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ABSTRACT

Causal inference from observational data has attracted considerable attention among
researchers. One main obstacle is the handling of confounders. As direct mea-
surement of confounders may not be feasible, recent methods seek to address
the confounding bias via proxy variables, i.e., covariates postulated to be con-
ducive to the inference of latent confounders. However, the selected proxies may
scramble both confounders and post-treatment variables in practice, which risks
biasing the estimation by controlling for variables affected by the treatment. In
this paper, we systematically investigate the bias due to latent post-treatment vari-
ables, i.e., latent post-treatment bias, in causal effect estimation. Specifically,
we first derive the bias when selected proxies scramble both latent confounders
and post-treatment variables, which we demonstrate can be arbitrarily bad. We
then propose a novel Confounder-identifiable VAE (CiVAE) to address the bias.
Based on a mild assumption that the prior of latent variables that generate the
proxy belongs to a general exponential family with at least one invertible sufficient
statistic in the factorized part, CiVAE individually identifies latent confounders
and latent post-treatment variables up to bijective transformations. We then prove
that with individual identification, the intractable disentanglement problem of la-
tent confounders and post-treatment variables can be transformed into a tractable
independence test problem despite arbitrary dependence may exist among them.
Finally, we prove that the true causal effects can be unbiasedly estimated with
transformed confounders inferred by CiVAE. Experiments on both simulated and
real-world datasets demonstrate significantly improved robustness of CiVAE.

1 INTRODUCTION

Causal inference, which aims to infer cause-and-effect relations from data, has gained increasing
prominence in various fields, such as social science, economics, and public health (Glass et al., 2013;
Johansson et al., 2016; Prosperi et al., 2020). Traditional methods rely on the golden standard of
randomized control trials (RCT) to draw causal conclusions via experimentation (Cook et al., 2002).
Recently, more attention has been dedicated to causal inference from observational data, where
treatments, outcomes, and unit covariates are passively observed, and researchers have no control
over treatment assignment mechanism (Shalit et al., 2017; Shi et al., 2019; Wager & Athey, 2018).

One main obstacle to inferring causal relations from observational data is confounding bias, which
occurs when we fail to account for the systematic difference between the treatment and non-treatment
groups due to variables that causally influence the treatment and the outcome, i.e., unobserved
confounders (Jager et al., 2008). If the confounders can be measured, we can address the bias by
controlling them via covariate adjustment (Pocock et al., 2002) or propensity score re-weighting (Li
et al., 2018). However, confounders are not always measurable (Kuroki & Pearl, 2014). Therefore,
recent efforts have been devoted to adjusting for unobserved confounders based on their proxies,
which are observed covariates postulated to be causally related with the unobserved confounders
(Miao et al., 2018; Yao et al., 2018; Madras et al., 2019). One exemplar work is the causal effect
variational auto-encoder (CEVAE) (Louizos et al., 2017), which has demonstrated that confounding
bias can be mitigated by controlling latent variables inferred from the proxies of confounders.

Although proxy-based methods have achieved substantial progress in recent years, they may risk
controlling latent post-treatment variables scrambled in the proxies, where latent post-treatment
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(a) SCM Assumed by CEVAE (c) SCM Assumed by the Proposed CiVAE
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Figure 2: Comparison between the causal models assumed by CEVAE, TEDVAE, and CiVAE.
Bi-directional dashed arrow means we allow arbitrary correlation between the two variables.

bias can be introduced in the estimation. The negative effects of controlling observed post-treatment
variables have been investigated in prior research (Acharya et al., 2016; Elwert & Winship, 2014;
King & Zeng, 2006). For example, Montgomery et al. (2018) found that more than 50% of the
papers published in top journals of politics inadvertently controlled post-treatment variables in
the experimental setting, even though the researchers had complete control over which covariates
to control for. On this basis, we postulate that the post-treatment bias could be even worse for
proxy-based methods in the setting of observational study where available covariates are passively
recorded. In addition, the post-treatment variables can be latent and scrambled into the observed
covariates together with the latent confounders, which makes them difficult to disentangle.

work mode application
decisions

job type

mode-invariant skills

mode-related skills C

T Y

X

M

Xs
required skills

(e.g., online communication)

(e.g., python programming)

(e.g., IT)

Figure 1: Example of latent post-treatment bias.

Consider a real-world example from the Com-
pany. We found that changing a job from onsite
to online mode causes applicants to make differ-
ent decisions, and we want to estimate the causal
effects of switching a job from onsite to online
mode on the decisions of the applicants (Here,
the units at study are the jobs instead of appli-
cants). To study the case, the Company collected
two groups of online (treated) and onsite (control)
jobs, where (the average) application decisions of
job seekers are treated as the outcome. Clearly,

job type is a confounder as certain jobs (e.g., IT) are more likely to permit online working and
are more difficult to apply. When job type is not provided, the required skills of the job (which
is mandatory) can be used as the proxy of the confounder “job type”. However, a caveat is that
switching to an online work mode may also alter the required skills of a job, thereby affecting the
qualification and, therefore, the decision of the applicants. Consequently, directly using the skills as
the proxy of the confounder “job type” for adjustment could unintentionally control latent mediators
(changed skills), which introduces latent post-treatment bias in the causal effect estimation.

Similar examples are ubiquitous in observational studies in other fields where data are collected
post hoc and pre-treatment and post-treatment components entangle in the observed covariates. For
example, for medical treatment effect estimation, a common circumstance is that only post-treatment
test results of the patients are available (Liu et al., 2012). Some results, such as the changes in
blood pressure, are influenced by the treatment, while others (depending on the specific treatment)
could remain invariant to the treatment but are indicative of a patient’s pre-treatment health (i.e., an
important confounder for treatment effect estimation). The problem can be exacerbated in politics
and economy (Klar et al., 2020). For example, when estimating the causal effect of historical policies,
usually only yearly-aggregated data on the covariates, such as GDP, employment rates, or social
welfare are available. These variables are often a mixture of pre-policy conditions (e.g., GDP from
the beginning of the year to the date the policy took effect) reflecting the latent pre-policy state of the
area (i.e., the latent confounders) and post-policy outcomes (e.g., GDP after the policy), where latent
post-treatment bias can be introduced if these covariates are treated as proxies (Homola et al., 2024).

Addressing the latent post-treatment bias faces multi-faceted challenges. First, there lacks a the-
oretical formulation of the bias when proxies scramble latent post-treatment variables for existing
proxy-based methods. In addition, it is difficult to distinguish confounders and post-treatment vari-
ables in the latent space due to their similar observed behaviors. Existing covariate disentanglement-
based methods, e.g., TEDVAE (Zhang et al., 2021), focus on an easier task of disentangling latent
confounders with latent adjusters and instrumental variables, which can be achieved by leveraging
their different predictive abilities w.r.t. the treatment and outcome. However, since both latent
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confounders and post-treatment variables correlate with the treatment and the outcome, they cannot
be disentangled by these methods. Finally, even if latent confounders can be distinguished from
post-treatment variables, since most existing latent variable models have no identifiability guarantee
(Khemakhem et al., 2020), it is unclear whether controlling the inferred latent variables, which may
be arbitrary transformations of the true confounders, can provide unbiased estimations.

To address the challenges, we first analyze existing proxy-based methods when selected proxies
scramble both latent confounders and latent post-treatment variables, where we show the estimation
can be arbitrarily biased. We then propose a novel Confounder-identifiable VAE (CiVAE) to address
the latent post-treatment bias. Specifically, we prove that based on a mild assumption that the prior of
latent variables that generate the observed proxy belongs to a general exponential family with at least
one invertible sufficient statistic in the factorized part, latent confounders and latent post-treatment
variables can be individually identified up to bijective transformations and permutation. With such an
identifiability guarantee, based on the causal relations among confounders, post-treatment variables,
and treatment, we further demonstrate that the inferred confounders could be properly disentangled
from the latent post-treatment variables with pair-wise conditional independence tests, even if they
may have arbitrary dependence with each other. Finally, we prove that the true causal effects can be
unbiasedly estimated based on the confounders inferred by CiVAE. Experiments on both simulated
and real-world datasets demonstrate the robustness of CiVAE to latent post-treatment bias.

2 PROBLEM FORMULATION

In this paper, we assume the causal model in Fig. 2-(c). We use a binary random variable T to denote
the treatment, a random vector X ∈ RKX to denote the observed covariates (i.e., the proxy), and a
random scalar Y ∈ R to denote the outcome. Furthermore, the observed covariates X are assumed to
be generated from KC independent latent confounders C ≜ [C1, C2..., CKC

] causally influencing
both T and Y , and KM latent post-treatment variables M ≜ [M1,M2...,MKM

] under the causal
influence of the treatment (where the relation between M and Y can be arbitrary). We use the random
vector Z ≜ [C||M ] ∈ RKZ=KC+KM to denote all relevant latent factors. We assume that beyond
C, there are no latent confounders that confound the latent variables Z. Our aim is to estimate the
average causal effects of treatment T on outcome Y with auxiliary confounder information in X ,
where the estimation should be devoid of both confounding bias and post-treatment bias.

