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Figure 1: Motivation of InstantForget. Our core insight is that the goal of unlearning should focus
on removing the influence of the forget set rather than necessarily modifying model parameters. By
combining federated local feature unlearning with a training-free paradigm, we propose functional
unlearning, which enables plug-and-play deployment with extremely low computational cost and
minimal resource overhead.

ABSTRACT

The demand for efficient machine unlearning is rising as deployed models in
safety-critical and privacy-sensitive domains must comply with regulations such
as GDPR and CCPA, which grant the “right to be forgotten.” In federated learning
(FL), where data are distributed and communication is expensive, forgetting must
be performed without retraining from scratch or sacrificing model utility. Exist-
ing approaches typically implement unlearning by parameter retraining or fine-
tuning, incurring high computational cost, requiring access to the retain set, and
adding global communication rounds. We introduce InstantForget, a training-
free framework that achieves functional unlearning by editing the input–output
mapping of a pretrained model purely at inference time. InstantForget operates
in two stages: (i) a subspace projection step that estimates trigger-sensitive di-
rections from paired features and cancels their linear contributions via orthogonal
projection, and (ii) a gated randomized smoothing step that suppresses residual
nonlinear dependencies by perturb-and-aggregate inference restricted to sensitive
coordinates. Our method preserves accuracy on the retain set while driving model
behavior on the forget set close to that of a retrained model, achieving near-zero
forgetting gap with no parameter updates or FL communication. Experiments on
MNIST, CIFAR-10, and ImageNet-Subset show up to 90% reduction in attack
success rate with under 1% drop in clean accuracy, highlighting InstantForget as
a practical and energy-efficient solution for post-hoc deployment.

1 INTRODUCTION

The rapid deployment of machine learning models in safety-critical and privacy-sensitive applica-
tions—such as medical diagnosis, financial risk assessment, autonomous driving, and personalized
recommendation—has created an urgent demand for machine unlearning (Bourtoule et al., 2021).
When deployed models continue to rely on outdated, erroneous, or even adversarially poisoned
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data, their predictions may become unsafe or legally non-compliant. Regulations such as GDPR
and CCPA explicitly grant individuals the “right to be forgotten,” requiring model owners to remove
the influence of specific data points or users upon request (Neel et al., 2021). This is not only a
legal obligation but also a crucial component of trustworthy AI, ensuring that users retain control
over their personal data and that system behavior can be corrected in the presence of harmful train-
ing examples. From an engineering perspective, the challenge is to remove the effect of the forget
set both efficiently and precisely: retraining a large neural network from scratch or fine-tuning on
the retain set can take days of GPU computation, consume substantial energy, and risk overfitting
or catastrophic forgetting of relevant knowledge (Guo et al., 2020). Moreover, the process must
preserve the utility of the remaining model, maintaining high clean accuracy and stable decision
boundaries. These requirements become even more pressing in federated learning (FL), where data
are distributed across many clients, raw data cannot be centralized, and each additional communica-
tion round introduces significant latency, bandwidth usage, and monetary cost. Consequently, there
is a growing need for lightweight, communication-free, and post-hoc unlearning techniques that
can reliably remove the influence of forgotten data while preserving model performance in practical
deployment settings (Wan & Lin, 2024).

Most existing unlearning approaches implement forgetting by retraining or fine-tuning the model pa-
rameters, sometimes with formal convergence or privacy guarantees (Bourtoule et al., 2021). While
theoretically sound, these approaches are often prohibitively expensive in practice: retraining a large
neural network can require days of computation on GPUs, access to the entire retain set, and care-
ful hyperparameter tuning to avoid catastrophic forgetting. In distributed settings such as federated
learning (FL), the cost is even higher, since each unlearning operation triggers multiple additional
global communication rounds and synchronization steps (Huang & Zhao, 2025), significantly in-
creasing latency and bandwidth consumption. Moreover, the resulting model parameters may still
deviate from those of a fully retrained model, leaving a nonzero forgetting gap and raising concerns
about compliance with legal or contractual requirements. This tight coupling between forgetting and
parameter optimization thus makes traditional unlearning pipelines slow, energy-intensive, and dif-
ficult to deploy at scale, motivating the search for training-free, inference-only methods that directly
edit model behavior without retraining.

