing capabilities.

To deal with this problem, the core question we ask in this paper is:

Instead of computing all entries, can we recover the most important ones in efficient space and time?

Attention Samplers. We adopt the classical idea of sampling a dataset, which selects important
items to represent the entire dataset. Sampling is a central and effective technique for analyzing
large-scale datasets, which has broad application in the field of big data (Vitter, |1985; Gemulla et al.,
2008}, |Cohen et al., 2011} 2014)), including network traffic monitoring (Mai et al., 2006, Huang et al.|
2007} Thottan et al., 2010), database management (Haas & Swamil |1992;|Haas| 2016} |Cohen & Geril
2019), and data summarization (Frieze et al., [2004; |Aggarwal et al., [2009; Mahabadi et al., [2019;
Indyk et al., [2020; Mahabadi et al., [2020). A well-known example is the {5 sampler first asked by
Cormode et al.|(2005) and studied by Monemizadeh & Woodruff| (2010): given a vector z € R™, we

sample an index ¢ € [n] with probability %

To address the challenges in implementing large-scale attention schemes, we seek to sample the
most important coordinates in attention computation, reducing computational overhead and computer
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storage. Inspired by the classical definition of the g-sampler on a vector, we propose the following
attention sampler, which is thoroughly investigated in this paper.

Definition 1.1 (Attention sampler). Given matrix A € R™*? vector 2 € R¢, and a distribution

function g, the attention sampler samples index i € [n] with probability p; = %.
j=1 J

The motivation of our definition lies in the internal structure of the attention mechanism. Given input
matrices A; and A,, the linear attention matrix is defined as A; X AJ , where X = QK | is the fused
key and query matrix. For linear self-attention, A; and A, are identical. Utilizing a well-known
tensor product construction (Alman & Song|, 2024a), we simplify the expression of the attention
matrix to a matrix-vector product. Let A = A; ® A, and let x = vec(X), the vectorized linear
attention matrix turns out to be vec(A; X AJ ) = Ax. Here, vec denotes the vector representation of
a matrix by concatenating the rows. Therefore, our attention sampler detects the dominant entry in
the linear attention matrix, providing an effective approximation of the attention scheme.

Given unlimited space and time, the sampling problem is trivial since one can compute each entry
explicitly and sample an index with the corresponding probability. However, as mentioned earlier, we
are not granted unlimited resource in real-world applications, for instance, in resource-constrained
settings or in real-time processing. This inspires us to investigate the attention sampler in the
streaming model, where the input matrix A, the weight vector z, or both A and x arrive sequentially
in a data stream, and the goal is to report a valid sample at all times using efficient space and update
time. We study the turnstile data streams where the data can either be inserted or deleted at each time.

As databases handle increasingly vast and dynamic real-time data, the streaming model has emerged
as a vital framework for designing algorithms to process massive, constantly evolving datasets.
Examples include real-time analysis of social media streams, sensor data for smart infrastructure, live
video processing, detection of distributed denial of service (DDoS) attacks, and efficient indexing
and querying in large-scale databases. In this work, we combine the streaming model with attention
mechanisms and construct novel efficient attention samplers, which identifies the critical coordinates
in attention computation. Our contributions can be summarized as follows:

* For the softmax distribution (exp(Az), 1,,) ! exp(Az), we prove an (n) space streaming
sampler algorithm lower bound. (See Theorem [4.4)

* As the softmax distribution has a strong lower bound, we then provide upper bounds for
polynomial type samplers, i.e., Lo sampling from Ax:

1. For updating A and fixed x, our sampler takes d poly (%, n) bits of space and update
time (see Theorem [5.3). ‘

2. For updating A and fixed z, our sampler takes d poly (£,n) bits of space and O(1)
update time (see Theorem [5.3).

3. For updating both A and x, our sampler takes d poly (%, n) bits of space and update
time (see Theorem [5.7)).

* For updating both A and z, we also provide a lower bound of ©(d) space (see Theorem|6.2).

* Toward tensor generalization, where we have updating A; € R™? or Ay € R"*9 for
A=A ® Ay € R™**4” and fixed = € RdQ, we sample (i1,i2) = i € [n?] approximately

according to the £, sampling distribution on Az € R using O(nd) space, O(n) update
time (see Theorem . Note that the trivial result takes O(n?) space.

Hardness of softmax attention. Our lower bound in the first result demonstrates the hardness
for computing or approximating the softmax attention. This aligns with the lower bound in /Alman
& Song| (2023)), where they show that approximating softmax attentions up to small entry-wise
error requires subquadratic time in n assuming the Strong Exponential Time Hypothesis. These
challenges motivate us to explore polynomial attention mechanisms. Previous work has investigated
the performance of polynomial attention from both theoretical and empirical perspectives. For
instance, the PolySketchFormer (Kacham et al.}[2023) demonstrates that polynomial attention achieves
model quality comparable to softmax attentions with efficient low-dimensional approximations.
Furthermore, polynomial attention schemes perform competitively in various vision and NLP tasks,
including the linear attention in (Koohpayegani & Pirsiavash| 2024) and the polynomial attention
in (Saratchandran et al.,2024)). Building on these insights, we obtain efficient polynomial attention
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samplers in the streaming model, whose space and update time have no dependence on n factors,
effectively recovering the key components in the polynomial attention matrix.