3 THEORETICAL ANALYSIS OF LATENT POST-TREATMENT BIAS

3.1 PRELIMINARIES AND ASSUMPTIONS

To achieve such a purpose, we first define the (conditional) average treatment effects (C/ATE) when
covariates X scramble both latent confounders C and (mixed-in) post-treatment variables M . We
then define the post-treatment bias when covariates X are directly used as the proxy of confounders.
To facilitate the analysis, we make the following assumption regarding the causal generative process.

Assumption 1. We assume X = f(C,M) + ϵ, where f is a deterministic function that combines
latent confounders C and some mixed-in latent post-treatment variables M into observations X , and
ϵ is random noise. In addition, we assume that the function f is injective1; beyond injectivity, f can
be arbitrarily nonlinear. We use f† : X → [C||M ] to denote its left inverse. We use f†

C : X → C

and f†
M : X →M to denote the mapping from X to C, M , respectively.

Similar assumptions between X and C are commonly made either explicitly or implicitly in most
existing proxy-of-confounder-based methods. For example, if both X and C are categorical, Kuroki
& Pearl (2014) assume that X has at least the same number of categories as C and the conditional
distribution p(X|C) is non-degenerate, whereas the effect restoration algorithm (Miao et al., 2018)
assumes that KX = KC and the matrix [p(Xi|Cj)]

KX ,KC

i,j=1,1 to be full-rank. Although CEVAE
(Louizos et al., 2017) makes no explicit injectivity assumption between C and X , it requires
that the joint distribution p(C,X, T, Y ) can be fully recovered from the observations (X, T, Y ).
Anandkumar et al. (2014) show that some of the possible identification criteria for the recovery of

1Note that when KX > KZ , non-injectives have measure zero in functional space {f : {C,M} → X}.
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p(C,X, T, Y ) include (i) X having multiple independent views of C (Edwards et al., 2015), and
(ii) C being categorical and X being a mixture of Gaussian with mixture components determined
by C (that is, X is generated by bijective mapping of C to the mean of the corresponding mixture
component with added Gaussian noise).

In the following part, we will temporarily omit the noise ϵ to gain better intuition of latent post-
treatment bias (but all the conclusions will still hold in the posterior sense). In Section 4, we assume
noise exists and demonstrate our method can still properly identify the latent confounders.

3.2 CAUSAL ESTIMAND AND THE TRUE ATE

Based on Assumption 1, we are ready to define the estimand of average treatment effect (ATE)
through controlling the covariates X ′, as well the as the true (conditional) average treatment effects.
Definition 1. (DCEV & DEV). We define the Difference in Conditional Expected Values (DCEV) as:

DCEV (x′) = E[Y |T = 1,X ′ = x′]− E[Y |T = 0,X ′ = x′], (1)

which is the difference of the expected value of Y for units with variable X ′ = x′ in the treatment
group and the non-treatment group. Based on DCEV (x′), we define the Difference in Expected
Value (DEV) as DEV (X ′) = Ep(X′)[DCEV (X ′)] as the expectation of DCEV w.r.t. p(X ′).

DEV (X ′) denotes the estimand of ATE when X ′ is the covariates that we choose to control (i.e.,
calculate the expected difference in each stratum of X ′ = x′). If X ′ = ∅, DEV (∅) represents
the naive estimator that directly calculates the expected difference of the outcome Y between the
treatment group and the non-treatment group. With the causal estimand DEV (X ′) defined, we then
derive the true causal effects with the covariates X ′ when it scrambles both latent confounders and
post-treatment variables according to the generative process described in Assumption 1:
Definition 2. Under Assumption 1, we define the Conditional Average Treatment Effect (CATE) for
individuals with observed covariates X = x by controlling only the confounder part in X as:

CATE(x) = E[Y |T = 1,C = f†
C(x)]− E[Y |T = 0,C = f†

C(x)], (2)

with the Average Treatment Effect (ATE) of treatment T defined as:

ATE = E[Y |do(T = 1)]− E[Y |do(T = 0)] = Ep(C)[E[Y |T = 1,C]− E[Y |T = 0,C]]. (3)

Please note that we only consider the latent confounder component of the observed features X in
the definition of CATE due to the indeterminate causal relation between the post-treatment variables
M and the outcome Y . However, if the specific relationship between M and Y can be further
established by the researcher (e.g., all elements of M are latent mediators), more precise forms of
CATE can be derived with path-specific counterfactual analysis (Cheng et al., 2022; Imai et al., 2010).

3.3 LATENT POST-TREATMENT BIAS

With DEV (X ′) (the ATE estimator that controls for the covariates X ′), CATE, and ATE defined in
Section 3.2, in this section, we analyze the latent post-treatment bias of existing proxy-of-confounder-
based causal inference methods, such as CEVAE, that control for latent variables inferred from
the covariates X to estimate the ATE of T on Y , when X scrambles both latent confounders and
post-treatment variables as Assumption 1. In our analysis, Lemma 3.1 will be frequently used.
Lemma 3.1. For an injective function g, E[Y |X ′ = x′] = E[Y |g(X ′) = g(x′)] holds.

The proof when g is differentiable a.e. can be referred to in Appendix A.1. Since the latent variable
models used in existing methods (such as VAE with factorized Gaussian prior in CEVAE) lack
identifiability guarantee (i.e., the recovery of the exact latent variables), we assume that these models
can recover the true latent space Z = [C,M ] up to invertible transformations f̄ , where the inference
process can be represented as Ẑ = f̃(X) = f̄ ◦ f†(X). With such an assumption, we have the
following theorem regarding the latent post-treatment bias when X mixes post-treatment variables.
Theorem 3.2. If the observed covariates X are generated from latent confounders C and latent
post-treatment variables M according to Assumption 1, the latent post-treatment bias of a proxy-
based causal inference algorithm that controls latent variables Ẑ inferred from X via f̃ = f̄ ◦ f† :
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RKX → RKC+KM to estimate the ATE can be formulated as follows:

Bias(X) = ATE −DEV (f̃(X)) = ATE − E[E[Y |T = 1, f̃(X)]− E[Y |T = 0, f̃(X)]]

= ATE − E[E[Y |1, f̄ ◦ f†(f(C,M))]− E[Y |0, f̄ ◦ f†(f(C,M))]]

= E[E[Y |1,C]− E[Y |0,C]]− E[E[Y |1,C,M ]− E[Y |0,C,M ]],

(4)

which can be arbitrarily bad. Therefore, the estimator of existing proxy-of-confounder-based meth-
ods, i.e., DEV (f̃(X)), is an arbitrarily biased estimator of the ATE, when the selected proxy of
confounders X accidentally mixes in latent post-treatment variables M .

The final step of Eq. (4) can be proved since f is injective and f̄ bijective, the composite f̄ ◦ f† ◦ f :

[C,M ]→ Ẑ is bijective, so we can use Lemma 3.1 to remove f̄ ◦ f† ◦ f in the condition.

3.4 EXAMPLES IN THE LINEAR CASE

Generally, the latent post-treatment bias defined in Eq. (4) cannot be simplified, because (i) the
causal relationship between M and Y are indeterminate, and (ii) the causal influence of C, M ,
and T on Y can be arbitrary. However, for linear structural causal models with determined causal
relationships between M and Y (e.g., M are mediators, which are post-treatment variables that have
causal influences on the outcomes), stronger conclusions can be drawn as follows:
Corollary 3.3. (Latent Mediator). For the linear Structural Causal Model (SCM) defined as:

(i) T ← 1(αT +
∑

βi · Ci > a), (ii)Mj ← αM + γj · T

(iii) X ← αX +A[M ||C], (iv) Y ← αY + τ · T +
∑

θj ·Mj +
∑

κi · Ci,
(5)

where the mixture function f = A ∈ RKX×(KC+KM ) is a full column-rank matrix, the CATE, ATE,
and the bias of proxy-of-confounder-based causal inference model that controls the latent variables
Ẑ inferred via Ẑ = f̃(X) = BTX can be formulated as follows:

ATE = CATE = τ +
∑

γj · θj , and DEV (Ẑ) = E[DCEV (Ẑ)] = DCEV (Ẑ) = τ

Bias(Ẑ) = ATE −DEV (Ẑ) =
∑

γj · θj ,
(6)

where B ∈ RKX×(KC+KM ) is another full column-rank matrix. Since
∑

γj · θj is arbitrary, the
estimator DEV (Ẑ) = E[DCEV (BTX)] is arbitrarily biased for ATE estimation.

The proof of Eq. (6) is provided in Appendix A.2. In addition, we show that post-treatment variables
M DO NOT necessarily need to have direct causal effects on the outcome Y to incur arbitrary bias
in ATE estimation. In Appendix A.3, we provide another example (i.e., Mixed Latent Correlator) in
the linear case where M is correlated with Y through unobserved confounders U in Corollary A.1.

4 METHODOLOGY

In this section, we introduce Confounder-identifiable Variational Auto-Encoder (CiVAE) in detail.
Specifically, we first prove that if the prior distribution of the true latent variables Z = [C,M ]
satisfies certain weak assumptions, CiVAE can individually identify Z up to permutation and element-
wise bijective transformations. Then, utilizing the invariant causal relations between C, M , and T ,
we novelly transform the challenging confounder disentanglement problem into a tractable pair-wise
conditional independence test problem, which can be effectively solved with kernel-based methods,
despite the potential arbitrary interactions among C and M . Finally, we prove that controlling
confounders inferred by CiVAE provides an unbiased estimate of ATE.

