
Few-Round Learning for Federated Learning

Younghyun Park∗
dnffkf369@kaist.ac.kr

Dong-Jun Han∗
djhan93@kaist.ac.kr

Do-Yeon Kim
dy.kim@kaist.ac.kr

Jun Seo
tjwns0630@kaist.ac.kr

Jaekyun Moon
jmoon@kaist.edu

School of Electrical Engineering,
Korea Advanced Institute of Science and Technology (KAIST)

Abstract

In federated learning (FL), a number of distributed clients targeting the same task
collaborate to train a single global model without sharing their data. The learning
process typically starts from a randomly initialized or some pretrained model. In
this paper, we aim at designing an initial model based on which an arbitrary group
of clients can obtain a global model for its own purpose, within only a few rounds
of FL. The key challenge here is that the downstream tasks for which the pretrained
model will be used are generally unknown when the initial model is prepared.
Our idea is to take a meta-learning approach to construct the initial model so that
any group with a possibly unseen task can obtain a high-accuracy global model
within only R rounds of FL. Our meta-learning itself could be done via federated
learning among willing participants and is based on an episodic arrangement to
mimic the R rounds of FL followed by inference in each episode. Extensive
experimental results show that our method generalizes well for arbitrary groups
of clients and provides large performance improvements given the same overall
communication/computation resources, compared to other baselines relying on
known pretraining methods.

1 Introduction

Today, valuable data are being collected increasingly at distributed edge nodes such as mobile phones,
wearable client devices and smart vehicles/drones. Directly sending these local data to the central
server for model training raises significant privacy concerns. To address this issue, an emerging trend
known as federated learning (FL) [13, 9, 1, 11, 20, 16, 15], where server uploading of local data is
not necessary, has been actively researched. In FL, a large group of distributed clients interested in
solving the same task (e.g., classification on given categories of images) collaborate in training a
single global model without sharing their data. While standard supervised learning uses some dataset
D to find the model φ that would minimize a loss function f(φ,D), FL in comparison seeks the
model φ that minimizes the averaged version of the local losses f(φ,Dk), computed at each node
k using local data Dk. The learning process typically starts from a randomly initialized or some
pretrained model and is carried out through iterative aggregation of the local model updates.

1.1 Backgrounds and Main Contributions

Motivation. Unfortunately, FL generally requires a large number of communication rounds between
the server and the clients for model exchange, to achieve a desired level of performance. This makes
∗Equal contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Meta-trained
initial model

Few steps of local
updates followed by
meta-update

Fast adaptation within
a few local updates
for any client

Preparation
(Meta-training)

Deployment
(Testing)

Client 3Client 2Client 1

(a) Personalized FL: meta-training geared to few steps of local updates at any client.

Meta-trained
initial model𝑅-rounds of FL

followed by
meta-update

Fast adaptation within
𝑅 communication rounds
for any group of clients

Preparation
(Meta-training)

Deployment
(Testing)

Group 3 (task 3)
Group 2 (task 2)Group 1 (task 1)

(b) Proposed few-round FL: meta-training geared to few rounds of FL at any group.

Figure 1: Basic concepts of personalized FL and proposed few-round learning. In the meta-training phase (or
preparation stage) of our scheme, the service provider prepares the initial model with willing participants. Once
this preparation is over, the service provider offers this initial model to any group of clients (possibly including
the meta-training participants) who hope to perform its own task within few-round FL. In order to facilitate
R-round FL at deployment, we take an episodic training strategy that mimics actual deployment preceded by R
FL rounds in the meta-training phase with a new set of participants chosen in each episode.

the implementation of FL a significant challenge in bandwidth-limited or time-sensitive applications.
Especially in real-time applications (e.g., connected vehicles or drones) where the model should
quickly adapt to dynamically evolving environments, the requirement on many communication rounds
becomes a major bottleneck.

Goal and challenge. To tackle this problem from the service provider’s perspective, we aim to
prepare an initial model that can quickly adapt to any group (focusing on its own task) of clients
within only a few rounds of FL. The key challenge here is that the task of the group conducting FL
(i.e., the downstream task for which the prepared model will be used) is generally not known when
the service provider prepares the initial model. In the context of classification, different tasks mean
classification involving different sets of classes. For example, classifying diseases A,B,C (task 1) is
a different task compared to classifying diseases D,E,F (task 2). Since the group conducting FL for
the downstream task can include classes that are unseen during preparation, existing FL approaches
cannot tackle this problem.

Key idea. Our key idea is to adopt meta-learning (which enables reliable prediction even when the
task at inference is unseen when the model was meta-trained) to prepare the initial model that enables
few-round FL. In other words, we aim to meta-train an initial model for few-round downstream FL.
Once meta-training is over, the service provider would offer the trained model to some clients who
want to solve a common task after collaborating through a quick few rounds of FL. These clients
may or may not be the participants of the earlier meta-training phase, and their classification task is
generally considered unseen during meta-training. A high-level description of our idea is depicted in
Fig. 1(b). Given a small target value R, we take an episodic training approach to enable R-round
FL for any group of clients. In essence, we find the initial model φ that would minimize the average
of local losses f(θR(φ),Dk), where θR(φ) is the model to be updated from φ through R rounds
of FL among future clients in the deployment stage. Despite the high practical significance of this
problem formulation, to the best of our knowledge, this is the first work to propose a meta-learning
strategy geared to few-round FL. It is also worth mentioning that model preparation is not a real-time
requirement and can often be done when bandwidth demands are sparse.