Streaming attention mechanism. Our polynomial attention samplers work in the streaming model,
which matches the core idea of streaming Large Language Model (LLM) introduced and studied by
Xiao et al.[(2024), and recently gained increasing focus in LLM research and big-data analysis (Strati
et al.} 2024;|Yao et al., 2024; Shikhar et al., |2025; Xiao et al., [2025). The motivation is from long (or
infinite) sequence generation, e.g., a chat bot having a day-long conversation. When we apply LLMs
in these scenarios, we often encounter a efficiency-performance trade-off (Xiao et al.,[2024): during
the decoding stage, attention-based methods cache all Key and Value (KV) pairs, which requires
excessive memory usage; in contrast, under restricted memory, the performance collapses once the
sequence length exceeds the cache size. To deal with these drawbakcs, their method is to train the
models with a finite attention window to work on text of infinite length. Unlike |Xiao et al.| (2024),
our model is dynamic and data-driven, supporting both model weights and input tokens to constantly
change. We note that our sampler provides a correct attention sample at all times using efficient space.
Thus, we identify the important coordinates in attention computing without probing each KV pair,
which has high potential in enhancing the performance of streaming LLMS.

Sparse attention mechanism. Another practical relevance of our attention sampler is sparse
attention mechanism. The attention matrix has been shown to be naturally sparse empirically and
theoretically (see e.g. (Deng et al.,|2024b)). Based on this observation, researchers seek to reduce
computation by sampling the attention layers (Child et al., 2019; Kitaev et al., [2020; Wang et al.|
2020; /Alman & Song|, 2023} Brand et al., 2024} Deng et al., 2023c} [Lai et al., [2025}; |Xiao et al.
2025} [Zhang et al.| [2025). In general, they construct a sparse mask that selects the importance
entries in the attention multiplications while others are zeroed out. Then, they compute the partial
attention corresponding to those in the sparse mask. Specifically, (Xiao et al.,|2025) explores the
sparse attention with streaming heads. Our attention sampler recovers large coordinates from the
attention matrix given specific streamed inputs and weights. Thus, the sampler serves as an efficient
subroutine in their sparse-attention sampling schemes, evaluating and enhancing the effectiveness of
their construction of the sparse mask.

Streaming algorithms. In addition, our sampler can be integrated into inner product computation
(see e.g. 'Woodruff & Zhou| (2021))), which is a cornerstone for model training and attention compu-
tation. In fact, classical L, samplers also serve as black-box subroutines in many other streaming
algorithms, including finding heavy hitters, F}, moment estimation, and cascaded norm approximation
Andoni et al.| (201 1); Jowhari et al.| (201 1)); Jayaram & Woodruff| (2021); Woodruff & Zhou|(2021)).
Therefore, our attention sampler can be applied to discover essential properties of the attention
scheme, e.g., the norm of the attention matrix.

2 RELATED WORK
In this section, we present related work in sampling and tensor sketch.

On sampling. Given a vector v € R™ and a distribution function g, recall that the classical g-

sampler samples index ¢ € [n] with probability p; = % A well-known example is the L,

sampling defined by g(z) = |z|P for p > 0. The existence of such a L,, sampler algorithms first posed
as a question by (Cormode et al.|(2005) in 2005. Monemizadeh & Woodruff| (2010) partially answered
this question in the affirmative by giving an L,, sampler using polylogarithmic space for p € [1, 2],
although the sampling probabilities were distorted by a multiplicative (1 + ¢) factor and an additive
ﬁ(n) factor. We note that the sampler is perfect if there is no e-multiplicative distortion; it is truly
perfect if there is no additive distortion, i.e., the sampling probability is exact. The space requirements
of the algorithm were subsequently improved (Andoni et al., 2011;|Jowhari et al.| [2011)) and extended
to other choices of index domain U and weight function W (Cohen & Geril 2019; |[Mahabadi et al.|
2020; [2022), while retaining a multiplicative distortion in the sampling probability. Surprisingly,
Jayaram & Woodruff] (2021) showed that it is possible to achieve no perfect samplers while using
polylogarithmic space, while conversely [Jayaram et al.|(2022)) showed that truly perfect samplers
would require linear space, essentially closing the line of work studying the space complexity of
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L, samplers for p € [1,2]. It should be noted however, achieving such guarantees (no additive
distortion) in sub-polynomial update time while retaining the space guarantees remains an intriguing
open question (Jayaram et al.||2022). For the other regime of p > 2, recently, Woodruft et al.|(2025)
complemented the results by providing efficient perfect L,, samplers for p > 2. |Swartworth et al.
(2025) achieved perfect samplers with polylogarithmic update time for p > 2, improving on the
previous update time. For a more comprehensive background on samplers, we refer to the survey by
Cormode & Jowhari|(2019)).

On tensors. In the realm of tensor decomposition, the canonical polyadic (CP) decomposition,
specifically the CANDECOMP/PARAFAC method, stands out for its unique ability to break down
tensors into rank-1 tensors in a singular way, distinct from matrix decomposition (Harshmanl [1970;
Song et al., 2016). This method, having applications in computational neuroscience, data mining,
and statistical learning (Wang et al.,[2015)), emphasizes the rigidity and uniqueness of tensor decom-
position. Earlier studies (Tsourakakisl 2010j Phan et al.l 2013} |Choi & Vishwanathan| [2014; Huang
et al.,[2013} [Kang et al., [2012; |Wang et al., 2014; Bhojanapalli & Sanghavi, 2015) have delved into
efficient tensor decomposition methods. Subsequent works introduced methods for fast orthogonal
tensor decomposition using random linear sketching techniques (Wang et al.,|2015)) and explored
symmetric orthogonally decomposable tensors’ properties, integrating spectral theory (Robeva, |2016;
Robeva & Seigall [2017)). Additionally, importance sampling for quicker decomposition was proposed
(Song et al 2016). (Deng et al.,|2023a) studies the tensor cycle low rank approximation problem.