4.1 GENERATIVE PROCESS

We first introduce the generative process of Z in CiVAE that leads to the identification. The
fundamental work on identifiability of deep variational inference, i.e., the identifiable VAE (iVAE)
(Khemakhem et al., 2020), makes a strict assumption that the prior of true latent variables Z (i.e.,
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[C,M ]) is conditionally factorized given observed covariates other than X . However, since C form
fork structures with and M could have arbitrary relations with Y (see Fig. 2-(c)), Ci, Cj , Mi, and
Mj are not independent given Y . Recently, Non-Factorized iVAE (NF-iVAE) (Lu et al., 2021) allows
arbitrary dependence among the true latent variables Z in the conditional priors, where Z can be
identified up to arbitrary non-linear transformations. However, the transformation is not necessarily
invertible, which is risky as multiple values of confounders may collapse, leading to biased ATE
estimation when averaging DCEV calculated in each stratum of the inferred confounders.

In contrast, CiVAE guarantees the elementwise bijective identifiability of Z up to permutations.
Specifically, we put a general exponential family with at least one invertible sufficient statistic in the
factorized part as the prior when conditioning on treatment T and outcome Y as follows:
Assumption 2. Let Z = [C||M ] be the random vector for latent variables that causally gen-
erate the observed covariates X according to Assumption 1. We assume that the conditional
prior of Z given the outcome Y and the treatment T belongs to a general exponential family
with parameter vector λ(Y, T ) and sufficient statistics S(Z) = [Sf (Z)T ,Snf (Z)T ]T . Specif-
ically, S(Z) is composed of (i) the sufficient statistics of a factorized exponential family, i.e.,
Sf (Z) = [S1(Z1)

T , · · · ,SKZ
(ZKZ

)T ]T , where all components Si(Zi) have dimension larger
than or equal to 2 and each Si has at least one invertible dimension, and (ii) Snf (Z), where Snf is
a neural network with ReLU activation. The density of the conditional prior can be formulated as:

pS,λ(Z|Y, T ) = Q(Z)/C(Y, T ) exp[S(Z)Tλ(Y, T )], (7)

where Q(Z) is the base measure, and C(Y, T ) is the normalizing constant independent of Z.

Intuition. We justify that assumption 2 is weak and practical as follows. (i) Neural networks with
ReLU activation have universal approximation ability of distributions (Lu & Lu, 2020). Therefore,
Eq. (7) can model arbitrary dependence between true latent confounders C and post-treatment
variables M conditional on T and Y . (ii) Although CiVAE makes an extra assumption that ∀i, at
least one dimension of Si is invertible, this can be easily satisfied as most commonly used exponential
family distributions, such as Gaussian, Bernoulli, etc., has at least one invertible sufficient statistics.

The reason why we use ReLU as the activation is that, the identifiability of iVAE relies on the
condition that the sufficient statistics S have zero second-order cross-derivative. The factorized part,
i.e., Sf , satisfies it trivially as all cross-derivatives of Sf are zero. In addition, since the ReLU neural
networks are linear a.e., all second-order derivatives of Snf are zero. Therefore, identifiability holds
after adding Snf in the prior that allows the capturing of arbitrary dependence among Z.

4.2 OPTIMIZATION OBJECTIVE

Combining Assumptions 1 and 2, the generative process assumed by CiVAE can be formulated as:

(i) pθ(X,Z | Y, T ) = pf (X | Z) pS,λ(Z | Y, T ), (ii) pf (X | Z) = pϵ(X − f(Z)). (8)

where θ = (f,λ,S) ∈ Θ are the parameters of the generative distribution. Y, T are omitted from
pθ as Z form the Markov Blanket of X in Fig. 2-(c). Since the generative process of CiVAE is
parameterized by deep neural networks, the posterior distribution of Z, i.e., pθ(Z | X, Y, T ), is
intractable. Therefore, we resort to variational inference (Blei et al., 2017), where we introduce
an approximate posterior qϕ(Z | X, Y, T ) parameterized by a deep neural network with trainable
parameters ϕ, and in qϕ(Z|·) finds the one closest to pθ(Z|·) measured by KL divergence. The
minimization of KL is equivalent to the maximization of the evidence lower bound:

L(θ,ϕ) := Eqϕ

[
log pf (X | Z) + log pS,λ(Z | Y, T )− log qϕ(Z | ·)︸ ︷︷ ︸

KL of posterior with prior

]
.

(9)

Since the normalization constant C in Eq. (7) is generally intractable, it is infeasible to directly learn
S, λ by optimizing Eq. (9). Therefore, we substitute the KL term in Eq. (9) with the widely-used
score matching (Hyvärinen & Dayan, 2005) to learn unnormalized densities instead as follows:

L(S,λ,ϕ) := Eqϕ(Z|·)

[
∥∇Z log qϕ(Z | ·)−∇Z log pS,λ(Z | Y, T )∥2

]
= Eqϕ(Z|·)

KZ∑
j=1

[
∂2pS,λ(Z | Y, T )

∂Z2
j

+
1

2

(
∂pS,λ(Z | Y, T )

∂Zj

)2
]+ const.

(10)
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4.3 IDENTIFIABILITY OF CIVAE

With the generative process and optimization objective of CiVAE discussed in previous sub-sections,
we introduce the final weak assumption of CiVAE on the regularity of the data, which, combined
with Assumptions 1 and 2, leads to the main Theorem that states the identifiability of CiVAE.
Assumption 3. Assume the following: (i) The set {X ∈ X |ϕ(X) = 0} has measure zero, where ϕ
is the characteristic function of the density pf in Eq. (8). (ii) The sufficient statistics, Si in Sf are all
twice differentiable. (iii) The mixture function f in Eq. (8) has all second-order cross derivatives.
(iv) There exist k + 1 distinct points (Y, T )0, · · · , (Y, T )k s.t. the matrix L = [λ((Y, T )1) −
λ((Y, T )0), · · · ,λ((Y, T )k)− λ((Y, T )0)] of size k × k is invertible, where k = Dim(S).

The identifiability theorem of CiVAE can be formulated as follows.

Theorem 4.1. If Assumptions 1, 2, and 3 hold, and if θ, θ̃ ∈ Θ→ pθ(X|Y, T ) = pθ̃(X|Y, T ), the
true latent variables Z are identifiable up to permutation and element-wise bijective transformation.
Furthermore, in the case of variational inference, if we denote the true parameter that generates the
data as θ∗, if (i) the distribution family qϕ(Z|X, Y, T ) contains the posterior pθ(Z|X, Y, T ), and
qϕ(Z|X, Y, T ) > 0, (ii) we optimize Eq. (4) w.r.t. both θ,ϕ, then in the limit of infinite data, true
parameters θ∗ can be learned up to a permutation and bijective transformation of Z.

Intuition. We justify that Assumption 3 is weak and practical as follows: 3-(i) is commonly-used to
denote that the data generative distribution should not be degenerative. 3-(ii), 3-(iii) can be trivially
satisfied by neural networks. For 3-(iv), Section B.2.3 of (Khemakhem et al., 2020) shows that if
the functional for the factorized part of the exponential family parameters λij(Y, T ) are independent
(which is very weak), (iv) can be satisfied with arbitrary k + 1 different (Y, T ) points.

The proof of Theorem 4.1 non trivially extends NF-iVAE (Lu et al., 2021) by incorporating the new
assumption introduced in CiVAE (i.e., each Si has at least one invertible dimension) to ensure that
the transformation of each Zi is bijective. The detailed proof is provided in Appendix A.4.

4.4 IDENTIFICATION OF LATENT CONFOUNDERS - NO INTERACTION CASE

Intuitively, theorem 4.1 ensures the latent variables Ẑ inferred by CiVAE cannot (i) mix confounders
and post-treatment variables in each dimension, or (ii) collapse different values of the latent con-
founders into the same value. To further determine the dimensions of confounder and post-treatment
variable in Ẑ, we rely on the invariant causal relations between latent variables Ẑ and the treatment
T . We first discuss the simplified cases with no latent interactions to gain some intuitions:

• Case 1. Intra-Confounders. Latent confounders Ci, Cj and the treatment T form the V-structure
Ci → T ← Cj . Therefore, Ci and Cj are marginally independent, whereas they become
dependent when conditioning on the assigned treatment T .

• Case 2. Intra-Post Treatment Variables. Latent post-treatment variables Mi, Mj and the treatment
T form a Fork-structure Mi ← T → Mj , where Mi, Mj are marginally dependent, but they
become independent after conditioning on the assigned treatment T .

• Case 3. Cross-Confounder and Post-Treatment Variables. Latent confounder Ci, latent post-
treatment variable Mj , and the treatment T forms a Chain structure Ci → T →Mj , where Ci,
Mj are marginally dependent, and they become independent after conditioning on T .

