
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS SAMPLING DATA STRUCTURES FOR TENSOR
PRODUCTS IN TURNSTILE STREAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies the computational challenges of large-scale attention-based
models in artificial intelligence by introducing innovative sampling methods in the
streaming setting. Inspired by the classical definition of the ℓ2 sampler and the
recent progress of the attention scheme in Large Language Models (LLMs), we
propose the definition of the attention sampler. Our approach significantly reduces
the computational burden of traditional attention mechanisms. We demonstrate
the effectiveness of the attention sampler from a theoretical perspective, including
space and update time. Additionally, our framework exhibits scalability and broad
applicability across various model architectures and domains.

1 INTRODUCTION

In recent years, the field of artificial intelligence has witnessed a significant paradigm shift with the
advent of attention-based models, particularly in the domains of natural language processing and
computer vision (Vaswani et al., 2017; Devlin et al., 2019; Liu et al., 2019; Yang et al., 2019; Brown
et al., 2020; Zhang et al., 2022; Chowdhery et al., 2023; Touvron et al., 2023a;b; Inc., 2023; Manyika,
2023). At the heart of these models lies the attention mechanism (Vaswani et al., 2017), which is a
powerful tool for enhancing the performance of deep learning networks. It enables models to focus
on relevant parts of the input data, thereby facilitating context-aware processing.

However, as these models scale in size and complexity Zeng et al. (2024); Reid et al. (2024); Zhang
et al. (2024); Dubey et al. (2024); Abdin et al. (2024), the computational demands of the attention
mechanism increase exponentially, posing significant challenges in terms of efficiency and scalability
Fu (2024). In particular, traditional attention mechanisms used in Transformer models (Vaswani
et al., 2017) require computing attention weights across all elements of the input sequence, leading
to a quadratic increase in computational complexity with respect to the sequence length (Alman &
Song, 2023; Kacham et al., 2023; Han et al., 2024; Zandieh et al., 2023; Alman & Song, 2024a;b;
2025a). This computational burden becomes particularly pronounced in large-scale applications. It
hinders the usage of attention-based models in resource-constrained settings and limits their real-time
processing capabilities.

To deal with this problem, the core question we ask in this paper is:

Instead of computing all entries, can we recover the most important ones in efficient space and time?

Attention Samplers. We adopt the classical idea of sampling a dataset, which selects important
items to represent the entire dataset. Sampling is a central and effective technique for analyzing
large-scale datasets, which has broad application in the field of big data (Vitter, 1985; Gemulla et al.,
2008; Cohen et al., 2011; 2014), including network traffic monitoring (Mai et al., 2006; Huang et al.,
2007; Thottan et al., 2010), database management (Haas & Swami, 1992; Haas, 2016; Cohen & Geri,
2019), and data summarization (Frieze et al., 2004; Aggarwal et al., 2009; Mahabadi et al., 2019;
Indyk et al., 2020; Mahabadi et al., 2020). A well-known example is the ℓ2 sampler first asked by
Cormode et al. (2005) and studied by Monemizadeh & Woodruff (2010): given a vector x ∈ Rn, we
sample an index i ∈ [n] with probability x2

i

∥x∥2
2

.

To address the challenges in implementing large-scale attention schemes, we seek to sample the
most important coordinates in attention computation, reducing computational overhead and computer

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

storage. Inspired by the classical definition of the g-sampler on a vector, we propose the following
attention sampler, which is thoroughly investigated in this paper.
Definition 1.1 (Attention sampler). Given matrix A ∈ Rn×d, vector x ∈ Rd, and a distribution
function g, the attention sampler samples index i ∈ [n] with probability pi =

g((Ax)i)∑n
j=1 g((Ax)j)

.

The motivation of our definition lies in the internal structure of the attention mechanism. Given input
matrices A1 and A2, the linear attention matrix is defined as A1XA⊤

2 , where X = QK⊤ is the fused
key and query matrix. For linear self-attention, A1 and A2 are identical. Utilizing a well-known
tensor product construction (Alman & Song, 2024a), we simplify the expression of the attention
matrix to a matrix-vector product. Let A = A1 ⊗ A2, and let x = vec(X), the vectorized linear
attention matrix turns out to be vec(A1XA⊤

2) = Ax. Here, vec denotes the vector representation of
a matrix by concatenating the rows. Therefore, our attention sampler detects the dominant entry in
the linear attention matrix, providing an effective approximation of the attention scheme.

Given unlimited space and time, the sampling problem is trivial since one can compute each entry
explicitly and sample an index with the corresponding probability. However, as mentioned earlier, we
are not granted unlimited resource in real-world applications, for instance, in resource-constrained
settings or in real-time processing. This inspires us to investigate the attention sampler in the
streaming model, where the input matrix A, the weight vector x, or both A and x arrive sequentially
in a data stream, and the goal is to report a valid sample at all times using efficient space and update
time. We study the turnstile data streams where the data can either be inserted or deleted at each time.

As databases handle increasingly vast and dynamic real-time data, the streaming model has emerged
as a vital framework for designing algorithms to process massive, constantly evolving datasets.
Examples include real-time analysis of social media streams, sensor data for smart infrastructure, live
video processing, detection of distributed denial of service (DDoS) attacks, and efficient indexing
and querying in large-scale databases. In this work, we combine the streaming model with attention
mechanisms and construct novel efficient attention samplers, which identifies the critical coordinates
in attention computation. Our contributions can be summarized as follows:

• For the softmax distribution ⟨exp(Ax),1n⟩−1 exp(Ax), we prove an Ω(n) space streaming
sampler algorithm lower bound. (See Theorem 4.4)

• As the softmax distribution has a strong lower bound, we then provide upper bounds for
polynomial type samplers, i.e., L2 sampling from Ax:

1. For updating A and fixed x, our sampler takes dpoly
(
1
ϵ , n

)
bits of space and update

time (see Theorem 5.3).
2. For updating A and fixed x, our sampler takes dpoly

(
1
ϵ , n

)
bits of space and O(1)

update time (see Theorem 5.5).
3. For updating both A and x, our sampler takes dpoly

(
1
ϵ , n

)
bits of space and update

time (see Theorem 5.7).
• For updating both A and x, we also provide a lower bound of Ω(d) space (see Theorem 6.2).
• Toward tensor generalization, where we have updating A1 ∈ Rn×d or A2 ∈ Rn×d for
A = A1 ⊗A2 ∈ Rn2×d2

and fixed x ∈ Rd2

, we sample (i1, i2) = i ∈ [n2] approximately
according to the ℓ2 sampling distribution on Ax ∈ Rn2

using O(nd) space, O(n) update
time (see Theorem 7.6). Note that the trivial result takes O(n2) space.

Hardness of softmax attention. Our lower bound in the first result demonstrates the hardness
for computing or approximating the softmax attention. This aligns with the lower bound in Alman
& Song (2023), where they show that approximating softmax attentions up to small entry-wise
error requires subquadratic time in n assuming the Strong Exponential Time Hypothesis. These
challenges motivate us to explore polynomial attention mechanisms. Previous work has investigated
the performance of polynomial attention from both theoretical and empirical perspectives. For
instance, the PolySketchFormer (Kacham et al., 2023) demonstrates that polynomial attention achieves
model quality comparable to softmax attentions with efficient low-dimensional approximations.
Furthermore, polynomial attention schemes perform competitively in various vision and NLP tasks,
including the linear attention in (Koohpayegani & Pirsiavash, 2024) and the polynomial attention
in (Saratchandran et al., 2024). Building on these insights, we obtain efficient polynomial attention

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

samplers in the streaming model, whose space and update time have no dependence on n factors,
effectively recovering the key components in the polynomial attention matrix.

Streaming attention mechanism. Our polynomial attention samplers work in the streaming model,
which matches the core idea of streaming Large Language Model (LLM) introduced and studied by
Xiao et al. (2024), and recently gained increasing focus in LLM research and big-data analysis (Strati
et al., 2024; Yao et al., 2024; Shikhar et al., 2025; Xiao et al., 2025). The motivation is from long (or
infinite) sequence generation, e.g., a chat bot having a day-long conversation. When we apply LLMs
in these scenarios, we often encounter a efficiency-performance trade-off (Xiao et al., 2024): during
the decoding stage, attention-based methods cache all Key and Value (KV) pairs, which requires
excessive memory usage; in contrast, under restricted memory, the performance collapses once the
sequence length exceeds the cache size. To deal with these drawbakcs, their method is to train the
models with a finite attention window to work on text of infinite length. Unlike Xiao et al. (2024),
our model is dynamic and data-driven, supporting both model weights and input tokens to constantly
change. We note that our sampler provides a correct attention sample at all times using efficient space.
Thus, we identify the important coordinates in attention computing without probing each KV pair,
which has high potential in enhancing the performance of streaming LLMS.