Comparison with personalized FL. We stress that our idea has a different purpose and approach
relative to the recent line of works on federated meta-learning [12, 4], which initiate a model for
personalized optimizations at local clients (see Fig. 1(a)). The goal of these approaches is to obtain a
personalized local model at each client within a few steps of gradient descents, in the deployment

2

stage. To achieve this goal, in the preparation stage, a few steps of local updates and meta-update are
first performed at each participant independently (with its own local data), and FL (or aggregation) is
adopted just to take advantage of data of various participants: these approaches seek φ that minimizes
the average of local losses f(θk(φ),Dk), where θk(φ) is the local model updated from φ through a
number of gradient steps using local data Dk. In contrast to personalized FL that focuses on local
client models in the deployment stage, our few-round learning inherits the ability of FL at deployment
to obtain a global model. Hence, for our scheme, it is natural to adopt FL in the preparation stage to
mimic the R-round FL scenario at deployment; in the preparation stage, meta-update is performed at
each participant after the collaborative R FL rounds. To sum, our approach aims to prepare an initial
model that leads to a global model within a “few rounds of FL”, while personalized FL aims for an
initial model leading to personalized models within “few steps of local updates” based only on the
local data. These are obviously two completely different problems with distinct solutions.

Main contributions. Technically, we utilize a model-agnostic meta-learning (MAML) approach
to prepare the initial model via an episodic training strategy. While directly applying MAML
independently to each local model leads to existing solutions on personalized FL [12, 4], in our
approach, R rounds of local updates and aggregations are first performed in each episode before the
meta-update process. This unique episode construction compared to personalized FL methods mimics
the deployment stage where actual inference is preceded by an R-round FL procedure. Another key
ingredient in our solution is to adopt prototype aggregation in each FL round to construct global
prototypes that serve as better class representatives compared to the locally computed prototypes,
in learning embedding space. This strategy is especially effective when a non-IID (independent,
identically distributed) data distribution across clients tends to induce a significantly biased model after
performing local updates. The global prototypes serve as prior knowledge, a form of regularization,
and prevent local models from overfitting to the local data. Moreover, the global prototypes (reflecting
all classes across clients) can assist the local models to learn a more general embedding space. We
call this approach a global prototype-assisted learning (GPAL) strategy. Our main contributions are
summarized as follows:

• We formulate a new problem of high practical significance, namely, few-round learning,
where the goal is to prepare an initial model that can quickly adapt to any group of clients within
only a few rounds of FL.

• We propose a meta-training algorithm specifically geared to R rounds of FL followed by
inference, to be performed by a group of clients on a possibly unseen task.

• We guarantee convergence of our meta-training algorithm via theoretical analysis.
• We show via experiments that our scheme outperforms existing pretraining approaches

including fine-tuning via FedAvg and personalized FL in both IID and non-IID scenarios.

1.2 Related Works
Few-shot learning. Few-shot learning is an instantiation of meta-learning. In the context of image
classification, few-shot learning typically involves episodic training where each episode of training
data is arranged into a few training (support) sample images and validation (query) samples to mimic
inference that uses only a few examples [19]. Through a repetitive exposure to a series of varying
episodes with different sets of image classes, the model learns to handle new tasks (classification
against unseen classes) each time. Two widely-known few-shot learning methods with different
philosophical twists, which are also conceptually relevant to the present work, are MAML [5] and
Prototypical Networks [18]. MAML attempts to generate an initial model from which different
models targeting different tasks can be obtained quickly via just a few gradient updates. The idea is
that the initial model is learned via meta-training to develop an internal representation that is close in
some sense to a variety of unseen tasks. Prototypical Networks, on the other hand, learn embedding
space such that model outputs cluster around class prototypes, the class-specific centroids of the
embedder outputs. With episodic training, simple Prototypical Networks are surprisingly effective in
learning inductive bias for successful generalization to new tasks.

We stress that our few-round learning scheme (that targets a few global rounds of FL) has different
purpose and technical approach compared to the existing works on few-shot learning (that targets few
shots of data sample). Nevertheless, we take advantage of both concepts on MAML and Prototypical
Networks to achieve our own goal: we adopt MAML in updating the initial model specifically geared
to R-round FL, and adopt both prototype aggregation and prototype-assisted learning strategies to
learn a general embedding space and successfully handle the non-IID issue in FL.