In essence, recent work converges on a common view: unlearning should ensure that the resulting
model is behaviorally indistinguishable from a hypothetical model retrained from scratch on the
retain set. This definition focuses on the functional behavior of the model rather than its internal
parameters. For instance, Zhao et al. (Zhao et al., 2024) characterize unlearning as “producing
a model from which the influence of the forget set is removed,” while Brimhall et al. (Brimhall
et al., 2025) emphasize that an unlearned model should behave “as if it had only been trained on
the examples not in the forget set.” These perspectives suggest that perfect unlearning does not
necessarily require recovering a specific parameter configuration, but rather achieving behavioral
equivalence with respect to predictions on all possible inputs. This observation opens the door to
alternative approaches that edit the input–output mapping of a pretrained model directly, without
explicit weight updates or costly retraining, as long as the model’s responses to clean and forgotten
data match the retrained baseline.

Guided by these definitions, we observe that the essential criterion for unlearning is not repro-
ducing a particular parameter configuration but achieving behavioral equivalence—that is, making
the model’s predictions indistinguishable from those of a retrained counterpart on all relevant in-
puts. This insight motivates us to move beyond weight-centric approaches and instead focus on
directly editing the model’s input–output mapping. We therefore introduce functional unlearning,
a paradigm in which the effect of the forget set is removed purely by transforming representations
or predictions at inference time, without any gradient updates, optimizer state tracking, or access to
the retain set. Building on this idea, we propose InstantForget, a lightweight two-stage framework
that combines subspace projection to erase the linear contribution of sensitive directions with gated
randomized smoothing to suppress residual nonlinear dependencies. Crucially, InstantForget per-
forms forgetting with zero parameter updates and zero additional federated communication rounds,
making it well suited for post-hoc deployment in large-scale and resource-constrained settings.

Our main contributions are:
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• Functional Unlearning. We formalize unlearning as direct functional editing and imple-
ment it purely at inference time, enabling millisecond-level latency per batch without any
retraining or additional FL communication.

• Subspace Projection. We estimate the sensitive subspace in one shot using forward per-
turbations or trigger statistics, and apply an orthogonal projection P = I − UU⊤ to erase
linear contributions and contract the Jacobian norm along sensitive directions.

• Randomized Smoothing. We introduce gated perturb-and-average smoothing restricted
to sensitive coordinates to suppress nonlinear residuals and stabilize predictions, achieving
consistent forgetting with minimal compute overhead.

Our approach achieves near-zero forgetting gap compared to full retraining, with negligible accuracy
drop on the retain set. Its training-free nature reduces computational cost and energy consumption,
aligning with the Green AI vision of sustainable and efficient machine learning.

2 RELATED WORK

2.1 MACHINE UNLEARNING

Machine unlearning aims to remove the influence of specific training samples, clients, or sensi-
tive attributes from a trained model so that its predictions are indistinguishable from those of a
model retrained without the forgotten data. Early approaches relied on full retraining from scratch,
which guarantees exact forgetting but is computationally prohibitive for modern deep networks and
requires persistent access to the entire retain set. To reduce cost, recent work has proposed approxi-
mate solutions that modify the model parameters without full retraining. Representative techniques
include influence-function-based parameter updates (Guo et al., 2020; Wu et al., 2023), which esti-
mate the gradient contribution of the forget set and subtract it; feature-sensitivity minimization (Fer-
rari & Cuzzolin, 2024), which penalizes feature responses to forgotten inputs; layer- or module-
reset strategies that selectively reinitialize network components; and knowledge-distillation-based
unlearning (Kim et al., 2024; Zhang et al., 2023a), which trains a student model to mimic a teacher
on the retain set while discarding information from the forget set. While these methods substantially
reduce retraining cost compared to naive re-training, they still require parameter updates, backprop-
agation through the model, and access to retain sets during the unlearning process. Moreover, in
federated learning (FL) settings, they trigger additional communication rounds and synchronization
overhead, which may be infeasible in latency-sensitive or bandwidth-limited deployments. These
limitations motivate the development of training-free, inference-time unlearning methods that di-
rectly edit model behavior without modifying its weights.