In algebraic statistics, tensor decompositions are linked to probabilistic models, particularly in
determining latent variable models’ identifiability through low-rank decompositions of specific
moment tensors (Allman et al., [2009ajb; Rhodes & Sullivant, [2012)). Kruskal’s theorem (Kruskal,
1977) was pivotal in ascertaining the precision of model parameter identification. However, this
approach, assuming an infinite sample size, does not provide the minimum sample size for learning
model parameters within given error bounds. A more robust uniqueness guarantee is needed to
ensure that the low-rank decomposition of an empirical moment tensor approximates that of an actual
moment tensor, thus offering more insight into empirical moment tensors’ decomposition.

Roadmap. In Section[3] we provide some standard notations and definitions in literature. In Section[4}
we study the exponential sampler. In Section[5] we study the streaming upper for the ¢, sampling
problem, i.e., sampling coordinates from a vector Az, where A and x may be updated across a data
stream. In Section[6] we present lower bounds for the same ¢, sampling problem. In Section[7} we
discuss the tensor sampling problem.

3 PRELIMINARIES

For any positive integer n, we use [n] to denote the set {1,2,--- ,n}. We use E[] to denote the
expectation. We use Pr[-] to denote the probability. We use 1,, to denote a length-n vector where
all the entries are ones. Given two length-n vectors, we use (z,y) to denote the inner product
between z and y, i.e, (z,y) := > ., x;y;. For a vector € R"™, we use exp(z) € R" to denote a
vector that has length n and the i-th entry is exp(x;). For a matrix A, we use exp(A) to denote the
matrix that (4, j)-th coordinate is exp(A; ;). For a vector x, we use ||z||s == (31, 2)/2. We use
lzll1 == >0, |zs]. We use ||z||o to denote the £y norm of z, which is the number of nonzero entries
in 2. We use |||/ to denote the £, norm of z, which is max; ¢y [2;|.

Let ny,ng,dy, do be positive integers. Let A € R"1*% and B € R"2*%_ We define the Kronecker
product between matrices A and B, denoted A® B € R™"2%%1% a5 (A® B) () _1)ny4i5.(j1—1)da+ja
is equal to Ai1,j1 Bi2,j2, where 71 € [nl],jl S [dﬂ, 19 € [ng],jg S [dg}

We use poly(n) to denote n¢ where C' > 1 is some constant. For any function f, we use O(f) to
denote f - poly(log f). For two sets A and B, we use A N B to denote their intersection. We use
|A N B| to denote the cardinality of A N B. We use A U B to denote the union of A and B.

TensorSketch. We next define TensorSketch (Paghl 2013, which has been extensively used in
many sketching and optimization problems (Diao et al., 2018};|Song et al.| 2019;|Diao et al.| 2019
Ahle et al.,2020; Song et al.| [2021; 2024; 2022} [Zhang| 2022} |Song et al., |2023b)). [Song et al.| (2022)
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defined TensorSparse by composing Sparse embedding (Nelson & Nguyén, [2013; (Cohen, 2016)
with a tensor operation (Paghl 2013)).

Definition 3.1 (TensorSparse, see Definition 7.6 in|Song et al.|(2022)). Let hy, ho : [n] X [s] —
[m/s] be O(log1/d)-wise independent hash functions and let 01,02 : [n] x [s] — {£1} be
O(log 1/4)-wise independent random sign functions. Then, the degree two tensor sparse trans-
form, S : R™ x R™ — R™ is given as:

Ry i) = 3k € [s] : 016, K)oa (. k)/v/5 - L[((a (i, k) + ha(j, k) mod m/s) + (k — Lym/s = 1]

For s = 1, the above definition becomes TensorSketch (Paghl 2013).

4 EXPONENTIAL SAMPLER

In this section, we define and consider exponential samplers. We then show strong space lower
bounds for achieving such a data structure when the input dataset arrives in a data stream.

Let us firstly describe the offline version:

Definition 4.1 (Exponential sampler). Given matrix A € R"*% and = € R?, the goal is to sample
index i ~ [n] with probability p; = (exp(Ax),1,)~! - exp(Ax);, where 1,, denotes a length-n
vector, exp(Ax) € R™ denotes a length-n vector with exp(Az); = exp((Azx);), and exp(z) is the
usual exponential function.

Now, consider y = Ax € R", where either A or z, or both are arriving in a data stream, we use the
following definition for each of the various cases:

Definition 4.2. Let C' > 0 be any fixed constant and let Cy € [n~¢,n®]. Let y be a vector. Then
exp(yi)

the exponential sampler outputs an index j* such that for all i € [n], Pr[j* =i] = Cy - ICTIRENE

We first recall the (two-party) set-disjointness communication problem SetDisj,,, in which two parties
Alice and Bob have subsets A and B, respectively, of [n]. Note that we can equivalently view A
and B as binary vectors in n-dimensional space, serving as the indicator vector for whether each
index i € [n] is in the player’s input subset. The task for the players is to determine whether there
exists a common element in their intersection, i.e., whether there exists ¢ € [n] such thati € (AN B)
or equivalently, A; = B; = 1. In fact, the problem promises that either the inputs are completely
disjoint, |A N B| = 0 or the inputs contain only a single coordinate in their intersection, |A N B| = 1.
We recall the following standard communication complexity result of set-disjointness.

Theorem 4.3 (Kalyanasundaram & Schnitger| (1992); [Razborov| (1992); Bar-Yossef et al. (2004)).
Any protocol that solves the set-disjointness problem SetDisj,, with probability at least % requires
Q(n) bits of total communication.

We show that even a sampler that relaxes the probability distribution defined in Definition[4.2Jup to a
factor of n” is infeasible in the streaming model.