3

Federated meta-learning. Recent research activity has focused on improving model personalization
via federated meta-learning [12, 3, 4, 7]. The common goal of these works is to generate an initial
model based on which each new client can find its own optimized model via a few local gradient steps
and using only its own data. In these works, meta-learning employed during federated learning intends
to enable each client to handle previously unseen tasks, in the spirit of MAML of [5]. User-specific
next-word prediction at individual smartphones, for example, is a possible application. Compared to
this line of work, we focus on creating an initial model that leads to a high-accuracy global model,
rather than personalized models. In this way, we seek to take advantage of a higher variety of data
as well as the larger data volume that would be made available through collaborative learning of a
group of distributed nodes. A clear example is the diagnosis of a broader class of diseases that would
be possible through collaborative training across more examples contributed by a larger group of
individuals. Personalized FL methods (e.g., [12, 4]) especially have disadvantage in non-IID settings
where each client necessarily lacks a sufficient variety of data. The results are reported in Section 4.

One-shot FL. Another line of work recently focused on one-shot FL, where the goal is to train a
global model with just one communication round between the server and the clients. The authors of
[6] proposed an ensemble method to choose reliable client-specific models from given clients. In
the work of [17], local clients send XOR-encoded MNIST image data to the server, and the server
decodes it to train the global model. While the server would need certain data in advance to decode
the received results, XOR operation can serve as data augmentation while preserving privacy. In
the fusion learning of [8], each local client uploads both the model parameters and the distribution
parameters to the server. The server generates artificial data samples from the distribution parameters
to train a global model. When the data gets complex, however, it is not clear whether conversion into
a simple distribution would be reliable. Compared to the existing works on one-shot FL that employ
some randomly initialized model, the key difference of our method is the use of meta-learning to
prepare an initial model which can adapt to unseen tasks of individual groups’ of clients within R
rounds of FL. The advantage of our scheme compared to these methods is shown in Section 4.

2 Proposed Few-Round Learning Algorithm

2.1 Problem Setup

Federated learning. Let N be the number of clients in the system. FL allows each distributed node
k with a dataset Dk to participate in iterative learning of a global model θ without having to reveal its
data to anyone else including the central server. As a given round r starts, each of K participating
nodes (generally chosen anew every round) downloads a global model θr from the server and updates
it using its own local data Dk. The updated local models θr+1k get all uploaded to the server to be
aggregated to a new model θr+1 = ∑Kk=1 µkθ

r+1
k , according to the relative dataset sizes µk =

∣Dk ∣
∑K

j=1 ∣Dj ∣
.

The same process gets repeated. FL generally requires a significant number of such global rounds to
achieve the desired accuracy, with each round taking up substantial communication resources.

Problem formulation. In preparing an initial model φ for any group of clients to pursue a few FL
rounds, we use meta-learning based on episodic training, where each episode is constructed to mimic
R FL rounds followed by inference. Once meta-training is over, in the deployment phase, the service
provider offers the trained initial model φ to any group of clients wishing to pursue inference on
some common task (possibly unseen during meta-training) after collaborating for R rounds of FL.

2.2 Meta-Training (Preparation Stage)

More precisely stated, our meta-training phase is to find φ that minimizes the objective function

F (φ) = EAt∼p(A)

⎡
⎢
⎢
⎢
⎣

1

K
∑
k∈At

f(θR(φ),Dk)
⎤
⎥
⎥
⎥
⎦

(1)

where At is a specific group with K participants drawn from p(A), the distribution over all possible
groups, each with K participants; θR(φ) is the model after R rounds of FL in group At, starting from
φ; and Dk is the local dataset of participant k in group At. In comparison, the objective function for
personalized FL methods (e.g., Per-FedAvg of [4]) is F (φ) = 1

N ∑
N
k=1 f(θk(φ),Dk) where N is the

number of clients in the system and θk(φ) is the model after a few gradient steps at client k starting
from φ. We also reiterate that conventional FL aims at minimizing F (φ) = 1

N ∑
N
k=1 f(φ,Dk).

4

Algorithm 1 Proposed Meta-Training Algorithm for Few-Round Learning

Input: Initialized model φ0 Output: Model φT after T training episodes
1: for each training episode t = 0,1, ..., T − 1 do
2: The server constructs a group At ∼ p(A) of K participants chosen out of N users.
3: Each participant k ∈ At splits Dk into support set Sk and query set Qk.
4: θ0 ← φt

5: for each communication round r = 0,1, ...,R − 1 do
6: for each participant k in parallel do
7: Download θr and Γr−1 from the server (download only θr when r = 0)
8: for each class c ∈ Ck do
9: Γrk(c) =

1
∣Sk(c)∣ ∑x∈Sk(c) gθr(x) // Local prototype calculation with support set Sk

10: end for
11: θr+1k ← θr − α∇θrf(θ

r, Sk) // Local update of θ with support set Sk and GPAL
12: end for
13: θr+1 = ∑

K
k=1 λkθ

r+1
k // Model aggregation; λk is relative support set size

14: Γr = {∑
K
k=1 λkΓrk(c)∣c = 1,2, ...,Nc} // Prototype aggregation

15: end for
16: for each participant k in parallel do
17: Download θR, ΓR−1 from the server.
18: Compute local prototypes based on Qk.
19: θ0k ← θ0 − β∇θRf(θ

