
Evaluating Memory in LLM Agents via Incremental
Multi-Turn Interactions

Yuanzhe Hu * 1 Yu Wang * 1 Julian McAuley 1

Abstract

Recent benchmarks for Large Language Model
(LLM) agents have primarily focused on evalu-
ating planning and execution capabilities, while
another critical component—memory, encompass-
ing how agents store, retrieve, and update long-
term information—has much fewer benchmarks
for evaluation. We term agents with memory
mechanisms as memory agents. In this paper,
we identify four core competencies essential for
memory agents: accurate retrieval, test-time learn-
ing, long-range understanding, and conflict res-
olution. Existing datasets either rely on limited
context lengths or are tailored for static, long-
context settings like book-based QA, which do not
reflect the interactive, multi-turn nature of mem-
ory agents that incrementally accumulate informa-
tion. Furthermore, no existing benchmarks cover
all four competencies. Therefore, we introduce
MemAE (Memory Agent Evaluation), a unified
evaluation framework specifically designed for
memory agents. Our benchmark combines refor-
mulated existing datasets with newly constructed
ones, covering above four identified memory com-
petencies, providing a systematic and challenging
testbed for assessing memory quality. We evaluate
a diverse set of memory agents, ranging from sim-
ple context-based and retrieval-augmented gen-
eration (RAG) systems to advanced agents with
external memory modules and tool integration.
Empirical results reveal that current methods fall
short of mastering all four competencies, under-
scoring the need for further research into compre-
hensive memory mechanisms for LLM agents.

*Equal contribution 1UC San Diego. Correspon-
dence to: Yuanzhe Hu <yuh127@ucsd.edu>, Yu Wang
<yuw164@ucsd.edu>, Julian McAuley <jmcauley@ucsd.edu>.

Proceedings of the 2nd Workshop on Long-Context Foundation
Models, Vancouver, Canada. 2025. Copyright 2025 by the au-
thor(s).

1. Introduction
Large Language Model (LLM) agents have rapidly tran-
sitioned from proof-of-concept chatbots to end-to-end
systems that can write software (Wang et al., 2024a),
control browsers (Müller & Žunič, 2024), and reason
over multi-modal inputs. Frameworks such as MANUS,
OWL (Hu et al., 2025), OPENHANDS (Wang et al., 2024a),
and CODEX routinely solve complex, tool-rich tasks and
achieve state-of-the-art results on agentic benchmarks like
GAIA (Mialon et al., 2023) and SWE-Bench (Jimenez
et al., 2023). Yet these evaluations focus almost exclusively
on skill (planning, tool use, code synthesis) and leave the
equally important question of memory—how an agent stores,
retrieves, and updates private long-term context—largely
unexplored.

Figure 1: Four complementary competencies that memory
agents should have.

Recent memory-centric architectures—ranging from para-
metric memory systems like MemoryLLM (Wang et al.,
2024b) and M+(Wang et al., 2025) to commercial token-
level memory solutions such as MEMGPT(Packer et al.,
2023), MEM0(Chhikara et al., 2025), COGNEE, and
ZEP(Rasmussen et al., 2025)—employ diverse strategies for
storing and retrieving episodic information. Despite grow-
ing interest, their real-world effectiveness remains largely
anecdotal, and there is currently no unified benchmark for
systematically evaluating the quality of memory in agents.
In this paper, we refer to agents equipped with memory
mechanisms as Memory Agents, where memory can take
various forms, including parameters, vectors, textual his-

1

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

tories, or external databases. In this paper, we primarily
focus on memory agents that utilize textual histories and
external databases, as these approaches are most commonly
deployed in real-world applications. In contrast, memory
encoded in model parameters (Wang et al., 2024b; 2025; Yin
et al., 2024) remains largely within academic research and
is typically less capable than proprietary memory systems
equipped on closed-sourced API models..

To evaluate memory agents, we identify four complementary
competencies (Examples shown in Figure 1): Accurate Re-
trieval, Test-Time Learning, Long-Range Understanding
and Conflict Resolution. We also introduce a unified evalu-
ation framework, MemAE, specifically designed to assess a
broad spectrum of memory mechanisms in agent systems.
In this framework, agents are presented with sequences
of textual inputs that simulate multi-turn interactions with
users. We repurpose existing datasets originally developed
for long-context LLM evaluation by segmenting their inputs
into multiple chunks and feeding them incrementally to the
agent. However, since these datasets do not fully capture
all four targeted memory competencies, we also introduce
two new datasets: EventQA and FactConsolidation, each
designed to evaluate long-range understanding, conflict res-
olution, and memory-based inference. Our benchmark in-
cludes evaluations of state-of-the-art commercial memory
agents (such as Mem0 and MemGPT), long-context agents
that treat the full input as memory, and retrieval-augmented
generation (RAG) agents that extend their memory through
retrieval methods. We examine how techniques developed
for long-context models and RAG transfer to the memory
agent setting, and how commercial memory agents perform
under more challenging, competency-specific tests. By pro-
viding a consistent evaluation protocol across diverse agent
architectures and datasets, MemAE delivers comprehensive
insights into agent performance across the four core memory
competencies.

Our contributions are summarized as follows:

• Datasets: We re-structure existing datasets and create two
new datasets to construct a comprehensive benchmark,
covering four distinct memory competencies.

• Framework: We provide a unified evaluation framework
MemAE, and open-source the codebase to encourage re-
producibility and further research.

• Empirical Study: We implement various simple agents
with diverse memory mechanisms, adopt commercial
agents, and evaluate these agents on our proposed bench-
mark. With our results, we show that existing memory
agents, while effective in some tasks, still face significant
challenges on some aspects.

2. Methodology
In this section, we introduce the four aspects of evaluation
in detail, and the datasets we repurposed and curated for
these aspects, as well as the MemAE framework.

2.1. Aspects of the Evaluation

The evaluation of memory agents encompasses the follow-
ing key dimensions:

Accurate Retrieval (AR) The task of accurately retriev-
ing information has been extensively explored in prior work.
In the domain of long-context modeling, the Needle-in-a-
Haystack (NIAH) task is widely used to evaluate a model’s
ability to locate a specific value based on a given key within
a lengthy input. In the RAG setting, this corresponds to
document-based question answering (QA), where the model
must identify and extract relevant snippets from one or more
documents to answer a query. These snippets might reside
in a single location or be distributed across multiple docu-
ments. In this paper, we define AR as the ability of an agent
to identify and retrieve important information that may be
dispersed throughout a long dialogue history.

Test-Time Learning (TTL) An essential capability for
real-world agents is the ability to acquire new skills dy-
namically through interaction with users. This mirrors the
concept of In-Context Learning (ICL) in LLMs, where the
model learns from a prompt containing a small number
of examples, often framed as few-shot classification tasks.
Ideally, performance improves with additional examples in
the prompt. We define Test-Time Learning (TTL) as the
agent’s ability to learn to perform new tasks directly from
the conversation. This property is crucial for enabling self-
evolving agents that can continuously adapt and improve in
real-world deployments.

Long-Range Understanding (LRU) Long-range under-
standing refers to the agent’s ability to form abstract, high-
level comprehension over extended conversations. For ex-
ample, when a user narrates a long story, the agent should
retain the content and derive a holistic understanding rather
than just recall isolated facts. We define Long-Range Un-
derstanding (LRU) as the ability to reason about long-form
inputs and answer high-level questions that require an under-
standing of the overall content, rather than detailed recall.

Conflict Resolution (CR) In long-term interactions,
agents often face evolving or conflicting informa-
tion—whether about the external world (e.g., changes in
political leadership) or user-specific facts (e.g., a new occu-
pation). We define Conflict Resolution (CR) as the agent’s
ability to detect and resolve contradictions between exist-
ing knowledge and newly acquired information, ensuring
the agent remains aligned with current realities and user
states. CR is distinct from Abstractive Retrieval (AR) in

2

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

two key ways. (1) Certain questions requiring CR cannot
be answered solely through AR. As illustrated in Figure 1,
an agent that retrieves all facts related to pears may fail to
identify the updated information in the second message. (2)
In AR, earlier messages remain relevant and should be re-
tained, even when multiple pieces of evidence are required.
In contrast, CR involves identifying outdated or incorrect
information and discarding it. That is, AR requires preserva-
tion of all related content, whereas CR requires overwriting
prior facts to reflect the most up-to-date truth.

