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ABSTRACT

Pre-trained vision language models have shown remarkable performance on vi-
sual recognition tasks, but they typically assume the availability of complete
multimodal inputs during both training and inference. In real-world scenarios,
however, modalities may be missing due to privacy constraints, collection dif-
ficulties, or resource limitations. While previous approaches have addressed
this challenge using prompt learning techniques, they fail to capture the cross-
modal relationships necessary for effective multimodal visual recognition and suf-
fer from inevitable computational overhead. In this paper, we introduce MoRA,
a parameter-efficient fine-tuning method that explicitly models cross-modal in-
teractions while maintaining modality-specific adaptations. MoRA introduces
modality-common parameters between text and vision encoders, enabling bidi-
rectional knowledge transfer. Additionally, combined with the modality-specific
parameters, MoRA allows the backbone model to maintain inter-modality in-
teraction and enable intra-modality flexibility. Extensive experiments on stan-
dard benchmarks demonstrate that MoRA achieves an average performance im-
provement in missing-modality scenarios by 5.24% and uses only 25.90% of
the inference time compared to the SOTA method while requiring only 0.11%
of trainable parameters compared to full fine-tuning. The code is available at
https://anonymous.4open.science/r/mora-20667.

1 INTRODUCTION

Pre-trained vision language models (VLMs) integrate multiple modalities (e.g., vision and language)
to comprehensively understand their environment, demonstrating remarkable performance on vari-
ous downstream tasks, including visual recognition (Hu et al., 2024) and cross-modal retrieval (Li
et al., 2025). VLMs like CLIP (Radford et al., 2021) and ViLT (Kim et al., 2021) leverage large-scale
paired data to learn joint representations of images and text. Multimodal large language models, in-
cluding GPT-4 (Achiam et al., 2023), Gemini (Team et al., 2024), LLaMA-Vision (Grattafiori et al.,
2024), and LLaVA (Liu et al., 2023a), build connections between vision and language and use the
knowledge within LLMs to establish powerful conversation and reasoning abilities.

Despite their impressive capabilities, deploying them in real-world scenarios presents two significant
challenges. First, most multimodal models work under the assumption of modality completeness,
requiring all modalities to be available during both training and inference. However, this assumption
rarely holds in practice due to privacy constraints, collection difficulties, or resource limitations (Ma
et al., 2022). When input modalities are missing, performance degrades substantially (Hu et al.,
2024), limiting their applicability in real-world settings where data completeness cannot be guar-
anteed. Second, as model sizes grow, fine-tuning becomes increasingly computationally expensive
with limited resources and leads to overfitting on small-scale target datasets (Khattak et al., 2023).
Although several works (Lee et al., 2023; Hu et al., 2024) have devised prompt-based methods to
alleviate them, the prompts lead to inevitable inference overhead.

To address these challenges, we explore the underlying mechanisms affecting the performance when
modalities are missing. A critical insight comes from Mind the Gap (Liang et al., 2022), identifying
the “modality gap” which is the geometric separation between different modality embeddings in the
shared representation space. Building on this observation, we argue that both the alignment and gap
between modalities provide valuable complementary information for improving performance dur-
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ing inference with missing modalities. Specifically, during fine-tuning, the embedding spaces of the
visual and text encoders should be related, moving in the same direction to maintain multimodal per-
formance. Simultaneously, these encoders need to maintain their own independent update directions
to better adapt to downstream tasks without compromising modality-specific characteristics.

Inspired by this, we introduce MoRA, a parameter-efficient fine-tuning method that explicitly mod-
els cross-modal interactions while maintaining modality-specific adaptations. MoRA incorporates
two key design elements: a shared cross-modal parameter module that enables knowledge trans-
fer between modalities through the Gram matrix (Strang, 2022) of shared low-rank parameters and
modality-specific adaptation components that preserve the unique characteristics of each modal-
ity. This dual-structure design allows MoRA to maintain inter-modality interactions while enabling
intra-modality flexibility, resulting in robust performance across various missing-modality scenarios.

To summarize our contributions, we propose MoRA, a parameter-efficient fine-tuning method for
multimodal models that explicitly addresses the challenge of missing modalities through shared
cross-modal parameters and modality-specific adaptations, enabling bidirectional knowledge trans-
fer between modalities while preserving the directional properties of the original weights. We design
an efficient training strategy that requires updating only a small fraction (∼ 0.11%) of the model
parameters, making it feasible to adapt large pre-trained models even with limited computational
resources. Through extensive experiments on standard benchmarks, we demonstrate that MoRA
significantly outperforms existing prompt-based and parameter-efficient approaches across various
missing-modality scenarios while maintaining inference efficiency.

