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Abstract

High-throughput phenotypic screens generate vast microscopy image datasets that
push the limits of generative models due to their large dimensionality. Despite the
growing popularity of general-purpose models trained on natural images for mi-
croscopy data analysis, their suitability in this domain has not been quantitatively
demonstrated. We present the first systematic evaluation of Stable Diffusion’s
variational autoencoder (SD-VAE) for reconstructing Cell Painting images, as-
sessing performance across a large dataset with diverse molecular perturbations
and cell types. We find that SD-VAE reconstructions preserve phenotypic signals
with minimal loss, supporting its use in microscopy workflows. To benchmark
reconstruction quality, we compare pixel-level, embedding-based, latent-space,
and retrieval-based metrics for a biologically informed evaluation. We show that
general-purpose feature extractors like InceptionV3 match or surpass publicly avail-
able bespoke models in retrieval tasks, simplifying future pipelines. Our findings
offer practical guidelines for evaluating generative models on microscopy data and
support the use of off-the-shelf models in phenotypic drug discovery.

1 Introduction

Phenotypic drug discovery is a strategy in drug development that identifies drug candidates by
directly observing their effects in biological systems without requiring prior knowledge of molecular
targets [30]. By focusing on measurable phenotypic changes induced by molecular perturbations,
this approach has historically led to the discovery of several clinically relevant drugs, such as the
anti-malarial artemisinin [18]. Recent advances in high-throughput microscopy, e.g., Cell Painting
[3l], have accelerated phenotypic screening pipelines [24]. In Cell Painting, cells are stained with
multiple fluorescent dyes that mark distinct subcellular components, enabling the capture of rich
morphological profiles via automated, low-cost fluorescence microscopy. A single lab can thus yield
millions of high-res, multi-channel images under diverse conditions. These images can be processed
with tools such as CellProfiler [28] to extract thousands of morphological features per condition.
However, the sheer dimensionality of the resulting profiles pose significant analytical challenges,
motivating the development of methods that can uncover subtle phenotypic patterns at scale.
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Deep learning (DL) methods have become popular tools for addressing these challenges, initially
via representation learning methods to extract meaningful features from raw images [11} 20, 27].
More recently, the success of generative models has inspired efforts to simulate Cell Painting images,
with the aim of reducing experimental cost and enabling virtual screening [7]]. Several studies have
shown promising results in generating realistic microscopy images conditioned on molecular [31]] or
genetic [19] perturbations. Despite this progress, generative modeling of microscopy data remains
computationally challenging due to its high dimensionality. Direct pixel-space generation is costly,
leading many to restrict image generation tasks to small crops centered around individual nuclei
[2, 21} 133]] or to adopt latent diffusion approaches [[19} [22]]. Latent diffusion models, exemplified
by Stable Diffusion (SD) [26]], tackle complexity by first mapping images to a compressed latent
representation using a variational autoencoder (VAE) [13]], then performing diffusion-based generative
modeling within this lower-dimensional space. At inference, images are generated in latent space and
decoded back to image space, with the VAE acting as a bottleneck for the final reconstruction quality.

Reliable generation of microscopy images is critical for downstream biological interpretation, and
the SD-VAE is increasingly used for this purpose [19}22]. However, the reconstruction quality of
SD-VAE-generated images has not been systematically evaluated. This raises concerns about whether
meaningful biological information may be lost during the encoding-decoding process, especially
when applied to out-of-distribution microscopy data such as Cell Painting images. To address this gap,
this work evaluates the reconstruction fidelity of SD-VAE on Cell Painting images using a recently
established benchmark.

Our main contributions address this gap and are as follows:

* First systematic evaluation of SD-VAE on microscopy data: We evaluated SD-VAE, trained
primarily on natural images, on >1M Cell Painting crops spanning two cell types (A549 and U20S)
and diverse perturbations. We demonstrate that SD-VAE reconstructions retain phenotypic signals
with minimal degradation, validating its use in microscopy image generation.