2.2. Various Memory Agents

We evaluate three major types of memory agents that re-
flect common strategies for handling long-term information.
These approaches differ in how they store, retrieve, and
reason over past inputs.

Long Context Agents Modern language models often sup-
port extended context windows ranging from 128K to over
1M tokens. A straightforward strategy for memory is to
maintain a context buffer of the most recent tokens. For
example, in a model with a 128K-token limit, the agent
concatenates all incoming chunks until the total exceeds the
window size. Once the limit is reached, the earliest chunks
are evicted in a FIFO (first-in, first-out) manner.

RAG Agents RAG-based agents address context limita-
tions by storing past information in an external memory
pool and retrieving relevant content as needed. We con-
sider three RAG variants: (1) Simple RAG Agents: All input
chunks are stored as raw text. During inference, a keyword
or rule-based string matching mechanism retrieves relevant
passages. (2) Embedding-based RAG Agents: Each input
chunk is embedded and saved. At query time, the agent
embeds the query and performs retrieval using cosine simi-
larity between embeddings. (3) Structure-Augmented RAG
Agents: After ingesting all input chunks, the agent con-
structs a structured representation (e.g., knowledge graph or
event timeline). Subsequent queries are answered based on
this structured memory.

Agentic Memory Agents Agentic memory agents ex-
tend beyond static memory stores by employing agentic
loops—iterative reasoning cycles in which the agent may
reformulate questions, perform memory lookups, and up-
date its working memory. These agents are designed to
simulate a more human-like process of recalling, verifying,
and integrating knowledge.

2.3. MemAE

Dataset Formulation We standardize all datasets into
the format: c1, c2, · · · , cn (chunks), q1, q2, · · · , qm (ques-
tions), and a1, a2, · · · , am (answers), where ci denotes the
i-th chunk wrapped to construct a user message with in-
structions of memorizing the content in a sequential input,

and c1, c2, · · · , cn represents a single conversation. Each
chunk is accompanied by instructions prompting the agent
to memorize its contents. Example prompts are provided in
Appendix C.1. When curating datasets like EventQA and
FactConsolidation, we deliberately design scenarios where
multiple questions follow a single context. This allows us to
probe the model’s memory multiple times with one sequen-
tial injection. For example, in LME (S*), five contexts are
paired with 300 questions (shown in Table 3 in Appendix
B). This design choice reflects a key trend: as LLMs sup-
port increasingly long context windows and memory agents
become more capable of handling extended inputs, evalu-
ation datasets must also scale accordingly. Injecting 1M
tokens for just one question is resource-inefficient, whereas
associating the same input with many questions provides
significantly higher utility.

Agents Formulation In our framework, all agents are
required to take the chunks one by one, absorb them into
memory, and incrementally update the memory. After see-
ing all the chunks, we ask the agent to answer the related
questions.

3. Experiments
3.1. Experimental Setup

The datasets are split into four categories and the statistics
of all datasets are also shown in Table 3. The evaluation
metrics for all datasets are shown in Table 2 in Appendix
B, along with more dataset details. Then for the agents,
as described in Section 2.2, we consider three categories
of agents: Long-Context Agents, RAG agents and Agentic
Memory Agents.

3.2. Overall Performance Comparison

Table 1 presents the overall performance across different
benchmarks. We summarize the key findings as follows:
(1) Superiority of RAG methods in Accurate Retrieval
Tasks. Most RAG Agents are better than the backbone
model “GPT-4o-mini” in the tasks within the Accurate Re-
trieval Category. This matches our intuition where RAG
agents typically excel at extracting a small snippet of text
that is crucial for answering the question. (2) Superior-
ity of Long-Context Models in Test-Time Learning and
Long-Range Understanding Long-context models achieve
the best performance on TTL and LRU. This highlights a
fundamental limitation of retrieval-augmented generation
(RAG) methods and commercial memory agents, which still
follow an agentic RAG paradigm. These systems retrieve
only partial information from the past context, lacking the
ability to capture a holistic understanding of the input—let
alone perform learning across it. (3) Limitation of All Ex-
isting Methods on Conflict Resolution Although being a

3

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Table 1: Overall Performance Comparison. All RAG agents and commercial memory agents use GPT-4o-mini as the
backbone. Thus we highlight the performance of GPT-4o-mini as the reference. FactCon-SH and FactCon-MH mean
FactConsolidation Single Hop and FactConsolidation Multi Hop, respectively.

AR TTL LRU CR
Agent Type RULER NIAH ∞Bench-QA LME(S*) EventQA MCC Recom ∞Bench-Sum FactCon-SH FactCon-MH

Long-Context Agents
GPT-4o 61.5 25.0 55.4 32.0 77.2 87.6 12.3 32.2 60.0 5.0
GPT-4o-mini 53.5 22.8 44.9 30.7 59.0 82.4 15.1 28.9 45.0 5.0
GPT-4.1-mini 74.5 94.8 45.8 55.7 82.6 75.6 16.7 41.9 36.0 5.0
Gemini-2.0-Flash 73.0 83.8 53.2 47.0 67.2 84.0 8.7 23.9 30.0 3.0
Claude-3.7-Sonnet 65.0 38.0 50.6 34.0 74.6 89.4 18.3 52.5 43.0 2.0

GPT-4o-mini 53.5 22.8 44.9 30.7 59.0 82.0 15.1 28.9 45.0 5.0
Simple RAG Agents

BM25 61.0 95.5 45.6 48.3 74.6 75.4 13.6 20.9 44.0 5.0
Embedding RAG Agents

Contriever 41.0 8.8 38.1 19.0 66.8 70.6 15.2 21.2 25.0 5.0
Text-Embed-3-Small 36.0 12.3 44.4 39.0 63.0 70.0 15.3 25.7 21.0 4.0
Text-Embed-3-Large 36.5 13.5 50.1 39.3 70.0 72.4 16.2 21.6 22.0 3.0
NV-Embed-v2 48.0 31.8 51.4 43.0 72.8 69.4 13.5 20.7 42.0 6.0

Structure-Augmented RAG Agents
RAPTOR 23.5 4.5 31.3 31.7 45.8 59.4 12.3 13.4 19.0 2.0
GraphRAG 43.0 8.0 35.8 36.7 34.4 39.8 9.8 0.4 10.0 3.0
HippoRAG-v2 43.5 23.3 45.7 37.3 67.6 61.4 10.2 14.6 29.0 3.0
Mem0 28.0 4.8 22.4 36.0 37.5 3.4 10.0 0.8 18.0 2.0
Cognee 33.5 4.0 19.7 29.3 26.8 35.4 10.1 2.3 28.0 3.0

Agentic Memory Agents
Self-RAG 38.5 7.0 28.5 23.0 31.8 11.6 12.8 0.9 14.0 2.0
MemGPT 31.0 3.5 20.8 32.0 26.2 67.6 14.0 2.5 13.0 3.0

well-discussed task in model-editing community (Mitchell
et al., 2022; Fang et al., 2024), resolving conflict poses a
significant challenge on memory agents. We observe that all
methods fail on the multi-hop situation. Only long context
agents can achieve fairly reasonable results on single-hop
scenarios. In Section E.3, we show that current reasoning
models can have much better performance, while it does not
change the conclusion that Conflict Resolution still poses
a significant challenge on all memory mechanisms. (4)
Limited Performance of Commercial Memory Agents.
Commercial memory agents, such as MemGPT and Mem0,
perform poorly across most benchmarks. This may be at-
tributed to three main factors. First, these systems usually
miss plenty of information when saving information into
the memory. Mem0 relies on extracting the factual knowl-
edges from the input, which naturally miss a large amount
of information and may fail to reconstruct the original in-
put and content from the memory, making the question
answering based on the memory become much harder. For
Accurate Retrieval Tasks, the agent could perform better
in conversation tasks (Mem0 has shown their performance
on LOCOMO), this is because the information is not as
dense in conversations as in documents such as RULER,
∞-Bench, and it may fail drastically in the benchmarks
which have very dense information. For TTL and LRU, the
problem is even more severe. Second, both MemGPT and
Mem0 relies on retrievers to retrieve part of the existing
information in the memory. For Mem0, the retrieval is done
only once like other RAG methods, thus the amount of the

retrieved information is very limited. For MemGPT, even
though the agent is an agentic framework and multiple re-
trievals are allowed, the information stored in the memory
does not include temporal information, which makes it hard
for the agent to look at the saved long documents with the
original structure, leading to poor performances on LRU
tasks. Lastly, the methods like MemGPT replies heavily on
embedding-based retrieval mechanisms, which are poten-
tially insufficient for fine-grained tasks like NIAH, where
retrieving the precise “needle” in the haystack is critical.