Theorem 4.4. Let y € R" that arrives as a data stream and let C > 0 be a constant. Then any

algorithm that samples an index i € [n| with probability proportional to p; = %

Q(n) bits of space, even if the sampling probabilities are allowed to be distorted by as large as n
and even if ||y||oo = O(logn).

must use
C

Proof. Let A, B € {0,1}" be input vectors from the set disjointness problem, so that the goal is
to determine whether there exists ¢ € [n] such that A; = B; = 0. Observe that Alice and Bob can
multiply A and B by 100C log n for some constant C' > (. Now, note that in the disjoint case, we have
that ||A + B||ooc = 100C logn and in the non-disjoint case, we have that || A + Bl = 200C logn.
In particular, in the non-disjoint case, there exists 7 € [n] such that A; + B; = 200C log n and for all
J # 1, we have that A; + B; < 100C log n. Hence, in the non-disjoint case, any exponential sampler
will output ¢ with probability proportional to exp(200C logn) and output j # ¢ with probability
proportional to n - exp(100C'log n). Even if the sampling probabilities are distorted by a factor of
n®, any exponential sampler would output 7 with probability at least %.

Thus, Alice and Bob can use such a data structure to sample an index ¢ and then check whether
A; = B; = 1. In particular, Alice can first create a data stream encoding the vector A, run the
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sampling algorithm on the data stream, and then pass the state of the algorithm to Bob. Bob can
then create another portion of the data stream encoding an addition of the vector B, take the state of
the algorithm from Alice, run the sampling algorithm on the portion of the data stream, and query
the algorithm for an index ¢. Bob can then take the index and pass it to Alice, and the two parties
can finally communicate whether A; = B; = 1, thereby solving set-disjointness with probability at
least %. Note that the communication of the protocol is the space used by the sampling algorithm.
Therefore by Theorem such a sampler must use €2(n) bits of space. O

5 ¥¢9 SAMPLER UPPER BOUND WITH A AND z

In this section, we describe a standard data structure for {5 sampling. We start with providing the
definition of /5 sampler as follows,

Definition 5.1. Let n denote a positive integer. Let € > 0 denote a parameter. In /5 sampling, we
receive each coordinate of y € R™ in a turnstile data stream, and the goal is to output an index I € [n]

at all times such that for each j € [n], Pr[I = j] = (1t¢) - ‘lﬁj”lz + 1/ poly(n).
2

We describe various instantiations of the ¢5 sampler for sampling entries from a vector Az € R",
based upon whether the matrix A € R™*¢ is updated during the data stream, whether the vector
x € R? is updated during the data stream, or both.

5.1 A 1S UPDATED DURING THE STREAMING AND z IS FIXED

In this section, we describe the construction of an {5 sampler for sampling coordinates of the vector
Az € R", in the setting where the vector z € R? is fixed, but the entries of A € R™*< are evolving
as the data stream progresses.

Definition 5.2 (Updating A and fixed x). In this setting, we assume = € R? is fixed, we receive
updates to the entries of A € R™*¢ in a turnstile data stream. Then for y = Az, we want a data
structure that produces the ¢5 sampling guarantee for y.

We remark that a turnstile data stream means that each update of the data stream can increase or
decrease a single entry of A.

In this work, we are interested in the regime of n >> d. Then we have the following guarantee:

Theorem 5.3. Suppose y = Ax, for x € R™, which is fixed, and A € R™*<, which is defined by
a turnstile stream. There exists an {s-attention sampler that uses dlogn + poly (%, log n) bits of

> + 1/ poly(n). The update time of the

space and returns I € [n] such that Pr[I = j] = (1+te)- ‘Ilyzj\lz
2

data structure is d poly (%, log n)

Proof. Recall that existing approximate ¢, samplers, e.g., Algorithm 2| maintains a linear sketch ®y,
where & € R™*" for m = poly (%, log n) We have y = Ax, where = € R is fixed but A € R"*¢
is defined through turnstile updates. Nevertheless, we can maintain the state of ® Az. In particular,
whenever we receive an update in A; ; by A, then we can compute Q)eie; Az to update the sketch
® Az. To analyze the space complexity, observe that storing ® Az requires O(m) words of space and
x requires d words of space, which is d log n + poly (%, log n) bits of space in total. Moreover, each

update to A; ; can change all entries of ® Az, so the update time is O(md) = d poly (,logn).
[

5.2  x IS UPDATED DURING THE STREAMING AND A IS FIXED

We next consider the setting where the vector x € R? is updated as the data stream progresses, but
the entries of A € R™*? are fixed.

Definition 5.4 (Fixed A and updating ). We assume A € R"*? is fixed, we receive updates to
2 € R% in a turnstile data stream. Then for y = Az, we want a data structure that produces the /5
sampling guarantee for y.
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We have the following algorithmic guarantees for this setting:
Theorem 5.5. Suppose y = Ax, for A € R™*%, which is fixed, and x € R", which is defined by
a turnstile stream. There is an {s-attention sampler that uses d poly (%, log n) bits of space and

returns I € [n] such that Pr[I = jl = (1 +e)- ‘”y;nlz + 1/ poly(n). The update time of the data

structure is O(1).

Proof. Again recall that existing approximate ¢ samplers, e.g., Algorithm[2] maintains a linear sketch
dy, where & € R™*", for m = poly (%, log n) Since y = Az, but A € R"*? is too large to store,
while x € R" is defined through turnstile updates, we can instead maintain the sketch ® A and the
vector x and compute ® Ax = Py after the stream concludes. Note that storing $ A requires O (md)
words of space and x requires d words of space, which is d poly (%, log n) bits of space in total.
Moreover, each update to « changes a single entry, so the update time is O(1). O

5.3 BOTH A AND z ARE UPDATED DURING THE STREAMING

Finally, we consider the setting where both the vector 2 € R? and the entries of A € R"*¢ can be
changed by updates from the data stream.

Definition 5.6 (Updating A and updating z). In this setting, we receive updates to both A € R™*¢
and € R? in a turnstile data stream. Then for y = Ax, we want a data structure that provides the /o
sampling guarantee for y.

