MORA: MISSING MODALITY LOW-RANK ADAPTATION FOR VISUAL RECOGNITION

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

031

033

034

035

037

038

040

041

042

043

044

046

047

048

049

051

052

Paper under double-blind review

ABSTRACT

Pre-trained vision language models have shown remarkable performance on visual recognition tasks, but they typically assume the availability of complete multimodal inputs during both training and inference. In real-world scenarios, however, modalities may be missing due to privacy constraints, collection difficulties, or resource limitations. While previous approaches have addressed this challenge using prompt learning techniques, they fail to capture the crossmodal relationships necessary for effective multimodal visual recognition and suffer from inevitable computational overhead. In this paper, we introduce MoRA, a parameter-efficient fine-tuning method that explicitly models cross-modal interactions while maintaining modality-specific adaptations. MoRA introduces modality-common parameters between text and vision encoders, enabling bidirectional knowledge transfer. Additionally, combined with the modality-specific parameters, MoRA allows the backbone model to maintain inter-modality interaction and enable intra-modality flexibility. Extensive experiments on standard benchmarks demonstrate that MoRA achieves an average performance improvement in missing-modality scenarios by 5.24% and uses only 25.90% of the inference time compared to the SOTA method while requiring only 0.11%of trainable parameters compared to full fine-tuning. The code is available at https://anonymous.4open.science/r/mora-20667.

1 Introduction

Pre-trained vision language models (VLMs) integrate multiple modalities (e.g., vision and language) to comprehensively understand their environment, demonstrating remarkable performance on various downstream tasks, including visual recognition (Hu et al., 2024) and cross-modal retrieval (Li et al., 2025). VLMs like CLIP (Radford et al., 2021) and ViLT (Kim et al., 2021) leverage large-scale paired data to learn joint representations of images and text. Multimodal large language models, including GPT-4 (Achiam et al., 2023), Gemini (Team et al., 2024), LLaMA-Vision (Grattafiori et al., 2024), and LLaVA (Liu et al., 2023a), build connections between vision and language and use the knowledge within LLMs to establish powerful conversation and reasoning abilities.

Despite their impressive capabilities, deploying them in real-world scenarios presents two significant challenges. First, most multimodal models work under the assumption of modality completeness, requiring all modalities to be available during both training and inference. However, this assumption rarely holds in practice due to privacy constraints, collection difficulties, or resource limitations (Ma et al., 2022). When input modalities are missing, performance degrades substantially (Hu et al., 2024), limiting their applicability in real-world settings where data completeness cannot be guaranteed. Second, as model sizes grow, fine-tuning becomes increasingly computationally expensive with limited resources and leads to overfitting on small-scale target datasets (Khattak et al., 2023). Although several works (Lee et al., 2023; Hu et al., 2024) have devised prompt-based methods to alleviate them, the prompts lead to inevitable inference overhead.

To address these challenges, we explore the underlying mechanisms affecting the performance when modalities are missing. A critical insight comes from Mind the Gap (Liang et al., 2022), identifying the "modality gap" which is the geometric separation between different modality embeddings in the shared representation space. Building on this observation, we argue that both the alignment and gap between modalities provide valuable complementary information for improving performance dur-

ing inference with missing modalities. Specifically, during fine-tuning, the embedding spaces of the visual and text encoders should be related, moving in the same direction to maintain multimodal performance. Simultaneously, these encoders need to maintain their own independent update directions to better adapt to downstream tasks without compromising modality-specific characteristics.

Inspired by this, we introduce MoRA, a parameter-efficient fine-tuning method that explicitly models cross-modal interactions while maintaining modality-specific adaptations. MoRA incorporates two key design elements: a shared cross-modal parameter module that enables knowledge transfer between modalities through the Gram matrix (Strang, 2022) of shared low-rank parameters and modality-specific adaptation components that preserve the unique characteristics of each modality. This dual-structure design allows MoRA to maintain inter-modality interactions while enabling intra-modality flexibility, resulting in robust performance across various missing-modality scenarios.

To summarize our contributions, we propose MoRA, a parameter-efficient fine-tuning method for multimodal models that explicitly addresses the challenge of missing modalities through shared cross-modal parameters and modality-specific adaptations, enabling bidirectional knowledge transfer between modalities while preserving the directional properties of the original weights. We design an efficient training strategy that requires updating only a small fraction ($\sim 0.11\%$) of the model parameters, making it feasible to adapt large pre-trained models even with limited computational resources. Through extensive experiments on standard benchmarks, we demonstrate that MoRA significantly outperforms existing prompt-based and parameter-efficient approaches across various missing-modality scenarios while maintaining inference efficiency.

2 Related Work

054

055

056

057

058

060

061

062

063

064

065

066

067

068

069

071

072

073074075

076 077

078 079

081

083

084

085

087

880

091

092

093

094

095

096

098

099 100

101 102

103

104

105

106

107

2.1 MISSING MODALITY FOR MULTIMODAL LEARNING

The missing modality issue presents a significant challenge in deploying robust systems, leading to a significant performance drop. Previous approaches for addressing missing modality challenges can be broadly categorized into Alignment-based and Reconstruction-based methods. Alignment-based methods (Wang et al., 2023; Zhang et al., 2023b; Shvetsova et al., 2022) embed different modalities into a shared representation space, enabling the model to operate effectively even when certain modalities are missing by aligning the feature spaces of different modalities during pre-training or fine-tuning. Reconstruction-based methods (Ma et al., 2022; Zhao et al., 2021; Ma et al., 2021) use available modalities to reconstruct features of missing modalities explicitly. These approaches typically employ generative models or cross-modal translation networks to synthesize the absent information, allowing the model to operate on "completed" inputs. However, these methods often suffer from imperfect reconstruction quality, especially when the missing modality contains information that cannot be fully inferred from available ones. More recently, prompt learning techniques (Lee et al., 2023; Hu et al., 2024) have emerged as a subset of reconstruction-based approaches, handling missing-modality scenarios by inserting learnable tokens into transformer layers. Modality-specific information is offloaded to learnable prompts and reused when modalities are missing. MMP (Lee et al., 2023) treats different missing-modality cases as different types of input, adapting the model through learnable prompts while keeping the backbone frozen. However, MMP inserts independent prompts into each layer, overlooking the complex relationships between modalities. DCP (Hu et al., 2024) and SyP (Zhang et al., 2025) devise more prompts to leverage the correlations between prompts and input features across different layers. However, it discards the features of the missing modalities and cannot fully exploit multimodal features for downstream tasks. MoRA preserves the modality information during training and introduces no overhead during inference.