Since only in the case of intra-confounders does the dependence between two latent variables Ẑi

and Ẑj increase after conditioning on the treatment T , if more than one latent confounder exists,
which is highly probable when covariates X are high-dimensional, we can conduct independence
test Ind(Ẑi, Ẑj) and CInd(Ẑi, Ẑj |T ) for all pairs of inferred latent variables in Ẑ and select the
pairs where the p-value of CInd is larger than that of Ind as latent confounders. Here, we note that
the kernel-based (conditional) independence test incurs N2 ×K2

Z complexity in the training phase
(Zhang et al., 2012). However, once the dimensions of the confounders in Ẑ are determined, CiVAE
has the same complexity as CEVAE for the estimation of CATE and ATE in the test phase.

4.5 GENERALIZATION TO INTERACTED LATENT VARIABLES
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We further generalize CiVAE to address interactions among latent variables [C,M ]. Since
Assumption 2 allows arbitrary dependence in the latent space, CiVAE can still individually identify
[C,M ] in Ẑ by optimizing Eq. (10). However, in scenarios where latent interactions exist, cases 1-3
in Section 4.4 may not hold, which precludes us from further disentangling C from Ẑ. For example,
if C confounds M , case 2 may not hold, as Mi and Mj are still dependent after conditioning on T .

The generalization still leverages the V-structure between latent confounders C and treatment T , i.e.,
Ci → T ← Cj and involves more advanced pairwise independence test for every Ẑi, Ẑj ∈ Ẑ:

• Case 1. Intra-Confounders. If there exist ẐC ⊂ Ẑ/{Ẑi, Ẑj}, s.t. Ẑi ⊥ Ẑj |ẐC .

• Case 2. Intra-Post Treatment Variables. If there exist ẐM ⊂ Ẑ/{Ẑi, Ẑj}, s.t. Ẑi ⊥ Ẑj |{ẐM , T}.

• Case 3. Cross-Variables. If there exist ẐC,M ⊂ Ẑ/{Ẑi, Ẑj}, s.t. Ẑi ⊥ Ẑj |{ẐC,M , T}.

The proof is that, for Case 2 and Case 3, since Mi,Mj form fork structure with T and Mi, Cj

form chain structure with T , we cannot find ẐC that leads to independence without conditioning on
T (as with Case 1). If no latent interactions exist, ẐC , ẐM , ẐC,M = ∅, which degenerates to the
three cases discussed in Section 4.4. If interaction exists, we start with ẐC , ẐM , ẐC,M = ∅ and
gradually include more variables in Ẑ into the condition sets. We provide examples of ẐC , ẐM ,
ẐC,M for different types of latent interactions in Appendix C. Similarly, once the dimensions of the
confounders Ĉ in Ẑ are determined, retrieving Ĉ from Ẑ takes O(1) time in the test phase.

4.6 ATE ESTIMATOR WITH TRANSFORMED CONFOUNDERS

Finally, we demonstrate that controlling the transformed confounders Ĉ inferred by CiVAE provides
an unbiased estimation of ATE. Specifically, we have the final Theorem show the unbiasedness.

Theorem 4.2. Controlling bijective of confounders is equivalent to original confounders in ATE
estimation, i.e., DEV (C̃) = DEV (g(C)) = ATE, if the transformation function g is bijective.

The proof of Theorem 4.2 for discrete C is trivial (where Ĉ = g(C) represents a simple relabeling
of the stratum that we calculate the DCEV and take the expectation). The proof in the continuous
case where g is differentiable is provided in Appendix A.5. With Theorem 4.2, we can control the
identified latent confounders as true confounders, providing an unbiased estimate of ATE.

5 EMPIRICAL STUDY

5.1 DATASETS

work mode application
decisions

e.g., mode-invariant skills

Cj

T

X

Mi

Xs
required skills

applicant
featuresXa

Y

applicant
statistics
(outcome)

*(treatment)
*

Yd

e.g., mode-
related skills

Figure 3: Causal generative process of the real-world datasets.

Simulated Datasets.2 We first
establish two simulated datasets,
i.e., LatentMediator and
LatentCorrelator, that con-
sider two types of post-treatment
variables, i.e., (i) mediators and (ii)
correlators, i.e., variables that are
correlated with the outcome Y via
latent confounders U , where the
causal generative process is fully
controlled by the experimenter.
The generative processes of the two datasets are provided in Corollary 3.3 and Corollary A.1.
In our experiments, C are generated from Gaussian distribution as C ∼ Gaussian(0, IKC

).
For LatentMediator, γ is set as [−1,−1,−1], θ is set as [1, 1, 1], and τ is set as 2, which
results in ATE = −1. For the LatentCorrelator dataset, we set the same γ and θ as the
LatentMediator dataset, where parameters ϕ and τ are set to 1, which results in ATE of 1.

2Codes available at https://anonymous.4open.science/r/CiVAE-demo-29F1
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(a) Case 1: Intra-Confounder (b) Case 2: Intra-Mediator (c) Case 3: Confounder-Mediator
Figure 4: Visualization of p-value of independence test before and after conditioning on treatment T .

Real-world Datasets. In addition, we build real-world datasets from the Company to estimate the
ATE of switching a job from onsite to online work mode on the decision of applicants. Naively,
the decision can be measured by the click-through rate of applicants to the job posting (i.e., Yd in
Fig. 3), which is too coarse in granularity. More practically, we consider the average age and the
variance of gender of the applicants as two outcomes of interest, which are determined by the naive
outcome, i.e., decision to apply Yd, and applicants’ age and gender Xa, where Xa are pre-treatment
variables. The causal graph is illustrated in Fig. 3, which extends the example in Fig. 1. Covariates
X ∈ {0, 1}KX include the required skills of the job. Specifically, we establish a cohort of 3,228
jobs from the Bay Area in the US, where a preliminary study shows that DEV (∅) ≈ 2 years3 (i.e.,
online job applicants are two years younger than onsite job applicants in the collected data), and
DEV (∅) ≈ −0.015 (i.e., online jobs exhibit 0.015 more gender variance than onsite jobs in the
collected data). To simulate C and M , we first learn a generative model as follows:

Z ∼ Gaussian(0, IKZ
),X ∼Multi(NNf (Z)), Y ∼ Gaussian(w ⊙Z, 1), (11)

where Multi represents multinomial distribution, NNf is a neural network with softmax activation,
Z,w ∈ RKZ , KZ = 8, and ⊙ represents the element-wise product operator, respectively. We
then treat the first KC = 5 dimensions of Z as the latent confounders C and the remaining
KM = KZ −KC dimensions as the latent mediators M . After learning NNf and w according to
Eq. (11), we draw latent confounders C ∈ Gaussian(0, I), latent mediators M = T · γ, and set the
outcome Y = w⊙ [C||M ] + τ ·T , where the true ATE can be calculated as sum(γ ⊙w−KM :)+ τ .

5.1.1 DISENTANGLE CONFOUNDERS AND POST-TREATMENT VARIABLES

We first show the p-value of the kernel-based pairwise independence test of the true latent variables
before and after conditioning on the assigned treatment T . From Fig. 4, we can find that the
distinction of the intra-confounder case from the other two cases discussed in Subsection 4.4 is
significant. Here, we should note this relies on the assumption that latent variables are independent.
Experiments on generalized CiVAE to address interactions among latent variables are in Section C.

5.2 BASELINES

The baselines we include can be categorized into three classes. (i) Unawareness, where no informa-
tion in X is used for ATE estimation. We implement the naive LR0 estimator, which regresses Y on
T and uses the coefficient to estimate the ATE (Imbens & Rubin, 2015) and is equivalent to DEV (∅).
(ii) Control-X , which directly controls the covariates X . In this class, LR1 regresses Y on T and
X , whereas TarNet uses a two-branch neural network to estimate DEV (X) (iii) Control-Z, which
controls latent variables Z learned from the covariates X . Methods from this class include CEVAE
(Louizos et al., 2017) and covariate disentanglement methods, such as DR-CFR (Hassanpour &
Greiner, 2020), TEDVAE (Zhang et al., 2021), NICE (Shi et al., 2021), and AFS (Wang et al., 2023).

5.2.1 RESULTS AND ANALYSIS

From Table 1, we can find that for all four datasets, CEVAE is worse than the naive LR0 estimator.
In addition, for the LatentMediator and Company (Age) dataset, all methods except CiVAE
fail to predict the negativity of the ATE. Covariates disentanglement-based methods, i.e., DR-CFR
and TEDVAE, inherit the latent post-treatment bias of CEVAE. The reason is that, these methods
disentangle latent confounders C from latent instrumental variables I and latent adjusters A by
utilizing their causal relations with T and Y , i.e., I is predictive only for T , A is predictive only
for Y , whereas C is predictive for both T and Y . For example, TEDVAE includes three encoders

3which leads to 0.178 and -0.105 after standardization of the outcome.
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Table 1: Comparison of CiVAE with baselines under latent post-treatment bias on various datasets.
Dataset LatentMediator LatentCorrelator Company (Age) Company (Gender)

Method ATE. Err. ATE. Err. ATE. Err. ATE. Err.