2 RELATED WORK

2.1 MISSING MODALITY FOR MULTIMODAL LEARNING

The missing modality issue presents a significant challenge in deploying robust systems, leading to a
significant performance drop. Previous approaches for addressing missing modality challenges can
be broadly categorized into Alignment-based and Reconstruction-based methods. Alignment-based
methods (Wang et al., 2023; Zhang et al., 2023b; Shvetsova et al., 2022) embed different modali-
ties into a shared representation space, enabling the model to operate effectively even when certain
modalities are missing by aligning the feature spaces of different modalities during pre-training or
fine-tuning. Reconstruction-based methods (Ma et al., 2022; Zhao et al., 2021; Ma et al., 2021) use
available modalities to reconstruct features of missing modalities explicitly. These approaches typi-
cally employ generative models or cross-modal translation networks to synthesize the absent infor-
mation, allowing the model to operate on “completed” inputs. However, these methods often suffer
from imperfect reconstruction quality, especially when the missing modality contains information
that cannot be fully inferred from available ones. More recently, prompt learning techniques (Lee
et al., 2023; Hu et al., 2024) have emerged as a subset of reconstruction-based approaches, handling
missing-modality scenarios by inserting learnable tokens into transformer layers. Modality-specific
information is offloaded to learnable prompts and reused when modalities are missing. MMP (Lee
et al., 2023) treats different missing-modality cases as different types of input, adapting the model
through learnable prompts while keeping the backbone frozen. However, MMP inserts indepen-
dent prompts into each layer, overlooking the complex relationships between modalities. DCP (Hu
et al., 2024) and SyP (Zhang et al., 2025) devise more prompts to leverage the correlations between
prompts and input features across different layers. However, it discards the features of the missing
modalities and cannot fully exploit multimodal features for downstream tasks. MoRA preserves the
modality information during training and introduces no overhead during inference.

2.2 PARAMETER-EFFICIENT FINE-TUNING

Parameter-Efficient Fine-Tuning (PEFT) methods reduce the computational burden of adapting large
models by updating only a small subset of parameters. These approaches can be classified into three
categories. Adapter-based methods (Houlsby et al., 2019) insert trainable modules into backbones,
either sequentially or in parallel with existing layers. Prompt-based methods (Liu et al., 2023b) add
trainable tokens to the input while keeping model parameters fixed. Both categories typically intro-
duce additional inference latency. Low-Rank Adaptation (LoRA) methods (Hu et al., 2022) approx-
imate weight updates using low-rank matrices that can be merged with pre-trained weights before
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(a) Unaligned: ViT-B/16 + BERT-base  (b) Aligned: CLIP ViT-B/16
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Figure 1: Motivation for MoRA. (a) Performance comparison on MM-IMDb and Food101 datasets
using unaligned vision and text encoders. (b) Performance comparison using aligned CLIP ViT-B/16
encoder. (c) During pre-training, modalities are aligned in embedding space with a gap; during fine-
tuning, modalities should maintain their relationship while allowing modality-specific adaptations.

inference, thus maintaining inference efficiency. Various extensions have been proposed, including
SVD-based approaches (Zhang et al., 2023a), orthogonal factorization (Qiu et al., 2023; Liu et al.,
2024b), and direction decomposition (Liu et al., 2024a). While Multimodal LoRA methods (Shen
et al., 2024; Ge et al., 2025) have focused on instruction tuning, they cannot handle missing modal-
ities and lack architectural innovations for cross-modal interaction in dual-branch architectures. Shi
et al. (2024) address the task in medical diagnosis through unidirectional adaptation. MoRA targets
general visual recognition tasks with bidirectional knowledge transfer, achieving superior efficiency
with smaller trainable parameters and zero inference latency.

3 METHOD

3.1 PROBLEM FORMULATION

We focus on the multimodal classification task with missing modalities during both training and
testing. For simplicity, but without loss of generality, we consider a multimodal dataset with text (t)
and vision (v) modalities, i.e., D = {Dt,Dv,Dc}. Specifically, Dt = {(ti,yi)}Nt

i=1 contains text-
only data samples; Dv = {(vi,yi)}Nv

i=1 includes image-only data samples; Dc = {(ti,vi,yi)}Nc
i=1

is the subset containing modality-complete samples with both text and image, where ti is text, vi

denotes an image, and yi ∈ RC is the label vector where C is the number of classes. When the
image is missing, we set the image input to an all-1 matrix; when the text is missing, we set the text
input to an empty string.

3.2 MOTIVATION

Vision Language Models (VLMs) have been pre-trained on massive image-text pairs. Although the
pre-training stage aligns the vision and language embedding space, Mind the Gap (Liang et al., 2022)
points out that there is still a gap between modalities. We argue that both the alignment property
and the gap are important for the missing modality task. To demonstrate these, we fine-tune aligned
and unaligned models using modality-complete samples and test them using both complete and
incomplete samples, as illustrated in Figure 1 (a) (b). The aligned/unaligned models denote whether
vision and text encoders are trained on image-text pairs. Implementation details can be found in
Section A.3. Compared to the performance drop of −11.1 using the aligned model, the unaligned
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Figure 2: Overview of the proposed MoRA architecture.

model shows a drop of −54.5, demonstrating that other available aligned modalities can maintain a
certain level of performance when modalities are missing. Additionally, using both image and text
features with the aligned model achieves better performance than using only image features (−14.1)
or only text features (−11.9). This finding suggests that the gap represents different information
across modalities, which serves as important complementary information for multimodal tasks.