* A general evaluation framework for generative models of microscopy images: We systemat-
ically compare pixel-level metrics, e.g., mean absolute error (MAE) and earth mover’s distance
(EMD), with feature-space and latent-space metrics, e.g., Kullback-Leibler divergence (KLD)
and Fréchet Inception distance (FID), as well as retrieval-based evaluations, presenting a robust
framework that researchers can model future validation studies on.

* General-purpose feature extractors rival domain-specific models: We find that InceptionV3 em-
beddings match or exceed those from the publicly-available microscopy-specialized OpenPhenom
model on biologically relevant retrieval tasks, suggesting that general-purpose feature extractors
may be sufficient to capture subtle phenotypic variations.

2 Method

Our benchmarking pipeline uses multiple quantitative metrics to evaluate the effectiveness of SD-VAE
in compressing and reconstructing microscopy data. We use two distinct pre-trained models for
image featurization: InceptionV3 [29]], trained on natural images, and OpenPhenom [[15} 23], trained
specifically on Cell Painting images. We do not compare the feature extractors with CellProfiler
[28]] due to its high computational cost and the complexity of integrating it into scalable, automated
GPU-based workflows. Instead, we rely on deep learning-based models, which are better suited to our
infrastructure and more representative of how generative models are typically deployed in production
settings. We assess reconstruction quality as described in Section [2.3]

2.1 Pre-trained models

Stable Diffusion VAE We evaluate the VAE associated with the model stable-diffusion-vi-4 |6, 23],
which was trained on natural images of varying dimensions (256x256 and 512x512) from the laion2B-
en dataset. This autoencoder employs a relative downsampling factor of 8. For example, an RGB
image with a resolution of (3x256x256) would be mapped to a latent tensor of shape (4x32x32).
Throughout all experiments the VAE weights are kept frozen and used only for encoding and decoding.

InceptionV3 As a baseline feature extraction method we use the forchvision implementation of
InceptionV3 [29], which has been pretrained on the ImageNet dataset [8]]. To evaluate the capabilities
of models for image generation, the Fréchet distance is typically applied to features extracted from
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Figure 1: Overview of our evaluation pipeline. Input images, including Cell Painting and natural
images, are encoded into the latent space using the Stable Diffusion VAE (SD-VAE). These latent
representations are decoded to reconstruct the images. Original and reconstructed images are
compared using channel-wise metrics: mean absolute error (MAE), structural similarity index
measure (SSIM), and Earth mover’s distance (EMD). Both sets of real and reconstructed images
are passed through InceptionV3 and OpenPhenom to extract feature embeddings, which are used to
compute the Fréchet Inception distance (FID) and fraction retrieved (FR) of perturbations against
negative controls. Latent vectors are further used to compute the Kullback-Leibler divergence (KLD).

the layer just before the final classification layer of an InceptionV3 network. The empirical Fréchet
distance computed between the means and covariances of these features following real and generated
distributions is known as the Fréchet Inception distance (FID) [10] (see Appendix [A.2)).

OpenPhenom As an alternative to CellProfiler, we utilize a pre-trained channel-agnostic masked
autoencoder (CA-MAE) called OpenPhenom, which employs a ViT-S/16 encoder backbone to
generate embeddings for Cell Painting images [15]. OpenPhenom is a fully open-access model
available on HuggingFace [23]], trained on >3M 256x256 image crops from publicly available Cell
Painting datasets with genetic perturbations, including RxRx3 (HUVEC cell line) [9]] and the JUMP-
CP CRISPR and OREF subsets (U20S cell line) [5]. The model was trained for 100 epochs using a
CA-MAE architecture with a 25M parameter ViT-S/16 encoder and six dedicated decoders (one per
channel). The training channels include mitochondria; DNA (nucleus); RNA; endoplasmic reticulum
(ER); actin, Golgi and plasma membrane (AGP); and a non-fluorescent Brightfield channel. During
training, each 16x16 patch from each channel is tokenized independently, resulting in 1,536 tokens
for a 6-channel image, with 384 unmasked tokens visible under a 75% masking ratio. OpenPhenom
can generate embeddings either for the entire image or per individual channel.