LR0 0.975 ± 0.032 1.975 2.977 ± 0.032 1.977 0.131 ± 0.015 0.399 -0.105 ± 0.009 -0.213
LR1 1.457 ± 0.167 2.457 3.400 ± 0.130 2.400 0.093 ± 0.029 0.361 -0.175 ± 0.014 -0.256
TarNet 1.461 ± 0.172 2.461 3.414 ± 0.146 2.414 0.112 ± 0.085 0.380 -0.167 ± 0.021 -0.248
CEVAE 1.550 ± 0.292 2.550 3.323 ± 0.167 2.323 0.106 ± 0.078 0.374 -0.180 ± 0.028 -0.261
DR-CFR 1.239 ± 0.324 2.239 3.185 ± 0.319 2.185 0.094 ± 0.089 0.362 -0.159 ± 0.030 -0.240
NICE 1.868 ± 0.530 2.868 1.942 ± 0.524 0.942 0.149 ± 0.126 0.417 -0.186 ± 0.041 -0.267
TEDVAE 1.042 ± 0.315 2.042 3.138 ± 0.281 2.138 0.097 ± 0.093 0.365 -0.143 ± 0.027 -0.224
AFS 1.496 ± 0.825 2.496 3.251 ± 0.398 2.251 0.105 ± 0.102 0.373 -0.163 ± 0.045 -0.244
CiVAE -0.822 ± 0.753 0.178 1.199 ± 0.765 0.199 -0.140 ±0.137 0.128 -0.106 ± 0.064 -0.187
True ATE -1.000 ± 0.000 0.000 1.000 ± 0.000 0.000 -0.268 ± 0.000 0.000 -0.081 ± 0.000 0.000

to infer three sets of latent variables Î , Â, Ĉ from X and adds classification losses p(T |Î, Ĉ)

and p(Y |T, Ĉ, Â) on the CEVAE loss. However, since both C and M are correlated with both
T and Y , these methods cannot disentangle C from M . An exception is NICE (Shi et al., 2021),
which uses invariant risk minimization (IRM) (Arjovsky et al., 2019) to find all causal parents of
the outcome Y as the confounders, which makes it more robust in the LatentCorrelator case.
However, since mediators M are also the causal parent of Y , the performance degrades substantially
on the LatentMediator dataset. Although AFS (Wang et al., 2023) considers the existence of
post-treatment variables M in the proxy X , it assumes that they can be separated from other variables
in X in the observational space, and no relationship exists between the post-treatment variables and
the outcome, so it still has poor performance in our setting since both assumptions are violated.

5.3 SENSITIVITY ANALYSIS
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Figure 5: Error with different ratio of latent confounders and
latent post-treatment variable in the latent space.

In this part, we vary the number of
confounders and post-treatment vari-
ables that generate proxy X in the
Company (Age) and Company
(Gender) datasets and compare
CiVAE with the baseline TEDVAE
in Fig. 5. Fig. 5 shows that the er-
ror is consistently lower for CiVAE.
In addition, the error is compara-
tively higher when the number of
confounders is low since the mis-
identification of latent post-treatment
variables as confounders can have a
comparatively larger influence on the ATE estimation. In addition, when the number of confounders
becomes larger, the performance gap between CiVAE and TEDVAE gracefully shrinks.

6 CONCLUSIONS

In this paper, we systematically investigate the latent post-treatment bias in causal inference from
observational data. We first prove that unresolved latent post-treatment variables scrambled in the
proxy of confounders can arbitrarily bias the ATE estimation. To address the bias, we proposed
the Confounder-identifiable VAE (CiVAE), which, utilizing a mild assumption regarding the prior
of latent factors, guarantees the identifiability of latent confounders up to bijective transformations.
Finally, we show that controlling the latent confounders inferred by CiVAE can provide an unbiased
estimation of the ATE. Experiments on both simulated and real-world datasets demonstrate that
CiVAE has superior robustness to latent post-treatment bias compared to state-of-the-art methods.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Avidit Acharya, Matthew Blackwell, and Maya Sen. Explaining causal findings without bias:
Detecting and assessing direct effects. American Political Science Review, 110(3):512–529, 2016.

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. Journal of Machine Learning Research, 15:
2773–2832, 2014.
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Appendix

A THEORETICAL ANALYSIS

A.1 PROOF OF LEMMA 3.1.

Proof. Let Z = f(X) and z = f(x). If f is injective and differentiable a.e., and f† is the
left-inverse, we have:

fY |f(X)(y|f(x)) = fY |Z(y|z) =
fY,Z(y,z)

fZ(z)
=

fY,X(y, f†(z))|Jf†(z)|
fX(f†(z))|Jf†(z)|

=
fY,X(y,x)

fX(x)
= fY |X(y|x),

(12)
where f· and f·|· represent the marginal and conditional density function, respectively, and Jf†(z) is
the Jacobian matrix of function f† evaluated at z. Based on Eq. (12), we have:

E[Y |X] =

∫
y·fY |X(y|x)dy =

∫
y·fY |Z(y|z)dy = E[Y |Z = z] = E[Y |f(X) = f(x)]. (13)

A.2 PROOF OF COROLLARY 3.3.

Proof. For X = x, let [c||m]
.
= [f†

C(x)||f
†
M (x)]

.
= f†(x) = A†(x − αX), where A† is the left

inverse of the full column-rank matrix A in Eq. (2), we have:

CATE(x) = E[Y |T = 1,C = f†
C(x)]− E[Y |T = 0,C = f†

C(x)]

= E[Y |T = 1,C = c]− E[Y |T = 0,C = c]

= E[αY + τ · T +
∑

θj ·Mj +
∑

κi · Ci|T = 1,C = c]

− E[αY + τ · T +
∑

θj ·Mj +
∑

κi · Ci|T = 0,C = c]

= αY + τ · E[T |T = 1,C = c] +
∑

θj · E[Mj |T = 1,C = c] +
∑

κi · E[Ci|T = 1,C = c]

− αY + τ · E[T |T = 0,C = c] +
∑

θj · E[Mj |T = 0,C = c] +
∑

κi · E[Ci|T = 0,C = c]

= τ · (1− 0) +
∑

θj · (γj · (1− 0)) +
∑

κi · (ci − ci)

= τ +
∑

θj · γj = E[τ +
∑

θj · γj ] = ATE,

(14)
where the first equality is due to the definition of CATE in Eq. (2). In addition, the causal estimand
and bias of a proxy-of-confounder-based causal inference model that controls the latent variable Z
inferred via Z = f̄(X) = BTX (where B is also a full column-rank matrix) can be formulated as:

DCEV (BTx) = E[Y |T = 1,Z = BTx]− E[Y |T = 0,Z = BTx]

= E[Y |T = 1,Z = BTαX +BTA[c||m]]− E[Y |T = 0,Z = BTαX +BTA[c||m]]

(a)
= E[Y |T = 1,C = c,M = m]− E[Y |T = 0,C = c,M = m]

= αY + τ · 1 +
∑

θj · E[Mj |T = 1,C = c,M = m] +
∑

κi · E[Ci|T = 1,C = c,M = m]

− αY + τ · 0 +
∑

θj · E[Mj |T = 0,C = c,M = m] +
∑

κi · E[Ci|T = 0,C = c,M = m]

= τ · (1− 0) +
∑

θj · (mj −mj) +
∑

κi · (ci − ci)

= τ = E[τ ] = E[DCEV (BTX)],
(15)

where step (a) is due to the fact that, since both A and B are full column-rank matrices, BTA is
an invertible matrix, and the mapping f = BTαX +BTA is bijective. Therefore, we can invoke
Lemma 3.1 and apply the left-inverse of f , i.e., f† = (BTA)−1 −BTαX , to the condition of the
expectation. The rest steps are based on the structural causal equations defined in Eq. (2).
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A.3 ANOTHER CASE OF LINEAR SCM WITH LATENT CORRELATORS

Corollary A.1. (Latent Correlator). For another Linear Structural Causal Model defined as:

T ← 1(αT +
∑

βi · Ci > a)

Mj ← αM + γj · T + ϕj · Uj

X ← αX +A[M ||C]

Y ← αY + τ · T +
∑

θj · Uj +
∑

κi · Ci,

(16)

where f = A ∈ RKX×(KC+KM ) is a full column-rank matrix, the CATE, ATE, and the bias of
proxy-of-confounder-based causal inference model that controls the latent variable Z inferred via
Z = f̄(X) = BTX can be formulated as follows:

ATE = CATE = τ

E[DCEV (Z = BTX)] = DCEV (Z = BTX) = τ−
∑ θj · γj

ϕj

Bias = ATE − E[DCEV (BTX)] =
∑ θj · γj

ϕj
,

(17)

where B ∈ RKX×(KC+KM ) is another full column-rank matrix. Since
∑ θj ·γj

ϕj
is arbitrary, the

estimator E[DCEV (BTX)] is arbitrarily biased for the estimation of ATE.