Therefore, we identify two properties that need to be considered during fine-tuning VLMs, as il-
lustrated in Figure 1 (c). First, the direction of fine-tuning image and text modalities should be
the same to maintain their relationship in embedding space for general ability. Second, the image
and text modalities should have their own fine-tuning direction to enable flexibility for downstream
tasks. Inspired by these, we propose MoRA, a parameter-efficient fine-tuning method that explicitly
models cross-modal interactions while maintaining modality-specific adaptations.

3.3 MISSING MODALITY LOW-RANK ADAPTATION

The weight matrix in LoRA can be decomposed into the magnitude and direction, as shown below:

W = W0 +∆W = ∥W0 +∆W∥F
W0 +∆W

∥W0 +∆W∥F
= ∥W0 +∆W∥FW0 +∆W, (1)

where ∥W∥F is the Frobenius norm of the matrix, denoting the magnitude; W is the normalized
matrix, denoting the direction.

Although recent works (Liu et al., 2024a; Wu et al., 2025) have shown the importance of the direction
in fine-tuning models, they focus on large language models, while the cross-modality information
interaction, which is important for multimodal tasks, is not discussed. Based on the analysis in
Section 3.2, we introduce MoRA, a parameter-efficient fine-tuning method that enables cross-modal
interactions and captures modality-common/specific information during training, as illustrated in
Figure 2. MoRA introduces two types of learnable parameters, including modality-specific pa-
rameters Av/t ∈ Rr×dv/t ,Bv/t ∈ Rdv/t×r for independent adaptation, and shared parameters
Sv ∈ Rr×dv ,St ∈ Rdt×r for cross-modal knowledge transfer, where dv and dt are the dimensions
of vision and text encoders respectively, and r ≪ d is the rank. The updated weight matrix for
image (v) / text (t) encoders is:

Wv/t = W
v/t
0 +∆Wv/t +∆Ws

=
(
W

v/t
0 +∆Wv/t

)
+
(
W

v/t
0 +∆Ws

)
�

���−W
v/t
0 −W

v/t
0 is frozen and ignored

= ∥Wv/t
0 +∆Wv/t∥F

W
v/t
0 +∆Wv/t

∥Wv/t
0 +∆Wv/t∥F

+ ∥Wv/t
0 +∆Ws∥F

W
v/t
0 +∆Ws

∥Wv/t
0 +∆Ws∥F

= ∥Wv/t
0 +∆Wv/t∥FWv/t

0 +∆Wv/t + ∥Wv/t
0 +∆Ws∥FWv/t

0 +∆Ws

= αv/tW
v/t
0 +Bv/tAv/t︸ ︷︷ ︸

Modality-Specific

+αsW
v/t
0 + Sv/tSt/v︸ ︷︷ ︸

Modality-Shared

,

(2)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where αv/t and αs denote the learnable modality-specific and modality-shared magnitudes; Wv/t
0

is the frozen pre-trained weights in vision/text encoders.

However, Equation (2) only works when the dimensions of the image and text encoders are the same.
For example, the dimension of vision (dv) and text encoders (dt) in the CLIP ViT-B/16 model is 768
and 512, i.e., Wv

0 ∈ R768×768 and Wt
0 ∈ R512×512. Direct multiplication of Sv and St would yield

Rr×dv × Rr×dt , which is incompatible with both encoder dimensions. This dimension mismatch
challenge significantly limits the applicability of MoRA. Although we can add projection layers
to map the image and text embeddings to a common space, the projection layers will significantly
increase the number of learnable parameters during training and cannot be absorbed into the pre-
trained weights W0, increasing the inference latency. We resolve this dimension mismatch by
operating in the rank space through Gram matrices (Strang, 2022). For shared parameters Sv and
St, we compute:

Gv = SvSvT ∈ Rr×r

Gt = StStT ∈ Rr×r.
(3)

The key insight is that these Gram matrices capture the structural information of each modality in a
dimension-agnostic rank space. We then use cross-modal Gram matrices to update each encoder:

Wv = αvWv
0 +BvAv + αsWv

0 + SvTGtSv

Wt = αtWt
0 +BtAt + αsWt

0 + StTGvSt.
(4)

Since SvTGtSv ∈ Rdv×dv and StTGvSt ∈ Rdt×dt , they can be absorbed into the pre-trained
weights during inference.

Discussion First, the rank space captures second-order statistics of the low-rank representations,
which extracting invariant representations across domains (Arjovsky et al., 2019). Second, the low-
rank structure serves as a cross-modal adaptation module that transforms modality-specific param-
eters to incorporate shared knowledge (Srebro & Shraibman, 2005). With Gram matrices, MoRA
maintains a balance between preserving modality-specific characteristics and enabling cross-modal
information exchange. More importantly, all introduced learnable parameters can be absorbed into
the original pre-trained weights, which makes MoRA introduce no overheads during inference.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate MoRA on three benchmarks, including MM-IMDb (Ovalle et al., 2017), UPMC-
Food101 (Wang et al., 2015), and Hateful Memes (Kiela et al., 2020). We adopt F1-Macro, top-1
classification accuracy, and Area Under the Receiver Operating Characteristic Curve (AUROC) to
evaluate the three benchmarks, respectively. More details can be found in Section A.