2.2 FEDERATED UNLEARNING

In federated learning (FL), unlearning is especially challenging because client data cannot be cen-
trally aggregated and the system must honor data-deletion requests while preserving privacy. For-
getting requests must therefore be handled collaboratively, often under strict communication and
latency constraints. Naive solutions that retrain the global model from scratch or replay training
without the forget set are prohibitively expensive, as they require multiple additional global rounds
and participation of many clients. Recent studies have explored class-level and sample-level feder-
ated unlearning (Wan & Lin, 2024; Jiang & Xu, 2024; Zhou & Meng, 2024), client-removal sce-
narios that entirely revoke a participant’s contribution (Tosome & Li, 2023; Huang & Zhao, 2025),
and even reversible unlearning protocols with formal privacy guarantees, such as FUSED (Zhong &
Liu, 2025). These methods focus on reducing communication cost, amortizing computation across
rounds, or improving fairness across heterogeneous clients with non-IID data. However, they still
involve parameter updates, gradient aggregation, and synchronization overhead, which can be in-
feasible in bandwidth-limited or resource-constrained deployments. This motivates the search for
training-free, communication-free federated unlearning techniques that can be applied post hoc, di-
rectly editing model predictions to remove forgotten knowledge without incurring additional global
training rounds.
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Figure 2: Overview of the InstantForget framework. Given a pretrained model fθ, Stage I esti-
mates the trigger-sensitive subspace U from paired clean and triggered features and projects rep-
resentations onto the orthogonal complement via P = I − αUU⊤, suppressing linear trigger ef-
fects. Stage II performs gated randomized smoothing: a trigger score s(x) selectively activates
perturb-and-aggregate inference, where K input or feature perturbations are generated, projected,
and combined by an aggregation rule. Together, the two stages achieve functional backdoor forget-
ting without parameter updates or retraining.

2.3 TRAINING-FREE METHODS

To minimize unlearning latency, recent research has explored approaches that avoid gradient updates
and perform forgetting purely at inference time or through lightweight post-processing. Projection-
based defenses estimate a trigger-sensitive subspace and suppress malicious activations by project-
ing features onto its orthogonal complement (Li & Sun, 2023; Zeng & Li, 2021), effectively remov-
ing linear dependencies but leaving higher-order interactions largely intact. Randomized smoothing
techniques (Wang & Xu, 2024) provide probabilistic robustness guarantees by averaging predictions
over noise-perturbed inputs, but can degrade clean accuracy and require many samples for tight cer-
tificates. More recently, Layered Unlearning (LU) (Qian & Jin, 2025) introduced a post-training
pipeline that progressively removes data influence across layers to resist adversarial re-injection of
forgotten knowledge, though it still relies on partial model updates and controlled re-training.

Our work, InstantForget, advances this line of research by combining one-shot subspace projection
with gated randomized smoothing to eliminate both linear and nonlinear feature contributions. Un-
like prior methods, InstantForget operates entirely through forward passes, requiring no backpropa-
gation, optimizer state, or access to the retain set. It performs forgetting in milliseconds per batch,
introduces zero additional federated communication rounds, and achieves near-zero forgetting gap
while preserving clean accuracy, making it well-suited for post-hoc deployment in safety-critical
and federated settings.

3 METHOD

We propose InstantForget, a training-free and purely inference-time framework designed to suppress
the influence of backdoor triggers on frozen neural networks. The approach operates without updat-
ing model parameters or performing extra federated communication rounds, making it suitable for
post-hoc deployment in production environments. The method contains two modules (see Figure 2):

• Stage I: Subspace Projection, which identifies and removes the trigger-sensitive direc-
tions in the representation space through linear projection.