We have the following guarantees:

Lemma 5.7 (Upper Bound). Suppose y = Ax, for A € R"*% and x € R?, which are each defined in
a stream through turnstile updates. There exists an { — 2-attention sampler that uses d poly (%, log n)

bits of space and returns I € [n] such that Pr[I = j] = (1+¢€)- ‘Hyvjlfz + 1/ poly(n). The update time
JI2
is poly (£,logn).

Proof. As before, recall that existing approximate /5 samplers, e.g., Algorithm 2] maintains a linear
sketch @y, where ® € R™*", for m = poly (£,logn). Since y = Az, but now both A € R™*?
and x € R" are defined through turnstile updates, we can instead maintain the sketch ® A and the
vector  and compute ® Az = Py after the stream concludes. Observe that maintaining ® A requires
O(md) words of space and x requires d words of space, which is d poly (%, log n) bits of space in
total. Each update to A can change all m entries of in a single column of ® A, while each update to x
changes a single entry. Hence, the update time is poly (2, logn). O

6 /(5 SAMPLER LOWER BOUND (WITH A AND x)

In this section, we give lower bounds for £ sampling from a vector y = A®Pz, when either A or =
are updated in a data stream. We show that in any of these cases, the general problem is substantially
more difficult than the previous case where p = 1.

We first recall the Index problem for one-way communication. In the INDEX,, problem, Alice receives
a vector v € {0,1}" and Bob receives a coordinate ¢ € [n]. The goal is for Bob to compute v; with
probability at least %, given some message II from Alice. We recall the following communication
complexity lower bounds for Index.

Theorem 6.1 (Kremer et al.|(1999)). Any protocol that solves INDEX,, with probability at least %
requires )(n) bits of communication.

Lemma 6.2 (Lower Bound). Any streaming algorithm that solves problem defined as Definition
will require Q(d) space.

Proof. Suppose Alice receives a vector v € {0, 1}?. Then Alice creates the diagonal matrix M €
{0,1}9*4 5o that the j-th diagonal entry of A is vj, for all j € [n]. Finally, Alice creates A €
R(@+1)*d by appending the row consisting of 1or in all of its d entries to M. Suppose Bob receives
the coordinate 7 € [d] and wants to determine v;. Then Bob can set z to be the elementary vector
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e; € R% which has a 1 in its i-th coordinate and zeros elsewhere. Observe that by construction, Ax
is the ¢-th column of A. If v; = 1, then the i-th column of A consists of a 1 in the i-th entry, 10%0 in
the (d + 1)-st entry, and zeros elsewhere. Hence, a sampler with the desired properties will output
17 with probability at least %. Similarly, if v; = 0, then the i-th column of A consists of 10% in the
(d + 1)-st entry and zeros elsewhere. Thus, the sampler with the desired properties will output d + 1
with probability 1. Bob can therefore distinguish between these two cases with probability at least 2,
thereby solving INDEX, with probability at least %. Therefore, by Theorem such a sampler must

O

use at least Q(d) space.

In fact, we show that if y = A®Px, where A € R™*™ so that A®P € R™"*n” denotes the p-wise
self-tensor and z € R™", then actually L, sampling from y uses Q(n) bits of space.

Lemma 6.3. Let A € R"*" and A®? € R" %" denote the p-wise self-tensor. Let y = A®Pz, so
that x € R™ . Then even if all the entries of x arrive in a data stream followed by all the entries of A,
Lo sampling from y requires Q)(n) bits of space.

Proof. Let S € {0, 1}" be an instance of INDEX,,. Suppose Alice creates the diagonal matrix A
with exactly S being the entries across its diagonal, i.e., A;; = S1,..., 4, = S,. Bob has an
index i € [n], and sets the vector x to be the elementary vector e;, where j = i - n?~1. Then by
construction Az is the all zeros vector if S; = 0 and otherwise there is a nonzero entry, which allows
Alice and Bob to solve INDEX,,. Hence, Lo sampling from y requires §2(n) bits of space. O

7 THE TENSOR VERSION PROBLEM

In this section, we further consider sampling from a tensor product. We provide the tensor notations
and objects.

Definition 7.1. Let A; € R"*? let Ay € R"*? we define A = A; ® Ay € R" >4 Letz € RY.
2
Let A; € R**4" denote the i-th block of A.

Definition 7.2 (fixed z, Streaming Sampler for one of A; and As is updating.). We assume x € R
is fixed. We assume that (1) one of A; and A, is updating, (2) one of A; and A is fixed. Let y = Ax,

we want {5 sampling guarantee for sampling one coordinate in y; € R" forall i € [n?].

To motive this model, recall that the tensor product (4; ® As) x equals to the linear cross-attention
matrix A;QK T AJ, where Wg = A;Q is the projected query matrix and Wx = ApK is the
projected key matrix. Our model addresses a practical scenario involving real-time contextual
processing with a static reference dataset. In this setting, W}, is precomputed by the language model,
representing a static dataset such as embeddings of a knowledge base, user profiles, or multimedia
features. Then, the rows of matrix A; arrive as a data stream, representing real-time data queries.
Thus, our attention sampler efficiently captures the important entries in the dynamic query dataset.

We use the following formulation of Nisan’s pseudorandom generator to derandomize our algorithm.

Theorem 7.3 (Nisan’s PRG, Nisan|(1992)). Suppose A is an algorithm that requires S = Q(logn)
bits of space and R random bits. Then there exists a pseudorandom generator for A that succeeds
with probability 1 — 1/poly(n) and uses O(S log R) bits of space.