2.2 Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) methods reduce the computational burden of adapting large models by updating only a small subset of parameters. These approaches can be classified into three categories. Adapter-based methods (Houlsby et al., 2019) insert trainable modules into backbones, either sequentially or in parallel with existing layers. Prompt-based methods (Liu et al., 2023b) add trainable tokens to the input while keeping model parameters fixed. Both categories typically introduce additional inference latency. Low-Rank Adaptation (LoRA) methods (Hu et al., 2022) approximate weight updates using low-rank matrices that can be merged with pre-trained weights before

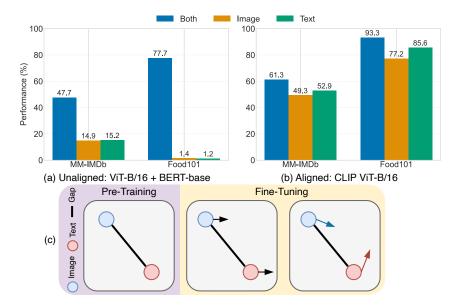


Figure 1: Motivation for MoRA. (a) Performance comparison on MM-IMDb and Food101 datasets using unaligned vision and text encoders. (b) Performance comparison using aligned CLIP ViT-B/16 encoder. (c) During pre-training, modalities are aligned in embedding space with a gap; during fine-tuning, modalities should maintain their relationship while allowing modality-specific adaptations.

inference, thus maintaining inference efficiency. Various extensions have been proposed, including SVD-based approaches (Zhang et al., 2023a), orthogonal factorization (Qiu et al., 2023; Liu et al., 2024b), and direction decomposition (Liu et al., 2024a). While Multimodal LoRA methods (Shen et al., 2024; Ge et al., 2025) have focused on instruction tuning, they cannot handle missing modalities and lack architectural innovations for cross-modal interaction in dual-branch architectures. Shi et al. (2024) address the task in medical diagnosis through unidirectional adaptation. MoRA targets general visual recognition tasks with bidirectional knowledge transfer, achieving superior efficiency with smaller trainable parameters and zero inference latency.

3 METHOD

3.1 PROBLEM FORMULATION

We focus on the multimodal classification task with missing modalities during both training and testing. For simplicity, but without loss of generality, we consider a multimodal dataset with text (t) and vision (v) modalities, i.e., $\mathcal{D} = \{\mathcal{D}^t, \mathcal{D}^v, \mathcal{D}^c\}$. Specifically, $\mathcal{D}^t = \{(\mathbf{t}_i, \mathbf{y}_i)\}_{i=1}^{N_t}$ contains textonly data samples; $\mathcal{D}^v = \{(\mathbf{v}_i, \mathbf{y}_i)\}_{i=1}^{N_v}$ includes image-only data samples; $\mathcal{D}^c = \{(\mathbf{t}_i, \mathbf{v}_i, \mathbf{y}_i)\}_{i=1}^{N_c}$ is the subset containing modality-complete samples with both text and image, where \mathbf{t}_i is text, \mathbf{v}_i denotes an image, and $\mathbf{y}_i \in \mathbb{R}^C$ is the label vector where C is the number of classes. When the image is missing, we set the image input to an all-1 matrix; when the text is missing, we set the text input to an empty string.

3.2 MOTIVATION

Vision Language Models (VLMs) have been pre-trained on massive image-text pairs. Although the pre-training stage aligns the vision and language embedding space, Mind the Gap (Liang et al., 2022) points out that there is still a gap between modalities. We argue that both the alignment property and the gap are important for the missing modality task. To demonstrate these, we fine-tune aligned and unaligned models using modality-complete samples and test them using both complete and incomplete samples, as illustrated in Figure 1 (a) (b). The aligned/unaligned models denote whether vision and text encoders are trained on image-text pairs. Implementation details can be found in Section A.3. Compared to the performance drop of -11.1 using the aligned model, the unaligned

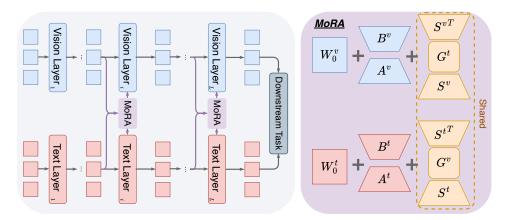


Figure 2: Overview of the proposed MoRA architecture.

model shows a drop of -54.5, demonstrating that other available aligned modalities can maintain a certain level of performance when modalities are missing. Additionally, using both image and text features with the aligned model achieves better performance than using only image features (-14.1) or only text features (-11.9). This finding suggests that the gap represents different information across modalities, which serves as important complementary information for multimodal tasks.

Therefore, we identify two properties that need to be considered during fine-tuning VLMs, as illustrated in Figure 1 (c). First, the direction of fine-tuning image and text modalities should be the same to maintain their relationship in embedding space for general ability. Second, the image and text modalities should have their own fine-tuning direction to enable flexibility for downstream tasks. Inspired by these, we propose MoRA, a parameter-efficient fine-tuning method that explicitly models cross-modal interactions while maintaining modality-specific adaptations.

3.3 MISSING MODALITY LOW-RANK ADAPTATION

The weight matrix in LoRA can be decomposed into the magnitude and direction, as shown below:

$$\mathbf{W} = \mathbf{W}_0 + \Delta \mathbf{W} = \|\mathbf{W}_0 + \Delta \mathbf{W}\|_{\mathrm{F}} \frac{\mathbf{W}_0 + \Delta \mathbf{W}}{\|\mathbf{W}_0 + \Delta \mathbf{W}\|_{\mathrm{F}}} = \|\mathbf{W}_0 + \Delta \mathbf{W}\|_{\mathrm{F}} \overline{\mathbf{W}_0 + \Delta \mathbf{W}}, \quad (1)$$

where $\|\mathbf{W}\|_F$ is the Frobenius norm of the matrix, denoting the magnitude; $\overline{\mathbf{W}}$ is the normalized matrix, denoting the direction.