R,Qk) // Local meta-update of θ0 with query set Qk and GPAL
20: end for
21: φt+1 = ∑

K
k=1 µkθ

0
k // Aggregation of meta-updated models; µk is relative data size

22: end for

Before training begins, each client k divides its local dataset into support set Sk and query set
Qk. To create a training environment matching the actual R-rounds of FL followed by inference
at deployment, in each episode of our meta-training phase, we update the model over R federated
rounds using the support set and then makes a final adjustment (meta-update) using the query set.
In other words, the support sets are utilized for learning how to solve the task, by performing R
rounds of FL. The query sets are used for evaluating the performance on this task and performing the
meta-update process. This overall process is repeated as the model is exposed to a series of episodes.

The detailed procedure of our meta-training is given in Algorithm 1. For a quick summary, as each
episode t begins, the server selects a new set of K participants. The model φt, carried over from the
last episodic stage, becomes the initial model θ0 for the current episode. After R rounds of FL with
each round consisting of local updates via local support sets and a global aggregation, θ0 evolves
to θR. Before moving to the next episode, local meta-updates are done based on θR using the local
query sets to adjust the initial model θ0, in the spirit of MAML. As these meta-updated models get
aggregated to φt+1 at the server, the new episode can begin.

2.2.1 R Rounds of Local Updates and Aggregations

In defining the loss function, we utilize the class prototypes and associated Euclidean distance
metric of [18], a proven method of simple yet effective learning of embedding space. For each
communication round r, we not only aggregate the global model θr+1 but also the global prototypes
Γr = {Γr(c)∣c = 1,2, ...,Nc} for all classes, where Nc is the number of classes over all clients. The
class prototype is the class-specific averaged feature for data samples and calculated as Line 9 in
Algorithm 1.

Model and global prototype download (Line 7). In the beginning of round r ≥ 1, the server has
the global model θr and the global prototypes Γr−1 = {Γr−1(c)∣c = 1,2, ...,Nc} from the previous
round r − 1. Each participant k first downloads θr and Γr−1 from the server. Since there is no global
prototype in the first round, the participants only download the model θ0 when r = 0.

Local prototype calculation (Line 9). The local prototype of Γrk(c) for participant k is computed
as in Line 9 using the downloaded model θr, the associated embedder outputs gθ corresponding to
the local support samples Sk(c) labeled c. This local prototype serves as a representative of class c
calculated based on the local data (support set) of client k.

5

Loss calculation from local prototypes. Let Γrk be the set of all classes of prototypes at participant
k: Γrk = {Γrk(c)∣c ∈ Ck}, where Ck is a set of all classes at participant k. Now using Sk, θr and Γrk,
each participant k computes the local loss according to

LSk
local (θ,Γ

r
k (c)) =

1

∑c∈Ck
∣Sk(c)∣

∑

c∈Ck

∑

x∈Sk(c)
{d(gθ(x),Γ

r
k(c)) + log ∑

c′≠c
exp(− d(gθ (x) ,Γ

r
k (c

′
)))},

(2)

based on Euclidean distance d(⋅) between Γrk(c) and gθ(x) for x ∈ Sk(c).

Auxiliary loss from global prototypes. Relying only on the loss function of (2) based on the local
prototype tends to bias the model, especially when data distributions across different clients are
non-IID. This generally leads to a performance degradation of the global model. To get around, we
propose a global prototype-assisted learning (GPAL) strategy, where the global prototypes serve
as prior knowledge in a form of regularization to prevent local models from overfitting to their
local data. Moreover, the global prototypes, reflecting classes not limited to the local dataset,
can assist the local model to learn a more general embedding space. Given the global prototypes
Γr−1 = {Γr−1(c)∣c = 1,2, ...,Nc} and {gθ(x)∣x ∈ Sk}, the auxiliary loss LSk

aux(θ
r,Γr−1) can be

computed by replacing local prototypes Γrk with global prototypes Γr−1 in (2).

Local update based on GPAL (Line 11). Based on the local loss LSk

local(θ,Γ
r
k) computed using local

prototypes and the auxiliary loss LSk
aux(θ,Γ

r−1) based on global prototypes, the objective function
becomes

f(θr, Sk) = γL
Sk

local(θ
r,Γrk) + (1 − γ)LSk

aux(θ
r,Γr−1) (3)

where γ is a balancing coefficient. For r = 0, we have f(θr, Sk) = LSk

local(θ
r,Γrk) since the global

prototype is not defined in the first global round. Line 11 of Algorithm 1 performs local update
accordingly, where α is the learning rate. We call this strategy GPAL.

In FL, the clients can perform multiple local updates, say E times. Hence, the process of local
prototype computation in Line 9 of Algorithm 1, loss computation in (3) and local update of Line 11
can be repeated E times to obtain θr+1k .

Model and prototype aggregations (Lines 13∼14). After performing local updates, each participant
k sends its updated local model θr+1k and the computed local prototypes Γrk to the server. Then the
server aggregates them according to Lines 13 and 14 in Algorithm 1, where the weighting factor
λk =

∣Sk ∣
∑K

j=1 ∣Sj ∣
reflects the relative support set sizes.