Algorithm 1 We build on algorithm based on S(z1 ® x2)

—_

Suppose we use O(nd) space to store A; and Ay (Avoid n? time/space)

2: Suppose we receive an update ¢ € [2], ¢ € [n],j € [d], A

3: Suppose we have hash function g to access uniform number

4. if ¢ = 1 then

5 p+giln—1)+1,--- ,in) {p € R}

6: Y < y+ PA(efin—1)41,in] © (A2)«,;)/p {P1 is decided by hy, 01}
7: else

8: Yo < yo + Poe; A { Py is decided by ho, 02}

9: end if
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In the following Lemma, we state a streaming algorithm to solve tensor related sampling problem.
We consider the situation that one of A; and As is fixed, and the other one is updated in streaming
fashion. We show the following estimation guarantees using the standard CountSketch analysis,
c.f.,[Charikar et al.|(2004); Jowhari et al.| (2011). We defer the proof to appendix Q

Lemma 7.4 (Tensor ¢, Tail Estimation). Lety = (A1 ® Ag)x € R™. Let only one of Ay and A,
be updated in streaming. Let w = \}!T for a constant u; € [0, 1] generated uniformly at random.

There is an algorithm A that that uses O(nd) + poly (£,logn) space, uses O(n) update time, and

estimates each element of w up to additive error € - || z||2, where z denotes the tail vector of w without
the largest 2 entries in magnitude. Specifically, for all i € [n?], we have |@W; — w;| < € - ||z]2.

We state the following lemma as a structural property that will allow us to achieve our tensor product
sampler. We remark that the proof is a simple adaptation of existing proofs for approximate £,
sampling (Jowhari et al., 2011). Thus we defer the proof to Appendix[C]

Lemma 7.5. Lety = (A} ® As)z € R™ and let w € R™ so that w; = \yﬁ

€ [0, 1] generated uniformly at random. Let z denote the tail vector of w without the largest 6%

entries in magnitude. Let Z be a 2-approximation to ||z||2 and Y be a 2-approximation to ||y||2, then

we have Pr[Z > \/(Clogn)/e- Y] < O(e) +

_ 1
poly(n)*

Finally, we describe the guarantees of our tensor-based sampler, deferring the proof to Appendix [D]

Theorem 7.6. Lety = (A1 ® As)x € R"™ and let w € R™ so that for each i € [n?], w; = \}%for

a constant u; € [0, 1] generated uniformly at random. Let z denote the tail vector of w without the
largest 6% entries in magnitude. Suppose there exists:

1. An algorithm A; that provides a 2-approximation to ||y||2 with probability 1 — #
2. An algorithm A that provides a 2-approximation to ||z||2 with probability 1 — 5.
3. An algorithm As that estimates each element of w up to additive error € - ||z||2, |w; — w;| <

€ ||z||2, for all i € [n?].

Then there exists a data structure that uses poly ( ,log n) bits of space and outputs each index i

with probability p; = (1 £ ¢€) - IIyHZ + poly(n)

We remark that the algorithms A; and As in the context of Theorem[7.6|can be achieved using the
standard AMS ¢, norm estimator (Alon et al. [1999). Moreover, algorithm 43 in the context of
Theorem [7.6| can be achieved using the standard CountSketch algorithm (Charikar et al., 2004).

8 CONCLUSIONS

To achieve efficient attention mechanisms, we introduce the attention sampler and study its behavior
in the streaming model. We established efficient polynomial samplers under various streaming
settings, when the input matrix, the weight vector, or both evolve dynamically, and we complement
the results by proving space lower bounds. Our framework identify the critical components in
attention computation, offering a foundation for efficient simulations of large-scale attention schemes,
which is central to modern machine learning and LLMs.

For future directions, from a theoretical perspective, given the {2(n) lower bound on exponential
samplers in general circumstances, it would be valuable to explore whether we can achieve o(n)
space under certain assumptions, e.g., restricting the entries in the attention matrix to o(logn). From
a practical perspective, it would be beneficial to evaluate our sampler’s performance by implementing
it in existing sparse attention schemes and streaming attention schemes.
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Appendix

Roadmap. In Section[A] we provide additional related work. In Section[B] we briefly discuss the
background on ¢y sampler. In Section|C| we show that how to use the tail bound to obtain sampling
result. In Section[D] we present the tensor sampling result. In Section[E] we discuss the LLM usage
of the paper.

A ADDITIONAL RELATED WORK

On sketching. The application of sketching and sampling techniques in numerical linear algebra
has been remarkably effective, revolutionizing a broad spectrum of core tasks. These methods are
crucial in linear programming (LP), as evidenced by |Cohen et al.| (2019); Jiang et al.| (2021); [Ye
(2020);|Gu & Song|(2022), and have significantly impacted tensor approximation (Song et al.,|2019;
Mahankali et al.,2024; [Deng et al., [2023a). Sketching and sampling techniques also have been widely
applied in matrix completion (Gu et al.,[2024), matrix sensing (Qin et al.| 2024; Deng et al.| [2023b)),
submodular function maximization (Qin et al., | 2023a)), dynamic sparsification (Deng et al.||2022a),
dynamic tensor product regression (Reddy et al., [2022), and semi-definite programming (Song et al.,
2023a). Additionally, sketching has been pivotal in iterative sparsification problems (Song et al.|
2022), adversarial training (Gao et al.,2022), kernel density estimation (Qin et al.| 2022b), solving
the distance oracle problem (Deng et al.,|2022b), and empirical risk minimization (Lee et al., 2019;
Qin et al.;2023b)). Its applications furthermore extends to relational databases (Qin et al.,[2022a) and
Large Language Model (LLM) research (Deng et al., [2023cfb; |Gao et al., 2025} |Li et al., 2023)).