Sparse attention mechanism. Another practical relevance of our attention sampler is sparse
attention mechanism. The attention matrix has been shown to be naturally sparse empirically and
theoretically (see e.g. (Deng et al., 2024b)). Based on this observation, researchers seek to reduce
computation by sampling the attention layers (Child et al., 2019; Kitaev et al., 2020; Wang et al.,
2020; Alman & Song, 2023; Brand et al., 2024; Deng et al., 2023c; Lai et al., 2025; Xiao et al.,
2025; Zhang et al., 2025). In general, they construct a sparse mask that selects the importance
entries in the attention multiplications while others are zeroed out. Then, they compute the partial
attention corresponding to those in the sparse mask. Specifically, (Xiao et al., 2025) explores the
sparse attention with streaming heads. Our attention sampler recovers large coordinates from the
attention matrix given specific streamed inputs and weights. Thus, the sampler serves as an efficient
subroutine in their sparse-attention sampling schemes, evaluating and enhancing the effectiveness of
their construction of the sparse mask.

Streaming algorithms. In addition, our sampler can be integrated into inner product computation
(see e.g. Woodruff & Zhou (2021)), which is a cornerstone for model training and attention compu-
tation. In fact, classical Lp samplers also serve as black-box subroutines in many other streaming
algorithms, including finding heavy hitters, Fp moment estimation, and cascaded norm approximation
Andoni et al. (2011); Jowhari et al. (2011); Jayaram & Woodruff (2021); Woodruff & Zhou (2021).
Therefore, our attention sampler can be applied to discover essential properties of the attention
scheme, e.g., the norm of the attention matrix.

2 RELATED WORK

In this section, we present related work in sampling and tensor sketch.

On sampling. Given a vector v ∈ Rn and a distribution function g, recall that the classical g-
sampler samples index i ∈ [n] with probability pi =

g(vi)∑n
j=1 g(vj)

. A well-known example is the Lp

sampling defined by g(z) = |z|p for p ≥ 0. The existence of such a Lp sampler algorithms first posed
as a question by Cormode et al. (2005) in 2005. Monemizadeh & Woodruff (2010) partially answered
this question in the affirmative by giving an Lp sampler using polylogarithmic space for p ∈ [1, 2],
although the sampling probabilities were distorted by a multiplicative (1 + ϵ) factor and an additive

1
poly(n) factor. We note that the sampler is perfect if there is no ϵ-multiplicative distortion; it is truly
perfect if there is no additive distortion, i.e., the sampling probability is exact. The space requirements
of the algorithm were subsequently improved (Andoni et al., 2011; Jowhari et al., 2011) and extended
to other choices of index domain U and weight function W (Cohen & Geri, 2019; Mahabadi et al.,
2020; 2022), while retaining a multiplicative distortion in the sampling probability. Surprisingly,
Jayaram & Woodruff (2021) showed that it is possible to achieve no perfect samplers while using
polylogarithmic space, while conversely Jayaram et al. (2022) showed that truly perfect samplers
would require linear space, essentially closing the line of work studying the space complexity of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Lp samplers for p ∈ [1, 2]. It should be noted however, achieving such guarantees (no additive
distortion) in sub-polynomial update time while retaining the space guarantees remains an intriguing
open question (Jayaram et al., 2022). For the other regime of p > 2, recently, Woodruff et al. (2025)
complemented the results by providing efficient perfect Lp samplers for p > 2. Swartworth et al.
(2025) achieved perfect samplers with polylogarithmic update time for p > 2, improving on the
previous update time. For a more comprehensive background on samplers, we refer to the survey by
Cormode & Jowhari (2019).

On tensors. In the realm of tensor decomposition, the canonical polyadic (CP) decomposition,
specifically the CANDECOMP/PARAFAC method, stands out for its unique ability to break down
tensors into rank-1 tensors in a singular way, distinct from matrix decomposition (Harshman, 1970;
Song et al., 2016). This method, having applications in computational neuroscience, data mining,
and statistical learning (Wang et al., 2015), emphasizes the rigidity and uniqueness of tensor decom-
position. Earlier studies (Tsourakakis, 2010; Phan et al., 2013; Choi & Vishwanathan, 2014; Huang
et al., 2013; Kang et al., 2012; Wang et al., 2014; Bhojanapalli & Sanghavi, 2015) have delved into
efficient tensor decomposition methods. Subsequent works introduced methods for fast orthogonal
tensor decomposition using random linear sketching techniques (Wang et al., 2015) and explored
symmetric orthogonally decomposable tensors’ properties, integrating spectral theory (Robeva, 2016;
Robeva & Seigal, 2017). Additionally, importance sampling for quicker decomposition was proposed
(Song et al., 2016). (Deng et al., 2023a) studies the tensor cycle low rank approximation problem.

In algebraic statistics, tensor decompositions are linked to probabilistic models, particularly in
determining latent variable models’ identifiability through low-rank decompositions of specific
moment tensors (Allman et al., 2009a;b; Rhodes & Sullivant, 2012). Kruskal’s theorem (Kruskal,
1977) was pivotal in ascertaining the precision of model parameter identification. However, this
approach, assuming an infinite sample size, does not provide the minimum sample size for learning
model parameters within given error bounds. A more robust uniqueness guarantee is needed to
ensure that the low-rank decomposition of an empirical moment tensor approximates that of an actual
moment tensor, thus offering more insight into empirical moment tensors’ decomposition.

Roadmap. In Section 3, we provide some standard notations and definitions in literature. In Section 4,
we study the exponential sampler. In Section 5, we study the streaming upper for the ℓ2 sampling
problem, i.e., sampling coordinates from a vector Ax, where A and x may be updated across a data
stream. In Section 6, we present lower bounds for the same ℓ2 sampling problem. In Section 7, we
discuss the tensor sampling problem.

3 PRELIMINARIES

For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}. We use E[·] to denote the
expectation. We use Pr[·] to denote the probability. We use 1n to denote a length-n vector where
all the entries are ones. Given two length-n vectors, we use ⟨x, y⟩ to denote the inner product
between x and y, i.e, ⟨x, y⟩ :=

∑n
i=1 xiyi. For a vector x ∈ Rn, we use exp(x) ∈ Rn to denote a

vector that has length n and the i-th entry is exp(xi). For a matrix A, we use exp(A) to denote the
matrix that (i, j)-th coordinate is exp(Ai,j). For a vector x, we use ∥x∥2 := (

∑n
i=1 x

2
i)

1/2. We use
∥x∥1 :=

∑n
i=1 |xi|. We use ∥x∥0 to denote the ℓ0 norm of x, which is the number of nonzero entries

in x. We use ∥x∥∞ to denote the ℓ∞ norm of x, which is maxi∈[n] |xi|.

Let n1, n2, d1, d2 be positive integers. Let A ∈ Rn1×d1 and B ∈ Rn2×d2 . We define the Kronecker
product between matrices A and B, denoted A⊗B ∈ Rn1n2×d1d2 , as (A⊗B)(i1−1)n2+i2,(j1−1)d2+j2

is equal to Ai1,j1Bi2,j2 , where i1 ∈ [n1], j1 ∈ [d1], i2 ∈ [n2], j2 ∈ [d2].

We use poly(n) to denote nC where C > 1 is some constant. For any function f , we use Õ(f) to
denote f · poly(log f). For two sets A and B, we use A ∩ B to denote their intersection. We use
|A ∩B| to denote the cardinality of A ∩B. We use A ∪B to denote the union of A and B.

TensorSketch. We next define TensorSketch (Pagh, 2013), which has been extensively used in
many sketching and optimization problems (Diao et al., 2018; Song et al., 2019; Diao et al., 2019;
Ahle et al., 2020; Song et al., 2021; 2024; 2022; Zhang, 2022; Song et al., 2023b). Song et al. (2022)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

defined TensorSparse by composing Sparse embedding (Nelson & Nguyên, 2013; Cohen, 2016)
with a tensor operation (Pagh, 2013).
Definition 3.1 (TensorSparse, see Definition 7.6 in Song et al. (2022)). Let h1, h2 : [n]× [s]→
[m/s] be O(log 1/δ)-wise independent hash functions and let σ1, σ2 : [n] × [s] → {±1} be
O(log 1/δ)-wise independent random sign functions. Then, the degree two tensor sparse trans-
form, S : Rn × Rn → Rm is given as:

Rr,(i,j) = ∃k ∈ [s] : σ1(i, k)σ2(j, k)/
√
s · 1[((h1(i, k) + h2(j, k)) mod m/s) + (k − 1)m/s = r]

For s = 1, the above definition becomes TensorSketch (Pagh, 2013).

4 EXPONENTIAL SAMPLER

In this section, we define and consider exponential samplers. We then show strong space lower
bounds for achieving such a data structure when the input dataset arrives in a data stream.

Let us firstly describe the offline version:
Definition 4.1 (Exponential sampler). Given matrix A ∈ Rn×d and x ∈ Rd, the goal is to sample
index i ∼ [n] with probability pi = ⟨exp(Ax),1n⟩−1 · exp(Ax)i, where 1n denotes a length-n
vector, exp(Ax) ∈ Rn denotes a length-n vector with exp(Ax)i = exp((Ax)i), and exp(z) is the
usual exponential function.

Now, consider y = Ax ∈ Rn, where either A or x, or both are arriving in a data stream, we use the
following definition for each of the various cases:
Definition 4.2. Let C > 0 be any fixed constant and let C0 ∈ [n−C , nC]. Let y be a vector. Then
the exponential sampler outputs an index j∗ such that for all i ∈ [n], Pr[j∗ = i] = C0 · exp(yi)

⟨exp(y),1n⟩ .