2.2 Data

We evaluate the performance of the SD-VAE on one out-of-distribution Cell Painting dataset and, as a
control, one in-distribution natural image dataset. For data preprocessing details, see Appendix[A.3]

CPJUMP1 This dataset [4] includes replicated plates containing both chemical and genetic pertur-
bations with known mechanisms of action or molecular targets. These replicates are tested under
different experimental conditions, including two cell lines (A549 and U20S) and two exposure
durations, specifically 24 hours and 48 hours for compound treatments, representing short and long
time points. For this study, we used a subset of the dataset that includes only chemical perturbations
with 100% cell seeding and parental cell lines (66,048 center-cropped 1024x1024 images among
16 plates exposed to 307 unique perturbations, including DMSO controls). Each image contains 5
channels, corresponding in this dataset to fluorescent stains of the mitochondria (Mito), actin, Golgi,
and plasma membrane (AGP), nucleoli and cytoplasmic RNA (RNA), endoplasmic reticulum (ER),
and nuclear DNA (DNA).

LSUN As a control, we also assess the performance of SD-VAE on high-res natural images which
closely resemble the VAE’s training data. Specifically, we utilize two subsets from the LSUN [32]



dataset: the classroom subset, comprising 166,419 images, and the outdoor church subset, containing
126,200 images. All images are already resized so that the smaller dimension is 256 pixels. Images
consist of the three standard RGB channels. Our evaluation on this dataset uses the same set of
metrics for consistency.

2.3 Evaluation

Images or patches with a 256x256 pixel resolution are first passed through the encoder and decoder
of the SD-VAE. The resulting reconstructions are then compared to the original images to assess
reconstruction quality. Moreover, both the original and reconstructed images are processed through
two pre-trained networks, InceptionV3 and OpenPhenom, for independent feature extraction to assess
the reconstruction of morphological profiles via either scheme. Details and equations for all metrics
are provided in Appendix [A.7]

Channel- and distribution-wise We compute the mean absolute error (MAE), structural similarity
index measure (SSIM), and Earth mover’s distance (EMD) between each channel of the real and
reconstructed images. While MAE provides a straightforward pixel-wise error, SSIM captures
perceptual differences by considering structural information, and EMD evaluates how closely the
distributions of pixel intensities match between the original and reconstructed images. Conversely,
the Fréchet Inception distance [10] is a widely used distribution-based metric for evaluating image
generation models. It measures the difference between the distributions of real and generated images
by comparing the means and covariances of features extracted from the Inception network.

Regularized latent space To complement the aforementioned metrics and evaluate the quality of
the learned latent space by the SD-VAE, we evaluate the Kullback-Leibler divergence (KLD) between
the samples in the latent space and a standard multivariate Gaussian distribution to assess how well
the latent space is regularized, indicating how easily it can be learned, e.g., by a diffusion model.

Information retrieval To better reflect the practical application of generative models in phenotypic
drug discovery, we follow the evaluation procedure described by Chandrasekaran et al. [4]] and
Kalinin et al. [12]. This approach evaluates the quality of learned embeddings through a retrieval
task that identifies replicates of the same perturbation, target, or mechanism of action (MoA). Here
we compare the InceptionV3 network and the pre-trained masked autoencoder OpenPhenom. The
retrieval task is performed separately on embeddings obtained from real and reconstructed images.
Plate-specific batch effects are accounted for and mitigated through post-processing of the features
extracted from InceptionV3 or OpenPhenom using negative control wells, as detailed in Appendix
Our evaluation focuses solely on phenotypic activity, as it serves as a challenging sanity check for
downstream applications. Specifically, we assess whether replicate profiles for a given perturbation
can be distinguished from replicate profiles under control conditions, using negative controls as the
reference. Hence, the fraction retrieved (FR) metric quantifies the proportion of perturbations that can
be reliably distinguished from negative controls. For this purpose, we employ the copairs library [12]],
specifically designed for retrieval-based analysis. Features extracted from each pre-trained network
are aggregated across imaging sites to produce a single feature vector per well. Features extracted
from InceptionV3 are concatenated across the two distinct 3-channel input images, resulting in a
per-sample dimensionality of 2 x 2048 = 4096. Similarly, OpenPhenom features are concatenated
along the channel axis, yielding a per-sample dimensionality of 5 x 384 = 1920. See Appendix [A.4]
for key post-processing details.