Proof. The proof of the CATE and ATE is trivial. The causal estimand and the bias of a proxy-
of-confounder-based causal inference model that controls the latent variables Z inferred via Z =
f̄(X) = BTX (where B is also a full column-rank matrix) can be formulated as follows:

DCEV (BTx) = E[Y |T = 1,Z = BTx]− E[Y |T = 0,Z = BTx]

= E[Y |T = 1,Z = αX +BTA[c||m]]− E[Y |T = 0,Z = αX +BTA[c||m]]

(a)
= E[Y |T = 1,C = c,M = m]− E[Y |T = 0,C = c,M = m]

= αY + τ · 1 +
∑

θj · E[Uj |T = 1,C = c,M = m] +
∑

κi · E[Ci|T = 1,C = c,M = m]

− αY + τ · 0 +
∑

θj · E[Uj |T = 0,C = c,M = m] +
∑

κi · E[Ci|T = 0,C = c,M = m]

= τ · (1− 0) +
∑

θj · (ϕ−1
j · (mj − αM − γj)− ϕ−1

j · (mj − αM )) +
∑

κi · (ci − ci)

= τ −
∑ θj · γj

ϕj
= E

[
τ −

∑ θj · γj
ϕj

]
= E[DCEV (BTX)],

(18)

where step (a) and the rest of the proof follow the same logic as the proof in Section 3.3.

A.4 PROOF OF THEOREM 4.1

The strict definitions of the exponential family, strong exponential (which is assumed for the factorized
part of the conditional prior), and identifiability follow the definitions in (Khemakhem et al., 2020;
Lu et al., 2021), and can be referred to in Appendix E, F of (Lu et al., 2021), which we omit to avoid
redundancy. The proof of Theorem 4.1 is largely based on the NF-iVAE paper (Lu et al., 2021),
where most of the details can be found, with the new assumption introduced in CiVAE that each Sf,i

has at least one invertible dimension incorporated to ensure that each dimension of the inferred latent
variables is a bijective transformation of the corresponding true latent variable.
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A.4.1 PART I

Step I. In this step, we transform the equality of noisy conditional marginal distribution of X given
Y, T of two models with parameter θ, θ̃ ∈ Θ into the equality of noise-free distributions.

pθ(X | Y, T ) = pθ̃(X | Y, T )

=⇒
∫
Z
pf (X | Z)pS,λ(Z | Y, T )dZ =

∫
Z
pf̃ (X | Z)pS̃,λ̃(Z | Y, T )dZ

=⇒
∫
Z
pε(X − f(Z))pS,λ(Z | Y, T )dZ =

∫
Z
pε(X − f̃(Z))pS̃,λ̃(Z | Y, T )dZ

(a)
=⇒

∫
X
pε(X −X)pS,λ

(
f†(X) | Y, T

)
vol

(
Jf†(X)

)
dX =∫

X
pε(X −X)pS̃,λ̃

(
f̃†(X) | Y, T

)
vol

(
Jf̃†(X)

)
dX

(b)
=⇒

∫
Rd

pε(X −X)p̃f,S,λ,Y,T (X)dX =

∫
Rd

pε(X −X)p̃f̃ ,S̃,λ̃,Ỹ ,T̃ (X)dX

=⇒ (p̃f,S,λ,Y,T ∗ pε) (X) =
(
p̃f̃ ,S̃,λ̃,Ỹ ,T̃ ∗ pε

)
(X)

(c)
=⇒F [p̃f,S,λ,Y,T ] (ω)φε(ω) = F

[
p̃f̃ ,S̃,λ̃,Ỹ ,T̃

]
(ω)φε(ω)

(d)
=⇒F [p̃f,S,λ,Y,T ] (ω) = F

[
p̃f̃ ,S̃,λ̃,Ỹ ,T̃

]
(ω)

=⇒p̃f,S,λ,Y,T (X) = p̃f̃ ,S̃,λ̃,Ỹ ,T̃ (X).

(19)

Step (a) is based on the rule of change-of-variable, where vol(A) =

√
det

(
AT A

)
. In step (b),

we define p̃f,S,λ,Y,T (X) ≜ pS,λ

(
f†(X) | Y, T

)
vol

(
Jf†(X)

)
IX (X). In step (c), we use F [·] to

denote the Fourier transform. In step (d), we drop φε(ω) as it is non-zero a.e. (see Assumption 3).

Step II. In this step, we transform the equality of the noise-free distributions into the relationship of
the sufficient statistics S and S̃. By taking logarithm of both sides of Eq. (19), we have:

log vol
(
Jf†(X)

)
+ logQ

(
f†(X)

)
− log C(Y, T ) +

〈
S
(
f†(X)

)
,λ(Y, T )

〉
= log vol

(
Jf̃†(X)

)
+ log Q̃

(
f̃†(X)

)
− log C̃(Y, T ) +

〈
S̃
(
f̃†(X)

)
, λ̃(Y, T )

〉
.

(20)

Let (Y, T )0, · · · , (Y, T )k be the k+1 distinct points defined in Assumption 3 - (iv). We obtain k+1
equations by evaluating the Eq. (20) at these points, where the first equation is subtracted from the
remaining ones, which leads to the following equation system:〈

S
(
f†(X)

)
,λ ((Y, T )l) −λ ((Y, T )0)⟩+ log

C ((Y, T )0)
C ((Y, T )l)

=
〈
S̃
(
f̃†(X)

)
, λ̃ ((Y, T )l)− λ̃ ((Y, T )0)

〉
+ log

C̃ ((Y, T )0)
C̃ ((Y, T )l)

, l = 1, · · · , k.
(21)

Let L be the invertible matrix defined in Assumption 3 - (iv) and L̃ be the counterpart for λ̃, if we
summarize all terms irrelevant to X into a constant b,we have:

LTS
(
f†(X)

)
= L̃T S̃

(
f̃†(X)

)
+ b

=⇒ S
(
f†(X)

)
= AS̃

(
f̃†(X)

)
+ c,

(22)

where A = L−T L̃ ∈ Rk×k, and c = L−T b ∈ Rk.

Step III. Ideally, to prove the element-wise bijective identifiability of the latent variables Z, the
transformation of the sufficient statistics S derived in Eq. (22) should be bijective. We claim that if
the conditional prior pS,λ(Z | Y, T ) is strongly exponential and L is invertible, L̃ and A must also
be invertible. The proof is omitted, and can be referred to in Appendix H.1.1 of Lu et al. (2021).
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A.4.2 PART II

In this part, we prove that, if Assumptions 1, 2 and 3 hold, we can identify the factorized part
of the sufficient statistics S(Z), i.e., Sf (Z), up to permutation and element-wise transformation.
Specifically, if we use v to denote the composite map f̃† ◦ f : Z → Z , Eq. (22) can be rewritten into:

S(Z) = AS̃(v(Z)) + c. (23)

We aim to prove that A in Eq. (23) is a block permutation matrix.

Step I. We start by showing that v is a component-wise function. If we differentiate both sides of Eq.
(23) with respect to Zs and Zt, where s ̸= t, we have:

∂S(Z)

∂Zs
= A

KZ∑
i=1

∂S̃(v(Z))

∂vi(Z)
· ∂vi(Z)

∂Zs

∂2S(Z)

∂Zs∂Zt
= A

KZ∑
i=1

KZ∑
i=1

∂2S̃(v(Z))

∂vi(Z)∂vj(Z)
· ∂vj(Z)

∂Zt
· ∂vi(Z)

∂Zs
+A

KZ∑
i=1

∂S̃(v(Z))

∂vi(Z)
· ∂

2vi(Z)

∂Zs∂Zt
.

(24)

Note that for the factorized part of the sufficient statistics S, i.e., Sf , all cross-derivatives are zero,
and for the non-factorized part of S, i.e., Snf , which is a neural network with ReLU activation (i.e.,
linear a.e.), all second-order derivatives are zero. Therefore, the second order cross-derivatives on
the LHS. of Eq. (24) are zero, which leads to the following equality:

0 = A

KZ∑
i=1

∂2S̃(v(Z))

∂vi(Z)2
· ∂vi(Z)

∂Zt
· ∂vi(Z)

∂Zs
+A

KZ∑
i=1

∂S̃(v(Z))

∂vi(Z)
· ∂

2vi(Z)

∂Zs∂Zt
. (25)

Eq. (25) can be written into the matrix-vector product form as follows:

0 = AS̃′′(Z)v′
s,t(Z) +AS̃′(Z)v′′

s,t(Z), (26)

where

S̃′′(Z) =

[
∂2S̃(v(Z))

∂v1(Z)2
, · · · , ∂

2S̃(v(Z))

∂vKZ
(Z)2

]
∈ Rk×KZ ,

v′
s,t(Z) =

[
∂v1(Z)

∂Zt
· ∂v1(Z)

∂Zs
, · · · , ∂vKZ

(Z)

∂Zt
· ∂vKZ

(Z)

∂Zs

]T
∈ RKZ ,

and

S̃′(Z) =

[
∂S̃(v(Z))

∂v1(Z)
, · · · , ∂S̃(v(Z))

∂vKZ
(Z)

]
∈ Rk×KZ ,

v′′
s,t(Z) =

[
∂2v1(Z)

∂Zs∂Zt
, · · · , ∂

2vKZ
(Z)

∂Zs∂Zt

]T
∈ RKZ .