We first recall the (two-party) set-disjointness communication problem SetDisjn, in which two parties
Alice and Bob have subsets A and B, respectively, of [n]. Note that we can equivalently view A
and B as binary vectors in n-dimensional space, serving as the indicator vector for whether each
index i ∈ [n] is in the player’s input subset. The task for the players is to determine whether there
exists a common element in their intersection, i.e., whether there exists i ∈ [n] such that i ∈ (A ∩B)
or equivalently, Ai = Bi = 1. In fact, the problem promises that either the inputs are completely
disjoint, |A∩B| = 0 or the inputs contain only a single coordinate in their intersection, |A∩B| = 1.
We recall the following standard communication complexity result of set-disjointness.
Theorem 4.3 (Kalyanasundaram & Schnitger (1992); Razborov (1992); Bar-Yossef et al. (2004)).
Any protocol that solves the set-disjointness problem SetDisjn with probability at least 3

4 requires
Ω(n) bits of total communication.

We show that even a sampler that relaxes the probability distribution defined in Definition 4.2 up to a
factor of nC is infeasible in the streaming model.
Theorem 4.4. Let y ∈ Rn that arrives as a data stream and let C > 0 be a constant. Then any
algorithm that samples an index i ∈ [n] with probability proportional to pi =

exp(yj)
⟨exp(y),1n⟩ must use

Ω(n) bits of space, even if the sampling probabilities are allowed to be distorted by as large as nC

and even if ∥y∥∞ = O(log n).

Proof. Let A,B ∈ {0, 1}n be input vectors from the set disjointness problem, so that the goal is
to determine whether there exists i ∈ [n] such that Ai = Bi = 0. Observe that Alice and Bob can
multiply A and B by 100C log n for some constant C > 0. Now, note that in the disjoint case, we have
that ∥A+B∥∞ = 100C log n and in the non-disjoint case, we have that ∥A+B∥∞ = 200C log n.
In particular, in the non-disjoint case, there exists i ∈ [n] such that Ai +Bi = 200C log n and for all
j ̸= i, we have that Aj +Bj ≤ 100C log n. Hence, in the non-disjoint case, any exponential sampler
will output i with probability proportional to exp(200C log n) and output j ̸= i with probability
proportional to n · exp(100C log n). Even if the sampling probabilities are distorted by a factor of
nC , any exponential sampler would output i with probability at least 3

4 .

Thus, Alice and Bob can use such a data structure to sample an index i and then check whether
Ai = Bi = 1. In particular, Alice can first create a data stream encoding the vector A, run the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

sampling algorithm on the data stream, and then pass the state of the algorithm to Bob. Bob can
then create another portion of the data stream encoding an addition of the vector B, take the state of
the algorithm from Alice, run the sampling algorithm on the portion of the data stream, and query
the algorithm for an index i. Bob can then take the index and pass it to Alice, and the two parties
can finally communicate whether Ai = Bi = 1, thereby solving set-disjointness with probability at
least 3

4 . Note that the communication of the protocol is the space used by the sampling algorithm.
Therefore by Theorem 4.3, such a sampler must use Ω(n) bits of space.

5 ℓ2 SAMPLER UPPER BOUND WITH A AND x

In this section, we describe a standard data structure for ℓ2 sampling. We start with providing the
definition of ℓ2 sampler as follows,

Definition 5.1. Let n denote a positive integer. Let ϵ ≥ 0 denote a parameter. In ℓ2 sampling, we
receive each coordinate of y ∈ Rn in a turnstile data stream, and the goal is to output an index I ∈ [n]

at all times such that for each j ∈ [n], Pr[I = j] = (1± ϵ) · |yj |2
∥y∥2

2
+ 1/ poly(n).

We describe various instantiations of the ℓ2 sampler for sampling entries from a vector Ax ∈ Rn,
based upon whether the matrix A ∈ Rn×d is updated during the data stream, whether the vector
x ∈ Rd is updated during the data stream, or both.

5.1 A IS UPDATED DURING THE STREAMING AND x IS FIXED

In this section, we describe the construction of an ℓ2 sampler for sampling coordinates of the vector
Ax ∈ Rn, in the setting where the vector x ∈ Rd is fixed, but the entries of A ∈ Rn×d are evolving
as the data stream progresses.

Definition 5.2 (Updating A and fixed x). In this setting, we assume x ∈ Rd is fixed, we receive
updates to the entries of A ∈ Rn×d in a turnstile data stream. Then for y = Ax, we want a data
structure that produces the ℓ2 sampling guarantee for y.

We remark that a turnstile data stream means that each update of the data stream can increase or
decrease a single entry of A.

In this work, we are interested in the regime of n≫ d. Then we have the following guarantee:

Theorem 5.3. Suppose y = Ax, for x ∈ Rn, which is fixed, and A ∈ Rn×d, which is defined by
a turnstile stream. There exists an ℓ2-attention sampler that uses d log n + poly

(
1
ϵ , log n

)
bits of

space and returns I ∈ [n] such that Pr[I = j] = (1± ϵ) · |yj |2
∥y∥2

2
+ 1/ poly(n). The update time of the

data structure is d poly
(
1
ϵ , log n

)
.

Proof. Recall that existing approximate ℓ2 samplers, e.g., Algorithm 2 maintains a linear sketch Φy,
where Φ ∈ Rm×n, for m = poly

(
1
ϵ , log n

)
. We have y = Ax, where x ∈ Rd is fixed but A ∈ Rn×d

is defined through turnstile updates. Nevertheless, we can maintain the state of ΦAx. In particular,
whenever we receive an update in Ai,j by ∆, then we can compute Φeie

⊤
j ∆x to update the sketch

ΦAx. To analyze the space complexity, observe that storing ΦAx requires O(m) words of space and
x requires d words of space, which is d log n+ poly

(
1
ϵ , log n

)
bits of space in total. Moreover, each

update to Ai,j can change all entries of ΦAx, so the update time is O(md) = d poly
(
1
ϵ , log n

)
.

5.2 x IS UPDATED DURING THE STREAMING AND A IS FIXED

We next consider the setting where the vector x ∈ Rd is updated as the data stream progresses, but
the entries of A ∈ Rn×d are fixed.

Definition 5.4 (Fixed A and updating x). We assume A ∈ Rn×d is fixed, we receive updates to
x ∈ Rd in a turnstile data stream. Then for y = Ax, we want a data structure that produces the ℓ2
sampling guarantee for y.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We have the following algorithmic guarantees for this setting:

Theorem 5.5. Suppose y = Ax, for A ∈ Rn×d, which is fixed, and x ∈ Rn, which is defined by
a turnstile stream. There is an ℓ2-attention sampler that uses d poly

(
1
ϵ , log n

)
bits of space and

returns I ∈ [n] such that Pr[I = j] = (1 ± ϵ) · |yj |2
∥y∥2

2
+ 1/poly(n). The update time of the data

structure is O(1).

Proof. Again recall that existing approximate ℓ2 samplers, e.g., Algorithm 2 maintains a linear sketch
Φy, where Φ ∈ Rm×n, for m = poly

(
1
ϵ , log n

)
. Since y = Ax, but A ∈ Rn×d is too large to store,

while x ∈ Rn is defined through turnstile updates, we can instead maintain the sketch ΦA and the
vector x and compute ΦAx = Φy after the stream concludes. Note that storing ΦA requires O(md)
words of space and x requires d words of space, which is d poly

(
1
ϵ , log n

)
bits of space in total.

Moreover, each update to x changes a single entry, so the update time is O(1).

5.3 BOTH A AND x ARE UPDATED DURING THE STREAMING

Finally, we consider the setting where both the vector x ∈ Rd and the entries of A ∈ Rn×d can be
changed by updates from the data stream.

Definition 5.6 (Updating A and updating x). In this setting, we receive updates to both A ∈ Rn×d

and x ∈ Rd in a turnstile data stream. Then for y = Ax, we want a data structure that provides the ℓ2
sampling guarantee for y.

We have the following guarantees:

Lemma 5.7 (Upper Bound). Suppose y = Ax, for A ∈ Rn×d and x ∈ Rd, which are each defined in
a stream through turnstile updates. There exists an ℓ−2-attention sampler that uses d poly

(
1
ϵ , log n

)
bits of space and returns I ∈ [n] such that Pr[I = j] = (1± ϵ) · |yj |2

∥y∥2
2
+1/ poly(n). The update time

is poly
(
1
ϵ , log n

)
.

Proof. As before, recall that existing approximate ℓ2 samplers, e.g., Algorithm 2 maintains a linear
sketch Φy, where Φ ∈ Rm×n, for m = poly

(
1
ϵ , log n

)
. Since y = Ax, but now both A ∈ Rn×d

and x ∈ Rn are defined through turnstile updates, we can instead maintain the sketch ΦA and the
vector x and compute ΦAx = Φy after the stream concludes. Observe that maintaining ΦA requires
O(md) words of space and x requires d words of space, which is d poly

(
1
ϵ , log n

)
bits of space in

total. Each update to A can change all m entries of in a single column of ΦA, while each update to x
changes a single entry. Hence, the update time is poly

(
1
ϵ , log n

)
.

6 ℓ2 SAMPLER LOWER BOUND (WITH A AND x)

In this section, we give lower bounds for ℓ2 sampling from a vector y = A⊗px, when either A or x
are updated in a data stream. We show that in any of these cases, the general problem is substantially
more difficult than the previous case where p = 1.