The above local update and global aggregation processes are repeated for R global rounds (r =

0,1, ...,R − 1), and the server obtains θR and ΓR−1 in a given episode.

2.2.2 One-Round Local Meta-Update and Aggregation (Lines 16∼21)

Towards the end of each episode processing stage, the participants download θR and ΓR−1 from
the server. Each participant k uses its query set Qk to compute the local prototypes ΓRk as in as in
Line 9. The query loss f(θR,Qk) is calculated similar to (3) based on Qk, θR, ΓR−1 and ΓRk . The
meta-update would call for taking the derivative of this loss with respect to θ0: ∇θ0f(θR,Qk) =
∇θRf(θ

R,Qk)×
∂θR

∂θ0
= ∇θRf(θ

R,Qk)×(∏
R−1
r=0 ∑

K
j=1 λj

∂
∂θr

(θr−α∇θrf(θ
r, Sj))). But one would

need the double derivatives from other user locations as well, which is highly inconvenient. Ignoring
the double derivative terms, we simply replace ∇θ0f(θR,Qk) with ∇θRf(θR,Qk), as in Line 19.
This is the same as making a first-order approximation to the MAML-like meta-update, as often
done in the implementation of MAML variants including the original work of [5]. All our reported
experimental results as well as convergence analysis in the present paper reflect this choice. The
server finally aggregates the meta-updated models from all participants. The next episode begins as
the server selects a new set of K participants.

2.3 Testing (Deployment Stage)

In the actual deployment or test phase, given a group of clients, the server sets θ0 = φT and then
leads R rounds of FL to obtain θR and ΓR−1. Now given a test sample, we make prediction based on
θR and ΓR−1: the model output is first computed using θR and then comparison is made with the
distances from all global prototypes in ΓR−1 to reach a decision.

6

3 Convergence Analysis

We provide theoretical analysis to guarantee a certain convergence behavior for our meta-training
algorithm for nonconvex loss functions fk(φ) ∶= f(φ,Dk). We need the following assumptions
commonly made in convergence analyses of FL involving meta-learning, e.g., [12, 4].
Assumption 1. For all i, fi is L-smooth, i.e., ∥∇fi(φ1) − ∇fi(φ2)∥ ≤ L ∥φ1 − φ2∥ for any φ1, φ2.

Assumption 2. Let li(φ;x) be the loss function for a single data point x ∈Di of participant i. For
all i = 1,2, ...,N , the variance of the loss gradients across data samples at a given participant is
bounded, i.e., Ex∈Di[∥∇li(φ;x) − ∇fi(φ)∥

2
] ≤ Vd for any φ.

Assumption 3. Let f(φ) = 1
N ∑

N
i=1 fi(φ) be the average local loss of all participants in

the system. The variance of the gradient of loss fi across participants is bounded, i.e.,
1
N ∑

N
i=1 ∥∇fi(φ) − ∇f(φ)∥

2
≤ Vp for any φ.

Two key lemmas and a theorem below establish the convergence of our method. All proofs are in
Supplementary Material.
Lemma 1. Assume that the learning rate α is in the range (0,1/L]. Then, the global loss function
F (φ) in (1) is LF -smooth, where LF = L2R.

Lemma 2. Define the local loss of our scheme Fk(φ) ∶= fk(θR(φ)) at participant k. For a group
A with K clients, define the loss averaged within that group FA(φ) ∶= 1

K ∑k∈A Fk(φ). Assume
α ∈ (0,1/L]. Then, the variance of the gradient of FA(φ) across groups is bounded as

∣A∣
−1
∑
A∈A

∥∇FA(φ) − ∇F (φ)∥
2
≤ VpK

−1 (4)

where A is the set of all possible groupings of K participants drawn from a pool of N individuals.

Theorem 1. Suppose Assumptions 1, 2, 3 hold and α ∈ (0,1/L]. Let ∣D∣ be the mini-batch size at
the meta-update processes of all participants. Then, Algorithm 1 guarantees the following upper
bound on the loss gradient associated with our learned model φT :

1

T

T−1
∑
t=0

E[∣∣∇F (φt)∣∣2] ≤
4(F (φ0) − F (φ∗))

βT
+ ε(β,R, ∣D∣,K) (5)

where φ∗ is the optimal solution of (1) and ε(β,R, ∣D∣,K) = βL2R+2(Vd∣D∣−1 + VpK
−1).

As the number of episodes T increases, the upper bound of (5) settles to ε. For a given smoothness
L, assumed loss gradient variance bounds (Vd, Vp) and a targeted number of FL rounds R, the error
term ε is controlled by the meta-update learning rate β, the mini-batch size ∣D∣ and the per-episode
number of participants K. For any reasonable value R, practical choices of β, ∣D∣ and K can make ε
sufficiently small, as discussed in in Supplementary Material using representative parameter values.