3 Results

3.1 SD-VAE reconstructs images well in terms of standard reconstruction metrics

Cell Painting images show a lower MAE between original and reconstructed samples (Figure [2),
indicating that SD-VAE effectively reconstructs them. This aligns with expectations, as Cell Painting
images typically contain simpler and more structured visual patterns than natural images, with certain
channels often displaying a relatively consistent background. Supporting metrics such as EMD, FID,
and SSIM also show similar value ranges across both image types (Figures 2}H4), reinforcing that
reconstructed Cell Painting images are visually faithful to the originals.



3.2 Biological signal preserved after SD-VAE reconstruction

While metrics like MAE confirm better pixel-level reconstruction of cell images than natural images,
they do not capture the reconstruction of relevant biological features. Instead, metrics like the fraction
retrieved (FR) can help us infer if biological signal is preserved following application of the SD-VAE.
Notably, when evaluating the FR across different cell lines and time points (Table[I)), we found that
the reconstructed images from SD-VAE did not lead to a significant drop in FR, even demonstrating a
slight increase in many cases. This suggests that, despite the reconstruction process, the biological
signal remains sufficiently intact to distinguish between negative controls and perturbations.

Table 1: Fraction retrieved (FR) across cell types and time points, with per-well median aggregation
and plate-level mean scaling of DL features. The reported values are averaged over three independent
runs of the complete pipeline (SD-VAE and information retrieval). The largest std. dev. is o = 0.008.
Experiments with original images by design show no variation (¢ = 0). The best value for each cell
line and time point is shown in bold. The bottom row compares performance on the same task for a
traditional feature extraction method.

| A549 U208
Features Data \ 24h 48h 24h 48h

OpenPhenom Original | 0.722 0.882 0.817 0.660
OpenPhenom SD-VAE | 0.729 0.879 0.836 0.697
InceptionV3 Original | 0.873 0.961 0.837 0.837
InceptionV3 SD-VAE | 0.906 0.951 0.847 0.837

CellProfiler [4] Original \0.761 0.954 0.775 0.663

3.3 KLD suggests microscopy latents are less regularized than those of natural images

We observe that Cell Painting images exhibit a higher Kullback-Leibler divergence (KLD) between
their latent representations and an isotropic Gaussian prior, compared to natural images (Figure
[3). This indicates that the latent space for microscopy data is less regularized and the encoded
representations deviate more from the prior distribution. In contrast, natural images produce latent
vectors that are closer to the prior. This difference suggests that it is more difficult for the model
to compress the complex, biologically rich content of Cell Painting images into a smooth, well-
structured latent space. As a result, tasks that rely on latent representations may be affected by this
reduced regularization, e.g., this may complicate the training of downstream latent diffusion models.

4 Discussion

While metrics like MAE, SSIM, EMD, and FID are useful for assessing low-level similarity, they
provide limited insight into the preservation of biological signal. This motivates the use of more bio-
logically grounded and interpretable evaluation strategies, such as measuring the FR of perturbations
against negative controls, to assess whether reconstructions retain relevant phenotypic information.