Although recent works (Liu et al., 2024a; Wu et al., 2025) have shown the importance of the direction in fine-tuning models, they focus on large language models, while the cross-modality information interaction, which is important for multimodal tasks, is not discussed. Based on the analysis in Section 3.2, we introduce MoRA, a parameter-efficient fine-tuning method that enables cross-modal interactions and captures modality-common/specific information during training, as illustrated in Figure 2. MoRA introduces two types of learnable parameters, including modality-specific parameters $\mathbf{A}^{\text{v/t}} \in \mathbb{R}^{r \times d_{\text{v/t}}}, \mathbf{B}^{\text{v/t}} \in \mathbb{R}^{d_{\text{v/t}} \times r}$ for independent adaptation, and shared parameters $\mathbf{S}^{v} \in \mathbb{R}^{r \times d_{\text{v}}}, \mathbf{S}^{t} \in \mathbb{R}^{d_{\text{t}} \times r}$ for cross-modal knowledge transfer, where d_{v} and d_{t} are the dimensions of vision and text encoders respectively, and $r \ll d$ is the rank. The updated weight matrix for image (v) / text (t) encoders is:

$$\begin{split} \mathbf{W}^{v/t} &= \mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{v/t} + \Delta \mathbf{W}^{s} \\ &= \left(\mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{v/t} \right) + \left(\mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{s} \right) - \mathbf{W}_{0}^{v/t} \quad - \mathbf{W}_{0}^{v/t} \text{ is frozen and ignored} \\ &= \| \mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{v/t} \|_{F} \frac{\mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{v/t}}{\| \mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{v/t} \|_{F}} + \| \mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{s} \|_{F} \frac{\mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{s}}{\| \mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{s} \|_{F}} \quad (2) \\ &= \| \mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{v/t} \|_{F} \mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{v/t} + \| \mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{s} \|_{F} \mathbf{W}_{0}^{v/t} + \Delta \mathbf{W}^{s} \\ &= \underbrace{\alpha^{v/t} \mathbf{W}_{0}^{v/t} + \mathbf{B}^{v/t} \mathbf{A}^{v/t}}_{\text{Modality-Specific}} + \underbrace{\alpha^{s} \mathbf{W}_{0}^{v/t} + \mathbf{S}^{v/t} \mathbf{S}^{t/v}}_{\text{Modality-Shared}}, \end{split}$$

where $\alpha^{v/t}$ and α^s denote the learnable modality-specific and modality-shared magnitudes; $\mathbf{W}_0^{v/t}$ is the frozen pre-trained weights in vision/text encoders.

However, Equation (2) only works when the dimensions of the image and text encoders are the same. For example, the dimension of vision (d_v) and text encoders (d_t) in the CLIP ViT-B/16 model is 768 and 512, i.e., $\mathbf{W}_0^v \in \mathbb{R}^{768 \times 768}$ and $\mathbf{W}_0^t \in \mathbb{R}^{512 \times 512}$. Direct multiplication of \mathbf{S}^v and \mathbf{S}^t would yield $\mathbb{R}^{r \times d_v} \times \mathbb{R}^{r \times d_t}$, which is incompatible with both encoder dimensions. This dimension mismatch challenge significantly limits the applicability of MoRA. Although we can add projection layers to map the image and text embeddings to a common space, the projection layers will significantly increase the number of learnable parameters during training and cannot be absorbed into the pretrained weights \mathbf{W}_0 , increasing the inference latency. We resolve this dimension mismatch by operating in the rank space through Gram matrices (Strang, 2022). For shared parameters \mathbf{S}^v and \mathbf{S}^t , we compute:

$$\mathbf{G}^{\mathbf{v}} = \mathbf{S}^{\mathbf{v}} \mathbf{S}^{\mathbf{v}T} \in \mathbb{R}^{r \times r}$$

$$\mathbf{G}^{\mathbf{t}} = \mathbf{S}^{\mathbf{t}} \mathbf{S}^{\mathbf{t}T} \in \mathbb{R}^{r \times r}.$$
(3)

The key insight is that these Gram matrices capture the structural information of each modality in a dimension-agnostic rank space. We then use cross-modal Gram matrices to update each encoder:

$$\mathbf{W}^{\mathbf{v}} = \alpha^{\mathbf{v}} \overline{\mathbf{W}_{0}^{\mathbf{v}} + \mathbf{B}^{\mathbf{v}} \mathbf{A}^{\mathbf{v}}} + \alpha^{\mathbf{s}} \overline{\mathbf{W}_{0}^{\mathbf{v}} + \mathbf{S}^{\mathbf{v}^{T}} \mathbf{G}^{\mathbf{t}} \mathbf{S}^{\mathbf{v}}}$$

$$\mathbf{W}^{\mathbf{t}} = \alpha^{\mathbf{t}} \overline{\mathbf{W}_{0}^{\mathbf{t}} + \mathbf{B}^{\mathbf{t}} \mathbf{A}^{\mathbf{t}}} + \alpha^{\mathbf{s}} \overline{\mathbf{W}_{0}^{\mathbf{t}} + \mathbf{S}^{\mathbf{t}^{T}} \mathbf{G}^{\mathbf{v}} \mathbf{S}^{\mathbf{t}}}.$$
(4)

Since $\mathbf{S}^{\mathrm{v}T}\mathbf{G}^{\mathrm{t}}\mathbf{S}^{\mathrm{v}} \in \mathbb{R}^{d_{\mathrm{v}} \times d_{\mathrm{v}}}$ and $\mathbf{S}^{\mathrm{t}T}\mathbf{G}^{\mathrm{v}}\mathbf{S}^{\mathrm{t}} \in \mathbb{R}^{d_{\mathrm{t}} \times d_{\mathrm{t}}}$, they can be absorbed into the pre-trained weights during inference.

Discussion First, the rank space captures second-order statistics of the low-rank representations, which extracting invariant representations across domains (Arjovsky et al., 2019). Second, the low-rank structure serves as a cross-modal adaptation module that transforms modality-specific parameters to incorporate shared knowledge (Srebro & Shraibman, 2005). With Gram matrices, MoRA maintains a balance between preserving modality-specific characteristics and enabling cross-modal information exchange. More importantly, all introduced learnable parameters can be absorbed into the original pre-trained weights, which makes **MoRA introduce no overheads during inference**.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate MoRA on three benchmarks, including MM-IMDb (Ovalle et al., 2017), UPMC-Food101 (Wang et al., 2015), and Hateful Memes (Kiela et al., 2020). We adopt F1-Macro, top-1 classification accuracy, and Area Under the Receiver Operating Characteristic Curve (AUROC) to evaluate the three benchmarks, respectively. More details can be found in Section A.