• Stage II: Gated Randomized Smoothing, which further suppresses residual nonlinear
dependencies using a gated perturb-and-aggregate mechanism applied only to suspicious
samples.

3.1 PROBLEM FORMULATION

Definition 1 (Functional Backdoor Forgetting). Let fθ = g ◦ fℓ be a pretrained model, where
fℓ(x) ∈ Rd is the feature representation at layer ℓ and g : Rd → Y is the classifier head mapping

4
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features to the label space. Let Dr and Df denote the retain set (benign inputs) and the forget set
(triggered inputs), respectively. We assume the backdoor trigger is characterized by a spatial mask
M ∈ {0, 1}C×H×W and a patching operator

Tη(x) = (1−M)⊙ x+M ⊙ η, (1)

where η is a constant-intensity pattern over the support of M , and ⊙ denotes elementwise multipli-
cation. The original model prediction on input x is given by fθ(x) = g(fℓ(x)). Our objective is to
construct a functionally edited predictor

f̃(x) = g
(
Φ(fℓ(x))

)
, (2)

where Φ : Rd → Rd is an inference-time transformation applied to the representation before clas-
sification. Importantly, Φ is required to be a purely forward operation—no parameter updates, opti-
mizer state, or gradient computations are allowed—so that the procedure is compatible with frozen
or federated models.

Formally, the edited predictor must satisfy two desiderata:

(Fidelity) Ex∼Dr

[
d(f̃(x), fθ(x))

]
≤ εfid, (3)

(Trigger Invariance) sup
δ: ∥δ∥≤ρ

supp(δ)⊆supp(M)

d(f̃(x+ δ), f̃(x)) ≤ εtrg, ∀x ∈ Dr, (4)

where d(·, ·) is a task-specific divergence (e.g., KL divergence or ℓ2 distance), εfid controls allow-
able utility loss, and εtrg bounds residual trigger sensitivity. Intuitively, equation 3 enforces that
predictions on clean inputs remain close to those of the original model, while equation 4 enforces
insensitivity to any perturbation supported on the trigger region, effectively erasing the trigger’s
causal influence.

In practice, the satisfaction of these conditions is measured empirically using forward passes on
held-out retain data and controlled trigger injections. This formulation abstracts unlearning as a
functional equivalence problem: the edited model should behave as if it had been trained without
Df , without requiring explicit weight retraining. This makes it well suited for post-hoc deployment
in scenarios where retraining is infeasible, data access is restricted, or communication cost is high,
such as federated learning.

3.2 STAGE I: SUBSPACE PROJECTION

Definition 2 (Trigger-Sensitive Subspace). Let h = fℓ(x) ∈ Rd denote the representation at layer
ℓ. Backdoor triggers often manifest as low-dimensional shifts in feature space, causing a linear
displacement h 7→ h + ∆ when the trigger is present. We define the trigger-sensitive subspace
as the k-dimensional subspace of Rd that captures the majority of this displacement. Given paired
clean and triggered features Hc, Ht ∈ Rn×d, we compute their difference matrix

D = Ht −Hc, (5)

and estimate an orthonormal basis U ∈ Rd×k spanning the top-k principal directions of D:

U = TopK
(
eig(D⊤D)

)
. (6)

This PCA-based strategy maximizes variance explained by the trigger-induced shift. Alternatively,
a supervised Fisher direction w can be derived by solving

w = (Sc + St + λI)−1(µt − µc), (7)

where Sc, St are the covariance matrices of clean and triggered features, and µc, µt are their means.
Stacking w with the top (k− 1) principal components and orthonormalizing via QR yields a hybrid
basis that combines discriminative and variance-maximizing directions, improving robustness when
k is small.
Proposition 1 (Projection Operator). Given the estimated basis U , we construct an orthogonal
projection matrix

P = Id − αUU⊤, α ∈ (0, 1], (8)

5
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where α controls projection strength. For each input representation h, the projected feature is
obtained as

h̃ = hP, f̃(x) = g(h̃). (9)

Geometrically, P removes the component of h along span(U), thereby canceling the first-order
trigger effect and contracting the Jacobian of g ◦ fℓ in sensitive directions. An iterative refinement
strategy can be employed: after an initial projection, U is re-estimated on {h̃}, and a new projector
P̃ is computed; composing projectors multiplicatively,

P (t) = P (t−1)P̃ ,

progressively removes residual trigger influence until convergence or a stopping criterion is met.