We first recall the Index problem for one-way communication. In the INDEXn problem, Alice receives
a vector v ∈ {0, 1}n and Bob receives a coordinate i ∈ [n]. The goal is for Bob to compute vi with
probability at least 3

4 , given some message Π from Alice. We recall the following communication
complexity lower bounds for Index.

Theorem 6.1 (Kremer et al. (1999)). Any protocol that solves INDEXn with probability at least 3
4

requires Ω(n) bits of communication.

Lemma 6.2 (Lower Bound). Any streaming algorithm that solves problem defined as Definition 5.6
will require Ω(d) space.

Proof. Suppose Alice receives a vector v ∈ {0, 1}d. Then Alice creates the diagonal matrix M ∈
{0, 1}d×d so that the j-th diagonal entry of A is vj , for all j ∈ [n]. Finally, Alice creates A ∈
R(d+1)×d by appending the row consisting of 1

1010 in all of its d entries to M . Suppose Bob receives
the coordinate i ∈ [d] and wants to determine vi. Then Bob can set x to be the elementary vector

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ei ∈ Rd, which has a 1 in its i-th coordinate and zeros elsewhere. Observe that by construction, Ax
is the i-th column of A. If vi = 1, then the i-th column of A consists of a 1 in the i-th entry, 1

1010 in
the (d+ 1)-st entry, and zeros elsewhere. Hence, a sampler with the desired properties will output
i with probability at least 3

4 . Similarly, if vi = 0, then the i-th column of A consists of 1
1010 in the

(d+ 1)-st entry and zeros elsewhere. Thus, the sampler with the desired properties will output d+ 1
with probability 1. Bob can therefore distinguish between these two cases with probability at least 3

4 ,
thereby solving INDEXd with probability at least 3

4 . Therefore, by Theorem 6.1, such a sampler must
use at least Ω(d) space.

In fact, we show that if y = A⊗px, where A ∈ Rn×n so that A⊗p ∈ Rnp×np

denotes the p-wise
self-tensor and x ∈ Rnp

, then actually L2 sampling from y uses Ω(n) bits of space.

Lemma 6.3. Let A ∈ Rn×n and A⊗p ∈ Rnp×np

denote the p-wise self-tensor. Let y = A⊗px, so
that x ∈ Rnp

. Then even if all the entries of x arrive in a data stream followed by all the entries of A,
L2 sampling from y requires Ω(n) bits of space.

Proof. Let S ∈ {0, 1}n be an instance of INDEXn. Suppose Alice creates the diagonal matrix A
with exactly S being the entries across its diagonal, i.e., A1,1 = S1, . . . , An,n = Sn. Bob has an
index i ∈ [n], and sets the vector x to be the elementary vector ej , where j = i · np−1. Then by
construction Ax is the all zeros vector if Si = 0 and otherwise there is a nonzero entry, which allows
Alice and Bob to solve INDEXn. Hence, L2 sampling from y requires Ω(n) bits of space.

7 THE TENSOR VERSION PROBLEM

In this section, we further consider sampling from a tensor product. We provide the tensor notations
and objects.

Definition 7.1. Let A1 ∈ Rn×d, let A2 ∈ Rn×d, we define A = A1 ⊗A2 ∈ Rn2×d2

. Let x ∈ Rd2

.
Let Ai ∈ Rn×d2

denote the i-th block of A.

Definition 7.2 (fixed x, Streaming Sampler for one of A1 and A2 is updating.). We assume x ∈ Rd2

is fixed. We assume that (1) one of A1 and A2 is updating, (2) one of A1 and A2 is fixed. Let y = Ax,
we want ℓ2 sampling guarantee for sampling one coordinate in yi ∈ Rn2

for all i ∈ [n2].

To motive this model, recall that the tensor product (A1 ⊗A2)x equals to the linear cross-attention
matrix A1QK⊤A⊤

2 , where WQ = A1Q is the projected query matrix and WK = A2K is the
projected key matrix. Our model addresses a practical scenario involving real-time contextual
processing with a static reference dataset. In this setting, Wk is precomputed by the language model,
representing a static dataset such as embeddings of a knowledge base, user profiles, or multimedia
features. Then, the rows of matrix A1 arrive as a data stream, representing real-time data queries.
Thus, our attention sampler efficiently captures the important entries in the dynamic query dataset.

We use the following formulation of Nisan’s pseudorandom generator to derandomize our algorithm.

Theorem 7.3 (Nisan’s PRG, Nisan (1992)). Suppose A is an algorithm that requires S = Ω(log n)
bits of space and R random bits. Then there exists a pseudorandom generator for A that succeeds
with probability 1− 1/poly(n) and uses O(S logR) bits of space.

Algorithm 1 We build on algorithm based on S(x1 ⊗ x2)

1: Suppose we use O(nd) space to store A1 and A2 (Avoid n2 time/space)
2: Suppose we receive an update q ∈ [2], i ∈ [n], j ∈ [d],∆
3: Suppose we have hash function g to access uniform number
4: if q = 1 then
5: p← g(i(n− 1) + 1, · · · , in) {p ∈ Rn}
6: y ← y +Φ∆(e[i(n−1)+1,in] ◦ (A2)∗,j)/p {Φ1 is decided by h1, σ1}
7: else
8: y2 ← y2 +Φ2ei∆ {Φ2 is decided by h2, σ2}
9: end if

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

In the following Lemma, we state a streaming algorithm to solve tensor related sampling problem.
We consider the situation that one of A1 and A2 is fixed, and the other one is updated in streaming
fashion. We show the following estimation guarantees using the standard CountSketch analysis,
c.f., Charikar et al. (2004); Jowhari et al. (2011). We defer the proof to appendix C.

Lemma 7.4 (Tensor ℓ2 Tail Estimation). Let y = (A1 ⊗ A2)x ∈ Rn2

. Let only one of A1 and A2

be updated in streaming. Let w = yi√
ui

for a constant ui ∈ [0, 1] generated uniformly at random.

There is an algorithm A that that uses O(nd) + poly
(
1
ϵ , log n

)
space, uses O(n) update time, and

estimates each element of w up to additive error ϵ · ∥z∥2, where z denotes the tail vector of w without
the largest 1

ϵ2 entries in magnitude. Specifically, for all i ∈ [n2], we have |ŵi − wi| ≤ ϵ · ∥z∥2.

We state the following lemma as a structural property that will allow us to achieve our tensor product
sampler. We remark that the proof is a simple adaptation of existing proofs for approximate ℓp
sampling (Jowhari et al., 2011). Thus we defer the proof to Appendix C.

Lemma 7.5. Let y = (A1 ⊗ A2)x ∈ Rn2

and let w ∈ Rn2

so that wi = yi√
ui

for a constant

ui ∈ [0, 1] generated uniformly at random. Let z denote the tail vector of w without the largest 1
ϵ2

entries in magnitude. Let Ẑ be a 2-approximation to ∥z∥2 and Ŷ be a 2-approximation to ∥y∥2, then
we have Pr[Ẑ >

√
(C log n)/ϵ · Ŷ] ≤ O(ϵ) + 1

poly(n) .

Finally, we describe the guarantees of our tensor-based sampler, deferring the proof to Appendix D.

Theorem 7.6. Let y = (A1 ⊗A2)x ∈ Rn2

and let w ∈ Rn2

so that for each i ∈ [n2], wi =
yi√
ui

for
a constant ui ∈ [0, 1] generated uniformly at random. Let z denote the tail vector of w without the
largest 1

ϵ2 entries in magnitude. Suppose there exists:

1. An algorithm A1 that provides a 2-approximation to ∥y∥2 with probability 1− 1
n2 .

2. An algorithm A2 that provides a 2-approximation to ∥z∥2 with probability 1− 1
n2 .

3. An algorithm A3 that estimates each element of w up to additive error ϵ · ∥z∥2, |ŵi −wi| ≤
ϵ · ∥z∥2, for all i ∈ [n2].

Then there exists a data structure that uses poly
(
1
ϵ , log n

)
bits of space and outputs each index i

with probability pi = (1± ϵ) · y2
i

∥y∥2
2
± 1

poly(n) .

We remark that the algorithms A1 and A2 in the context of Theorem 7.6 can be achieved using the
standard AMS ℓ2 norm estimator (Alon et al., 1999). Moreover, algorithm A3 in the context of
Theorem 7.6 can be achieved using the standard CountSketch algorithm (Charikar et al., 2004).

8 CONCLUSIONS

To achieve efficient attention mechanisms, we introduce the attention sampler and study its behavior
in the streaming model. We established efficient polynomial samplers under various streaming
settings, when the input matrix, the weight vector, or both evolve dynamically, and we complement
the results by proving space lower bounds. Our framework identify the critical components in
attention computation, offering a foundation for efficient simulations of large-scale attention schemes,
which is central to modern machine learning and LLMs.