Missing Modality Setting We adopt a rigorous approach wherein modality absence occurs
throughout both the training and inference phases. Following previous works (Lee et al., 2023;
Hu et al., 2024), we designate η% as the missing ratio that quantifies the proportion of incomplete-
modality data. In single-modality missing scenarios, the distribution follows a ratio of η%
incomplete-modality samples to 1 − η% complete-modality samples. When addressing dual-
modality absences, the dataset consists of η

2% image-only instances and η
2% text-only instances,

complemented by 1 − η% of samples containing both modalities. This configuration effectively
simulates real-world modality scarcity conditions and provides a robust framework for evaluating
performance in missing modality environments. Implementation details can be found in Section A.

4.2 MAIN RESULTS

As shown in Table 1, MoRA consistently outperforms baseline methods across all missing ratio
settings. Several key findings emerge from our experiments. First, the text modality consistently
demonstrates greater importance than the image modality across all three datasets. This asymmetry
may partially stem from text containing direct label information in certain datasets like UPMC-
Food101. Second, MoRA achieves particularly strong improvements when the image modality is

5
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Table 1: Performance comparison on MM-IMDb, Food101, and Hateful Memes datasets with vary-
ing missing ratios. MoRA consistently outperforms all baselines with average improvements of
5.30%, 1.91%, and 8.51% over the next best method DCP.

Datasets η Image Text CoOp MMP MaPLe DePT DCP MoRA

MM-IMDb

50%

100% 50% 48.06 48.88 49.58 50.64 52.13 54.62 (+2.49)
50% 100% 49.89 51.46 52.32 52.78 54.32 57.61 (+3.29)
75% 75% 48.37 49.32 49.56 50.87 52.32 55.88 (+3.56)

Average 48.77 49.89 50.49 51.43 52.92 56.04 (+3.12)

70%

100% 30% 44.13 45.64 45.52 46.38 48.52 52.56 (+4.04)
30% 100% 48.82 50.52 50.64 52.13 53.14 56.39 (+3.25)
65% 65% 46.84 48.12 49.16 50.32 51.42 52.97 (+1.55)

Average 46.60 48.09 48.44 49.61 51.03 53.97 (+2.94)

90%

100% 10% 44.76 45.32 46.84 47.56 49.26 50.67 (+1.41)
10% 100% 48.32 49.12 50.13 50.88 52.22 53.57 (+1.35)
55% 55% 44.12 44.87 45.12 46.54 48.04 51.64 (+3.60)

Average 45.73 46.44 47.36 48.33 49.84 51.96 (+2.12)

Food101

50%

100% 50% 77.45 77.89 79.64 80.16 82.11 84.41 (+2.30)
50% 100% 87.02 87.16 87.35 82.14 89.12 89.63 (+0.51)
75% 75% 81.24 81.72 82.34 83.12 85.24 86.68 (+1.44)

Average 81.90 82.26 83.11 81.81 85.49 86.91 (+1.42)

70%

100% 30% 76.34 76.52 77.02 77.34 78.87 80.85 (+1.98)
30% 100% 84.78 85.64 85.89 86.12 87.32 88.01 (+0.69)
65% 65% 78.87 79.12 79.84 81.46 81.87 83.77 (+1.90)

Average 80.00 80.43 80.92 81.64 82.69 84.21 (+1.52)

90%

100% 10% 71.87 73.14 73.46 74.12 75.26 78.41 (+3.15)
10% 100% 81.67 82.14 83.12 83.56 85.78 86.77 (+0.99)
55% 55% 76.46 76.58 77.85 78.12 79.87 81.09 (+1.22)

Average 76.67 77.29 78.14 78.60 80.30 82.09 (+1.79)

Hateful Memes

50%

100% 50% 60.56 60.31 60.87 61.87 62.32 70.66 (+8.34)
50% 100% 62.41 62.35 63.13 63.88 64.46 71.58 (+7.12)
75% 75% 64.87 65.84 65.46 65.86 66.02 69.58 (+3.56)

Average 62.61 62.83 63.15 63.87 64.27 70.61 (+6.34)

70%

100% 30% 60.74 61.12 61.26 61.56 62.82 69.43 (+6.61)
30% 100% 62.74 63.24 63.14 63.48 64.12 70.68 (+6.56)
65% 65% 64.82 65.04 65.23 65.48 66.08 70.15 (+4.07)

Average 62.77 63.13 63.21 63.51 64.34 70.09 (+5.75)

90%

100% 10% 60.03 57.21 60.74 61.14 62.08 68.52 (+6.44)
10% 100% 61.46 61.52 61.87 62.42 63.87 68.78 (+4.91)
55% 55% 64.32 63.34 64.85 65.37 66.78 68.37 (+1.59)

Average 61.94 60.69 62.49 62.98 64.24 68.56 (+4.32)

missing, highlighting its effectiveness in addressing the inadequate visual understanding of current
methods through cross-modal knowledge interaction. Third, MoRA maintains remarkable robust-
ness even under extreme conditions with a 90% missing ratio on Hateful Memes, it achieves perfor-
mance comparable to DCP at only 50% missing ratio, demonstrating its superior ability to handle
severe modality scarcity. These results validate that our dual mechanism of modality-specific adap-
tation and cross-modal parameter sharing creates a more resilient multimodal learning framework.