4 Experiments

We validate our algorithm on CIFAR-100 [10], miniImageNet [19], FEMNIST[2]. Following the data
splits in [14], for CIFAR-100 and miniImageNet, 100 classes are divided into 64 train, 16 validation
and 20 test classes. For FEMNIST, we divide 62 classes into 52 alphabet (uppercase, lowercase) and
10 digit classes. For each class of FEMNIST, we sort the images by its name and choose first 600
samples. After all, we have 600 samples for each class in every dataset. 52 alphabet classes are set
to train classes, while 10 digit classes are set to test classes. The train classes are utilized for the
preparation stage, and the test classes are utilized at deployment to model the unseen tasks.
Comparison schemes. First, as a simplest baseline, we consider FedAvg [13], where a randomly
initialized model is trained for R FL rounds at deployment. The preparation stage is not considered
for this scheme. Thus, direct performance comparison would be obviously unfair for FedAvg, but we
just want to show what kind of performance improvement is possible by meta-learned initialization
versus random initialization. Second, we consider a FedAvg-based fine-tuning, where the model is
first pretrained by conducting FedAvg in each episode during preparation, and then fine-tuned with
new clients for R FL rounds via FedAvg at deployment. For example, in miniImageNet, a 64-way
classifier model is first pretrained in the preparation stage. Next, the last linear layer is replaced by a

7

Table 1: Performance with only unseen classes at deployment in an IID setup.

Methods CIFAR-100 miniImageNet FEMNIST

FedAvg 51.55 ± 0.38% 38.80 ± 0.26% 74.76 ± 0.35%
Fine-tuning via FedAvg 63.18 ± 0.41% 61.58 ± 0.47% 91.95 ± 0.28%
Fine-tuning via one-shot FL [6] 64.71 ± 0.37% 65.23 ± 0.43% 93.62 ± 0.26%
FRL: Linear classifier (Ours) 67.32 ± 0.37% 67.75 ± 0.35% 94.86 ± 0.13%
FRL: Distance-based classifier (Ours) 69.74 ± 0.31% 68.05 ± 0.34% 95.07 ± 0.10%
FRL: Distance-based classifier + GPAL (Ours) 72.93 ± 0.32% 69.31 ± 0.33% 96.61 ± 0.09%

Xavier-initialized layer, and then the overall model is fine-tuned to the group at deployment. We also
consider fine-tuning based on one-shot FL [6], where the local models are sampled and aggregated by
ensemble cross-validation. We allow a larger number of available clients (in the deployment stage)
for this scheme to accommodate user sampling. The model is first pretrained via FedAvg during
preparation, and then fine-tuned based on the scheme of [6] for R rounds at deployment. Finally,
although comparison with personalized FL [4] is tricky as the goal is different, a global model can still
be trained by repeating local updates and aggregations for R FL rounds starting from the initialized
model geared to client personalization. Comparison results with this “forced” global model are given
in Supplementary Material. For our few-round learning (FRL), we try both a linear classifier and
a distance-based classifier [18] for comparison. For the linear classifier, we connect an additional
linear layer behind CNN layers, as in other baselines. The distance-based classifier utilizes prototypes
instead of using the linear layer. For the distance-based classifier that utilizes prototypes, we observe
the effect of our GPAL strategy. Although we utilize FedAvg for the model aggregation at the server,
adopting other aggregation methods that outperform FedAvg can further improve the performance of
our method and other baselines.
Preparation stage. We assume N = 64 participants in the system in the preparation stage for
CIFAR-100 and miniImangeNet. We assume N = 52 for FEMNIST. For every dataset, following
[13], training data samples are prepared into 2N shards of 300 samples each, such that each shard
corresponds to one image class. Each participant is given two shards, and these two shards may
belong to either a common class or two distinct classes. This models non-IID data distributions
across participants. To construct each episode, the server then randomly selects K = 10 out of N
participants. Each participant uses one half of its local data from each class as support samples, and
the remaining half as query samples. We typically set the target number of global rounds to R = 3.
Each episode of our scheme requires 4 global rounds in the meta-training phase: 3 rounds of local
updates and aggregation, and 1 round of local meta-update and aggregation. For a fair comparison,
we let all baselines to consume the same amount of communication resources in the preparation
stage: up to 40,000 communication rounds between the server and participants (other than FedAvg
that employs no preparation rounds). Hence, our scheme is meta-trained over up to 10,000 episodes,
taking 4 rounds in each episode. We also reiterate that model preparation at the service provider is
not a real-time requirement and can be done when bandwidth demands are sparse; this offers an even
more favorable performance/complexity tradeoff options for the proposed scheme.
Deployment stage. At deployment, we distribute the initial model obtained in the preparation stage
to a new group of clients. To measure the performance, we obtain the average test accuracy with
a 95% confidence interval over 1000 different groups (with K = 10 clients in each group) after R
rounds of FL. For testing, in one case we randomly sample τ classes from test classes that have not
been seen during preparation and distribute across K = 10 clients. In the other case, we randomly
sample τu classes from the unseen test classes and τ − τu classes from the train classes seen during
meta-learning. We consider both IID and non-IID distributions. In the IID setup, the data samples
from each class are equally distributed to K = 10 clients. In the non-IID setup, we distribute data as
in the preparation stage. The support set is utilized for R FL rounds and the server calculates test
accuracy with the global model and the gathered query sets of all clients. For the one-shot FL scheme,
we allow 20 clients and the server samples K = 10 of them to aggregate. We focus on a 5-way setup
(i.e., τ = 5) in the main paper with the τ = 10 case reported in Supplementary Material.
Implementation details. The structure of the model follows the setting of [5] and [18], containing 4
consecutive 3 × 3 convolutional layers with 64 filters. Successively, each CNN output goes through
batch normalization, ReLU, and 2×2 max pooling. In the case of CIFAR-100 where the size of image
is 32×32, the last two max pooling layers are omitted to up-scale the feature map. We adopt the SGD
optimizer with a learning rate of β = 0.001 for the meta-learner and a learning rate of α = 0.0001 for