4. Conclusion and Future Work
In this paper, we introduce MemAE, a unified benchmark
designed to evaluate memory agents across four essential
competencies.While prior benchmarks focus largely on skill
execution or long-context reasoning, MemAE fills a crit-
ical gap by assessing how agents store, update, and uti-
lize long-term information across multi-turn interactions.
To build this benchmark, we restructure existing datasets
and propose two new ones—EventQA and FactConsoli-
dation—tailored to stress specific memory behaviors often
overlooked in prior work. We evaluate a wide spectrum
of agents, including long-context models, RAG-based sys-
tems, and commercial memory agents, under a consistent
evaluation protocol. Our results reveal that, despite recent
advances, current memory agents still exhibit substantial
limitations when faced with tasks requiring dynamic mem-
ory updates and long-range consistency.

4

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

References
Anthropic. Claude 3.7 sonnet, 2025. URL https://www.
anthropic.com/news/claude-3-7-sonnet.
This announcement introduces Claude 3.7 Sonnet,
described as Anthropic’s most intelligent model to date
and the first hybrid reasoning model generally available
on the market.

Asai, A., Wu, Z., Wang, Y., Sil, A., and Hajishirzi, H. Self-
rag: Learning to retrieve, generate, and critique through
self-reflection. In The Twelfth International Conference
on Learning Representations, 2023.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., et al. Longbench: A
bilingual, multitask benchmark for long context under-
standing. arXiv preprint arXiv:2308.14508, 2023.

Bai, Y., Tu, S., Zhang, J., Peng, H., Wang, X., Lv, X.,
Cao, S., Xu, J., Hou, L., Dong, Y., et al. Long-
bench v2: Towards deeper understanding and reason-
ing on realistic long-context multitasks. arXiv preprint
arXiv:2412.15204, 2024.

Bertsch, A., Ivgi, M., Xiao, E., Alon, U., Berant, J., Gorm-
ley, M. R., and Neubig, G. In-context learning with
long-context models: An in-depth exploration. arXiv
preprint arXiv:2405.00200, 2024.

Casanueva, I., Temčinas, T., Gerz, D., Henderson, M.,
and Vulić, I. Efficient intent detection with dual sen-
tence encoders. In Wen, T.-H., Celikyilmaz, A., Yu,
Z., Papangelis, A., Eric, M., Kumar, A., Casanueva,
I., and Shah, R. (eds.), Proceedings of the 2nd Work-
shop on Natural Language Processing for Conversa-
tional AI, pp. 38–45, Online, July 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.
nlp4convai-1.5. URL https://aclanthology.
org/2020.nlp4convai-1.5/.

Chhikara, P., Khant, D., Aryan, S., Singh, T., and Yadav, D.
Mem0: Building production-ready ai agents with scalable
long-term memory. arXiv preprint arXiv:2504.19413,
2025.

DeepMind. Gemini pro, 2025. URL https:
//deepmind.google/technologies/
gemini/pro/. This page provides an overview
of Gemini Pro, highlighting its advanced capabilities and
applications in various fields.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 confer-
ence of the North American chapter of the association for
computational linguistics: human language technologies,
volume 1 (long and short papers), pp. 4171–4186, 2019.

Edge, D., Trinh, H., Cheng, N., Bradley, J., Chao, A.,
Mody, A., Truitt, S., Metropolitansky, D., Ness, R. O.,
and Larson, J. From local to global: A graph rag ap-
proach to query-focused summarization. arXiv preprint
arXiv:2404.16130, 2024.

Fang, J., Jiang, H., Wang, K., Ma, Y., Jie, S., Wang, X., He,
X., and Chua, T.-S. Alphaedit: Null-space constrained
knowledge editing for language models. arXiv preprint
arXiv:2410.02355, 2024.

Gutiérrez, B. J., Shu, Y., Qi, W., Zhou, S., and Su, Y. From
rag to memory: Non-parametric continual learning for
large language models. arXiv preprint arXiv:2502.14802,
2025.

He, Z., Xie, Z., Jha, R., Steck, H., Liang, D., Feng, Y., Ma-
jumder, B. P., Kallus, N., and McAuley, J. Large language
models as zero-shot conversational recommenders. In
Proceedings of the 32nd ACM international conference
on information and knowledge management, pp. 720–730,
2023a.

He, Z., Xie, Z., Jha, R., Steck, H., Liang, D., Feng, Y., Ma-
jumder, B. P., Kallus, N., and McAuley, J. Large language
models as zero-shot conversational recommenders. In
Proceedings of the 32nd ACM international conference
on information and knowledge management, pp. 720–730,
2023b.

Hsieh, C.-P., Sun, S., Kriman, S., Acharya, S., Rekesh, D.,
Jia, F., Zhang, Y., and Ginsburg, B. RULER: What’s
the Real Context Size of Your Long-Context Language
Models?, August 2024. URL http://arxiv.org/
abs/2404.06654. arXiv:2404.06654 [cs].

Hu, M., Zhou, Y., Fan, W., Nie, Y., Xia, B., Sun, T., Ye, Z.,
Jin, Z., Li, Y., Zhang, Z., Wang, Y., Ye, Q., Luo, P., and Li,
G. Owl: Optimized workforce learning for general multi-
agent assistance in real-world task automation, 2025.
URL https://github.com/camel-ai/owl.

Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski,
P., Joulin, A., and Grave, E. Unsupervised dense infor-
mation retrieval with contrastive learning. arXiv preprint
arXiv:2112.09118, 2021.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Karpinska, M., Thai, K., Lo, K., Goyal, T., and Iyyer,
M. One thousand and one pairs: A" novel" chal-
lenge for long-context language models. arXiv preprint
arXiv:2406.16264, 2024.

5

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://aclanthology.org/2020.nlp4convai-1.5/
https://aclanthology.org/2020.nlp4convai-1.5/
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/
http://arxiv.org/abs/2404.06654
http://arxiv.org/abs/2404.06654
https://github.com/camel-ai/owl

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Karpukhin, V., Oguz, B., Min, S., Lewis, P. S., Wu, L.,
Edunov, S., Chen, D., and Yih, W.-t. Dense passage
retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Larson, S., Mahendran, A., Peper, J. J., Clarke, C., Lee,
A., Hill, P., Kummerfeld, J. K., Leach, K., Lauren-
zano, M. A., Tang, L., and Mars, J. An evaluation
dataset for intent classification and out-of-scope pre-
diction. In Inui, K., Jiang, J., Ng, V., and Wan, X.
(eds.), Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 1311–1316, Hong
Kong, China, November 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D19-1131. URL
https://aclanthology.org/D19-1131/.

Lee, C., Roy, R., Xu, M., Raiman, J., Shoeybi, M., Catan-
zaro, B., and Ping, W. Nv-embed: Improved techniques
for training llms as generalist embedding models. arXiv
preprint arXiv:2405.17428, 2024.

Li, J., Wang, M., Zheng, Z., and Zhang, M. Loogle: Can
long-context language models understand long contexts?
arXiv preprint arXiv:2311.04939, 2023.

Li, R., Ebrahimi Kahou, S., Schulz, H., Michalski, V., Char-
lin, L., and Pal, C. Towards deep conversational recom-
mendations. Advances in neural information processing
systems, 31, 2018.

Li, X. and Roth, D. Learning question classifiers. In
COLING 2002: The 19th International Conference on
Computational Linguistics, 2002. URL https://
aclanthology.org/C02-1150/.

Li, X., Lipp, J., Shakir, A., Huang, R., and Li, J. Bmx:
Entropy-weighted similarity and semantic-enhanced lexi-
cal search. arXiv preprint arXiv:2408.06643, 2024.

Liu, X., Eshghi, A., Swietojanski, P., and Rieser, V. Bench-
marking natural language understanding services for
building conversational agents, 2019. URL https:
//arxiv.org/abs/1903.05566.