For future directions, from a theoretical perspective, given the Ω(n) lower bound on exponential
samplers in general circumstances, it would be valuable to explore whether we can achieve o(n)
space under certain assumptions, e.g., restricting the entries in the attention matrix to o(log n). From
a practical perspective, it would be beneficial to evaluate our sampler’s performance by implementing
it in existing sparse attention schemes and streaming attention schemes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat S. Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon,
Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider,
Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos
Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee,
Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid
Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli
Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma,
Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Michael
Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Chengruidong
Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and
Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone.
CoRR, abs/2404.14219, 2024. doi: 10.48550/ARXIV.2404.14219. URL https://doi.org/
10.48550/arXiv.2404.14219.

Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means clustering.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
12th International Workshop, APPROX and 13th International Workshop, RANDOM. Proceedings,
pp. 15–28, 2009.

Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Velingker, David P
Woodruff, and Amir Zandieh. Oblivious sketching of high-degree polynomial kernels. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 141–160.
SIAM, 2020.

Elizabeth S. Allman, Catherine Matias, and John A. Rhodes. Identifiability of parameters in latent
structure models with many observed variables. The Annals of Statistics, 37(6A), dec 2009a. doi:
10.1214/09-aos689. URL https://doi.org/10.1214%2F09-aos689.

Elizabeth S. Allman, Sonja Petrović, John A. Rhodes, and Seth Sullivant. Identifiability of 2-tree
mixtures for group-based models, 2009b. URL https://arxiv.org/abs/0909.1854.

Josh Alman and Zhao Song. Fast attention requires bounded entries. In Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information Processing Systems,
NeurIPS, 2023.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, ICLR, 2024a.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024b. URL https://openreview.net/forum?id=up4tWnwRol.

10

https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.1214%2F09-aos689
https://arxiv.org/abs/0909.1854
https://openreview.net/forum?id=up4tWnwRol

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier
transform. arXiv preprint arXiv:2505.11892, 2025a.

Josh Alman and Zhao Song. Only large weights (and not skip connections) can prevent the perils of
rank collapse. arXiv preprint arXiv:2505.16284, 2025b.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via precision
sampling. In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS, pp.
363–372, 2011.

Pranjal Awasthi and Anupam Gupta. Improving length-generalization in transformers via task hinting.
arXiv preprint arXiv:2310.00726, 2023.

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach to
data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732, 2004.

Srinadh Bhojanapalli and Sujay Sanghavi. A new sampling technique for tensors. In arXiv preprint.
https://arxiv.org/pdf/1502.05023, 2015.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. In Forty-first International Conference on Machine
Learning, ICML. OpenReview.net, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems, NeurIPS, pp. 1877–1901, 2020.

Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data streams.
Theor. Comput. Sci., 312(1):3–15, 2004.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying
sparse and low-rank attention. Advances in Neural Information Processing Systems (NeurIPS), 34:
17413–17426, 2021.

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated butterfly: Simple and efficient sparse training for neural network models. In International
Conference on Learning Representations, ICLR, 2022.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Joon Hee Choi and S. Vishwanathan. Dfacto: Distributed factorization of tensors. In Zoubin
Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger (eds.),
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems, NeurIPS, pp. 1296–1304, 2014.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. J. Mach. Learn.
Res., 24:240:1–240:113, 2023.

11

https://arxiv.org/pdf/1502.05023

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Edith Cohen and Ofir Geri. Sampling sketches for concave sublinear functions of frequencies. In
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems, NeurIPS, pp. 1361–1371, 2019.

Edith Cohen, Nick G. Duffield, Haim Kaplan, Carsten Lund, and Mikkel Thorup. Efficient stream
sampling for variance-optimal estimation of subset sums. SIAM J. Comput., 40(5):1402–1431,
2011.

Edith Cohen, Nick G. Duffield, Haim Kaplan, Carsten Lund, and Mikkel Thorup. Algorithms and
estimators for summarization of unaggregated data streams. J. Comput. Syst. Sci., 80(7):1214–1244,
2014.

Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Arlington,
VA, USA, January 10-12, 2016, pp. 278–287, 2016.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing
(STOC). https://arxiv.org/pdf/1810.07896.pdf, 2019.

Graham Cormode and Hossein Jowhari. lp samplers and their applications: A survey. ACM Comput.
Surv., 52(1):16:1–16:31, 2019.

Graham Cormode, S. Muthukrishnan, and Irina Rozenbaum. Summarizing and mining inverse
distributions on data streams via dynamic inverse sampling. In Proceedings of the 31st International
Conference on Very Large Data Bases, pp. 25–36. ACM, 2005.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient attention
using asymmetric clustering. Advances in Neural Information Processing Systems (NeurIPS), 33:
6476–6489, 2020.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Yichuan Deng, Wenyu Jin, Zhao Song, Xiaorui Sun, and Omri Weinstein. Dynamic kernel sparsifiers.
arXiv preprint arXiv:2211.14825, 2022a.

Yichuan Deng, Zhao Song, Omri Weinstein, and Ruizhe Zhang. Fast distance oracles for any
symmetric norm. In Advances in Neural Information Processing Systems 35: Annual Conference
on Neural Information Processing Systems 2022, NeurIPS, 2022b.

Yichuan Deng, Yeqi Gao, and Zhao Song. Solving tensor low cycle rank approximation. In IEEE
International Conference on Big Data, BigData 2023, Sorrento, Italy, December 15-18, 2023, pp.
6–16. IEEE, 2023a.

Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression. arXiv
preprint arXiv:2304.10411, 2023b.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsifi-
cation algorithms for over-parameterized feature dimension. arxiv preprint: arxiv 2304.03426,
2023c.

Yichuan Deng, Zhao Song, and Shenghao Xie. Convergence of two-layer regression with nonlinear
units. arXiv preprint arXiv:2308.08358, 2023d.

Yichuan Deng, Zhihang Li, Sridhar Mahadevan, and Zhao Song. Zero-th order algorithm for softmax
attention optimization. In IEEE International Conference on Big Data, BigData 2024, Washington,
DC, USA, December 15-18, 2024, pp. 24–33. IEEE, 2024a.

Yichuan Deng, Zhao Song, and Chiwun Yang. Attention is naturally sparse with gaussian distributed
input. arXiv preprint arXiv:2404.02690, 2024b.

12

https://arxiv.org/pdf/1810.07896.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT, pp. 4171–4186. Association for Computational Linguistics, 2019.

Huaian Diao, Zhao Song, Wen Sun, and David P. Woodruff. Sketching for kronecker product
regression and p-splines. In International Conference on Artificial Intelligence and Statistics,
AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, volume 84 of
Proceedings of Machine Learning Research, pp. 1299–1308. PMLR, 2018.

Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Optimal sketching
for kronecker product regression and low rank approximation. Advances in neural information
processing systems, 32, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR,
abs/2407.21783, 2024. URL https://doi.org/10.48550/arXiv.2407.21783.

Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, ICML,
volume 162 of Proceedings of Machine Learning Research, pp. 5793–5831. PMLR, 2022.

Alan M. Frieze, Ravi Kannan, and Santosh S. Vempala. Fast monte-carlo algorithms for finding
low-rank approximations. J. ACM, 51(6):1025–1041, 2004.

Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analysis.
CoRR, abs/2405.08944, 2024. doi: 10.48550/ARXIV.2405.08944. URL https://doi.org/
10.48550/arXiv.2405.08944.

Yeqi Gao, Lianke Qin, Zhao Song, and Yitan Wang. A sublinear adversarial training algorithm. arXiv
preprint arXiv:2208.05395, 2022.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression. arXiv
preprint arXiv:2303.16504, 2023.

Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic functions
regression. In International Conference on Artificial Intelligence and Statistics, AISTATS, volume
258 of Proceedings of Machine Learning Research, pp. 2548–2556. PMLR, 2025.

Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. Maintaining bounded-size sample synopses of
evolving datasets. VLDB J., 17(2):173–202, 2008.

Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint arXiv:2211.06033,
2022.

Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust
alternating minimization in nearly linear time. In The Twelfth International Conference on Learning
Representations, ICLR. OpenReview.net, 2024.

13

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2405.08944
https://doi.org/10.48550/arXiv.2405.08944

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Peter J. Haas. Data-stream sampling: Basic techniques and results. In Data Stream Management -
Processing High-Speed Data Streams, Data-Centric Systems and Applications, pp. 13–44. Springer,
2016.

Peter J. Haas and Arun N. Swami. Sequential sampling procedures for query size estimation. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 341–350,
1992.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P. Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Conference
on Learning Representations, ICLR. OpenReview.net, 2024.

Richard A Harshman. Foundations of the parafac procedure: Models and conditions for an" explana-
tory" multimodal factor analysis. 1970.

Furong Huang, Niranjan U. N, Mohammad Umar Hakeem, Prateek Verma, and Animashree Anand-
kumar. Fast detection of overlapping communities via online tensor methods on gpus. CoRR,
abs/1309.0787, 2013.

Ling Huang, XuanLong Nguyen, Minos N. Garofalakis, Joseph M. Hellerstein, Michael I. Jordan,
Anthony D. Joseph, and Nina Taft. Communication-efficient online detection of network-wide
anomalies. In INFOCOM. 26th IEEE International Conference on Computer Communications,
Joint Conference of the IEEE Computer and Communications Societies, pp. 134–142, 2007.

Adobe Inc. Adobe firefly. https://www.adobe.com/sensei/generative-ai/firefly.html, 2023.