Missing Modality Setting We adopt a rigorous approach wherein modality absence occurs throughout both the training and inference phases. Following previous works (Lee et al., 2023; Hu et al., 2024), we designate $\eta\%$ as the missing ratio that quantifies the proportion of incomplete-modality data. In single-modality missing scenarios, the distribution follows a ratio of $\eta\%$ incomplete-modality samples to $1-\eta\%$ complete-modality samples. When addressing dual-modality absences, the dataset consists of $\frac{\eta}{2}\%$ image-only instances and $\frac{\eta}{2}\%$ text-only instances, complemented by $1-\eta\%$ of samples containing both modalities. This configuration effectively simulates real-world modality scarcity conditions and provides a robust framework for evaluating performance in missing modality environments. Implementation details can be found in Section A.

4.2 Main Results

As shown in Table 1, MoRA consistently outperforms baseline methods across all missing ratio settings. Several key findings emerge from our experiments. First, the text modality consistently demonstrates greater importance than the image modality across all three datasets. This asymmetry may partially stem from text containing direct label information in certain datasets like UPMC-Food101. Second, MoRA achieves particularly strong improvements when the image modality is

Table 1: Performance comparison on MM-IMDb, Food101, and Hateful Memes datasets with varying missing ratios. MoRA consistently outperforms all baselines with average improvements of 5.30%, 1.91%, and 8.51% over the next best method DCP.

Datasets	η	Image	Text	CoOp	MMP	MaPLe	DePT	DCP	MoRA
	l '7	100%	50%	48.06	48.88	49.58	50.64	52.13	54.62 (+2.49)
		50%	100%	49.89	51.46	52.32	52.78	54.32	57.61 (+3.29)
	50%	75%	75%	48.37	49.32	49.56	50.87	52.32	55.88 (+3.56)
		Avei		48.77	49.89	50.49	51.43	52.92	56.04 (+3.12)
MM-IMDb	ˈ	100%	30%	44.13	45.64	45.52	46.38	48.52	52.56 (+4.04)
WIWI-IIVIDU		30%	100%	48.82	50.52	50.64	52.13	53.14	56.39 (+3.25)
	70%	65%	65%	46.84	48.12	49.16	50.32	51.42	52.97 (+1.55)
		Avei		46.60	48.09	48.44	49.61	51.03	53.97 (+2.94)
	¦ ——	100%	10%	44.76	45.32	46.84	47.56	49.26	50.67 (+1.41)
		100%	100%	48.32	49.12	50.13	50.88	52.22	53.57 (+1.35)
	90%	55%	55%	44.12	44.87	45.12	46.54	48.04	51.64 (+3.60)
		Avei		45.73	46.44	47.36	48.33	49.84	51.96 (+2.12)
			-	I					
	50%	100%	50%	77.45	77.89	79.64	80.16	82.11	84.41 (+2.30)
		50%	100%	87.02	87.16	87.35	82.14	89.12	89.63 (+0.51)
		75%	75%	81.24	81.72	82.34	83.12	85.24	86.68 (+1.44)
	l	Avei	rage	81.90	82.26	83.11	81.81	85.49	86.91 (+1.42)
Food101		100%	30%	76.34	76.52	77.02	77.34	78.87	80.85 (+1.98)
	70%	30%	100%	84.78	85.64	85.89	86.12	87.32	88.01 (+0.69)
	10%	65%	65%	78.87	79.12	79.84	81.46	81.87	83.77 (+1.90)
		Avei	rage	80.00	80.43	80.92	81.64	82.69	84.21 (+1.52)
		100%	10%	71.87	73.14	73.46	74.12	75.26	78.41 (+3.15)
	90%	10%	100%	81.67	82.14	83.12	83.56	85.78	86.77 (+0.99)
	90%	55%	55%	76.46	76.58	77.85	78.12	79.87	81.09 (+1.22)
		Avei	rage	76.67	77.29	78.14	78.60	80.30	82.09 (+1.79)
	50%	100%	50%	60.56	60.31	60.87	61.87	62.32	70.66 (+8.34)
		50%	100%	62.41	62.35	63.13	63.88	64.46	71.58 (+7.12)
		75%	75%	64.87	65.84	65.46	65.86	66.02	69.58 (+3.56)
		Avei	rage	62.61	62.83	63.15	63.87	64.27	70.61 (+6.34)
Hateful Memes	70%	100%	30%	60.74	61.12	61.26	61.56	62.82	69.43 (+6.61)
		30%	100%	62.74	63.24	63.14	63.48	64.12	70.68 (+6.56)
		65%	65%	64.82	65.04	65.23	65.48	66.08	70.15 (+4.07)
		Avei	rage	62.77	63.13	63.21	63.51	64.34	70.09 (+5.75)
	l	100%	10%	60.03	57.21	60.74	61.14	62.08	68.52 (+6.44)
	000	10%	100%	61.46	61.52	61.87	62.42	63.87	68.78 (+4.91)
	90%	55%	55%	64.32	63.34	64.85	65.37	66.78	68.37 (+1.59)
		Avei	rage	61.94	60.69	62.49	62.98	64.24	68.56 (+4.32)

missing, highlighting its effectiveness in addressing the inadequate visual understanding of current methods through cross-modal knowledge interaction. Third, MoRA maintains remarkable robustness even under extreme conditions with a 90% missing ratio on Hateful Memes, it achieves performance comparable to DCP at only 50% missing ratio, demonstrating its superior ability to handle severe modality scarcity. These results validate that our dual mechanism of modality-specific adaptation and cross-modal parameter sharing creates a more resilient multimodal learning framework.

4.3 CROSS-SCENARIO GENERALIZATION

To evaluate the generalization capability of MoRA across different missing-modality scenarios, we conduct cross-scenario experiments where models are trained with one missing-modality configuration at a 70% missing ratio and tested on different configurations. This evaluation is crucial for real-world deployment where the missing-modality patterns during inference may differ from those seen during training. We consider two training strategies: (1) training on both-missing scenarios where samples randomly have either text or image modality missing, and (2) training on single-modality scenarios where only one specific modality is consistently missing. We then evaluate these models on three test configurations: both-missing, image-missing, and text-missing scenarios.