Our experiments show that general-purpose feature extractors, such as InceptionV3, can perform
on par with, and in some cases better than, domain-specific models like OpenPhenom in tailored
retrieval tasks. This suggests that models pre-trained on natural images may be sufficiently effective
for evaluating generative models in the context of phenotypic drug discovery, reducing the need
for specialized feature extractors. The relatively weaker performance of OpenPhenom relative to
InceptionV3 can be attributed to several factors. First, there is a discrepancy between the training
and inference conditions: during inference, only five channels are provided while the Brightfield
channel (used during OpenPhenom training) is omitted. Second, the OpenPhenom model used here
is a comparatively small model trained on a limited dataset, unlike the other larger CA-MAE variants
which are unfortunately not publicly available. Overall, our results support the use of FID as a
practical and reliable metric during model development and evaluation, as evidenced by its alignment
with the FR and the demonstrated effectiveness of Inception features in the retrieval task.



Note that in this study, we deliberately avoid evaluating the SD-VAE latent space; this is because
evaluating the latent space in greater depth beyond KLLD would require specialized methods. In
this work, we instead rely on existing models (InceptionV3 and OpenPhenom) to evaluate the
reconstructed images rather than the latent space. This setup better reflects future use cases of
generative models, where new samples are generated and assessed by surrogate models in an
automated fashion. Additionally, it has been shown that the latent space of SD-VAE is not strongly
semantically regularized; rather, it serves as a compressed representation of the original image,
removing redundant information while preserving spatial structure [[14]. We leave for future work a
comparison between SD-VAE and other dimensionality reduction techniques, since it would also be
necessary to demonstrate that the resulting latent space is suitable for generating Cell Painting images.
This has already been shown with MorphoDiff [[19], although their evaluation did not isolate the
performance of SD-VAE. For similar reasons, we have not fine-tuned SD-VAE, as the straightforward
approach is known to be ineffective [17].

There are a few additional limitations to our approach. First, our dataset contains five distinct
channels, but both the VAE and the InceptionV3 model require 3-channel inputs. To address this, we
duplicated one of the channels to create two separate 3-channel combinations, allowing us to use all
five channels while maintaining compatibility with the models. Although effective, this approach is
somewhat arbitrary and may not be optimal. Future work could investigate more systematic strategies
for channel grouping or selection. Second, there is the risk of data leakage. Using negative controls
in the post-processing pipeline is standard practice for limiting batch effects. Since FR involves
distinguishing perturbations from negative controls, this may be a form of data leakage. Moreover,
we observed an increase in the FR metric across most experiments involving reconstructed images.
This trend may suggest a denoising effect, as the reconstruction process could be removing noise
or artifacts in ways that improve FR performance. While we acknowledge this potential limitation,
addressing it in depth is also left for future work.

5 Conclusion

When working with high-dimensional Cell Painting images, SD-VAE appears to be a promising ap-
proach for image generation that mostly preserves biological signal while reducing the dimensionality
of the data. This is critical because the generated images or even latents are typically be used as input
for downstream models that aim to identify meaningful patterns in this high-dimensional data. With
this work, we provide a framework to ensure that the VAE, or any other generative model, can be
adequately integrated into the overall workflow without significant degradation of biological signal.
Our work further supports the use of SD-VAE and general metrics like FID in Cell Painting analysis
workflows without the need for specialized training of bespoke models.
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Code and Data Availability

For implementation details and source code, please refer to our anonymized GitHub repository:
compressing-biology, Pre-trained models and datasets used can be downloaded from:

* SD-VAE: huggingface.co/Comp Vis/stable-diffusion-v1-4
* InceptionV3: docs.pytorch.org/vision/main/models/inception.html

* OpenPhenom: huggingface.co/recursionpharma/OpenPhenom
* CPJUMPI: cellpainting-gallery.s3.amazonaws.com

LSUN: docs.pytorch.org/vision/main/generated/torchvision.datasets. LSUN.html
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A Technical Appendices and Supplementary Material

A.1 Notation

Let x € REXHXW denote the ground truth image and x € R€*H>*W the reconstructed image. The
following notation is used:

C': number of channels

H,W: image height and width

N = H x W: number of pixels per channel
Ux, P local means

2. a2: local variances

Jx? x*

ox%. local covariance

C'1: constant to stabilize luminance comparison

C¢: constant to stabilize contrast and structure comparison
pi,log o2: mean and log-variance of latent variable z;

d: dimensionality of the latent space

M., 2: mean and covariance of real image features

Ky, 24t mean and covariance of generated image features

A.2 Evaluation Metrics

Below we define the pixel- and distribution-based metrics used in this study:

1.