4.3 CROSS-SCENARIO GENERALIZATION

To evaluate the generalization capability of MoRA across different missing-modality scenarios, we
conduct cross-scenario experiments where models are trained with one missing-modality configu-
ration at a 70% missing ratio and tested on different configurations. This evaluation is crucial for
real-world deployment where the missing-modality patterns during inference may differ from those
seen during training. We consider two training strategies: (1) training on both-missing scenarios
where samples randomly have either text or image modality missing, and (2) training on single-
modality scenarios where only one specific modality is consistently missing. We then evaluate these
models on three test configurations: both-missing, image-missing, and text-missing scenarios.

As shown in Figure 3, MoRA demonstrates superior cross-scenario generalization compared to DCP
across all configurations on the Hateful Memes dataset. When trained on both-missing scenar-
ios, MoRA maintains strong performance when tested on specific missing-modality cases, signifi-
cantly outperforming DCP. This advantage persists even in challenging out-of-distribution scenar-
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MoRA (both text)
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(b) Image Missing

MoRA (both image)
MoRA (image image)
DCP (both image)
DCP (image image)
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(c) Both Missing

MoRA (both both)
DCP (both both)

Figure 3: Generalizability Analysis on Hateful Memes dataset. (a) Models are trained on missing-
both or missing-text cases, and evaluated on missing-text cases. (b) Models are trained on missing-
both or missing-image cases, and evaluated on missing-image cases. (c) All models are trained on
missing-both cases, and evaluated on missing-both cases.

Table 2: Inter-modal Distance Analysis. Aver-
age L2 distance and angle between vision and
text embeddings on Food101 test set.

Method L2 Dist. Angle (◦)

CLIP (orig.) 1.18 72.44
FFT 22.61 91.64
DCP 15.78 86.92
MoRA 9.99 77.07

Table 3: Modality-Specific Drift Analysis. Av-
erage embedding shift from original CLIP rep-
resentations.

Method Vision Text

L2 Angle L2 Angle

FFT 8.36 92.16 20.60 87.67
DCP 8.22 65.17 13.57 66.26
MoRA 8.12 43.24 6.04 44.84

ios—when models trained on text-missing data are tested on image-missing cases. The consistent
performance gaps across all train-test combinations demonstrate that MoRA’s dual mechanism of
maintaining modality-specific parameters while enabling cross-modal knowledge transfer through
Gram matrices creates a more robust representation space, particularly valuable for real-world de-
ployments where missing-modality patterns may vary unpredictably from training conditions.

4.4 DIRECTION PROPERTY IN MORA

To quantitatively validate our motivation illustrated in Figure 1(c), we conduct comprehensive anal-
ysis comparing the embedding space of different approaches. We train models with 70% missing
ratio where both modalities are absent, then evaluate on complete test samples to measure how well
each method preserves inter-modal relationships while enabling adaptation.

Inter-modal Relationship Preservation. We measure the average L2 distance and angle between
vision and text embeddings for each category in the Food101 test set. As shown in Table 2, MoRA
maintains the inter-modal distance and alignment with the original CLIP. In contrast, FFT, which
fine-tunes all parameters, severely distorts these relationships, while DCP shows substantial degra-
dation. This demonstrates that MoRA successfully preserves the aligned embedding structure cru-
cial for handling missing modalities.

Modality-Specific Adaptation. We analyze the embedding drift from original CLIP representations
to measure modality-specific flexibility. Table 3 shows that MoRA achieves balanced adaptation
with minimal drift, significantly outperforming FFT which exhibits catastrophic drift. DCP shows
moderate drift but fails to maintain the inter-modal alignment as shown above.

4.5 EIGENVALUE ANALYSIS OF MORA

We conduct an eigenspectrum analysis of the Gram matrices used in MoRA and compare them to
the pre-trained weights. We extract eigenvalues from the Gram matrices and singular values from
the pre-trained weights in layers 10 and 11 of the vision and text encoders. Figure 4 presents the
normalized eigenvalue distributions. Our analysis reveals several critical findings.
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Table 4: Performance comparison of
different parameter-efficient fine-tuning
methods.

MM-IMDb Food101 Hateful Memes

Low-Rank-Based
MoRA 52.97 83.77 70.15
LoRA 51.35 82.14 67.97
DoRA 51.89 82.34 68.28
Prompt-Based
DePT 50.32 81.46 65.48
DCP 51.42 81.87 66.08
Weight Fine-Tuning
BitFit 48.57 79.38 64.10
FFT 3.01 14.05 46.91

Table 5: Comparison with multimodal alignment
and fusion methods.

MM-IMDb Food101 Hateful Memes

MoRA 52.97 83.77 70.15
Align 51.39 81.14 68.53
Fusion 50.72 81.01 68.17
w/o Specific 51.18 81.32 68.71
w/o Gram 50.41 80.31 68.19

w/ Learnable Gram 52.25 83.37 69.12
w/ W0 52.88 83.59 70.03
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Figure 4: Comparison of eigenvalue distributions between Gram matrices and pre-trained weights.