As shown in Figure 3, MoRA demonstrates superior cross-scenario generalization compared to DCP across all configurations on the Hateful Memes dataset. When trained on both-missing scenarios, MoRA maintains strong performance when tested on specific missing-modality cases, significantly outperforming DCP. This advantage persists even in challenging out-of-distribution scenar-

Figure 3: Generalizability Analysis on Hateful Memes dataset. (a) Models are trained on missing-both or missing-text cases, and evaluated on missing-text cases. (b) Models are trained on missing-both or missing-image cases, and evaluated on missing-image cases. (c) All models are trained on missing-both cases, and evaluated on missing-both cases.

Table 2: Inter-modal Distance Analysis. Average L_2 distance and angle between vision and text embeddings on Food101 test set.

Method L_2 Dist.Angle (°)CLIP (orig.)1.1872.44FFT22.6191.64DCP15.7886.92MoRA9.9977.07

Table 3: Modality-Specific Drift Analysis. Average embedding shift from original CLIP representations.

Method	Vision		Text		
	L_2	Angle	L_2	Angle	
FFT	8.36	92.16	20.60	87.67	
DCP	8.22	65.17	13.57	66.26	
MoRA	8.12	43.24	6.04	44.84	

ios—when models trained on text-missing data are tested on image-missing cases. The consistent performance gaps across all train-test combinations demonstrate that MoRA's dual mechanism of maintaining modality-specific parameters while enabling cross-modal knowledge transfer through Gram matrices creates a more robust representation space, particularly valuable for real-world deployments where missing-modality patterns may vary unpredictably from training conditions.

4.4 DIRECTION PROPERTY IN MORA

To quantitatively validate our motivation illustrated in Figure 1(c), we conduct comprehensive analysis comparing the embedding space of different approaches. We train models with 70% missing ratio where both modalities are absent, then evaluate on complete test samples to measure how well each method preserves inter-modal relationships while enabling adaptation.

Inter-modal Relationship Preservation. We measure the average L_2 distance and angle between vision and text embeddings for each category in the Food101 test set. As shown in Table 2, MoRA maintains the inter-modal distance and alignment with the original CLIP. In contrast, FFT, which fine-tunes all parameters, severely distorts these relationships, while DCP shows substantial degradation. This demonstrates that MoRA successfully preserves the aligned embedding structure crucial for handling missing modalities.

Modality-Specific Adaptation. We analyze the embedding drift from original CLIP representations to measure modality-specific flexibility. Table 3 shows that MoRA achieves balanced adaptation with minimal drift, significantly outperforming FFT which exhibits catastrophic drift. DCP shows moderate drift but fails to maintain the inter-modal alignment as shown above.

4.5 EIGENVALUE ANALYSIS OF MORA

We conduct an eigenspectrum analysis of the Gram matrices used in MoRA and compare them to the pre-trained weights. We extract eigenvalues from the Gram matrices and singular values from the pre-trained weights in layers 10 and 11 of the vision and text encoders. Figure 4 presents the normalized eigenvalue distributions. Our analysis reveals several critical findings.

Table 4: Performance comparison of different parameter-efficient fine-tuning methods.

	MM-IMDb	Food101	Hateful Memes				
Low-Rai	Low-Rank-Based						
MoRA	52.97	83.77	70.15				
LoRA	51.35	82.14	67.97				
DoRA	51.89	82.34	68.28				
Prompt-	Based						
DePT	50.32	81.46	65.48				
DCP	51.42	81.87	66.08				
Weight 1	Fine-Tuning						
BitFit	48.57	79.38	64.10				
FFT	3.01	14.05	46.91				

Table 5: Comparison with multimodal alignment and fusion methods.

	MM-IMDb	Food101	Hateful Memes
MoRA	52.97	83.77	70.15
Align	51.39	81.14	68.53
Fusion	50.72	81.01	68.17
w/o Specific	51.18	81.32	68.71
w/o Gram	50.41	80.31	68.19
w/ Learnable Gram w/ \mathbf{W}_0	52.25 52.88	83.37 83.59	69.12 70.03

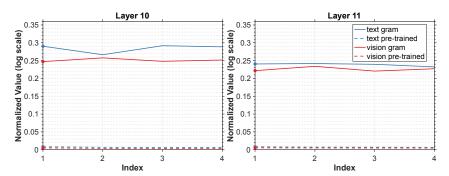


Figure 4: Comparison of eigenvalue distributions between Gram matrices and pre-trained weights.

First, Gram matrices serve as information concentration mechanisms. This substantial difference demonstrates that Gram matrices effectively concentrate information in a much more compact form. To verify this empirically, we remove the Gram matrix, denoted as w/o Gram in Table 5. The average performance drops by 2.66%, confirming that Gram matrices are essential for effective knowledge transfer between modalities due to their information concentration properties.

Second, text and vision modalities exhibit similar structural patterns in their Gram matrices. Despite dimensional differences, we observe relatively stable eigenvalue distributions across indices for both modalities, indicating cross-modal structural similarities despite their dimensional differences. This structural similarity enables effective cross-modal knowledge transfer through the shared parameter space. To validate this, we use independent parameters instead of shared ones, denoted as w/o Shared in Table 5. The average performance drops by 2.78%, demonstrating that the emergent similar patterns are functionally critical for effective knowledge sharing.

Third, we observe converging representational structures in deeper layers. The eigenvalue pattern of Layer 11 shows more convergence compared to Layer 10, suggesting that deeper layers develop more aligned representational structures, which MoRA effectively leverages and maintains information preservation while enabling cross-modal transfer.

4.6 ABLATION STUDIES

Compared to Parameter-Efficient Fine-Tuning Methods We compare other parameter-efficient fine-tuning techniques, including LoRA (Hu et al., 2022), DoRA (Liu et al., 2024a), and BitFit (Zaken et al., 2022), as shown in Table 4. Low-rank-based methods achieve the best performance due to their flexibility. MoRA outperforms other methods, demonstrating its effectiveness in enabling modality interaction.

Alternatives for Addressing Dimension Mismatch As shown in Table 5, Align uses two extra linear layers to project modalities into the same embedding, while Fusion concatenates embeddings from different modalities and uses one linear layer to project. MoRA consistently outperforms them across all datasets. We also conduct experiments removing modality-specific parameters in MoRA, denoted as w/o Specific. For Gram matrix construction, we report the performance of removing it and replacing it with a learnable one. These results validate the effectiveness of MoRA.