If we denote the concatenation as S̃′′′(Z) =
[
S̃′′(Z), S̃′(Z)

]
∈ Rk×2KZ and v′′

s,t(Z) =[
v′
s,t(Z)T ,v′′

s,t(Z)T
]T ∈ R2Kz , we have:

0 = AS̃′′′(Z)v′′′
s,t(Z). (27)

Finally, if we denote the rows of S̃′′′(Z) that correspond to the factorized part of S by S̃′′′
f (Z),

according to Lemma 5 of (Khemakhem et al., 2020) and the assumption that k ≥ 2KZ , we have that
the rank of S̃′′′

f (Z) is 2KZ . Since k ≥ 2KZ , the rank of S̃′′′
f (Z) is also 2KZ . Since the rank of A

is k, the rank of AS̃′′′(Z) is 2KZ , which implies that v′′′
s,t(Z) ∈ R2KZ is a zero vector. Therefore,

we have v′
s,t(Z) = 0,∀s ̸= t, and we have demonstrated that v is a component-wise function.

Step II. Based on Step I, we demonstrate that A is a block permutation matrix. Without loss of gen-
erality, we assume that the permutation in v is Identity, where v(Z) = [v1 (Z1) , · · · , vKZ

(ZKZ
)]
T

and each vi is a nonlinear univariate scalar function. Since f and f̃ are injective, v is bijective and
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v−1(Z) =
[
v−1
1 (Z1) , · · · , v−1

KZ
(ZKZ

)
]T

. If we denote S(v(Z)) = S̃(v(Z)) +A−1c, Eq. (23)
can be reformulated as S(Z) = AS(v(Z)). We then apply v−1 to Z on both sides, which gives

S
(
v−1(Z)

)
= AS(Z). (28)

Let t be the index of an entry in S that corresponds to the factorized part Sf . For all s ̸= t, we have:

0 =
∂S

(
v−1(Z)

)
t

∂Zs
=

k∑
j=1

atj
∂S(Z)j
∂Zs

. (29)

Since the entries of S̃ are linearly independent, atj is zero for any j such that ∂S(Z)j
∂Zs

̸= 0. This
includes the entries Sj that correspond to (1) the factorized part that does not depend on Zt; and (2)
the non-factorized part Snf . Therefore, when t is the index of an entry in the sufficient statistics S
that corresponds to factor i in the factorized part Sf , i.e., Sf,i, the only non-zero atj are the ones that
map between Sf,i (Zi) and Sf,i (vi (Zi)). Therefore, we can construct an invertible submatrix A′

i
with all non-zero elements atj for all t that corresponds to factor i, such that

Sf,i (Zi) = A′
iSf,i (vi (Zi)) = A′

iS̃f,i (vi (Zi)) + ci, i = 1, · · · ,KZ , (30)

where ci denotes the corresponding elements of c. Eq. (30) means that for each i = 1, · · · ,KZ ,
the matrix block A′

i of A affinely transforms the i-specific sufficient statistics vector Sf,i (Zi) into
S̃f,i (vi (Zi)). In addition, there is also an additional block A′ that affinely transforms Snf (Z) in
into Snf (v(Z)). This completes the proof that A is a block permutation matrix.

A.4.3 PART III

Let Z̃i = vi (Zi) = f̃†(X)i be the ith inferred latent variable. Assume again that the permutation in
v is Identity. In this part, we prove that if Assumption 2 holds, each inferred latent variable Z̃i is the
bijective transformation of the true latent variable. The proof is as follows.

Proof. Plugging Z̃i into Eq. (30), we have:

Sf,i(Zi) = A′
iS̄f,i(Z̃i). (31)

According to Assumption 2, there exists one dimension of Sf,i, i.e., j, such that Sf,ij is bijective.
This implies that Sf,i is injective, and therefore it has a left-inverse S†

f,i. we apply S†
f,i to both sides

of Eq. (31), which gives:
Zi = S†

f,iA
′
iS̄f,i(Z̃i). (32)

Since A′
i is a block of an invertible block permutation matrix, Ai is also an invertible matrix, and

therefore A′
i is a bijective mapping. In addition, since S̃f,i is injective, S̄f,i is also injective, and

therefore the composite map S†
f,iA

′
iS̄f,i : R→ R that applies on Z̃i is a bijective. This completes

the proof that each inferred latent variable Z̃i is the bijective transformation of the true latent variable
in the case of no noise, where Z = f†(X) are the true latent variables. If noise ε exists, the posterior
distribution of the latent variables can be identified up to an analogous bijective indeterminacy.

A.4.4 CONSISTENCY

Proof. If the family of the variational posterior qϕ(Z|X, Y, T ) contains the true posterior
pθ(Z|X, Y, T ), then by optimizing the loss of Eq. (9) (with the KL term replaced by the score match-
ing loss defined in Eq. (10)) over its parameter ϕ, the score matching term will eventually vanish.
Therefore, the ELBO term in Eq. (9) will be equal to the log-likelihood. Under this circumstance,
CiVAE inherits all the properties of maximum likelihood estimation (MLE). Since the identifiability
of CiVAE is guaranteed up to permutation and component-wise bijective transformation of the latent
variables, the consistency property of MLE means that the model will converge to the true parameter
θ∗ up to such mild indeterminacy of the latent variables in the limit of infinite data.
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A.5 PROOF OF THEOREM 4.2

Proof. Let C be the true latent confounders and C̃ be the transformed confounders, where the
transformation function f is bijective and differentiable a.e. Let f−1 denote its inverse. The ATE
estimator that controls transformed confounders C̃ can be formulated as:

DEV (C̃) = Ep(C̃)[E[Y |T = 1, C̃ = c̃]− E[Y |T = 0, C̃ = c̃]]. (33)

Specifically, for the continuous case where density functions exist, for each term, we have:

Ep(C̃)[E[Y |T = t, C̃ = c̃]] =

∫
fC̃(c̃)

∫
y · fY |T,C̃(y|t, c̃)dydc̃. (34)

For the marginal density fC̃(c̃), the following equality holds:

fC̃(c̃) = fC(f−1(c̃))|Jf−1(c̃)| = fC(c)|Jf−1(c̃)|. (35)

As for the conditional density fY |T,C̃(y|t, c̃), since f is bijective, according to Eq. (12), we have:

fY |T,C̃(y|t, c̃) = fY |T,C(y|t, c). (36)

Combining Eqs. (35) and (36), and given that dc̃ = |Jf (c)|dc, we have:

(34) =

∫
fC(c)|Jf−1(c̃)|

∫
y · fY |T,C(y|t, c)dy|Jf (c)|dc

=|Jf−1(c̃)| · |Jf (c)|
∫

fC(c)

∫
y · fY |T,C(y|t, c)dydc

(a)
=

∫
fC(c)

∫
y · fY |T,C(y|t, c)dydc

=Ep(C)[E[Y |T = t,C = c]],

(37)

where the term |Jf−1(c̃)| · |Jf (c)| vanishes in step (a) as the two factors have the product of one.
Therefore, if we plug Eq. (37) into Eq. (33), it leads to the following equality:

DEV (C̃) = Ep(C̃)[E[Y |T = 1, C̃ = c̃]− E[Y |T = 0, C̃ = c̃]]

= Ep(C)[E[Y |T = 1,C = c]− E[Y |T = 0,C = c]] = DEV (C) = ATE,
(38)

where the last step is due to Eq. (2) in Definition 2, which completes our proof that controlling
bijectively transformed confounders provides an unbiased estimation of ATE.

B RELATED WORK

B.1 POST-TREATMENT BIAS IN CAUSAL INFERENCE

Bias due to accidentally controlling post-treatment variables, i.e., post-treatment bias, has long
been recognized as dangerous in causal effect estimation (King, 2010). Back at 2005, Pearl (2015)
cautioned that controlling more is not better, and uses the collider bias (Elwert & Winship, 2014)
and M-Bias (Ding & Miratrix, 2015) as two examples to show that bias can be increased when
controlling the post-treatment variables. Furthermore, Montgomery et al. (2018) show that indirect
correlations between post-treatment variable M and outcome Y can still cause bias. Recent works
prove that even if M has no causal relationship with Y , controlling it can still increase the variance
of estimand (Hassanpour & Greiner, 2020). However, most of these works study the post-treatment
bias in the observational space, where latent post-treatment variables that are mixed with confounders
to generate the observed covariates can be easily ignored by the researcher. Therefore, it motivates us
to develop CiVAE, which is robust to the latent post-treatment bias under mild assumptions.

B.2 COVARIATE DISENTANGLEMENT

Recently, researchers have realized that directly controlling the proxy of confounders X may not
be safe, as variables other than confounders could lurk in the confounder proxy and ruin the ATE
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estimation (Hassanpour & Greiner, 2020). Traditional methods assume that the variables that generate
the observed covariates X are a mixture of confounders, adjusters, and influencers (Shalit et al.,
2017), where adjusters should not be controlled as it can increase the estimation variance (Hassanpour
& Greiner, 2019). Most methods rely on the fact that adjusters are correlated only with the treatment
to separate them from other variables (Hassanpour & Greiner, 2020; Zhang et al., 2021) (see Fig. (2)).
This can also be used to remove post-treatment variables that are not correlated with the outcome,
which have similar statistics properties with adjustors (Wang et al., 2023). Here, a different work
is NICE (Shi et al., 2021), which uses the fact that confounders and influencers are direct causal
parents of the outcome to find these variables with invariant learning as the control set (Arjovsky
et al., 2019). However, since mediators are also direct parents of the outcome, NICE is still not robust
to general post-treatment bias. Given that all the above methods cannot satisfactorily address the
latent post-treatment in general cases, it is imperative to design the CiVAE, where confounders can
be identified and disentangled with latent post-treatment variables for unbiased adjustment. We note
that Xu et al. propose CFDiVAE that identifies sufficient mediators from covariates with iVAE and
estimates the ATE via front-door adjustment, which is an interesting alternative to CiVAE provided
that the covariates X contain all mediators between T and Y where front-door criterion satisfies.