Mialon, G., Fourrier, C., Wolf, T., LeCun, Y., and Scialom,
T. Gaia: a benchmark for general ai assistants. In The
Twelfth International Conference on Learning Represen-
tations, 2023.

Mitchell, E., Lin, C., Bosselut, A., Manning, C. D., and Finn,
C. Memory-based model editing at scale. In ICML, vol-
ume 162 of Proceedings of Machine Learning Research,
pp. 15817–15831. PMLR, 2022.

Modarressi, A., Deilamsalehy, H., Dernoncourt, F., Bui,
T., Rossi, R. A., Yoon, S., and Schütze, H. Nolima:
Long-context evaluation beyond literal matching. arXiv
preprint arXiv:2502.05167, 2025.

Müller, M. and Žunič, G. Browser use: Enable ai to control
your browser, 2024. URL https://github.com/
browser-use/browser-use.

OpenAI. Gpt-4o system card, 2025. URL https://
openai.com/index/gpt-4o-system-card/.
This report outlines the safety work carried out prior
to releasing GPT-4o including external red teaming,
frontier risk evaluations according to our Preparedness
Framework, and an overview of the mitigations we built
in to address key risk areas.

Packer, C., Fang, V., Patil, S., Lin, K., Wooders, S., and
Gonzalez, J. Memgpt: Towards llms as operating systems.
2023.

Rasmussen, P., Paliychuk, P., Beauvais, T., Ryan, J., and
Chalef, D. Zep: A temporal knowledge graph architecture
for agent memory. arXiv preprint arXiv:2501.13956,
2025.

Sarthi, P., Abdullah, S., Tuli, A., Khanna, S., Goldie, A., and
Manning, C. D. Raptor: Recursive abstractive processing
for tree-organized retrieval. In The Twelfth International
Conference on Learning Representations, 2024.

Wang, X., Li, B., Song, Y., Xu, F. F., Tang, X., Zhuge, M.,
Pan, J., Song, Y., Li, B., Singh, J., et al. Openhands: An
open platform for ai software developers as generalist
agents. In The Thirteenth International Conference on
Learning Representations, 2024a.

Wang, Y., Gao, Y., Chen, X., Jiang, H., Li, S., Yang, J., Yin,
Q., Li, Z., Li, X., Yin, B., et al. Memoryllm: Towards
self-updatable large language models. arXiv preprint
arXiv:2402.04624, 2024b.

Wang, Y., Krotov, D., Hu, Y., Gao, Y., Zhou, W., McAuley,
J., Gutfreund, D., Feris, R., and He, Z. M+: Extend-
ing memoryllm with scalable long-term memory. arXiv
preprint arXiv:2502.00592, 2025.

Wang, Y., Han, C., Wu, T., He, X., Zhou, W., Sadeq,
N., Chen, X., He, Z., Wang, W., Haffari, G., Ji, H.,
and McAuley, J. J. Towards lifespan cognitive systems.
TMLR, 2025/02.

Wu, D., Wang, H., Yu, W., Zhang, Y., Chang, K.-W.,
and Yu, D. Longmemeval: Benchmarking chat assis-
tants on long-term interactive memory. arXiv preprint
arXiv:2410.10813, 2024.

6

https://aclanthology.org/D19-1131/
https://aclanthology.org/C02-1150/
https://aclanthology.org/C02-1150/
https://arxiv.org/abs/1903.05566
https://arxiv.org/abs/1903.05566
https://github.com/browser-use/browser-use
https://github.com/browser-use/browser-use
https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/gpt-4o-system-card/

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Wu, Q., Tao, C., Shen, T., Xu, C., Geng, X., and Jiang, D.
Pcl: Peer-contrastive learning with diverse augmentations
for unsupervised sentence embeddings. arXiv preprint
arXiv:2201.12093, 2022.

Yen, H., Gao, T., Hou, M., Ding, K., Fleischer, D., Izsak, P.,
Wasserblat, M., and Chen, D. Helmet: How to evaluate
long-context language models effectively and thoroughly.
arXiv preprint arXiv:2410.02694, 2024.

Yin, Z., Sun, Q., Guo, Q., Zeng, Z., Cheng, Q., Qiu, X., and
Huang, X.-J. Explicit memory learning with expectation
maximization. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp.
16618–16635, 2024.

Yu, T., Zhang, S., and Feng, Y. Auto-rag: Autonomous
retrieval-augmented generation for large language models.
arXiv preprint arXiv:2411.19443, 2024.

Zhang, X., Chen, Y., Hu, S., Xu, Z., Chen, J., Hao, M., Han,
X., Thai, Z., Wang, S., Liu, Z., et al. ∞bench: Extending
long context evaluation beyond 100k tokens. In Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
15262–15277, 2024.

Zhong, Z., Wu, Z., Manning, C. D., Potts, C., and Chen,
D. Mquake: Assessing knowledge editing in lan-
guage models via multi-hop questions. arXiv preprint
arXiv:2305.14795, 2023.

7

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

A. Related Work
A.1. Benchmarks with Long Input

In this section, we review prior work on long-context benchmarks. Early benchmarks designed for long-context evaluation
include LongBench(Bai et al., 2023) and LooGLE(Li et al., 2023), with average input lengths of approximately 20k
and 24k tokens, respectively. More recent benchmarks—such as ∞-Bench (Zhang et al., 2024), HELMET(Yen et al.,
2024), RULER(Hsieh et al., 2024), NOCHA(Karpinska et al., 2024), NoLiMa (Modarressi et al., 2025) and LongBench
V2(Bai et al., 2024)—extend context lengths to over 100k tokens and are primarily intended to evaluate the capabilities of
long-context models. However, despite their scale, these benchmarks are not designed to assess memory agents, and no prior
work has repurposed them for that goal. More recently, LongMemEval (Wu et al., 2024) has been proposed specifically for
evaluating memory agents. While promising, LongMemEval uses synthetic conversations with limited topical diversity,
making the dialogues less realistic and potentially less representative of real-world memory use cases.

A.2. Agents with Memory Mechanisms

Memory mechanisms are attracting more and more attention lately (Wang et al., 2025/02). Recent advancements in large
language models (LLMs) have demonstrated the capability to process extended context lengths, ranging from 100K to
over 1 million tokens. For instance, models such as GPT-4o (OpenAI, 2025) and Claude 3.7 (Anthropic, 2025) can handle
inputs of approximately 100K to 200K tokens, while models like Gemini 2.0 Pro (DeepMind, 2025) and the GPT-4.1 series
extend this capacity beyond 1 million tokens. These strong long-context capabilities enable a simple yet effective form of
memory: storing information directly within the context window. However, this approach is inherently constrained by a hard
limit—once the context window is exceeded, earlier information must be discarded.

In parallel, Retrieval-Augmented Generation (RAG) continues to serve as a dominant paradigm for managing non-parametric
memory. By retrieving relevant information from external sources and feeding it to the LLM, RAG allows systems to
overcome context length limitations. For example, OpenAI’s recent memory functionality1 combines explicit user preference
tracking with retrieval-based methods that reference prior interactions. RAG methods can be broadly classified into three
categories: 1. Simple RAG: These methods rely on string-matching techniques such as TF-IDF, BM25, and BMX (Li et al.,
2024), which are entirely non-neural and operate on string-level similarity. 2. Embedding-based RAG: This class leverages
neural encoders, primarily transformers, to map text into dense vector representations (Wu et al., 2022). Early methods like
DPR (Karpukhin et al., 2020) and Contriever (Izacard et al., 2021) are based on BERT (Devlin et al., 2019), while more
recent models such as NV-Embed-v2 (Lee et al., 2024) utilize decoder-only backbones and achieve significantly improved
retrieval performance. 3. Structure-Augmented RAG: These approaches enhance retrieval with structural representations
such as graphs or trees. Representative systems include GraphRAG (Edge et al., 2024), RAPTOR (Sarthi et al., 2024),
HippoRAG-V2 (Gutiérrez et al., 2025), Cognee, Zep (Rasmussen et al., 2025), and Mem0 (Chhikara et al., 2025), the latter
of which also offers a graph-augmented variant, Memg, built on structured factual knowledge. Despite their effectiveness,
RAG-based methods face challenges with ambiguous queries, multi-hop reasoning, and long-range comprehension. When
questions require integrating knowledge across an entire session or learning from long, skill-encoding inputs, the retrieval
mechanism—limited to the top-k most relevant passages—may fail to surface the necessary information. To address these
limitations, Agentic Memory Agents introduce an iterative, decision-driven framework. Rather than relying on a single-pass
retrieval, these agents dynamically process the query, retrieve evidence, reflect, and iterate through multiple retrieval and
reasoning cycles. Examples include MemGPT (Packer et al., 2023), Self-RAG (Asai et al., 2023), and Auto-RAG (Yu
et al., 2024). This agentic design is particularly effective for resolving ambiguous or multi-step queries. Nonetheless, these
methods remain fundamentally constrained by the limitations of RAG—namely, the inability to fully understand or learn
from long-range context that is inaccessible via retrieval alone.