Table 6: Performance comparison on image-to-image retrieval using models trained on multimodal CIRR dataset. Results are evaluated on the MS-COCO validation set.

	Method	Recall@1	Recall@5	Recall@10	
	CLIP4CIR (Baldrati et al., 2024) CLIP4CIR + MoRA	43.34 60.50	76.99 85.00	86.49 88.60	
90 85 32 80	CLIP VIT-B [149.79M] CLIP VIT-L [427.86M] [104.37M]	1000 (ms ber Sample) (ms ber S	MMP [3.48M, 295.13 MoRA [0.16M, 88.58ms		DCP [5.92M, 342.04ms]
70 100	0 200 300 400 500 #Parameters	50 ^L 0		4 rainable Paramet	6 8

Figure 5: Performance scaling of MoRA with different backbone models.

Figure 6: Inference time (ms) per sample versus the number of trainable parameters.

We also add the ignored W_0 in Equation (2), showing that the learnable magnitude parameters effectively compensate for the omitted frozen weights during training.

Parameter sensitivity analysis can be found in Section D.

4.7 EXTENSION TO EMBEDDING TASKS

To demonstrate MoRA's generalizability beyond classification tasks, we evaluate it on Composed Image Retrieval (CIR) based on Baldrati et al. (2024) using CLIP models, where models use a reference image and text modification to identify target images. CIR models are trained on multimodal inputs, making the original image-to-image retrieval as an important and natural missing-modality scenario where texts are absent. We train models on the CIRR dataset (Liu et al., 2021) with complete image-text pairs and evaluate on the MS-COCO validation set (Lin et al., 2014) for image-to-image retrieval, as shown in Table 6. MoRA achieves substantial improvements across all recall metrics, indicating that MoRA's applicability to tasks beyond classification, where missing modalities fundamentally alter the task dynamics. Implementation details can be found in Section A.3.

4.8 SCALABILITY AND INFERENCE TIME

Figure 5 demonstrates the effectiveness of MoRA integration across various backbone architectures, including SLIP ViT-S (Mu et al., 2022), CLIP ViT-B, and CLIP ViT-L (Radford et al., 2021). The results indicate that performance exhibits favorable scaling properties with respect to model capacity, with accuracy improvements correlating positively with the number of parameters. We conduct a comprehensive analysis of inference times to evaluate the computational efficiency of MoRA and prompt-based methods, including MMP and DCP. As shown in Figure 6, prompt-based methods significantly increase the inference time. MoRA theoretically introduces no inference overhead, and experimental results demonstrate its efficiency.

5 CONCLUSION

We introduced MoRA, a parameter-efficient fine-tuning method that effectively addresses the missing modality challenge in multimodal learning through shared cross-modal parameters and modality-specific adaptations. By leveraging Gram matrices for dimension-agnostic knowledge transfer, MoRA enables bidirectional information exchange while preserving modality-specific characteristics without introducing inference overhead. Extensive experiments demonstrate that MoRA significantly outperforms existing approaches across multiple benchmarks both on performance and inference time, demonstrating the effectiveness and efficiency of MoRA.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research uses only publicly available benchmark datasets (MM-IMDb, UPMC-Food101, and Hateful Memes) with no human subjects involved. The Hateful Memes dataset used in our experiments contains potentially offensive content for research purposes only; we handle this data responsibly and do not generate or promote harmful content.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we provide comprehensive implementation details in Section A.3 and make our code publicly available at https://anonymous.4open.science/r/mora-20667. All experiments use publicly available pre-trained models and standard benchmark datasets. Key hyperparameters, including learning rates, batch sizes, optimizer settings, and architectural configurations, are specified in the main paper and appendix. The computational requirements and training procedures are documented to enable full reproduction of our results.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. *arXiv preprint arXiv:1907.02893*, 2019.
- Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Alberto Del Bimbo. Composed image retrieval using contrastive learning and task-oriented clip-based features. *ACM Transactions on Multimedia Computing, Communications and Applications (TOMM)*, 2024.
- Chendi Ge, Xin Wang, Zeyang Zhang, Hong Chen, Jiapei Fan, Longtao Huang, Hui Xue, and Wenwu Zhu. Dynamic mixture of curriculum lora experts for continual multimodal instruction tuning. *arXiv preprint arXiv:2506.11672*, 2025.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In *International Conference on Machine Learning (ICML)*, 2019.
- Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *International Conference on Learning Representations (ICLR)*, 2022.
- Lianyu Hu, Tongkai Shi, Wei Feng, Fanhua Shang, and Liang Wan. Deep correlated prompting for visual recognition with missing modalities. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2024.
- Muhammad Uzair Khattak, Hanoona Abdul Rasheed, Muhammad Maaz, Salman H. Khan, and Fahad Shahbaz Khan. Maple: Multi-modal prompt learning. In *IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)*, 2023.
- Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Pratik Ringshia, and Davide Testuggine. The hateful memes challenge: Detecting hate speech in multimodal memes. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2020.
- Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convolution or region supervision. In *International Conference on Machine Learning (ICML)*, 2021.

- Yi-Lun Lee, Yi-Hsuan Tsai, Wei-Chen Chiu, and Chen-Yu Lee. Multimodal prompting with missing modalities for visual recognition. In *IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)*, 2023.
 - Haobin Li, Peng Hu, Qianjun Zhang, Xi Peng, Xiting Liu, and Mouxing Yang. Test-time adaptation for cross-modal retrieval with query shift. In *International Conference on Learning Representations (ICLR)*, 2025.
 - Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y. Zou. Mind the gap: Understanding the modality gap in multi-modal contrastive representation learning. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2022.
 - Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In *European Conference on Computer Vision (ECCV)*, 2014.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2023a.
 - Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pretrain, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Comput. Surv., 2023b.
 - Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *International Conference on Machine Learning (ICML)*, 2024a.
 - Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bernhard Schölkopf. Parameter-efficient orthogonal finetuning via butterfly factorization. In *International Conference on Learning Representations (ICLR)*, 2024b.
 - Zheyuan Liu, Cristian Rodriguez Opazo, Damien Teney, and Stephen Gould. Image retrieval on real-life images with pre-trained vision-and-language models. In *International Conference on Computer Vision (ICCV)*, 2021.
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations (ICLR)*, 2019.
 - Mengmeng Ma, Jian Ren, Long Zhao, Sergey Tulyakov, Cathy Wu, and Xi Peng. SMIL: multimodal learning with severely missing modality. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2021.
 - Mengmeng Ma, Jian Ren, Long Zhao, Davide Testuggine, and Xi Peng. Are multimodal transformers robust to missing modality? In *IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)*, 2022.
 - Norman Mu, Alexander Kirillov, David A. Wagner, and Saining Xie. SLIP: self-supervision meets language-image pre-training. In *European Conference on Computer Vision (ECCV)*, 2022.
 - John Edison Arevalo Ovalle, Thamar Solorio, Manuel Montes-y-Gómez, and Fabio A. González. Gated multimodal units for information fusion. In *International Conference on Learning Representations Workshops (ICLRW)*, 2017.
 - Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2023.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In *International Conference on Machine Learning (ICML)*, 2021.