On theoretical attention. A comprehensive body of research, including studies (Child et al., [2019;
Kitaev et al., 2020; Wang et al., [2020; |Daras et al., 2020; |[Katharopoulos et al., [2020; (Chen et al.}
20215 2022; |Zandieh et al., 2023} |Alman & Song, 2023} Brand et al., 2024; Deng et al.l 2023c};
Kacham et al., 2023} [Alman & Songl [2024a; Han et al., 2024; |Awasthi & Guptal, 2023} Marcus
et al., [2022; |Alman & Song, [2024b; [2025a;b)), has progressively shed light on the complexities and
optimization of attention matrix computation. This exploration has been further enriched by insights
into the effectiveness of attention mechanisms in Transformers (Dehghani et al., 2018 [Vuckovic
et al., |2020; |[Zhang et al., 2020; Edelman et al., 2022} Snell et al., 2021} Wei et al.| [2021; Deng
et al.| 2023d; 2024al). Among these,|Zhao et al.|(2023) revealed the adeptness of mid-scale masked
language models in identifying syntactic elements, paving the way for innovations like partial parse
tree reconstructions. Inspired the exponential mechanism in attention structure, |Gao et al.| (2023)
provide an analysis which shows exponential regression within the over-parameterized neural tangent
kernel framework can converge. In the over-constrained setting, several work show the convergence
for attention inspired regression problem (Li et al., 2023} |Deng et al., 2023b).

B {3y SAMPLER

We give the full details of the standard L, sampler from Jowhari et al.|(2011);|Mahabadi et al.| (2020)
in Algorithm @ The proof of correctness is verbatim from Jowhari et al.|(2011); Mahabadi et al.
(2020). The challenge is how to implement the data structures of y, which is implicitly defined
as (A; ® As)x. By comparison, in the standard setting of /5 samplers Monemizadeh & Woodruff
(2010); |Andoni et al|(2011)); Jowhari et al.| (2011)); Jayaram & Woodruft] (2021)); [Mahabadi et al.
(2020), y is given as a data stream.

C FRrRoOM TAIL TO SAMPLING

Lemma C.1 (Restatement of Lemma|7.4). Lety = (41 ® Ag)x € R™. Let only one of A1 and A,
be updated in streaming. Let w = \/u7 for a constant u; € [0, 1] generated uniformly at random.

There is an algorithm A that that uses O(nd) + poly (%7 log n) space, uses O(n) update time, and
estimates each element of w up to additive error € - ||z||2, where z denotes the tail vector of w without
the largest 2 entries in magnitude. Specifically, for all i € [n?], we have |W; — w;| < € - ||z]2.
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Algorithm 2 Standard ¢ Sampler, e.g., extension of |Jowhari et al.| (2011) to p = 2

1: Foreachi € [n], let u; € [0, 1] be chosen uniformly at random

Let z denote the tail vector of w without the largest E% entries in magnitude
Let Y be a 2-approximation of ||y||2

Let Z be a 2-approximation of ||z||2

i ¢ argmax;¢/,,| Wl

Let C' > 0 be a large constant determined by the additive faliure probability 5

1
oly(n)
8: if Z > \/%~?or\wi\ < % .Y then
9:  Return FAIL

AR A i

10: else
11:  Return ¢ with estimate /u; - W;
12: end if

Proof. Consider hash function hq, hs : [n] — [b]. Consider random sign functions o1, 09 : [n] —
{—1,+1}. We consider a fixed index i1, iz € [n]. Let j = hq(i1) + h2(i2) (mod b). Let h=1(j)
denote the all the pairs (i1,42) € [n] X [n] such that hq(i1) + ha(i2) (mod b) = j. Note that y;
induced by h is w; = w; + Eleh,l(j)\{i} sisjwy, wy,. For ease of presentation, we write o; =
01,i102,iy and 0y =01,0,02,-

E[w;] = E[wi + Z a(z’)a(l)wl} = Efw;] + Z Elo(i) - o(1)] - wy
leh=1()\{i} leh=1(5)\ {3}
=wi+ Y El()]-Elo()]w = uw,
leh=1(7)\{s}

where the first step follows from definition, the second step follows from linearity of expectation, the
third step follows from o (¢) and o (1) are independent, the forth step follows from E[o ()] = 0.

We now upper bound the variance of @; — y; by analyzing E[(7;)?]. Let H be the set of the top E%
items and let £ be the event that none of the items in # are mapped to h(i), i.e., h(a) # h(i) for all
a€H.

Observe that for b = 92, we have that Pr[€] > 0.9. Then we have:

E[(@; —w:)* | €] = E[( > o(i)o(Dw)?] =E > wf

le[n]2\H,leh—1(j) le[n]2\H,leh—1(j)
1 1
“pr 3wttt o 3 ud)
I€m]2\H.leh 1 (5) =

= 100¢” - 213,

for b = 1%, since z is the vector corresponding to y that removes the entries in . By Cheby-
shev’s inequality, we have that Pr[|@; — w;| > € [|z]2 | €] < 4. Since Pr[€] > 0.9, then
Pr|@w; —w;| > €-||z]|2 < 0.2, for a fixed hash function h. By taking the median of O(logn) estima-
tions corresponding to O(logn) different hash functions h, we have that Pr[|w; — w;| > € - ||z]]2] <
—I5. Thus by a union bound over i € [n] x [n], we have that with probability at least 1 — -%;, we have
forall i € [n], |W; — w;| > € ||z]|2- O

Lemma C.2 (Restatement of Lemma . Lety = (A1 ® Ag)x € R" and let w € R so that
w; = \%TL for a constant u; € [0, 1] generated uniformly at random. Let z denote the tail vector

of w without the largest % entries in magnitude. Let Z be a 2-approximation to ||z||o and Y be a
€

2-approximation to ||y||2. Then
N o1 N
Z > gn y
€

21

1

Pr .
poly(n)

< O(e) +
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Proof. Let & denote the event that Z is a 2-approximation to |lz||2 and Y is a 2-approximation to
lyll2, so that

1

Pr[é’l] >1-— m

Conditioned on &1, it suffices to bound the probability that

Clogn
422 > g

yll2-

Let j € [n?] be a fixed index and let u; be fixed.