C EXTENDING CIVAE TO ADDRESS LATENT INTERACTIONS

C.1 EXAMPLES FOR THE IDENTIFICATION CRITERIA

In this section, we provide concrete examples to more intuitively demonstrate the criteria of general-
ized CiVAE to address (non-cyclic) interactions among latent confounders C and latent post-treatment
variables M introduced in Section 4.5, which are discussed as follows:

Example 1. Intra-Confounder Interactions.

In this example, latent confounders are allowed to interact with each other, i.e., for arbitrary i′, j′, Ci′

could be the causal parent of Cj′ . In this example, if two inferred latent variables Ẑi, Ẑj ∈ Ẑ (which
individually identifies the true latent variables according to Theorem 4.1) are latent confounders, i.e.,
Ĉi′ , Ĉj′ (case 1), we have ẐC = PA(Ĉi′) ∩ PA(Ĉj′) ⊂ Ĉ , where PA denotes the parent set of
the node in the true causal graph. For cases 2,3, we have ẐM = ẐC,M = ∅.
Example 2. Intra-Post-Treatment Interactions.

In this example, post-treatment variables are allowed to sequentially (i.e., non-cyclic) influence one
another, i.e., for arbitrary i′, j′, Mi′ could be the causal parents of Mj′ if no circle is formed. In
this case, if two inferred latent variables Ẑi, Ẑj ∈ Ẑ (which individually identifies the true latent
variables according to Theorem 4.1) are latent post-treatment variables, i.e., M̂i′ , M̂j′ (cases 2), we
have ẐM = PA(M̂i′) ∩ PA(M̂j′) ⊂ M̂ . For cases 1,3, we have ẐC = ẐC,M = ∅.
Example 3. Cross Confounder-Post-treatment Variable Interactions.

In this example, confounders are allowed to influence the post-treatment variables (note that since
confounders are pre-treatment, they can not be influenced by the post-treatment variables). In this
example, similar to Example 2, if two inferred latent variables Ẑi, Ẑj ∈ Ẑ (which individually
identifies the true latent variable) are latent post-treatment variables, i.e., M̂i′ , M̂j′ (cases 2), we have
ẐM = PA(M̂i′) ∩ PA(M̂j′) ⊂ Ĉ. For cases 1,3, we have ẐC = ẐC,M = ∅.
More complicated cases can be viewed as combinations of Examples 1, 2, and 3, where the condition
sets ẐC , ẐM , ẐC,M = ∅ can be directly derived by utilizing the above conclusions.

C.2 ADDITIONAL EXPERIMENTS

C.2.1 INTRA-INTERACTIONS AMONG LATENT MEDIATORS

In this subsection, we empirically analyze the case where latent post-treatment variables M interact
with each other. Specifically, we extend the simulated datasets described in Section 5.1, where we
make (i) T directly affects M1, (ii) M1 affects M2, and (iii) M1, M2 affect M3. The coefficients are
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Table 2: Comparison of CiVAE with baselines when intra-interactions among M exist.

Dataset LatentMediator LatentCorrelator Company (Age) Company (Gender)

Method ATE. Err. ATE. Err. ATE. Err. ATE. Err.

CEVAE 1.627 ± 0.549 2.627 2.659 ± 0.302 1.353 0.152 ± 0.027 0.420 -0.225 ± 0.044 -0.144
TEDVAE 1.653 ± 0.511 2.042 2.827 ± 0.259 1.521 0.180 ± 0.047 0.448 -0.189 ± 0.012 -0.108
CiVAE -0.350 ± 0.695 1.785 1.785 ± 0.481 0.479 -0.073 ±0.101 0.195 -0.136 ± 0.087 -0.055
True ATE -1.000 ± 0.000 0.000 1.306 ± 0.000 0.000 -0.268 ± 0.000 0.000 -0.081 ± 0.000 0.000

Table 3: Comparison of CiVAE with baselines when inter-interactions between C and M exist.

Dataset LatentMediator LatentCorrelator Company (Age) Company (Gender)

Method ATE. Err. ATE. Err. ATE. Err. ATE. Err.

CEVAE 2.070 ± 0.279 3.070 2.831 ± 0.398 1.831 0.094 ± 0.061 0.362 -0.192 ± 0.015 -0.111
TEDVAE 1.743 ± 0.307 2.743 2.954 ± 0.763 1.954 0.109 ± 0.116 0.377 -0.212 ± 0.019 -0.131
CiVAE -0.716 ± 0.523 0.284 1.385 ± 0.660 0.385 -0.041 ±0.144 0.227 -0.129 ± 0.064 -0.048
True ATE -1.000 ± 0.000 0.000 1.000 ± 0.000 0.000 -0.268 ± 0.000 0.000 -0.081 ± 0.000 0.000

randomly sampled from N (0, 1/3). The results in Table 2 demonstrate that the adapted CiVAE is
still more robust to latent post-treatment bias compared to CEVAE and TEDVAE.

C.2.2 INTER-INTERACTIONS BETWEEN LATENT MEDIATORS AND LATENT CONFOUNDERS

In this subsection, we empirically analyze another case where inter-interactions exist between latent
confounders C and latent post-treatment variables M . Specifically, we extend the simulated datasets
described in Section 5.1 to allow each latent confounder Ci ∈ R3 to determine M ∈ R3. The
coefficients are randomly sampled from N (0, 1/3). The results in Table 3 demonstrate that the
adapted CiVAE is still significantly more robust to latent post-treatment bias compared to CEVAE
and TEDVAE, which empirically verify our claim that the adapted CiVAE can address the case where
inter-interactions exist among latent confounders and post-treatment variables.

C.3 ROBUSTNESS ANALYSIS OF CIVAE

C.3.1 SENSITIVITY W.R.T. ASSUMPTION 1
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Figure 6: Sensitivity of CiVAE to injectivity assumption.

In this section, we evaluate the sen-
sitivity of CiVAE to the injectiv-
ity assumption stated in Assumption
1. For the latentMediator and
latentCorrelator cases out-
lined in Section 5.1, the mixture func-
tion f corresponds to the matrix A
described in Corollaries 3.3 and A.1,
respectively. When KX ≥ KC +
KM , directly random sampling of A results in A being almost surely injective.

To make A approach non-injectivity, we first perform singular value decomposition (SVD) on A
yielding UTΛV, where U and V are orthogonal matrices of left/right eigenvectors, and Λ is the
diagonal matrix of singular values. We then dampen the largest singular value in Λ by a factor
of 1 − δ, resulting in the modified singular value matrix Λ1−δ. The dampened reconstruction
A1−δ = UTΛ1−δV is used to generate the covariates X from C, M instead of A. When δ = 0,
f = A1 maintains injectivity. As δ approaches 1, f = A1−δ accordingly approaches non-injectivity.

The evaluation of CiVAE, CEVAE, and TEDVAE on data generated under different δ are illustrated
in Fig. 6. From Fig. 6, we observe that violation of injectivity assumption indeed has a negative
influence on the accuracy of ATE estimation. However, even with the decrease of δ, which indicates
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f approaching non-injectivity, CiVAE is still consistently more robust to latent post-treatment bias
and outperforms both CEVAE and TEDVAE in terms of maintaining accurate ATE.

C.3.2 SENSITIVITY W.R.T. LATENT DIMENSION
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Figure 7: Sensitivity of CiVAE to model misspecification.

In this section, we explore the sen-
sitivity of CiVAE to model mis-
specification. Specifically, we vary
the dimension of latent variables as-
sumed by CiVAE, i.e., Dim(Ẑ),
to values in [4, 6, 8, 10] for both
the latentMediator and the
latentCorrelator cases out-
lined in Section 5.1 (with the correct
latent dimension being 6) and com-
pare its performance with CEVAE
and TEDVAE. The results are illus-
trated in Fig. 7. In Fig. 7, the upper
figures show the cases where no inter-
actions exist among latent variables,
and the lower figures show the cases
when latent confounders also confound the latent post-treatment variables (see Section C.2.2). From
Fig. 7, we find that underestimating the latent dimension does have an evident negative influence on
CiVAE. However, CiVAE demonstrates good robustness to the overestimate in the latent dimension,
showing more robustness of latent post-treatment bias to CEVAE and TEDVAE even when the
dimension is mis-specified. This highlights CiVAE’s ability to adapt to model specifications and
underscores its enhanced robustness to latent post-treatment bias compared to the baseline methods.
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