- Ying Shen, Zhiyang Xu, Qifan Wang, Yu Cheng, Wenpeng Yin, and Lifu Huang. Multimodal instruction tuning with conditional mixture of lora. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, 2024.
- Zhiyi Shi, Junsik Kim, Wanhua Li, Yicong Li, and Hanspeter Pfister. Mora: Lora guided multi-modal disease diagnosis with missing modality. In *Medical Image Computing and Computer Assisted Intervention Society (MICCAI)*, 2024.
- Nina Shvetsova, Brian Chen, Andrew Rouditchenko, Samuel Thomas, Brian Kingsbury, Rogério Feris, David Harwath, James R. Glass, and Hilde Kuehne. Everything at once multi-modal fusion transformer for video retrieval. In *IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)*, 2022.
- Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In *International conference on computational learning theory*, 2005.
- Gilbert Strang. Introduction to linear algebra. SIAM, 2022.
- Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.
- Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Machine Learning Research (JMLR)*, 2008.
- Hu Wang, Yuanhong Chen, Congbo Ma, Jodie Avery, Louise Hull, and Gustavo Carneiro. Multimodal learning with missing modality via shared-specific feature modelling. In *IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)*, 2023.
- Xin Wang, Devinder Kumar, Nicolas Thome, Matthieu Cord, and Frédéric Precioso. Recipe recognition with large multimodal food dataset. In *IEEE International Conference on Multimedia and Expo Workshops (ICMEW)*, 2015.
- Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu Meng, Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class incremental learning. In *International Conference on Learning Representations (ICLR)*, 2025.
- Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language-models. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, 2022.
- Ji Zhang, Shihan Wu, Lianli Gao, Heng Tao Shen, and Jingkuan Song. Dept: Decoupled prompt tuning. In *IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)*, 2024.
- Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *International Conference on Learning Representations (ICLR)*, 2023a.
- Yunhua Zhang, Hazel Doughty, and Cees Snoek. Learning unseen modality interaction. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2023b.
- Zhihui Zhang, Luanyuan Dai, Qika Lin, Yunfeng Diao, Guangyin Jin, Yufei Guo, Jing Zhang, and Xiaoshuai Hao. Synergistic prompting for robust visual recognition with missing modalities. arXiv preprint arXiv:2507.07802, 2025.
- Jinming Zhao, Ruichen Li, and Qin Jin. Missing modality imagination network for emotion recognition with uncertain missing modalities. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, 2021.
- Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language models. *International Journal of Computer Vision (IJCV)*, 2022.

A DETAILS OF EXPERIMENTAL SETUP

A.1 DATASET

We evaluate our proposed method on three standard benchmarks: MM-IMDb (Ovalle et al., 2017), UPMC-Food101 (Wang et al., 2015), and Hateful Memes (Kiela et al., 2020).

MM-IMDb represents the largest publicly available multimodal collection for movie genre prediction, containing 25,959 movies annotated with both visual and textual information. This dataset supports multi-label classification across 27 distinct movie genres. The corpus is structured with 15,552 training, 2,608 validation, and 7,799 test image-text pairs, providing a robust foundation for developing and evaluating multimodal classification models.

UPMC Food101 is a comprehensive multimedia collection featuring noisy image-text pairs gathered from Google Image Search across 101 food categories. The dataset is structured with 61,127 training samples, 6,845 validation samples, and 22,716 test image-text pairs, providing substantial material for developing and evaluating multimodal food recognition systems.

Hateful Memes represents a benchmark multimodal collection for detecting hate speech in memes. It contains over 10,000 image-text pairs specifically designed to evaluate multimodal reasoning capabilities, where the interplay between text and visuals is crucial for accurate classification. The dataset consists of 8,500,500, and 1,000 samples for training, validation, and testing.

A.2 BASELINE METHODS

To evaluate MoRA, we select the SOTA missing-modality methods and multimodal prompt methods. Specifically, we select the missing modality methods, including MMP (Lee et al., 2023) and DCP (Hu et al., 2024); for multimodal prompt learning, we choose CoOp (Zhou et al., 2022), MaPLe (Khattak et al., 2023), and DePT (Zhang et al., 2024). Although a recent work, SyP (Zhang et al., 2025), employs the prompt-based method to address the missing modality task, the code for this work was not released upon our submission. Therefore, we do not compare our method with it. Once the source code or pre-trained models are released, we will add the results to the main results.

A.3 IMPLEMENTATION DETAILS

Main Experiments Following previous work (Hu et al., 2024), we use CLIP ViT-B/16 as the backbone model. We add a fully connected layer at the top of the model as the classification layer for downstream tasks. The parameters in the CLIP model are frozen, and we only fine-tune the parameters of the classification layer and MoRA modules. MoRA can be inserted into various positions in the backbone. We found that the best hyper-parameters differ in various datasets. In UPMC-Food101, MoRA is inserted into the $\bf Q, V$ in self-attention modules of the last two vision and text transformer layers. Rank r is 4. We use the AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate 0.01 and weight decay 0.02. A linear warmup cosine annealing scheduler with 10% warmup steps is used to adjust the learning rate. The batch size is 256. The number of training epochs is 20 and we apply the early-stopping strategy. Detailed settings can be found in the code we provided. If not specified, experiments are conducted on the UPMC-Food101 dataset with a missing ratio η of 70%, where both image and text modalities are absent. We run experiments three times and report their average performance. All experiments are conducted on one NVIDIA H100 GPU.

Motivation In Figure 1, most hyper-parameters are the same as those used in the main experiments. We use CLIP ViT-B/16 as the aligned model and pre-trained ViT-B/16 and BERT as the unaligned model. We train these models on complete training datasets, i.e., $\eta=0\%$, and test them using different datasets, including complete, image, and text-only datasets.