Mean absolute error (MAE) The average absolute difference between corresponding
pixels:

1 H W
MAE, = 27 > D [Xei — Xei M

i=1 j=1

. Structural similarity index (SSIM) A perceptual similarity measure combining luminance,

contrast, and structure:

(2uxps + Cr)(20xx + Cc)
(W2 + p3 + Cr)(02 4+ 0% + Co)

SSIM,(x, %) = 2)

. Earth mover’s distance (EMD) The average absolute difference between sorted pixel

intensities:
N

1 N
EMD, = i ]; [sort(x.)r — sort(X.) x| 3)

. Kullback-Leibler divergence (KLD) The divergence between the latent distribution and a

standard Gaussian:

d

1 2 2 2
KL =3 ; (17 + exp(logo7) —logo; — 1) )

. Fréchet inception distance (FID) The distance between real and generated feature distribu-

tions:
FID = [, — || + Tr (2, + 2, - 2(5,%,)?) )
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A.3 Data Pre-Processing Details

Images from the CPJUMP1 dataset are processed similar to RxRx3-Core [[16]]. The provided
illumination correction arrays are applied, and images are saved as uint8 and compressed as PNGs.
LSUN images are already optimized for DL pipelines. Images are standardized to 256x256 pixels
to ensure consistent resolution: LSUN images are directly resized to the target resolution via
interpolation if needed, whereas CPJUMPI images are divided into 256x256 pixel patches. As
SD-VAE and InceptionV3 expect the standard 3-channel (RGB) inputs, the 5-channel Cell Painting
images are handled differently: one of the five channels (RNA, selected randomly) is duplicated to
create 6 channels. These are then split into two separate 3-channel images following the approach
of Papanastasiou et al. [22]. For the OpenPhenom model, images are pre-processed using self-
standardization, as recommended by Kraus et al. [15], and kept in the 5-channel format as the model
is channel agnostic.

A.4 Data Post-Processing Details

Extracted feature vectors are post-processed using a pipeline inspired by the typical variation normal-
ization (TVN) method [[1] recommended by OpenPhenom. Post-processing is done as follows:

» Fit a sequence of preprocessing steps, including scaling, principal component analysis
(PCA), and variance thresholding, to all negative control samples, using the highest feasible
dimensionality for PCA.

» Apply the fitted sequence of steps to all samples

* Scale all features within each plate using the negative controls from the same plate.

We did not use the post-processing steps recommended for the CPJUMP1 dataset, as it is specifically
tailored to CellProfiler-derived features. Instead, we adapted the OpenPhenom recommended post-
processing steps to account for the limited number of negative controls in our dataset, which restricts
the maximum dimensionality of the PCA step.

Note that while the phenotypic activity benchmark offers an interpretable and practical framework
for evaluating DL models in phenotypic drug discovery, performance is highly sensitive to the design
of the post-processing pipeline. For example, pipelines optimized for CellProfiler features may
not generalize well to DL-derived features, and the effectiveness of each step often depends on the
availability and quality of metadata. Even seemingly minor choices, such as aggregating features
using the mean versus the median (Table 2), can shift the relative performance of models. These
findings highlight that pipeline components should not be treated as modular or interchangeable.
Each step must be carefully designed in the context of the full workflow, especially when generative
models are involved.

A.5 Additional Results

In Figure 2| we show the results for MAE and EMD across the LSUN and CPJUMPI1 datasets,
illustrating how these metrics are similar in range for both types of datasets. LSUN images were used
to establish a baseline for these metrics, since the Church and Classroom subsets we looked at are
natural images similar to the images used to train the SD-VAE.