8

Table 2: Performance with only unseen classes at deployment in a non-IID setup.

Methods CIFAR-100 miniImageNet FEMNIST

FedAvg 34.85 ± 0.27% 29.74 ± 0.22% 59.22 ± 0.18%
Fine-tuning via FedAvg 44.33 ± 0.37% 33.39 ± 0.41% 58.23 ± 0.65%
Fine-tuning via one-shot FL [6] 35.11 ± 0.46% 27.16 ± 0.42% 57.88 ± 0.67%
FRL: Linear classifier (Ours) 52.98 ± 0.42% 53.51 ± 0.43% 85.14 ± 0.44%
FRL: Distance-based classifier (Ours) 63.85 ± 0.43% 61.07 ± 0.41% 88.60 ± 0.42%
FRL: Distance-based classifier + GPAL (Ours) 66.87 ± 0.40% 63.41 ± 0.39% 92.42 ± 0.32%

0 0.5 1 1.5 2 2.5 3 3.5 4

Communication rounds in preparation stage 10
4

20

30

40

50

60

70

T
e
s
t
a
c
c
u
ra

c
y

FRL: Distance, GPAL (Ours)

FRL: Distance (Ours)

FRL: Linear (Ours)

Fine-tuning via one-shot FL

Fine-tuning via FedAvg

Personalized FL: Distance

Personalized FL: Linear

(a) CIFAR-100

0 1 2 3 4

Communication rounds in preparation stage 10
4

30

40

50

60

T
e
s
t
a
c
c
u
ra

c
y

FRL: Distance, GPAL (Ours)

FRL: Distance (Ours)

FRL: Linear (Ours)

Fine-tuning via one-shot FL

Fine-tuning via FedAvg

Personalized FL: Distance

Personalized FL: Linear

(b) miniImageNet

Figure 2: Final test accuracy at deployment, with varying numbers of communication rounds (proportional to
the number of episodes for FRL and to the number of pretraining rounds for fine-tuning) in the preparation stage.

the learner. We set the mini-batch size to 60 and the number of local epochs at each client to E = 1.
All methods are implemented using Pytorch and trained with a single GeForce RTX 2080 Ti.

Results with unseen classes at deployment. Tables 1 and 2 show test accuracies averaged over
1000 different groups after R = 3 global rounds at deployment, where the goal of each group is to
classify τ = 5 classes that were unseen during preparation. First, it can be seen that FedAvg yields
significantly lower accuracy compared to others, as expected, since it uses a randomly initialized
model for training. By pretraining the model, FedAvg-based fine-tuning gives significant performance
gains compared to naive application of FedAvg, underlying the importance of initialization efforts.
The fine-tuning scheme based on one-shot FL shows further performance improvements in the IID
setup. However, since K = 10 clients are sampled from 20 clients for this method, there possibly
exist some unseen classes when building the global model in the non-IID setup, which lowers
the performance compared to fine-tuned FedAvg. Our FRL algorithm performs the best, with the
distance-based classifier showing better accuracy compared to the linear classifier. The relative gains
of our methods for non-IID are particularly strong. It can be also seen that the performance of the
global model can be further improved by our GPAL strategy. Fig. 2 shows how the final test accuracy
(after 3 fixed FL rounds at deployment) improves with the number of communication rounds in the
preparation stage. The overall results in Tables 1, 2 and Fig. 2 confirm the advantage of exploiting
meta-learning and global prototype-assisted learning to facilitate few-round FL.

Results with both unseen/seen classes at deployment. In Table 3, we report test accuracies with
both unseen/seen classes at deployment; the goal of each group is to classify τ = 5 classes, 2 from the
unseen classes and 3 from the seen classes. Since the tasks also handle classes already seen during
preparation, the accuracies are generally higher than in Tables 1, 2. The trend is consistent with the
results in Tables 1 and 2, confirming the advantage of the proposed algorithm.