Embedding Task In Table 6, we use the same settings in the main experiments above. We use the CIRR training data as the training set, and evaluate the trained model on the MS-COCO validation set. We select CLIP ViT-B/16 as the backbone. For training, we use the complete samples without any modality-incomplete data. During testing, the model is evaluated on the image-to-image retrieval task, which can be viewed as if the text modality is missing.

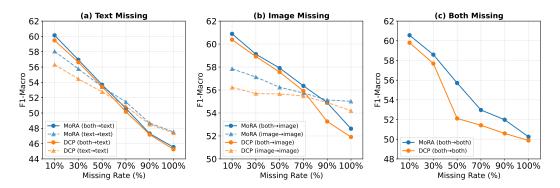


Figure 7: Performance comparison on MM-IMDb with varying missing ratios.



Figure 8: Performance comparison on Food101 with varying missing ratios.

B ATTACHED POSITION

We systematically evaluate MoRA attachment at different network depths, as shown in Figure 9. To further analyze the effect of attached positions, we attached MoRA to three positions of a CLIP ViT-B/16 model:

- Front layers: Layers 1-2 (early feature extraction)
- Middle layers: Layers 6-7 (intermediate representations)
- Rear layers: Layers 11-12 (high-level semantics)

We train the model on the Food101 dataset with a 70% missing ratio and both modalities are missing. As shown in Table 7, attaching to deeper layers enables fine-tuning of high-level semantic features rather than low-level representations, yielding superior performance. This strategy effectively handles architectures with asymmetric depths. As demonstrated in Figure 5, MoRA successfully adapts CLIP ViT-L (24 vision layers, 12 text layers) by consistently targeting the final layers of each modality, which contain the most semantic information.

C MORE RESULTS

More results across various missing ratios are shown in Figure 7 and Figure 8. The experimental results demonstrate consistent effectiveness in handling missing modalities. As the missing ratio increases, performance on all datasets gradually declines. Notably, the text-only modality consistently outperformed image-only across all datasets. MoRA maintains robust performance even at high missing ratios, preserving inter-modality interactions while maintaining intra-modality flexibility.

Table 7: Performance comparison of attached positions.

Position	Front	Middle	Rear (Ours)
Accuracy	81.08	82.48	83.77

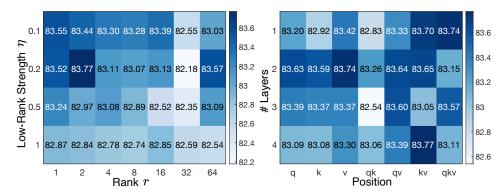


Figure 9: Parameter sensitivity analysis.

D PARAMETER SENSITIVITY

The sensitivity of MoRA to its key hyper-parameters is shown in Figure 9, where r denotes the rank, η is the low-rank strength, "#Layers" denotes the number of layers inserted by MoRA, and "Position" means which attention matrices are adjusted. The results show that MoRA is robust to parameter changes, maintaining strong performance across a wide range of values.

E VISUALIZATION OF EMBEDDING SPACE

To further analyze why MoRA outperforms other methods, we use t-SNE (Van der Maaten & Hinton, 2008) to visualize the embeddings of samples with missing modalities, as illustrated in Figure 10. Specifically, we use the samples in the test dataset, obtain the embeddings from available modalities, and visualize them. The results show that the embedding space of FFT has collapsed, and MoRA produces more compact and well-separated clusters. Compared to DCP, MoRA has a larger interclass distance, indicating better discriminability.

F LLM USAGE STATEMENT

Large language models were used as a general-purpose writing assistance tool during the preparation of this manuscript, primarily for grammar checking, sentence restructuring, and improving clarity of technical descriptions. LLMs did not contribute to the core research ideas, experimental design, or technical innovations presented in this work. All scientific claims, experimental results, and theoretical contributions are the original work of the authors, who take full responsibility for the accuracy and integrity of all content.

G LIMITATIONS

While MoRA demonstrates strong performance across various missing-modality scenarios, several limitations present opportunities for future research.

First, our experimental validation is limited to three datasets (MM-IMDb, UPMC-Food101, and Hateful Memes) and primarily focuses on image-text modality pairs. Future work could extend MoRA to additional multimodal domains (e.g., audio-visual) and more diverse datasets to further validate its generalizability. Second, the current formulation of MoRA addresses binary missing-modality scenarios (present or absent). Future work could explore extensions to partial or corrupted

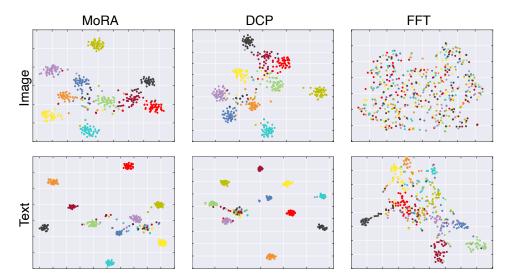


Figure 10: t-SNE visualization for MoRA, DCP, and FFT. Different colors denote different categories.

modalities where information is present but degraded, which may better reflect certain real-world applications.

Despite these limitations, MoRA represents a significant step forward in addressing the missing modality challenge through its novel parameter-efficient fine-tuning approach.

H Broader Impacts

Our research on MoRA offers several positive societal impacts. By addressing the missing modality challenge in multimodal systems, MoRA can significantly improve accessibility for users with sensory impairments who may not have access to all modalities. Additionally, MoRA reduces computational requirements and potentially lowers energy consumption compared to alternative methods, contributing to more sustainable AI development. This efficiency also enables more robust deployment of multimodal systems in resource-constrained environments like healthcare, education, and humanitarian assistance. Furthermore, MoRA could enhance privacy by allowing users to selectively withhold certain modalities while still receiving reasonable system performance.

We also acknowledge potential concerns regarding this technology. As with many AI advancements, improvements in handling missing modalities could potentially be applied in ways that raise privacy questions if deployed without appropriate safeguards. Additionally, systems making decisions based on incomplete information should be deployed with appropriate human oversight, particularly in high-stakes applications. We've focused our development on public benchmark datasets and emphasize that our primary goal is improving the accessibility, efficiency, and robustness of multimodal systems rather than enabling capabilities that could raise significant ethical concerns.