Piotr Indyk, Sepideh Mahabadi, Shayan Oveis Gharan, and Alireza Rezaei. Composable core-sets for
determinant maximization problems via spectral spanners. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA, pp. 1675–1694, 2020.

Rajesh Jayaram and David P. Woodruff. Perfect lp sampling in a data stream. SIAM J. Comput., 50
(2):382–439, 2021.

Rajesh Jayaram, David P. Woodruff, and Samson Zhou. Truly perfect samplers for data streams and
sliding windows. In PODS ’22: International Conference on Management of Data, pp. 29–40,
2022.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for
faster lps. arXiv preprint arXiv:2004.07470, 2021.

Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers, finding duplicates
in streams, and related problems. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS, pp. 49–58, 2011.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of set
intersection. SIAM J. Discret. Math., 5(4):545–557, 1992.

U. Kang, Evangelos E. Papalexakis, Abhay Harpale, and Christos Faloutsos. Gigatensor: scaling
tensor analysis up by 100 times - algorithms and discoveries. In KDD, pp. 316–324, 2012.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv: 2001.04451, 2020.

Soroush Abbasi Koohpayegani and Hamed Pirsiavash. Sima: Simple softmax-free attention for
vision transformers. In IEEE/CVF Winter Conference on Applications of Computer Vision, WACV,
pp. 2595–2605. IEEE, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication complexity.
Comput. Complex., 8(1):21–49, 1999.

Joseph B. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics. Linear Algebra and its Applications, 18(2):95–
138, 1977. ISSN 0024-3795. doi: https://doi.org/10.1016/0024-3795(77)90069-6. URL https:
//www.sciencedirect.com/science/article/pii/0024379577900696.

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware
sparse attention mechanism for efficient long-sequence inference. In The Thirteenth International
Conference on Learning Representations. OpenReview.net, 2025.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix
multiplication time. In COLT. https://arxiv.org/pdf/1905.04447.pdf, 2019.

Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh regression problems.
arXiv preprint arXiv:2303.15725, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Sepideh Mahabadi, Piotr Indyk, Shayan Oveis Gharan, and Alireza Rezaei. Composable core-sets
for determinant maximization: A simple near-optimal algorithm. In Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, volume 97, pp. 4254–4263, 2019.

Sepideh Mahabadi, Ilya P. Razenshteyn, David P. Woodruff, and Samson Zhou. Non-adaptive adaptive
sampling on turnstile streams. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC, pp. 1251–1264, 2020.

Sepideh Mahabadi, David P. Woodruff, and Samson Zhou. Adaptive sketches for robust regression
with importance sampling. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM, pp. 31:1–31:21, 2022.

Arvind V. Mahankali, David P. Woodruff, and Ziyu Zhang. Near-linear time and fixed-parameter
tractable algorithms for tensor decompositions. In 15th Innovations in Theoretical Computer
Science Conference, ITCS, volume 287 of LIPIcs, pp. 79:1–79:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2024.

Jianning Mai, Chen-Nee Chuah, Ashwin Sridharan, Tao Ye, and Hui Zang. Is sampled data sufficient
for anomaly detection? In Proceedings of the 6th ACM SIGCOMM Internet Measurement
Conference, IMC, pp. 165–176, 2006.

James Manyika. An overview of bard: an early experiment with generative ai. Technical report, Tech.
rep., Technical report, Google AI, 2023.

Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of dall-e 2. arXiv
preprint arXiv:2204.13807, 2022.

Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error lp-sampling with applications.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pp. 1143–1160. SIAM, 2010.

Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. In 2013 ieee 54th annual symposium on foundations of computer science,
pp. 117–126. IEEE, 2013.

Noam Nisan. Pseudorandom generators for space-bounded computation. Comb., 12(4):449–461,
1992.

Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computation Theory
(TOCT), 5(3):1–17, 2013.

15

https://www.sciencedirect.com/science/article/pii/0024379577900696
https://www.sciencedirect.com/science/article/pii/0024379577900696
https://arxiv.org/pdf/1905.04447.pdf

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. Low complexity damped gauss–newton
algorithms for candecomp/parafac. SIAM Journal on Matrix Analysis and Applications, 34(1):
126–147, 2013.

Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song, Danyang Zhuo, and Shumo Chu. Adore:
Differentially oblivious relational database operators. VLDB, 2022a.

Lianke Qin, Aravind Reddy, Zhao Song, Zhaozhuo Xu, and Danyang Zhuo. Adaptive and dynamic
multi-resolution hashing for pairwise summations. In IEEE International Conference on Big Data,
Big Data, pp. 115–120. IEEE, 2022b.

Lianke Qin, Zhao Song, and Yitan Wang. Fast submodular function maximization. arXiv preprint
arXiv:2305.08367, 2023a.

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm
for projection matrix vector multiplication with application to empirical risk minimization. In
International Conference on Artificial Intelligence and Statistics, pp. 101–156. PMLR, 2023b.

Lianke Qin, Zhao Song, and Ruizhe Zhang. A general algorithm for solving rank-one matrix sensing.
In International Conference on Artificial Intelligence and Statistics, volume 238 of Proceedings of
Machine Learning Research, pp. 757–765. PMLR, 2024.

Alexander A. Razborov. On the distributional complexity of disjointness. Theor. Comput. Sci., 106
(2):385–390, 1992.

Aravind Reddy, Zhao Song, and Lichen Zhang. Dynamic tensor product regression. In Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS, 2022.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer,
Mia Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu,
James Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin
Johnson, Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas,
Nathan Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal,
Siamak Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren
Sezener, and et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context. CoRR, abs/2403.05530, 2024. doi: 10.48550/ARXIV.2403.05530. URL https:
//doi.org/10.48550/arXiv.2403.05530.

John A Rhodes and Seth Sullivant. Identifiability of large phylogenetic mixture models. Bulletin of
mathematical biology, 74:212–231, 2012.

Elina Robeva. Orthogonal decomposition of symmetric tensors. SIAM Journal on Matrix Analysis
and Applications, 37(1):86–102, 2016.

Elina Robeva and Anna Seigal. Singular vectors of orthogonally decomposable tensors. Linear and
Multilinear Algebra, 65(12):2457–2471, 2017.

Hemanth Saratchandran, Jianqiao Zheng, Yiping Ji, Wenbo Zhang, and Simon Lucey. Rethinking
softmax: Self-attention with polynomial activations. CoRR, abs/2410.18613, 2024.

Sambal Shikhar, Mohammed Irfan Kurpath, Sahal Shaji Mullappilly, Jean Lahoud, Fahad Shahbaz
Khan, Rao Muhammad Anwer, Salman H. Khan, and Hisham Cholakkal. Llmvox: Autoregressive
streaming text-to-speech model for any LLM. In Findings of the Association for Computational
Linguistics, ACL, pp. 20481–20493. Association for Computational Linguistics, 2025.

Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how single head
attention learns. arXiv preprint arXiv:2103.07601, 2021.

16

https://doi.org/10.48550/arXiv.2403.05530
https://doi.org/10.48550/arXiv.2403.05530

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Zhao Song, David P. Woodruff, and Huan Zhang. Sublinear time orthogonal tensor decomposition. In
Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems (NIPS) 2016, December 5-10, 2016, Barcelona, Spain, pp. 793–801, 2016.

Zhao Song, David P. Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp.
2772–2789. SIAM, 2019.

Zhao Song, David Woodruff, Zheng Yu, and Lichen Zhang. Fast sketching of polynomial kernels of
polynomial degree. In International Conference on Machine Learning, pp. 9812–9823. PMLR,
2021.

Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification using inner product search
data structures. arXiv preprint arXiv:2204.03209, 2022.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy: Fast
algorithm for dynamic kronecker projection maintenance. In International Conference on Machine
Learning, ICML, volume 202 of Proceedings of Machine Learning Research, pp. 32418–32462.
PMLR, 2023a.

Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming semidefinite programs: o(
√
n) passes, small

space and fast runtime. Manuscript, 2023b.

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural network
in subquadratic time. In 15th Innovations in Theoretical Computer Science Conference, ITCS,
volume 287 of LIPIcs, pp. 93:1–93:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

Foteini Strati, Sara McAllister, Amar Phanishayee, Jakub Tarnawski, and Ana Klimovic. Déjàvu:
Kv-cache streaming for fast, fault-tolerant generative LLM serving. In Forty-first International
Conference on Machine Learning, ICML. OpenReview.net, 2024.

William Swartworth, David P. Woodruff, and Samson Zhou. Perfect lp sampling with polylogarithmic
update time. In IEEE 66th Annual Symposium on Foundations of Computer Science (FOCS), 2025.

Marina Thottan, Guanglei Liu, and Chuanyi Ji. Anomaly detection approaches for communication
networks. In Algorithms for Next Generation Networks, Computer Communications and Networks,
pp. 239–261. Springer, 2010.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Charalampos E. Tsourakakis. MACH: fast randomized tensor decompositions. In SDM, pp. 689–700,
2010.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57, 1985.

James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A mathematical theory of attention.
arXiv preprint arXiv:2007.02876, 2020.

Chi Wang, Xueqing Liu, Yanglei Song, and Jiawei Han. Scalable moment-based inference for latent
dirichlet allocation. In ECML-PKDD, pp. 290–305, 2014.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Yining Wang, Hsiao-Yu Tung, Alexander J Smola, and Anima Anandkumar. Fast and guaranteed
tensor decomposition via sketching. In Advances in Neural Information Processing Systems (NIPS),
pp. 991–999. https://arxiv.org/pdf/1506.04448, 2015.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
approximating turing machines with transformers. arXiv preprint arXiv:2107.13163, 2021.