Effect of global prototype-assisted learning. To understand the effect of our GPAL method further,
we visualized t-SNE of the embedding space at a client in Fig. 3. CIFAR-100 is considered with

Table 3: Performance with both unseen/seen classes at deployment.
CIFAR-100 miniImageNet

Methods IID Non-IID IID Non-IID

FedAvg 50.03 ± 0.42% 34.82 ± 0.31% 42.17 ± 0.36% 30.37 ± 0.26%
Fine-tuning via FedAvg 66.73 ± 0.36% 44.46 ± 0.36% 63.82 ± 0.49% 36.18 ± 0.42%
Fine-tuning via one-shot FL [6] 69.84 ± 0.39% 35.33 ± 0.46% 67.05 ± 0.44% 29.12 ± 0.43%
FRL: Linear classifier (Ours) 68.22 ± 0.38% 53.62 ± 0.45% 69.02 ± 0.39% 55.18 ± 0.46%
FRL: Distance-based classifier (Ours) 70.49 ± 0.36% 65.13 ± 0.43% 70.39 ± 0.38% 62.42 ± 0.43%
FRL: Distance-based classifier + GPAL (Ours) 73.68 ± 0.37% 67.31 ± 0.44% 71.81 ± 0.34% 65.33 ± 0.42%

9

(a) Before update (b) After update without GPAL (c) After update with GPAL
Figure 3: t-SNE visualization of embedding space at a client. The local data samples of the client is illustrated
with diamond ◇, and the data points of all other clients are represented by circle◯. The global prototypes of
each class are shown with ☆. GPAL prevents the model from being biased to its local data and enables to learn
more general embedding space. This leads to performance improvements as seen in Tables 1, 2, 3 and Fig. 2.

each client having two classes in its local data in a non-IID setup. When only local prototypes are
used for training as in Fig. 3(b), it can be seen that the two classes of the client form clusters without
considering the data samples of other clients (but still well-separated). By considering the global
prototypes (reflecting classes of all participants), in Fig. 3(c), the data points in the local client form
clusters while staying away from all other global prototypes, a clearly desirable feat. This prevents
the local model from being biased to its local data and enables the local model to learn a more general
embedding space compared to the case in Fig. 3(b) considering only the local prototypes.
Other experimental results. Additional results on other settings including higher-way classification,
larger group size and mismatched R are reported in Supplementary Material. Comparison with the
“foreced” global model based on the personalization scheme is also shown in Supplementary Material.

5 Conclusion

We proposed a meta-learning strategy to prepare an initial model geared to few-round federated
learning. Given a group of clients with a new task, our meta-trained model generalizes well within
only a few FL rounds. Convergence of our meta-training is guaranteed through theoretical analysis.
Extensive experimental results confirm significant advantages of our idea over different baselines such
as FedAvg-based fine-tuning and personalized FL in various setups. Our solution offers a promising
direction for FL in practice, where minimizing training time and communication resources required
in real-time is among key challenges.

Acknowledgments

This work was supported by IITP fund from MSIT of Korea (No. 2020-0-00626) and by National
Research Foundation of Korea (No. 2019R1I1A2A02061135).

References
[1] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir

Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

[2] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings.
arXiv preprint arXiv:1812.01097, 2018.

[3] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning
with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.

[4] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning
with theoretical guarantees: A model-agnostic meta-learning approach. Advances in Neural
Information Processing Systems, 33, 2020.

[5] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In ICML, 2017.

10

[6] Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning. arXiv preprint
arXiv:1902.11175, 2019.

[7] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

[8] Anirudh Kasturi, Anish Reddy Ellore, and Chittaranjan Hota. Fusion learning: A one shot
federated learning. In International Conference on Computational Science, pages 424–436.
Springer, 2020.

[9] Jakub Konecny, H. Brendan McMahan, Felix X. Yu, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: strategies for improving communication efficiency. In NIPS Workshop on
Private Multi-Party Machine Learning, 2016.

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[11] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Chal-
lenges, methods, and future directions. arXiv preprint arXiv:1908.07873, 2019.

[12] Sen Lin, Guang Yang, and Junshan Zhang. A collaborative learning framework via federated
meta-learning. arXiv preprint arXiv:2001.03229, 2020.

[13] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273–1282, 2017.

[14] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2017.

[15] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and
quantization. arXiv preprint arXiv:1909.13014, 2019.

[16] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust and
communication-efficient federated learning from non-iid data. IEEE transactions on neural
networks and learning systems, 2019.

[17] MyungJae Shin, Chihoon Hwang, Joongheon Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun
Kim. Xor mixup: Privacy-preserving data augmentation for one-shot federated learning. arXiv
preprint arXiv:2006.05148, 2020.

[18] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in neural information processing systems, pages 4077–4087, 2017.

[19] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. In Advances in neural information processing systems, pages 3630–3638,
2016.

[20] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

11

	Introduction
	Backgrounds and Main Contributions
	Related Works

	Proposed Few-Round Learning Algorithm
	Problem Setup
	Meta-Training (Preparation Stage)
	R Rounds of Local Updates and Aggregations
	One-Round Local Meta-Update and Aggregation (Lines 1621)

	Testing (Deployment Stage)

	Convergence Analysis
	Experiments
	Conclusion