B. Details of Dataset
Here we provide a detailed introduction to the datasets used for evaluating the four core competencies, including the
corresponding metrics, average context length, and a brief description. Details are shown in Table 2.

1https://openai.com/index/memory-and-new-controls-for-chatgpt/

8

https://openai.com/index/memory-and-new-controls-for-chatgpt/

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Table 2: Overview of evaluation datasets. We select datasets that cover various important long-context capabilities. SubEM:
substring exact match. In the table, we underline the datasets we constructed ourselves.

Category Dataset Metrics Description

Accurate
Retrieval

RULER-QA1 SubEM Gold passage retrieval QA.RULER-QA2
RULER-NIAH-MQ Recall Retrieve multiple “needles” from the “haystack”.
∞Bench-QA ROUGE F1 Novel QA with entity replacement.
LongMemEval (S) Model Based Acc. Dialogues based QA.LongMemEval (S*)
EventQA (ours) Accuracy Reasoning style NIAH. Novel multiple-choice QA on characters events.

Test-time
Learning

BANKING77

Accuracy

Banking intent classification, 77 labels
CLINC150 Intent classification, 151 labels
NLU Task intent classification, 68 labels
TREC Coarse Question type classification, 6 labels
TREC Fine Question type classification, 50 labels
Movie Recommendation Recall@5 Recommend movies based on provided dialogues examples.

Long Range
Understanding ∞Bench-Sum Model Based F1 Novel summarization with entity replacement.

Conflict
Resolving

FactConsolidation-SH (ours) SubEM Conflict solving in single hop reasoning.
FactConsolidation-MH (ours) Conflict solving in multiple hop reasoning.

B.1. Datasets Preparation

In this section, we describe how we adapt existing datasets and construct new ones for evaluating each aspect introduced in
Section 2.1. All datasets with their categories are shown in Table 3.

Datasets for Accurate Retrieval (AR) We adopt five datasets to evaluate the accurate retrieval capability of memory
agents. Four are adapted from existing benchmarks, and one is newly constructed: (1) RULER-QA: This is a NIAH-style
QA task where a long passage contains a small snippet answering the input question. The agent must identify and extract this
relevant snippet from the extended context. (2) NIAH: We use the multiple-query (MQ) version of the Needle-in-a-Haystack
dataset from RULER (Hsieh et al., 2024), where each query seeks a different numeric value embedded in a long passage.
The agent must retrieve multiple distinct answers, requiring precise multi-needle retrieval. (3) ∞Bench-En.QA: This task
from ∞Bench presents free-form QA questions based on entire books, with all entities replaced by fictitious names to
avoid contamination from model pretraining. Compared to synthetic datasets like RULER-QA, this benchmark is more
realistic and challenging due to the natural narrative structure of books. (4) LongMemEval: This benchmark evaluates
memory agents on long dialogue histories. Although task types like information extraction (IE) or multi-session reasoning
are included, most tasks can be reformulated as single-retrieval problems requiring agents to retrieve the correct segments
spanning a long multi-turn conversation. Among these, LongMemEval is already formatted for agent-based evaluation
with session separation. We use the original LongMemEval(S) dataset (∼110K tokens) and reformulated chat history
into five long dialogues (∼355K tokens) with 300 questions (LongMemEval (S*) in Table 3). We create LongMemEval
(S*) specifically for increasing the number of questions per context, mitigating the exhaustive needs of reconstructing the
memory for each quesiton. (5) EventQA (ours): We introduce EventQA to evaluate agents’ ability to recall and reason
about temporal sequences in long-form narratives. Using five books from ∞Bench (each >390K tokens, counted using
the gpt-4o-mini tokenizer), we identify the ten most frequently mentioned characters via SpaCy NER. We extract 101
events experienced by key characters using gpt-4o. For each event, we construct a 6-way multiple-choice question by
pairing the true event with five distractors generated via gpt-4o. The agent receives five previous events and must identify
the correct continuation. For these datasets, which are originally designed for long-context modeling, we split documents
into chunks and sequentially inject them into the agent.

Datasets for Test-Time Learning (TTL) We evaluate TTL via two task categories: (1) Multi-Class Classification (MCC):
We adopt five classification datasets used in prior TTL work (Bertsch et al., 2024; Yen et al., 2024): BANKING77 (Casanueva
et al., 2020), CLINC150 (Larson et al., 2019), TREC-Coarse, TREC-Fine (Li & Roth, 2002), and NLU (Liu et al., 2019).
Each task requires the agent to map sentences to class labels, leveraging previously seen labeled examples in context. (2)
Recommendation (Recom): We use the Redial (Li et al., 2018) dataset to evaluate movie recommendation via dialogue.

9

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Table 3: Datasets categorized by the specific aspects of evaluation. Avg. Len: Average Context Length (measured using the
GPT-4o-mini model’s tokenizer).

Capability Benchmarks / Tasks # of Sequences # of QAs Avg Len

Accurate
Retrieval

RULER-QA (Hsieh et al., 2024) 200 200 305K
RULER-NIAH-MQ (Hsieh et al., 2024) 100 100 448K
∞Bench-QA (Zhang et al., 2024) 100 100 183K
LongMemEval (S) (Wu et al., 2024) 500 500 110K
LongMemEval (S*) (Wu et al., 2024) 5 300 355K
EventQA (ours) 5 500 534K

Test-Time
Learning

BANKING-77 100 100
CLINC-150 100 100
NLU 100 100 103K
TREC (Coarse) 100 100
TREC (Fine) 100 100
Movie-Rec Redial (He et al., 2023b) 1 200 1.44M

Long-Range Understanding ∞Bench-Sum (Zhang et al., 2024) 100 100 172K

Conflict Resolution
FactConsolidation-SH (ours) 1 100 262KFactConsolidation-MH (ours) 1 100

Following the setup from He et al. (2023a), the agent is exposed to thousands of movie-related dialogue turns and is asked to
recommend twenty relevant movies based on the long interaction history.

Datasets for Long Range Understanding (LRU) For this task, we adopt the Summarization task En.Sum from ∞-
Bench (Zhang et al., 2024). The agent is required to analyze and organize the plot and characters of the novel, and then
compose a summary of 1000 to 1200 words.

Datasets for Conflict Resolution (CR) To assess whether an agent can consolidate conflicting factual updates and reason
over them, we construct a new dataset called FactConsolidation. Specifically, We build this benchmark using counterfactual
edit pairs from MQUAKE (Zhong et al., 2023). Each pair contains a true fact and a rewritten, contradictory version.
These are ordered such that the rewritten (new) fact appears after the original, simulating a realistic update scenario. We
concatenate multiple such edit pairs to create long contexts of length 32K, 64K, 262K. We then adapt MQUAKE’s original
questions and categorize them into: (1) FactConsolidation-SH (Ours) (SH means Single-Hop), requiring direct factual
recall (e.g., “Which country was tool A created in?”), and (2) FactConsolidation-MH (Ours) (MH refers to Multi-Hop),
requiring inference over multiple facts (e.g., “What is the location of death of the spouse of person B?”). Agents are
prompted to prioritize later information in case of conflict and reason based on the final memory state. This setup directly
evaluates the strength and consistency of conflict resolution over long sequences.