First, Gram matrices serve as information concentration mechanisms. This substantial differ-
ence demonstrates that Gram matrices effectively concentrate information in a much more compact
form. To verify this empirically, we remove the Gram matrix, denoted as w/o Gram in Table 5.
The average performance drops by 2.66%, confirming that Gram matrices are essential for effective
knowledge transfer between modalities due to their information concentration properties.

Second, text and vision modalities exhibit similar structural patterns in their Gram matri-
ces. Despite dimensional differences, we observe relatively stable eigenvalue distributions across
indices for both modalities, indicating cross-modal structural similarities despite their dimensional
differences. This structural similarity enables effective cross-modal knowledge transfer through the
shared parameter space. To validate this, we use independent parameters instead of shared ones,
denoted as w/o Shared in Table 5. The average performance drops by 2.78%, demonstrating that
the emergent similar patterns are functionally critical for effective knowledge sharing.

Third, we observe converging representational structures in deeper layers. The eigenvalue
pattern of Layer 11 shows more convergence compared to Layer 10, suggesting that deeper layers
develop more aligned representational structures, which MoRA effectively leverages and maintains
information preservation while enabling cross-modal transfer.

4.6 ABLATION STUDIES

Compared to Parameter-Efficient Fine-Tuning Methods We compare other parameter-efficient
fine-tuning techniques, including LoRA (Hu et al., 2022), DoRA (Liu et al., 2024a), and BitFit (Za-
ken et al., 2022), as shown in Table 4. Low-rank-based methods achieve the best performance due
to their flexibility. MoRA outperforms other methods, demonstrating its effectiveness in enabling
modality interaction.

Alternatives for Addressing Dimension Mismatch As shown in Table 5, Align uses two extra
linear layers to project modalities into the same embedding, while Fusion concatenates embed-
dings from different modalities and uses one linear layer to project. MoRA consistently outperforms
them across all datasets. We also conduct experiments removing modality-specific parameters in
MoRA, denoted as w/o Specific. For Gram matrix construction, we report the performance of
removing it and replacing it with a learnable one. These results validate the effectiveness of MoRA.
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Table 6: Performance comparison on image-to-image retrieval using models trained on multimodal
CIRR dataset. Results are evaluated on the MS-COCO validation set.

Method Recall@1 Recall@5 Recall@10

CLIP4CIR (Baldrati et al., 2024) 43.34 76.99 86.49
CLIP4CIR + MoRA 60.50 85.00 88.60
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Figure 5: Performance scaling of MoRA with
different backbone models.
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Figure 6: Inference time (ms) per sample versus
the number of trainable parameters.

We also add the ignored W0 in Equation (2), showing that the learnable magnitude parameters
effectively compensate for the omitted frozen weights during training.

Parameter sensitivity analysis can be found in Section D.

4.7 EXTENSION TO EMBEDDING TASKS

To demonstrate MoRA’s generalizability beyond classification tasks, we evaluate it on Composed
Image Retrieval (CIR) based on Baldrati et al. (2024) using CLIP models, where models use a ref-
erence image and text modification to identify target images. CIR models are trained on multimodal
inputs, making the original image-to-image retrieval as an important and natural missing-modality
scenario where texts are absent. We train models on the CIRR dataset (Liu et al., 2021) with com-
plete image-text pairs and evaluate on the MS-COCO validation set (Lin et al., 2014) for image-
to-image retrieval, as shown in Table 6. MoRA achieves substantial improvements across all recall
metrics, indicating that MoRA’s applicability to tasks beyond classification, where missing modali-
ties fundamentally alter the task dynamics. Implementation details can be found in Section A.3.

4.8 SCALABILITY AND INFERENCE TIME

Figure 5 demonstrates the effectiveness of MoRA integration across various backbone architectures,
including SLIP ViT-S (Mu et al., 2022), CLIP ViT-B, and CLIP ViT-L (Radford et al., 2021). The
results indicate that performance exhibits favorable scaling properties with respect to model capacity,
with accuracy improvements correlating positively with the number of parameters. We conduct a
comprehensive analysis of inference times to evaluate the computational efficiency of MoRA and
prompt-based methods, including MMP and DCP. As shown in Figure 6, prompt-based methods
significantly increase the inference time. MoRA theoretically introduces no inference overhead, and
experimental results demonstrate its efficiency.

5 CONCLUSION

We introduced MoRA, a parameter-efficient fine-tuning method that effectively addresses the
missing modality challenge in multimodal learning through shared cross-modal parameters and
modality-specific adaptations. By leveraging Gram matrices for dimension-agnostic knowledge
transfer, MoRA enables bidirectional information exchange while preserving modality-specific char-
acteristics without introducing inference overhead. Extensive experiments demonstrate that MoRA
significantly outperforms existing approaches across multiple benchmarks both on performance and
inference time, demonstrating the effectiveness and efficiency of MoRA.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research uses only publicly available benchmark
datasets (MM-IMDb, UPMC-Food101, and Hateful Memes) with no human subjects involved. The
Hateful Memes dataset used in our experiments contains potentially offensive content for research
purposes only; we handle this data responsibly and do not generate or promote harmful content.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we provide comprehensive implementation details in Sec-
tion A.3 and make our code publicly available at https://anonymous.4open.science/
r/mora-20667. All experiments use publicly available pre-trained models and standard bench-
mark datasets. Key hyperparameters, including learning rates, batch sizes, optimizer settings, and
architectural configurations, are specified in the main paper and appendix. The computational re-
quirements and training procedures are documented to enable full reproduction of our results.
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A DETAILS OF EXPERIMENTAL SETUP

A.1 DATASET

We evaluate our proposed method on three standard benchmarks: MM-IMDb (Ovalle et al., 2017),
UPMC-Food101 (Wang et al., 2015), and Hateful Memes (Kiela et al., 2020).