David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and sliding
windows via difference estimators. In 62nd Annual Symposium on Foundations of Computer
Science, FOCS, pp. 1183–1196, 2021.

David P. Woodruff, Shenghao Xie, and Samson Zhou. Perfect sampling in turnstile streams beyond
small moments. Proc. ACM Manag. Data, 3(2):106:1–106:27, 2025.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, ICLR. OpenReview.net, 2024.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context LLM inference with retrieval and streaming heads.
In The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Yao Yao, Zuchao Li, and Hai Zhao. Sirllm: Streaming infinite retentive LLM. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL, pp. 2611–2624. Association for
Computational Linguistics, 2024.

Guanghao Ye. Fast algorithm for solving structured convex programs. The University of Washington,
Undergraduate Thesis, 2020.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
kernel density estimation. In ICML. arXiv preprint arXiv:2302.02451, 2023.

Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Hanlin
Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui,
Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie
Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun
Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv,
Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin
Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang,
Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language models from
GLM-130B to GLM-4 all tools. CoRR, abs/2406.12793, 2024. doi: 10.48550/ARXIV.2406.12793.
URL https://doi.org/10.48550/arXiv.2406.12793.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393, 2020.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen.
Spargeattn: Accurate sparse attention accelerating any model inference. CoRR, abs/2502.18137,
2025. doi: 10.48550/ARXIV.2502.18137. URL https://doi.org/10.48550/arXiv.
2502.18137.

Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and maintenance.
Master’s thesis, Carnegie Mellon University, 2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

18

https://arxiv.org/pdf/1506.04448
https://doi.org/10.48550/arXiv.2406.12793
https://doi.org/10.48550/arXiv.2502.18137
https://doi.org/10.48550/arXiv.2502.18137

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. ∞bench: Extending long context
evaluation beyond 100k tokens. CoRR, abs/2402.13718, 2024. URL https://doi.org/10.
48550/arXiv.2402.13718.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while
predicting the masked word? In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, pp. 16513–16542. Association for Computational
Linguistics, 2023.

19

https://doi.org/10.48550/arXiv.2402.13718
https://doi.org/10.48550/arXiv.2402.13718

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we provide additional related work. In Section B, we briefly discuss the
background on ℓ2 sampler. In Section C, we show that how to use the tail bound to obtain sampling
result. In Section D, we present the tensor sampling result. In Section E, we discuss the LLM usage
of the paper.

A ADDITIONAL RELATED WORK

On sketching. The application of sketching and sampling techniques in numerical linear algebra
has been remarkably effective, revolutionizing a broad spectrum of core tasks. These methods are
crucial in linear programming (LP), as evidenced by Cohen et al. (2019); Jiang et al. (2021); Ye
(2020); Gu & Song (2022), and have significantly impacted tensor approximation (Song et al., 2019;
Mahankali et al., 2024; Deng et al., 2023a). Sketching and sampling techniques also have been widely
applied in matrix completion (Gu et al., 2024), matrix sensing (Qin et al., 2024; Deng et al., 2023b),
submodular function maximization (Qin et al., 2023a), dynamic sparsification (Deng et al., 2022a),
dynamic tensor product regression (Reddy et al., 2022), and semi-definite programming (Song et al.,
2023a). Additionally, sketching has been pivotal in iterative sparsification problems (Song et al.,
2022), adversarial training (Gao et al., 2022), kernel density estimation (Qin et al., 2022b), solving
the distance oracle problem (Deng et al., 2022b), and empirical risk minimization (Lee et al., 2019;
Qin et al., 2023b). Its applications furthermore extends to relational databases (Qin et al., 2022a) and
Large Language Model (LLM) research (Deng et al., 2023c;b; Gao et al., 2025; Li et al., 2023).

On theoretical attention. A comprehensive body of research, including studies (Child et al., 2019;
Kitaev et al., 2020; Wang et al., 2020; Daras et al., 2020; Katharopoulos et al., 2020; Chen et al.,
2021; 2022; Zandieh et al., 2023; Alman & Song, 2023; Brand et al., 2024; Deng et al., 2023c;
Kacham et al., 2023; Alman & Song, 2024a; Han et al., 2024; Awasthi & Gupta, 2023; Marcus
et al., 2022; Alman & Song, 2024b; 2025a;b), has progressively shed light on the complexities and
optimization of attention matrix computation. This exploration has been further enriched by insights
into the effectiveness of attention mechanisms in Transformers (Dehghani et al., 2018; Vuckovic
et al., 2020; Zhang et al., 2020; Edelman et al., 2022; Snell et al., 2021; Wei et al., 2021; Deng
et al., 2023d; 2024a). Among these, Zhao et al. (2023) revealed the adeptness of mid-scale masked
language models in identifying syntactic elements, paving the way for innovations like partial parse
tree reconstructions. Inspired the exponential mechanism in attention structure, Gao et al. (2023)
provide an analysis which shows exponential regression within the over-parameterized neural tangent
kernel framework can converge. In the over-constrained setting, several work show the convergence
for attention inspired regression problem (Li et al., 2023; Deng et al., 2023b).

B ℓ2 SAMPLER

We give the full details of the standard L2 sampler from Jowhari et al. (2011); Mahabadi et al. (2020)
in Algorithm 2. The proof of correctness is verbatim from Jowhari et al. (2011); Mahabadi et al.
(2020). The challenge is how to implement the data structures of y, which is implicitly defined
as (A1 ⊗A2)x. By comparison, in the standard setting of ℓ2 samplers Monemizadeh & Woodruff
(2010); Andoni et al. (2011); Jowhari et al. (2011); Jayaram & Woodruff (2021); Mahabadi et al.
(2020), y is given as a data stream.

C FROM TAIL TO SAMPLING

Lemma C.1 (Restatement of Lemma 7.4). Let y = (A1 ⊗A2)x ∈ Rn2

. Let only one of A1 and A2

be updated in streaming. Let w = yi√
ui

for a constant ui ∈ [0, 1] generated uniformly at random.

There is an algorithm A that that uses O(nd) + poly
(
1
ϵ , log n

)
space, uses O(n) update time, and

estimates each element of w up to additive error ϵ · ∥z∥2, where z denotes the tail vector of w without
the largest 1

ϵ2 entries in magnitude. Specifically, for all i ∈ [n2], we have |ŵi − wi| ≤ ϵ · ∥z∥2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 2 Standard ℓ2 Sampler, e.g., extension of Jowhari et al. (2011) to p = 2

1: For each i ∈ [n], let ui ∈ [0, 1] be chosen uniformly at random
2: wi ← yi√

ui

3: Let z denote the tail vector of w without the largest 1
ϵ2 entries in magnitude

4: Let Ŷ be a 2-approximation of ∥y∥2
5: Let Ẑ be a 2-approximation of ∥z∥2
6: i← argmaxi∈[n]|ŵi|
7: Let C > 0 be a large constant determined by the additive faliure probability 1

poly(n)

8: if Ẑ >
√

C logn
ϵ · Ŷ or |wi| <

√
C logn

ϵ · Ŷ then
9: Return FAIL

10: else
11: Return i with estimate

√
ui · ŵi

12: end if

Proof. Consider hash function h1, h2 : [n] → [b]. Consider random sign functions σ1, σ2 : [n] →
{−1,+1}. We consider a fixed index i1, i2 ∈ [n]. Let j = h1(i1) + h2(i2) (mod b). Let h−1(j)
denote the all the pairs (i1, i2) ∈ [n] × [n] such that h1(i1) + h2(i2) (mod b) = j. Note that ŷi
induced by h is ŵi = wi +

∑
l∈h−1(j)\{i} sislwl1wl2 . For ease of presentation, we write σi =

σ1,i1σ2,i2 and σl = σ1,l1σ2,l2 .

E[ŵi] = E
[
wi +

∑
l∈h−1(j)\{i}

σ(i)σ(l)wl

]
= E[wi] +

∑
l∈h−1(j)\{i}

E[σ(i) · σ(l)] · wl

= wi +
∑

l∈h−1(j)\{i}

E[σ(i)] · E[σ(l)] · wl = wi,

where the first step follows from definition, the second step follows from linearity of expectation, the
third step follows from σ(i) and σ(l) are independent, the forth step follows from E[σ(l)] = 0.

We now upper bound the variance of ŵi − yi by analyzing E[(ŷi)2]. LetH be the set of the top 1
ϵ2

items and let E be the event that none of the items inH are mapped to h(i), i.e., h(a) ̸= h(i) for all
a ∈ H.