B.2. Evaluation Metrics

Accurate Retrieval (AR) We use five datasets to evaluate the accurate retrieval capability of memory agents. (1) RULER-
QA: Since most answers in this dataset are short informational entities, such as years, names, or yes/no responses, we use
substring exact match (SubEM) as the evaluation metric. SubEM measures whether the predicted answer exactly matches
the gold answer as a substring, which is a common standard in question answering systems. (2) NIAH: The primary
evaluation criterion is whether the agent can successfully retrieve the correct numbers. Therefore, we use average recall as
the evaluation metric. (3) ∞Bench-En.QA: it is also a QA task and answers are mostly entity names. We use ROUGE F1
as the evaluation metric for this dataset. (4) LongMemEval: Since some of the questions have open-ended answers, we
adopt the approach used in previous work and employ the GPT-4o model to assess whether the agent’s responses meet the
requirements. If a response is deemed satisfactory, it is marked as True. Finally, we calculate the proportion of satisfactory
responses as the evaluation metric. (5) EventQA: In this dataset, we report the mean accuracy over 100 such questions per
book, and ultimately present the average accuracy across all five books.

Test-time Learning (TTL) We evaluate TTL via two task categories: (1) Multi-Class Classification (MCC): We adopt
five classification datasets used in prior TTL work. In this dataset, we use average accuracy as the evaluation metric. (2)

10

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Recommendation (Recom): In this task, the agent is required to recommend 20 movies based on the content of the dialogue.
We evaluate the recommendations by calculating Recall@5, which measures the overlap between the top 5 recommended
movies and the ground truth.

Long-Range Understanding (LRU) We evaluate LRU via the Summarization task En.Sum from ∞-Bench (Zhang et al.,
2024). We follow the settings from (Yen et al., 2024) and use the GPT-4o model in evaluating the summarized text. In this
process, we assess the fluency of the input text (scored as 0 or 1) and use the dot product of this score with the F1 score as
the final evaluation metric.

Conflict Resolution (CR) We evaluate the CR via two datasets: Single-Hop Editing and Multi-Hop Editing. In these
tasks, the agent’s responses are mostly informational entities. Therefore, we also use SubEM (Substring Exact Match) as the
evaluation metric.

C. Prompts
We introduce some example prompts used in this section.

C.1. Instructions for Memory Construction

When processing long-context inputs, we split the content into chunks of a specified size and feed these chunks into the
agent as memory. The agent can then extract relevant information from its memory based on the query to assist with query
execution. This chunking approach helps organize and manage large amounts of contextual information, making retrieval
and reasoning more efficient. In Figure 2, we provide several example instructions that require the agent to memorize the
corresponding context.

Prompts Used for Memory Construction on Various Tasks

IF LongMemEval:
Memorize the following conversation between the user and the assistant: \n <chunk> \n

ELIF Movie Recommendation:
Memorize the following dialogues between a user and recommender system: \n <chunk> \n

ELIF Fact Consolidation:
Memorize these following facts: \n <chunk> \n

ELSE:
Memorize the following content: \n <chunk> \n

Figure 2: The prompts we use for the agents to create the memory.

C.2. Instructions for Long-Context Agents

In Figure 3, we provide the examples of instructions used on different of datasets. For some existing datasets, we adopted the
prompt settings from previous work such as (Hsieh et al., 2024; Wu et al., 2024). For example, for the dataset ∞Bench-QA
and ∞Bench-Sum, we also inserted two answer examples as <demo> in the prompt to help the agent better understand the
questions and standardize its outputs.

C.3. Instructions for RAG Agents

We provide examples of prompts used for the RAG based Agents in Figure 4. For this type of agent, after storing the input
long context in memory, we use <question> as the memory retrieval query for most tasks. For tasks without this input
element, such as RULER-NIAH-MQ, we use the question "What are all the special magic <type_needle_v> for <query>
mentioned in the memorized text?" as the query. And for ∞Bench-Sum, we use the entire query without the <demo> for
the memory retrieval.

11

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Prompts Used for Long-Context Agents on Various Tasks

RULER-QA
The context is given as below: <memory>. \n please memorize it.\n Answer the question based on the memorized documents. Only give me
the answer and do not output any other words. \n Now Answer the Question: <question> \n Answer:

RULER-NIAH-MQ
The context is given as below: <memory>. \n Please memorize it. \n Some special magic <type_needle_v> are hidden within the memorized
text. Make sure to memorize it. I will quiz you about the <type_needle_v> afterwards.\n Now Answer the Question: What are all the special
magic <type_needle_v> for <query> mentioned in the memorized text? \n The special magic <type_needle_v> for <query> mentioned in the
memorize text are:

∞Bench-QA
The context is given as below: <memory>. \n Please memorize it. \n Based on the context you memorized, answer the question as concisely
as you can, using a single phrase if possible. \n <demo>.\n Now Answer the Question: <question>.\n Answer:

LongMemEval
Here are several history chats between you and a user : <memory> \n Please memorize them. \n The history chats are between you and a
user. Based on the relevant chat history, answer the question as concisely as you can, using a single phrase if possible.\n Current Date:
<question_date>, \n Now Answer the Question: <question> \n Answer:

EventQA
The context is given as below: <memory>. \n Please memorize it. \n Based on the context you memorized, complete the task below: \n These
are the events that have already occurred: \n <previous_events> \n Below is a list of possible subsequent events:\n <question> \n Your task is
to choose from the above events which event happens next based on the book excerpt. In your response to me, only include the answer
without anything else. \n The event that happens next is:

Label Matching (BANKING77, etc.)
The context is given as below: <memory>. \n Please memorize them. \n Use the provided mapping from the context to numerical label to
assign a numerical label to the context. Only output "label: {{label}}" and nothing else. \n Question: <question> \n label:

Movie Recommendation
Here are dialogues between a user and recommender system: <memory>. \n Please memorize them. \n Pretend you are a movie recommender
system. You need to recommend movies based on the dialogues you have memorized. Now I will give you a new conversation between a
user and you (a recommender system). Based on the conversation, you reply me with 20 recommendations without extra sentences. \n
For Example:\n [Conversation] \n The recommendations are: \n 1.movie1 \n 2.movie2 \n ...\n Here is the conversation: <question> \n The
recommendations are:

∞Bench-Sum
The book is given as below: <memory> \n Please memorize it. \n You are given a book above and you are tasked to summarize it. Write a
summary of about 1000 to 1200 words. Only write about the plot and characters of the story. Do not discuss the themes or background of the
book. Do not provide any analysis or commentary. \n <demo> \n Now summarize the book.

Fact Consolidation
Here is a knowledge pool with lots of new facts: <memory>. \n Please memorize it. \n Pretend you are a knowledge management system.
Each fact in the knowledge pool is provided with a serial number at the beginning, and the newer fact has larger serial number. \n You need to
solve the conflicts of facts in the knowledge pool by finding the newest fact. You need to answer a question based on this rule. You should
give a very concise answer without saying other words for the question **only** from the knowledge pool you have memorized rather than
the real facts in real world. \n For example: \n [Knowledge Pool] \n Question: Based on the provided Knowledge Pool, what is the name of
the current president of Country R? \n Answer: Person D. \n Now Answer the Question: Based on the provided Knowledge Pool, <question>
\n Answer:

Figure 3: The prompts we use for the Long-Context Agents in Table 1. Here <memory> refers to the accumulated text from
the sequential inputs.

D. Detailed Experimental Results
In this section, we provide a detailed version of the data presented in the main text.

12

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Prompts Used for RAG Based Agents on Various Tasks

RULER-QA
Here is the context retrieved from memory: <memory>.\n Answer the question based on the retrieved context. Only give me the answer and
do not output any other words. \n Now Answer the Question: <question> \n Answer:

RULER-NIAH-MQ
Here is the context retrieved from memory: <memory>.\n Some special magic <type_needle_v> are hidden within the retrieved text. Make
sure to memorize it. I will quiz you about the <type_needle_v> afterwards.\n Now Answer the Question: What are all the special magic
<type_needle_v> for <query> mentioned in the memorized text? \n The special magic <type_needle_v> for <query> mentioned in the
memorize text are:

∞Bench-QA
Here is the context retrieved from memory: <memory>.\n Based on the context you retrieved, answer the question as concisely as you can,
using a single phrase if possible. \n <demo>.\n Now Answer the Question: <question>.\n Answer:

LongMemEval
Here are retrieved several history chats between you and a user from memory: <memory> \n The retrieved history chats are between you and
a user. Based on the relevant chat history, answer the question as concisely as you can, using a single phrase if possible.\n Current Date:
<question_date>, \n Now Answer the Question: <question> \n Answer:

EventQA
Here is the context retrieved from memory: <memory>.\n Based on the context you retrieved, complete the task below: \n These are the
events that have already occurred: \n <previous_events> \n Below is a list of possible subsequent events:\n <question> \n Your task is to
choose from the above events which event happens next based on the book excerpt. In your response to me, only include the answer without
anything else. \n The event that happens next is:

Label Matching (BANKING77, etc.)
Here are the examples retrieved from memory: <memory>. \n Use the retrieved mapping from the context to numerical label to assign a
numerical label to the context. Only output "label: {{label}}" and nothing else. \n Question: <question> \n label:

Movie Recommendation
Here are retrieved dialogues between a user and recommender system from memory: <memory>. \n Pretend you are a movie recommender
system. You need to recommend movies based on the example dialogues you have retrieved. Now I will give you a new conversation between
a user and you (a recommender system). Based on the conversation, you reply me with 20 recommendations without extra sentences. \n
For Example:\n [Conversation] \n The recommendations are: \n 1.movie1 \n 2.movie2 \n ...\n Here is the conversation: <question> \n The
recommendations are:

∞Bench-Sum
The book context is retrieved from memory and it is given as below: <memory> \n You are given retrieved context above and you are tasked
to summarize it. Write a summary of about 1000 to 1200 words. Only write about the plot and characters of the story. Do not discuss the
themes or background of the book. Do not provide any analysis or commentary. \n <demo> \n Now summarize the book.

Fact Consolidation
Here is a list of knowledge retrieved from memory: <memory>. \n Pretend you are a knowledge management system. Each fact in the
retrieved knowledge pool is provided with a serial number at the beginning, and the newer fact has larger serial number. \n You need to solve
the conflicts of facts in the retrieved knowledge pool by finding the newest fact. You need to answer a question based on this rule. You should
give a very concise answer without saying other words for the question **only** from the retrieved knowledge pool you have memorized
rather than the real facts in real world. \n For example: \n [Knowledge Pool] \n Question: Based on the provided Knowledge Pool, what is the
name of the current president of Country R? \n Answer: Person D. \n Now Answer the Question: Based on the provided Knowledge Pool,
<question> \n Answer:

Figure 4: The prompts we use for the Simple RAG Agents, Embedding RAG Agents, Structure-Augmented RAG Agents
and Agentic Memory RAG Agents in Table 1. Here <memory> refers to the retrieved text from the sequential inputs. For
MemGPT method, we also add the phrase "Search Archival Memory" in prompt of each task.

D.1. Detailed Results on AR

In Table 4, we present the detailed results for each agent on every dataset. For AR tasks, using Simple RAG Agents
equipped with retrievers like BM25 can significantly improve performance compared to the backbone model. This is because
the GPT-4o-mini is limited by its 128K context length, which restricts the amount of information it can process at once.

13

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Table 4: Overall Performance Comparison on the datasets for AR. All RAG agents and commercial memory agents use
GPT-4o-mini as the backbone. Thus we highlight the performance of GPT-4o-mini as the reference.

Agent Type RULER-QA1 RULER-QA2 RULER-NIAH ∞Bench-QA LME(S) LME(S*) EventQA

Long-Context Agents
GPT-4o 72.0 51.0 25.0 55.4 61.4 32.0 77.2
GPT-4o-mini 64.0 43.0 22.8 44.9 55.6 30.7 59.0
GPT-4.1-mini 83.0 66.0 94.8 45.8 61.4 55.7 82.6
Gemini-2.0-Flash 87.0 59.0 83.8 53.2 52.6 47.0 67.2
Claude-3.7-Sonnet 77.0 53.0 38.0 50.6 59.0 34.0 74.6

GPT-4o-mini 64.0 43.0 22.8 44.9 55.6 30.7 59.0
Simple RAG Agents

BM25 66.0 56.0 95.5 45.6 55.2 48.3 74.6
Embedding RAG Agents

Contriever 40.0 42.0 8.8 38.1 32.8 19.0 66.8
Text-Embed-3-Small 39.0 33.0 12.3 44.4 49.0 39.0 63.0
Text-Embed-3-Large 39.0 34.0 13.5 50.1 44.6 39.3 70.0
NV-Embed-v2 57.0 39.0 31.8 51.4 45.4 43.0 72.8

Structure-Augmented RAG Agents
RAPTOR 28.0 19.0 4.5 31.3 38.8 31.7 45.8
GraphRAG 40.0 46.0 8.0 35.8 39.2 36.7 34.4
HippoRAG-v2 49.0 38.0 23.3 45.7 44.2 37.3 67.6
Mem0 24.0 32.0 4.8 22.4 45.0 36.0 37.5
Cognee 31.0 26.0 4.0 19.7 31.3 29.3 26.8

Agentic Memory Agents
Self-RAG 39.0 38.0 7.0 28.5 23.4 23.0 31.8
MemGPT 27.0 35.0 3.5 20.8 41.4 32.0 26.2

Table 5: Overall performance comparison on the datasets for TTL, LRU and CR. All RAG agents and commercial memory
agents use GPT-4o-mini as the backbone.

Agent Type BANKING CLINC NLU TREC C TREC F Recom ∞Bench-Summ FactCon-SH FactCon-MH

Long-Context Agents
GPT-4o 96.0 96.0 90.0 87.0 69.0 12.3 32.2 60.0 5.0
GPT-4o-mini 93.0 93.0 87.0 73.0 66.0 15.1 28.9 45.0 5.0
GPT-4.1-mini 93.0 82.0 85.0 68.0 50.0 16.7 41.9 36.0 5.0
Gemini-2.0-Flash 91.0 90.0 84.0 88.0 67.0 8.7 23.9 30.0 3.0
Claude-3.7-Sonnet 97.0 98.0 86.0 87.0 79.0 18.3 52.5 43.0 2.0

GPT-4o-mini 93.0 93.0 87.0 73.0 66.0 15.1 28.9 45.0 5.0
Simple RAG Agents

BM25 89.0 89.0 84.0 62.0 53.0 13.6 20.9 44.0 5.0
Embedding RAG Agents

Contriever 89.0 88.0 80.0 55.0 41.0 15.2 21.2 25.0 5.0
Text-Embed-3-Small 88.0 89.0 83.0 54.0 36.0 15.3 25.7 21.0 4.0
Text-Embed-3-Large 90.0 91.0 80.0 55.0 46.0 16.2 21.6 22.0 3.0
NV-Embed-v2 88.0 89.0 82.0 40.0 48.0 13.5 20.7 42.0 6.0

Structure-Augmented RAG Agents
RAPTOR 78.0 75.0 73.0 48.0 23.0 12.3 13.4 19.0 2.0
GraphRAG 64.0 54.0 49.0 24.0 6.0 9.8 0.4 10.0 3.0
HippoRAG-v2 81.0 86.0 73.0 38.0 29.0 10.2 14.6 29.0 3.0
Mem0 5.0 4.0 1.0 6.0 1.0 10.0 0.8 18.0 2.0
Cognee 34.0 42.0 42.0 41.0 18.0 10.1 2.3 28.0 3.0

Agentic Memory Agents
Self-RAG 19.0 13.0 6.0 15.0 5.0 12.8 0.9 14.0 2.0
MemGPT 89.0 83.0 79.0 56.0 31.0 14.0 2.5 13.0 3.0

14

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Meanwhile, the overall performance of Embedding RAG Agents surpasses that of both Structure-Augmented RAG Agents
and Agentic Memory Agents. This advantage is primarily attributed to the use of dense retrieval in Embedding RAG Agents.
It enables the extraction of longer contextual information from memory. As a result, Embedding RAG Agents are able to
provide richer and more comprehensive context for tasks.

D.2. Detailed Results on TTL, LRU and CR

We give detailed results on each dataset in Table 5. For all three types of tasks, RAG-based agents generally underperform
compared to their respective GPT-4o-mini backbones. This observation highlights certain limitations inherent to the RAG
approach. For instance, in TTL tasks, RAG-based methods often struggle to accurately retrieve context from memory that is
closely associated with the input. In LRU tasks, these methods face challenges in achieving a comprehensive understanding
of long contexts. Furthermore, for CR tasks—especially the multi-hop variants—effective handling requires strong reasoning
and information extraction capabilities, which remain beyond the reach of most current agents.