MM-IMDb represents the largest publicly available multimodal collection for movie genre predic-
tion, containing 25,959 movies annotated with both visual and textual information. This dataset
supports multi-label classification across 27 distinct movie genres. The corpus is structured with
15,552 training, 2,608 validation, and 7,799 test image-text pairs, providing a robust foundation for
developing and evaluating multimodal classification models.

UPMC Food101 is a comprehensive multimedia collection featuring noisy image-text pairs gath-
ered from Google Image Search across 101 food categories. The dataset is structured with 61,127
training samples, 6,845 validation samples, and 22,716 test image-text pairs, providing substantial
material for developing and evaluating multimodal food recognition systems.

Hateful Memes represents a benchmark multimodal collection for detecting hate speech in memes.
It contains over 10,000 image-text pairs specifically designed to evaluate multimodal reasoning
capabilities, where the interplay between text and visuals is crucial for accurate classification. The
dataset consists of 8,500, 500, and 1,000 samples for training, validation, and testing.

A.2 BASELINE METHODS

To evaluate MoRA, we select the SOTA missing-modality methods and multimodal prompt meth-
ods. Specifically, we select the missing modality methods, including MMP (Lee et al., 2023) and
DCP (Hu et al., 2024); for multimodal prompt learning, we choose CoOp (Zhou et al., 2022),
MaPLe (Khattak et al., 2023), and DePT (Zhang et al., 2024). Although a recent work, SyP (Zhang
et al., 2025), employs the prompt-based method to address the missing modality task, the code for
this work was not released upon our submission. Therefore, we do not compare our method with it.
Once the source code or pre-trained models are released, we will add the results to the main results.

A.3 IMPLEMENTATION DETAILS

Main Experiments Following previous work (Hu et al., 2024), we use CLIP ViT-B/16 as the
backbone model. We add a fully connected layer at the top of the model as the classification layer
for downstream tasks. The parameters in the CLIP model are frozen, and we only fine-tune the
parameters of the classification layer and MoRA modules. MoRA can be inserted into various
positions in the backbone. We found that the best hyper-parameters differ in various datasets. In
UPMC-Food101, MoRA is inserted into the Q,V in self-attention modules of the last two vision
and text transformer layers. Rank r is 4. We use the AdamW (Loshchilov & Hutter, 2019) optimizer
with a learning rate 0.01 and weight decay 0.02. A linear warmup cosine annealing scheduler with
10% warmup steps is used to adjust the learning rate. The batch size is 256. The number of training
epochs is 20 and we apply the early-stopping strategy. Detailed settings can be found in the code we
provided. If not specified, experiments are conducted on the UPMC-Food101 dataset with a missing
ratio η of 70%, where both image and text modalities are absent. We run experiments three times
and report their average performance. All experiments are conducted on one NVIDIA H100 GPU.

Motivation In Figure 1, most hyper-parameters are the same as those used in the main experi-
ments. We use CLIP ViT-B/16 as the aligned model and pre-trained ViT-B/16 and BERT as the
unaligned model. We train these models on complete training datasets, i.e., η = 0%, and test them
using different datasets, including complete, image, and text-only datasets.

Embedding Task In Table 6, we use the same settings in the main experiments above. We use the
CIRR training data as the training set, and evaluate the trained model on the MS-COCO validation
set. We select CLIP ViT-B/16 as the backbone. For training, we use the complete samples with-
out any modality-incomplete data. During testing, the model is evaluated on the image-to-image
retrieval task, which can be viewed as if the text modality is missing.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

10% 30% 50% 70% 90% 100%
Missing Rate (%)

44
46
48
50
52
54
56
58
60
62

F1
-M

ac
ro

(a) Text Missing

MoRA (both text)
MoRA (text text)
DCP (both text)
DCP (text text)

10% 30% 50% 70% 90% 100%
Missing Rate (%)

50

52

54

56

58

60

62

F1
-M

ac
ro

(b) Image Missing

MoRA (both image)
MoRA (image image)
DCP (both image)
DCP (image image)

10% 30% 50% 70% 90% 100%
Missing Rate (%)

48

50

52

54

56

58

60

62

F1
-M

ac
ro

(c) Both Missing

MoRA (both both)
DCP (both both)

Figure 7: Performance comparison on MM-IMDb with varying missing ratios.

10% 30% 50% 70% 90% 100%
Missing Rate (%)

72

75

78

81

84

87

90

Ac
cu

ra
cy

(a) Text Missing

MoRA (both text)
MoRA (text text)
DCP (both text)
DCP (text text)

10% 30% 50% 70% 90% 100%
Missing Rate (%)

84

86

88

90

92

Ac
cu

ra
cy

(b) Image Missing

MoRA (both image)
MoRA (image image)
DCP (both image)
DCP (image image)

10% 30% 50% 70% 90% 100%
Missing Rate (%)

77.5

80.0

82.5

85.0

87.5

90.0

92.5

Ac
cu

ra
cy

(c) Both Missing

MoRA (both both)
DCP (both both)

Figure 8: Performance comparison on Food101 with varying missing ratios.