Observe that for b = 100
ϵ2 , we have that Pr[E] ≥ 0.9. Then we have:

E[(ŵi − wi)
2 | E] = E[(

∑
l∈[n]2\H,l∈h−1(j)

σ(i)σ(l)wl)
2] = E

 ∑
l∈[n]2\H,l∈h−1(j)

w2
l


=

1

b
·

∑
l∈[n]2\H,l∈h−1(j)

w2
l ≤

1

b
· (w2

1 + . . .+ w2
n2 −

∑
l∈H

w2
l)

= 100ϵ2 · ∥z∥22,

for b = 100
ϵ2 , since z is the vector corresponding to y that removes the entries in H. By Cheby-

shev’s inequality, we have that Pr[|ŵi − wi| ≥ ϵ · ∥z∥2 | E] ≤ 1
10 . Since Pr[E] ≥ 0.9, then

Pr |ŵi − wi| ≥ ϵ · ∥z∥2 ≤ 0.2, for a fixed hash function h. By taking the median of O(log n) estima-
tions corresponding to O(log n) different hash functions h, we have that Pr[|ŵi − wi| ≥ ϵ · ∥z∥2] ≤
1

n10 . Thus by a union bound over i ∈ [n]× [n], we have that with probability at least 1− 1
n5 , we have

for all i ∈ [n], |ŵi − wi| ≥ ϵ · ∥z∥2.

Lemma C.2 (Restatement of Lemma 7.5). Let y = (A1 ⊗ A2)x ∈ Rn2

and let w ∈ Rn2

so that
wi =

yi√
ui

for a constant ui ∈ [0, 1] generated uniformly at random. Let z denote the tail vector

of w without the largest 1
ϵ2 entries in magnitude. Let Ẑ be a 2-approximation to ∥z∥2 and Ŷ be a

2-approximation to ∥y∥2. Then

Pr

[
Ẑ >

√
C log n

ϵ
· Ŷ

]
≤ O(ϵ) +

1

poly(n)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. Let E1 denote the event that Ẑ is a 2-approximation to ∥z∥2 and Ŷ is a 2-approximation to
∥y∥2, so that

Pr[E1] ≥ 1− 1

poly(n)
.

Conditioned on E1, it suffices to bound the probability that

4∥z∥2 >

√
C log n

ϵ
· ∥y∥2.

Let j ∈ [n2] be a fixed index and let uj be fixed.

Let T =
√
ϵ · ∥y∥2 and for each i ∈ [n2], we define the indicator random variable Wi = 1 if |wi| > T

and Wi = 0 otherwise, if |wi| ≤ T . Note that Wi is an indicator random variable for whether the
coordinate wi in the vector w is “heavy” in magnitude.

We then define

Zi =
w2

i

T 2
· (1−Wi)

to be the scaled contribution of the small entries of z, and observe that Zi ∈ [0, 1].

Let

W =
∑

i∈[n2],i̸=j

wi

denote the total number of heavy indices besides possibly index j and Z =
∑

i∈[n2],i̸=j Zi denote
the total scaled contribution of the light indices besides possibly index j. Let v denote the vector
containing the heavy indices, so that vi = wi for Wi = 1 and vi = 0 otherwise for Wi = 0. Note that
v has sparsity at most Y + 1 and moreover U2Z = ∥w − v∥22. We also have that ∥z∥2 ≤ ∥w − v∥2
unless W ≥ 2

ϵ2 .

Let E2 denote the event that W ≥ 2
ϵ2 and let E3 denote the event that Z ≥ C logn

16T 2ϵ · ∥y∥
2
2. Observe

that if neither E2 nor E3 occur, then we have 4∥z∥2 ≤
√

C logn
ϵ · ∥y∥2, as desired. Thus it remains to

bound the probability of the failure events E2 and E3.

We have E[Wi] =
∥w∥2

2

T 2 , so that E[W] ≤ 1
ϵ . By Markov’s inequality, we have that Pr[E2] ≤ ϵ

2 .

We now upper bound Pr[E3]. Recall that Zi =
w2

i

T 2 · (1 −Wi) =
w2

i

Tu2
i
· (1 −Wi), since wi =

yi√
ui

.

Observe that Zi > 0 only if |wi| < T , i.e., if ui ≥ y2
i

ϵ·∥y∥2
2

, since T =
√
ϵ · ∥y∥2. For ϵ ∈ (0, 1), we

thus have

E[Zi] ≤
∫ 1

y2
i /∥y∥2

2

zidui

=

∫ 1

y2
i /∥y∥2

2

y2i
ui

1

T 2
dui.

Now, let E4 be the event that ui ≥ 1
nC/2 for all i ∈ [n2], so that Pr[E4] ≥ 1− 1

nC/2−2 .

Then

E[Zi | E4] ≤
1

1− 1
nC/2−2

∫ 1

1/nC/2

y2i
ui

1

T 2
dui

≤ C log n

T 2
y2i .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Thus, we have

E[Z | E4] =
∑

i∈[n2]

E[Zi | E4]

=
∑

i∈[n2]

C log n

T 2
y2i

≤
∑

i∈[n2]

C log n

ϵ

y2i
∥y∥22

=
C log n

ϵ
.

Thus by Markov’s inequality, the probability that Z is larger than C logn
16T 2ϵ · ∥y∥

2
2 = C logn

16ϵ2 is at most
ϵ
16 . The claim then follows from taking a union bound over the events E1,¬E2,¬E3,¬E4.

D TENSOR SAMPLING

Theorem D.1 (Restatement of Theorem 7.6). Let y = (A1 ⊗A2)x ∈ Rn2

and let w ∈ Rn2

so that
for each i ∈ [n2], wi =

yi√
ui

for a constant ui ∈ [0, 1] generated uniformly at random. Let z denote

the tail vector of w without the largest 1
ϵ2 entries in magnitude. Suppose there exists:

1. An algorithm A1 that provides a 2-approximation to ∥y∥2 with probability 1− 1
n2 .

2. An algorithm A2 that provides a 2-approximation to ∥z∥2 with probability 1− 1
n2 .

3. An algorithm A3 that estimates each element of w up to additive error ϵ · ∥z∥2,

|ŵi − wi| ≤ ϵ · ∥z∥2,
for all i ∈ [n2].

Then there exists a data structure that uses poly
(
1
ϵ , log n

)
bits of space and outputs each index i

with probability pi, such that

(1− ϵ) · y2i
∥y∥22

− 1

poly(n)
≤ pi ≤ (1 + ϵ) · y2i

∥y∥22
+

1

poly(n)
.

Proof. Let i be fixed and let E denote the event that ui <
ϵ

C logn
y2
i

Ŷ 2
, so that |wi| >

√
C logn

ϵ · Ŷ .

Let E1 denote the event that Ŷ is a 2-approximation to ∥y∥2, Ẑ is a 2-approximation to ∥z∥2, and

|ŵi −wi| ≤ ϵ · ∥z∥2 for all i ∈ [n]. Let E2 denote the event that Ẑ >
√

C logn
ϵ · Ŷ and let E3 denote

the event that multiple indices j satisfy |wj | >
√

C logn
ϵ · Ŷ . Finally, let E4 denote the event that

|ŵi| <
√

C logn
ϵ · Ŷ .

Intuitively, E1 is a good event, i.e., correctness of the data structures, which we would like to hold.
On the other hand, E2, E3, E4 are bad events that distort the sampling probabilities, which we would
like to avoid.

We first note that E1 holds with high probability due to the correctness of the CountSketch and
L2-norm estimation data structures. We next note that by Lemma 7.5, the probability that E2 occurs
is O(ϵ).

Next, note that the probability that for a fixed j ∈ [n], uj satisfies
y2
j

uj
≥ C logn

ϵ · Ŷ is at most
ϵ

C′ logn

y2
j

∥y∥2
2

for some constant C ′. Thus summing over all j ∈ [n], the probability that there exist

an additional j ∈ [n] for which |wj | >
√

C logn
ϵ · Ŷ is O(ϵ). Thus the probability that E3 occurs is

O(ϵ).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Finally, conditioned on ¬E2, we have that Ẑ ≤
√

C logn
ϵ · Ŷ . Then conditioning on E1, we have

∥z∥2 ≤ Ẑ and thus |ŵi − wi| ≤ ϵẐ ≤
√
Cϵ log nŶ , so that E4 can only occur for

√
C logn

ϵ · Ŷ ≤

|wi| ≤
√

C logn
ϵ · Ŷ , which is at most probability O

(
ϵ2

C logn
y2
i

Ŷ 2

)
, over the randomness of ui.

In summary, we observe that conditioned on some value being output, the probability that item i is
selected is proportional to the event that the events E and E1 occur, and none of the events E2, E3, E4
occur. The probability that E occurs is ϵ

C logn
y2
i

Ŷ 2
, which ui is chosen uniformly at random. Due

to the event E1, the sampling probability is distorted additively by 1
poly(n) , while due to the events

E2, E3, E4, the sampling probability is distorted multiplicatively by (1 + ϵ). Thus conditioned on the
event that some index is returned, the probability pi that index i is returned satisfies

(1− ϵ) · y2i
∥y∥22

− 1

poly(n)
≤ pi ≤ (1 + ϵ) · y2i

∥y∥22
+

1

poly(n)
,

as desired.

E LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

24

	Introduction
	Related Work
	Preliminaries
	Exponential Sampler
	L2 Sampler Upper bound with A and x
	A is updated during the streaming and x is fixed
	x is updated during the streaming and A is fixed
	Both A and x are updated during the streaming

	L2 Sampler Lower Bound (with and)
	The Tensor Version Problem
	Conclusions
	Additional Related Work
	L2 Sampler
	From Tail to Sampling
	Tensor Sampling
	LLM Usage Disclosure