E. Ablation Study

512 1024 2048 4096
Chunk Size

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

BM25
NVEmbed v2

HippoRAG v2
MemGPT

(a) RULER-QA performance

512 1024 2048 4096
Chunk Size

0

5

10

15

20

M
od

el
 B

as
ed

 F
1

BM25
NVEmbed v2

HippoRAG v2
MemGPT

(b) ∞Bench-Sum performance

Figure 5: Performances on RULER-QA with different chunk sizes.

E.1. Input Chunk Size

In our main experiments, we fix the chunk size to 4096 tokens, as input sequences often exceed 500k tokens, and constructing
memory with smaller chunk sizes (e.g., 512) would be prohibitively time-consuming. However, to understand how chunk
size impacts performance, particularly for retrieval-augmented generation (RAG) methods and agentic memory agents, we
conduct an additional analysis where we vary the chunk size while fixing the number of retrieved chunks to 10. The results are
presented in Figure 5. From the figure, we observe the following: (1) In the RULER-QA task, reducing chunk size has little
effect on BM25 performance. This is expected, as BM25 relies on string matching and does not benefit from finer-grained
segmentation. In contrast, embedding-based methods—including MemGPT, which uses text-embedding-3-small
as its retriever—consistently perform better with smaller chunks. This suggests that finer segmentation improves the
granularity and relevance of retrieved results for these models. (2) In ∞Bench-Sum, however, smaller chunk sizes lead
to worse performance. This task requires the agent to summarize an entire conversation, and smaller chunks correspond
to fewer available tokens per retrieval. As a result, the agent has access to less context, which degrades summarization
quality. The results suggest that, when resources permit, using smaller chunk sizes and increasing the number of retrieval
calls during memory construction can improve performance on Accurate Retrieval (AR) tasks. Finer-grained segmentation
enhances the relevance of retrieved information, particularly for embedding-based methods. However, for tasks requiring
Long-Range Understanding (LRU), varying the chunk size hurts the performance. This is likely because RAG methods are
inherently less suited for tasks that demand integration of information across a large, coherent context.

E.2. Retrieval TopK

In our experiments, although we report results with the number of retrieved chunks set to 10 in Table 1, we also conducted
ablation studies with varying retrieval sizes. A subset of these results is visualized in Figure 6. The results indicate that
increasing the number of retrieved chunks generally improves performance across most tasks. It is worth noting that, with a

15

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

2 5 10
Top-K

0

20

40

60

Ac
cu

ra
cy

 (%
)

RULER QA

2 5 10
Top-K

Multi-Class Classification

2 5 10
Top-K

Bench QA
BM25 NV-Embed-v2 HippoRAG-v2

Figure 6: The accuracies on different benchmarks when varying the retrieval top-k to be 2, 5 and 10.

chunk size of 4096 tokens, retrieving 10 chunks already yields an input of approximately 40k tokens. This places significant
demands on model capacity. Due to this high token volume, we do not evaluate settings with 20 retrieved chunks.

E.3. Validation of Dataset FactConsolidation
Table 6: Performances of reasoning models on the
dataset FactConsolidation.

FactCon-SH FactCon-MH
6K 32K 6K 32K

GPT-4o 92.0 88.0 28.0 10.0
O4-mini 100.0 61.0 80.0 14.0

As the performance of different models on this dataset remains
drastically low, we turn to the stronger reasoning model o4-mini
and validate our dataset by checking the performance of o4-mini
on a smaller version of this dataset. The results are shown in Table 6.

E.4. Analysis of Computational Latency

Table 7: Computational Latency (in seconds).

512 4096
M.C. Q.E. M.C. Q.E.

GPT-4o-mini 0.09 5.2 0.07 5.1

BM25 0.11 0.79 0.10 1.8

Contriever 7.2 0.76 1.7 2.0
Text-Embed-3-Large 6.3 0.54 5.4 1.8

NV-Embed-v2 93.4 0.83 42.9 1.8

RAPTOR 151 0.51 133 0.60
GraphRAG 123 9.9 90.4 9.4

HippoRAG-v2 817 1.1 284 2.6
Mem0 14644 1.2 2140 1.2
Cognee 8309 33.2 962 4.5

Self-RAG 8.4 2.0 6.7 1.7
MemGPT 413 10.6 93.3 11.4

To illustrate the latency of various memory agents in
terms of (1) Memory Construction (M.C.); (2) Query Ex-
ecution (Q.E.), we randomly choose 5 examples from
RULER-QA2 and LME (S*), and report the latency of
various memory agents. This part of experiments is done
on a server with Four NVDIA L40 GPU and AMD EPYC
7713 64-Core CPU. We use the NV-Embed-v2 (7B) as
the embedding model in HippoRAG-v2. We show the
summarized results in Table 7 and put the full results in
Table 8 and 9. From the table, we find that using a smaller
chunk size requires significantly more time for memory
construction, especially for methods such as HippoRAG-
v2, Mem0, Cognee, and MemGPT. Meanwhile, methods
such as Mem0, Cognee need extremely high resources
when constructing the memory, which may pose chal-
lenges in real-world applications.

F. Experimental Settings
In this section, we present the experimental settings.

F.1. Max Output Tokens

We provide the token number limitation for each task in Table 10.

F.2. Settings of the RAG Agents

For the embedding model selection in Structure-Augmented RAG Agents and Agentic Memory Agents, most approaches
utilize OpenAI’s embedding models, such as Text-Embed-3-Small. While for the HippoRAG-v2 method, we follow the
same experimental setting as in Gutiérrez et al. (2025), employing the NV-Embed-v2 model.

16

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Table 8: Computational latency (in seconds) comparison on Long-Context Agents.

RULER-QA2 LME (S*)

GPT-4o 17.0 20.1
GPT-4o-mini 4.9 5.4
GPT-4.1-mini 9.0 7.4

Gemini-2.0-Flash 12.4 10.1
Claude-3.7-Sonnet 23.3 22.7

Table 9: Computational latency (in seconds) comparison on RAG based agents. M.C. means Memory Construction and Q.E.
means Query Execution.

RULER-QA2 LME (S*)
512 4096 512 4096

M.C. Q.E. M.C. Q.E. M.C. Q.E. M.C. Q.E.

BM25 0.12 0.47 0.11 1.7 0.09 1.1 0.08 1.9

Contriever 7.4 0.59 1.7 2.0 6.9 0.92 1.6 1.9
Text-Embed-3-Large 6.1 0.46 5.0 1.7 6.5 0.62 5.8 1.8

NV-Embed-v2 102 0.63 47.0 1.8 85.1 1.0 38.8 1.7

RAPTOR 193 0.41 161 0.67 108 0.60 104 0.53
GraphRAG 97.8 12.8 91.9 10.9 149 7.0 88.8 7.8

HippoRAG-v2 1089 0.71 380 1.71 544 1.5 188 3.5
Mem0 10804 0.79 1334 0.65 18483 1.6 2946 1.7
Cognee 11890 58.7 1185 4.8 4728 7.7 738 4.1

Self-RAG 11.4 3.1 8.1 2.4 5.3 0.82 5.2 1.0
MemGPT 433 9.4 101 10.5 392 11.7 85.5 12.3

We implement three open-sourced memory agents in our main experiments. (1) For Mem0, we use memory.add() function to
add the message with the content from each context chunk into the agent’s memory repository during memory consolidation.
During query execution, the relevant memory elements are retrieved through memory.search() function. The retrieved
memories are then integrated into the query before being processed by the GPT-4o-mini backbone model to complete the
requested tasks. (2) For MemGPT, we employ the insert_passage() function during the memory consolidation phase to
inject long context chunks into the Archival Memory structure. During query execution, this agent processes requests via
the send_message() function which generates appropriate responses based on the archived information. (3) For Cognee, we
utilize the cognee.add() and cognee.cognify() functions to construct the memory graph from input chunks wherein the
memory consolidation phase. During query execution, the cognee.search() function is used to retrieve contextually relevant
information from the memory graph based on the input query.

17

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Table 10: Maximum output token limits for various tasks

Task Max Output Tokens

RULER-QA 50
RULER-NIAH-MQ 100

∞ Bench-QA 10
LongMemEval 100

EventQA 40

ICL_Five 20
Movie Recommendation 300

∞ Bench-Sum 1,200

FactConsolidation 10

18