B ATTACHED POSITION

We systematically evaluate MoRA attachment at different network depths, as shown in Figure 9.
To further analyze the effect of attached positions, we attached MoRA to three positions of a CLIP
ViT-B/16 model:

• Front layers: Layers 1-2 (early feature extraction)

• Middle layers: Layers 6-7 (intermediate representations)

• Rear layers: Layers 11-12 (high-level semantics)

We train the model on the Food101 dataset with a 70% missing ratio and both modalities are miss-
ing. As shown in Table 7, attaching to deeper layers enables fine-tuning of high-level semantic fea-
tures rather than low-level representations, yielding superior performance. This strategy effectively
handles architectures with asymmetric depths. As demonstrated in Figure 5, MoRA successfully
adapts CLIP ViT-L (24 vision layers, 12 text layers) by consistently targeting the final layers of each
modality, which contain the most semantic information.

C MORE RESULTS

More results across various missing ratios are shown in Figure 7 and Figure 8. The experimental
results demonstrate consistent effectiveness in handling missing modalities. As the missing ratio in-
creases, performance on all datasets gradually declines. Notably, the text-only modality consistently
outperformed image-only across all datasets. MoRA maintains robust performance even at high
missing ratios, preserving inter-modality interactions while maintaining intra-modality flexibility.
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Table 7: Performance comparison of attached positions.

Position Front Middle Rear (Ours)
Accuracy 81.08 82.48 83.77

q k v qk qv kv qkv
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Figure 9: Parameter sensitivity analysis.

D PARAMETER SENSITIVITY

The sensitivity of MoRA to its key hyper-parameters is shown in Figure 9, where r denotes the
rank, η is the low-rank strength, “#Layers” denotes the number of layers inserted by MoRA, and
“Position” means which attention matrices are adjusted. The results show that MoRA is robust to
parameter changes, maintaining strong performance across a wide range of values.

E VISUALIZATION OF EMBEDDING SPACE

To further analyze why MoRA outperforms other methods, we use t-SNE (Van der Maaten & Hinton,
2008) to visualize the embeddings of samples with missing modalities, as illustrated in Figure 10.
Specifically, we use the samples in the test dataset, obtain the embeddings from available modalities,
and visualize them. The results show that the embedding space of FFT has collapsed, and MoRA
produces more compact and well-separated clusters. Compared to DCP, MoRA has a larger inter-
class distance, indicating better discriminability.

F LLM USAGE STATEMENT

Large language models were used as a general-purpose writing assistance tool during the preparation
of this manuscript, primarily for grammar checking, sentence restructuring, and improving clarity
of technical descriptions. LLMs did not contribute to the core research ideas, experimental design,
or technical innovations presented in this work. All scientific claims, experimental results, and
theoretical contributions are the original work of the authors, who take full responsibility for the
accuracy and integrity of all content.

G LIMITATIONS

While MoRA demonstrates strong performance across various missing-modality scenarios, several
limitations present opportunities for future research.

First, our experimental validation is limited to three datasets (MM-IMDb, UPMC-Food101, and
Hateful Memes) and primarily focuses on image-text modality pairs. Future work could extend
MoRA to additional multimodal domains (e.g., audio-visual) and more diverse datasets to further
validate its generalizability. Second, the current formulation of MoRA addresses binary missing-
modality scenarios (present or absent). Future work could explore extensions to partial or corrupted
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Figure 10: t-SNE visualization for MoRA, DCP, and FFT. Different colors denote different cate-
gories.

modalities where information is present but degraded, which may better reflect certain real-world
applications.

Despite these limitations, MoRA represents a significant step forward in addressing the missing
modality challenge through its novel parameter-efficient fine-tuning approach.

H BROADER IMPACTS

Our research on MoRA offers several positive societal impacts. By addressing the missing modality
challenge in multimodal systems, MoRA can significantly improve accessibility for users with sen-
sory impairments who may not have access to all modalities. Additionally, MoRA reduces compu-
tational requirements and potentially lowers energy consumption compared to alternative methods,
contributing to more sustainable AI development. This efficiency also enables more robust deploy-
ment of multimodal systems in resource-constrained environments like healthcare, education, and
humanitarian assistance. Furthermore, MoRA could enhance privacy by allowing users to selec-
tively withhold certain modalities while still receiving reasonable system performance.

We also acknowledge potential concerns regarding this technology. As with many AI advancements,
improvements in handling missing modalities could potentially be applied in ways that raise pri-
vacy questions if deployed without appropriate safeguards. Additionally, systems making decisions
based on incomplete information should be deployed with appropriate human oversight, particularly
in high-stakes applications. We’ve focused our development on public benchmark datasets and em-
phasize that our primary goal is improving the accessibility, efficiency, and robustness of multimodal
systems rather than enabling capabilities that could raise significant ethical concerns.
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