3.3 STAGE II: GATED RANDOMIZED SMOOTHING

Definition 3 (Gating Function). To avoid unnecessary noise injection on benign inputs, we introduce
a gating function that selectively activates smoothing. Let U = [u1, . . . , uk] be the estimated trigger-
sensitive basis and h = fℓ(x) the feature representation. We define a trigger score as

s(x) = |h⊤u1|, (10)

which measures the projection of h onto the most sensitive direction u1. Smoothing is activated only
if s(x) ≥ τ for a chosen threshold τ ≥ 0, ensuring that inference-time perturbations are applied
only to inputs likely to be influenced by the trigger.

Definition 4 (Perturbation Schemes). For inputs passing the gate, we generate K perturbed variants
to explore the local neighborhood around x and reduce the model’s sensitivity to trigger-specific
features. We consider both input-space and feature-space perturbations:

Input-space: x(i) = x+ δ(i), δ(i) ∼ N (0, σ2M) (Gaussian noise on mask)
(11)

x(i) = replace(x;M,mean(x;¬M)) (Patch mean replacement)
(12)

x(i) = swap patch(x;M, random non-overlap) (Random patch swapping)
(13)

Feature-space: h(i) = h+ Z(i)U⊤, Z(i) ∼ N (0, σ2Ik) (Noise along U )
(14)

These perturbations either erase, randomize, or smooth the contribution of the trigger region, en-
couraging prediction stability. When Stage I is enabled, the projection operator P is applied to all
perturbed features ĥ(i) to cancel residual linear components before classification.

Proposition 2 (Aggregation Rule). The final prediction is obtained by aggregating the K perturbed
predictions. Different aggregation rules provide different bias–variance trade-offs:

ŷProbs = log
( 1

K

K∑
i=1

softmax(g(ĥ(i)))
)

(Average probabilities), (15)

ŷLSE = log

K∑
i=1

exp(g(ĥ(i)))− logK (Log-Sum-Exp pooling), (16)

ŷLogits =
1

K

K∑
i=1

g(ĥ(i)) (Mean logits). (17)

This perturb-and-aggregate strategy acts as a randomized ensemble, effectively smoothing the de-
cision boundary in the vicinity of the trigger region and suppressing high-confidence adversarial
activations.

6
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Algorithm 1 Stage I: Subspace Projection

Require: Clean set Dc, triggered set Dt, subspace dim k, strength α
Ensure: Predictions ỹ for inputs

1: Hc ← {fℓ(x) | x ∈ Dc} ▷ clean features
2: Ht ← {fℓ(Tη(x)) | x ∈ Dt} ▷ triggered features
3: D ← Ht −Hc

4: U ← SUBSPACEESTIMATION(D, k) ▷ PCA/LDA
5: P ← Id − αUU⊤

6: for each input x do
7: h← fℓ(x)

8: h̃← hP
9: ỹ ← g(h̃)

10: end for

Algorithm 2 Stage II: Gated Randomized Smoothing

Require: Feature h, subspace U , threshold τ , samples K
Ensure: Smoothed prediction ŷ

1: s(x)← |h⊤u1|
2: if s(x) < τ then
3: return g(h)
4: end if
5: for i = 1 to K do
6: Generate x(i) or h(i) (noise/mask/patch or feature noise)
7: if Stage I enabled then h(i) ← h(i)P
8: ŷ(i) ← g(h(i))
9: end for