Let T = /e ||y||2 and for each i € [n?], we define the indicator random variable W; = 1if |w;| > T
and W; = 0 otherwise, if |w;| < T. Note that W; is an indicator random variable for whether the
coordinate w; in the vector w is “heavy” in magnitude.

‘We then define

w?

Zi:T;'(l_Wi)

to be the scaled contribution of the small entries of z, and observe that Z; € [0, 1].

Let

7,'6[712],i75j

denote the total number of heavy indices besides possibly index j and Z =}, (.2 ;.; Zi denote
the total scaled contribution of the light indices besides possibly index j. Let v denote the vector
containing the heavy indices, so that v; = w; for W; = 1 and v; = 0 otherwise for W; = 0. Note that
v has sparsity at most Y + 1 and moreover U2Z = ||w — v||3. We also have that ||z||2 < [jw — v||2
unless W > %.

Let & denote the event that W > % and let & denote the event that Z > C;é%%:‘ - |ly||3. Observe

Clogn
€

that if neither &5 nor &3 occur, then we have 4|z ||y < “|ly||2, as desired. Thus it remains to

bound the probability of the failure events & and .

We have E[W;] = Hﬂ% , so that E[W] < 1. By Markov’s inequality, we have that Pr[€;] <

£
3-

[~

We now upper bound Pr[&3]. Recall that Z; = 7% - (1 — W;) = ij2 - (1 = W3), since w; = 2.

Observe that Z; > 0 only if |w;| < T, i.e., if u; > 7@”2, since T' = /€ - ||y||2- Fore € (0,1), we
€ 2
thus have

1
]E[ZZ] S / zidui
vi /i3

1 2
_ yi 1.
—/ZQJWMV
y2/llyllz %

Now, let &, be the event that u; > — forall i € [n?], so that Pr[€4] > 1 — ——.
Then
1 ! y-2
ElZ; | &) < —m—— 2L du,
[ | 4]7 1_7LC/122‘/1/7‘”C/2 Uj T2

Clogn 4
S T2 y’L N
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Thus, we have
ElZ| &)= ) ElZ|&]

i€[n?]
Clogn 4
- Z T2 i
i1€[n?]
Z Clogn y?
= 2
P
~ Clogn
=0
Thus by Markov’s inequality, the probability that Z is larger than ?éi}%? Nylz = CllgegQ" is at most
15+ The claim then follows from taking a union bound over the events &1, =&, =3, =&y. O

D TENSOR SAMPLING

Theorem D.1 (Restatement of Theorem . Lety = (A1 ® Ag)x € R™ and let w € R"" so that

foreachi € [n?), w; = \}’17 for a constant u; € [0, 1] generated uniformly at random. Let z denote

the tail vector of w without the largest % entries in magnitude. Suppose there exists:
€

1. An algorithm A; that provides a 2-approximation to ||y||2 with probability 1 —

:w‘ = Sw‘ -

2. An algorithm As that provides a 2-approximation to || z||2 with probability 1 —

3. An algorithm As that estimates each element of w up to additive error € - ||z

2
|wi —wi| < €[22,
foralli € [n?).
Then there exists a data structure that uses poly (%, log n) bits of space and outputs each index i
with probability p;, such that

2 2

Y 1 Yi 1
1—e)- e <pi<(lte)- -
-9 lyll3  poly(n) 1+9 Iyl ~ poly(n)

2

Proof. Let i be fixed and let € denote the event that u; < &7 %, so that |w;| > % Y.

Let & denote the event that ¥ is a 2-approximation to ||y||2, Z is a 2-approximation to ||z||,, and

|w; — w;| < €-||z||2 forall i € [n]. Let & denote the event that Z > \/% .Y and let & denote

the event that multiple indices j satisfy |w;| > % Y. Finally, let £, denote the event that
@l < /ey

Intuitively, &; is a good event, i.e., correctness of the data structures, which we would like to hold.
On the other hand, &, £, £, are bad events that distort the sampling probabilities, which we would
like to avoid.

We first note that £ holds with high probability due to the correctness of the CountSketch and
Ly-norm estimation data structures. We next note that by Lemma [7.3] the probability that &5 occurs

is O(e).

2 ~
Next, note that the probability that for a fixed j € [n], u; satisfies Z—J > % -Y is at most
J

2
el lf)gn H?IP for some constant C’. Thus summing over all j € [n], the probability that there exist
2

an additional j € [n] for which |w;| > @ .Y is O(€). Thus the probability that £ occurs is
O(e).
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Clogn
€

Finally, conditioned on —&;, we have that A < Y. Then conditioning on &;, we have

2l < Z and thus |@; — w;| < eZ < \/CelognY, so that £ can only occur for % Y <

g . . . 2 2
lw;| < % .Y, which is at most probability O (c fogn }2;2 ), over the randomness of u;.

In summary, we observe that conditioned on some value being output, the probability that item ¢ is
selected is proportional to the event that the events £ and &£; occur, and none of the events £, &3, &y

2
€ Y . 3 .
Clogn v which wu; is chosen uniformly at random. Due
1

to the event &1, the sampling probability is distorted additively by poly(n)? while due to the events

&s, E3, &y, the sampling probability is distorted multiplicatively by (1 + ¢€). Thus conditioned on the
event that some index is returned, the probability p; that index ¢ is returned satisfies

occur. The probability that £ occurs is

2 2
Y; 1 Y; 1
1—¢)- i = <p<Q4e Ly
1= 142~ poby(m) U+ B ™ poly(m)

as desired. O

E LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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