In Figure 3| we show instead the FID and KLD cross the LSUN and CPJUMP1 subsets, illustrating
how the Cell Painting latents appear to be slightly less regularized than the latent embeddings of the
natural images following application of the SD-VAE encoder.

Note that the results may be affected by how we chose to group the channels for the InceptionV3
model, which requires 3-channel inputs. This is particularly relevant given the noticeable variation in
FID scores across channels. At the 24-hour time point, some channels show nearly twice the FID
values compared to others (see Figure[3). We leave examining the effects of channel grouping on the
metrics to future work.

Interestingly, we observed that the OpenPhenom features benefit more from mean aggregation,
while InceptionV3 features consistently perform better with median aggregation (Table [2)); this may
reflect further differences in how the two models handle outliers or noise in morphological profiles.
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Figure 2: Box plots showing MAE (left) and EMD (right) values across the LSUN and CPJUMP1
datasets and their channels, computed after a single run of SD-VAE applied to all images. The central
line within each box shows the median, while the box boundaries represent the 1st and 3rd quartiles.
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Figure 3: FID (left) and KLD (right) scores across the various data subsets, computed after a single run
of SD-VAE applied to all images. FID scores are computed using real and reconstructed images. All
images were featurized using InceptionV3. KLD scores are presented as the mean values computed
across all samples within each dataset. Standard deviations are approximately 19k, 8k, and 10k for
Cell Painting, Classroom, and Church images, respectively.
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Figure 4: Box plot showing SSIM values across the LSUN and CPJUMP1 datasets and their respective
channels, computed after a single run of SD-VAE applied to all images. The central line within each
box shows the median, while the box boundaries represent the 1st and 3rd quartiles.

Regardless of the aggregation method, InceptionV3 features outperformed OpenPhenom accross all
evaluated conditions.
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Table 2: Fraction retrieved (FR) across cell types and time points using different aggregation strategies
(mean plate scaling of DL features). All experiments using random features resulted in a FR of 0.
The reported values are averaged over three independent runs of the complete pipeline (SD-VAE and
information retrieval). For experiments using mean aggregation, the maximum standard deviation is
o = 0.006, and for median aggregation 0 = 0.008. Experiments conducted on original images by
design show no variation (¢ = 0). Best value for each cell line and time point is shown in bold.

\ A549 U20S

Features Data Aggregation | 24h 48h 24h 48h

OpenPhenom Original Mean 0.804 0925 0.774 0.719
OpenPhenom SD-VAE Mean 0.821 0915 0.827 0.768
InceptionV3 Original Mean 0.846 0935 0.833 0.768
InceptionV3 SD-VAE Mean 0.846 0915 0.852 0.750
OpenPhenom Original Median 0.722 0.882 0.817 0.660
OpenPhenom SD-VAE Median 0.729 0.879 0.836 0.697
InceptionV3 Original Median 0.873 0961 0.837 0.837
InceptionV3 SD-VAE Median 0.906 0.951 0.847 0.837
CellProfiler [4] Original Median \ 0.761 0954 0.775 0.663

We noticed that achieving high FR is more difficult for the U20S cell line than for A549, even though
U20S was included in the OpenPhenom training set. The difference for this discrepancy remains
unclear, but may be due to greater phenotypic heterogeneity in the U20S cell line.

A.6 Hardware and Compute Resources

To facilitate parallelization across multiple GPUs, the datasets are divided into several subsets. To
avoid the overhead of saving latent and reconstructed images, the MAE, SSIM, EMD, and KLD
metrics are computed and saved in real time during inference in a batch setting. Features extracted
from InceptionV3 and OpenPhenom are also saved. Inferencing the datasets was completed in just
a few hours by leveraging dozens of NVIDIA A40 GPUs in parallel (up to 340 GPUs). On our
facilities, running the whole pipeline, from downloading the images, preprocessing them, featurizing
them, all the way to the post-processing and final analysis takes around 8 hours, if exploiting the
parallelism of multiple jobs at the same time.
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