10: ŷ ← AGGREGATE
(
{ŷ(i)}Ki=1

)
▷ Probs/LSE/Logits

4 EXPERIMENTS

4.1 DATA DESCRIPTION

We construct the forget set Df by injecting a fixed pixel-pattern trigger into a subset of the training
data following the BadNets protocol (Gu et al., 2019); the remaining clean examples form the retain
set Dr. Concretely, we evaluate on five standard benchmarks: MNIST, Fashion-MNIST (FMNIST),
CIFAR-10, CIFAR-20 and CIFAR-100. For each dataset we embed a 5 × 5 white square at a fixed
location (top-left corner) as the trigger and assign the triggered examples a target label (default: class
0). The fraction of poisoned training samples per dataset is swept in the range 10%−100%, with a
default poisoning ratio of 10%, to simulate a client-level deletion request in a federated setting.

4.2 EXPERIMENTAL SETTINGS

Figure 3: Examples of clean
images (top) and their corre-
sponding backdoor versions.

We partition each dataset across K = 10 clients, with each client
holding a specified fraction of the samples. The global model is a
ResNet-18 for all experiments. For baseline methods, we train the
model for 200 epochs with a learning rate of 0.0001 and a batch size
of 128. Our InstantForget method performs no parameter updates
and introduces no additional communication rounds. Instead, it es-
timates the sensitive subspace from a small clean/triggered subset
and applies projection and inference-time randomized smoothing
during evaluation. All experiments are conducted on an NVIDIA
A100 GPU, and results are averaged over five random seeds.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 EVALUATION METRICS

We adopt two primary metrics: (i) Clean Accuracy (AccDr ), the accuracy on the retain set, which
measures how well the model utility is preserved; and (ii) Trigger Accuracy (AccDf

), the accu-
racy on the triggered backdoor set, which should ideally drop to random guess after unlearning. A
successful unlearning method achieves high AccDr

while driving AccDf
close to zero. We addition-

ally report runtime (in seconds) and floating-point operations (FLOPs) to compare computational
efficiency across methods.

4.4 COMPARISON WITH EXISTING METHODS

Across a comprehensive comparison with several state-of-the-art unlearning approaches, our method
consistently drives the accuracy on the triggered forget set Du close to random guess. For example,
the accuracy on CIFAR-10 and CIFAR-100 drops to only 0.05% and 0.02%, respectively (see Ta-
ble 1). These results demonstrate that InstantForget effectively removes the influence of backdoor
features, achieving forgetting performance comparable to or even better than full retraining. At the
same time, the accuracy on the clean retain set Dr remains high. Although slightly lower than re-
training or fine-tuning, this small drop is acceptable given that our approach is entirely training-free
and introduces neither parameter updates nor additional communication rounds.

More importantly, InstantForget shows a significant advantage in efficiency. As illustrated in Fig-
ure 4(a) and (b), our method completes unlearning in only 1.6 seconds, whereas retraining requires
more than 1300 seconds, yielding an overall speedup of over 800× (see Figure 4(a)). In terms of
computation cost, InstantForget requires merely 3.5 × 1010 FLOPs, which is orders of magnitude
smaller than the 4.37× 1014 FLOPs needed by retraining (see Figure 4(b)). This dramatic reduction
in runtime and FLOPs highlights the practicality of functional unlearning as a fast, post-training
solution for large-scale federated systems.

4.5 ABLATION STUDY

To better understand the core design of InstantForget, we conduct ablation studies by isolating the
effects of subspace projection (Stage I) and inference-time randomized smoothing (Stage II). Results
are summarized in Table 2. Using Stage I projection alone substantially reduces linear dependencies
in the representation space, e.g., lowering Du accuracy on MNIST from 97.4% (Baseline) to 11.1%
and on CIFAR-10 from 95.0% to 16.4%, but residual nonlinear dependencies remain, leading to
incomplete forgetting. Using Stage II smoothing alone achieves partial forgetting but shows higher
variance across random seeds (e.g., 22.1% ± 0.55 on MNIST and 70.4% ± 2.17 on CIFAR-100),
indicating less stable behavior.

Combining both stages yields the best performance: Du accuracy is further suppressed to 9.78%±
0.05 on MNIST and 0.05% ± 0.14 on CIFAR-10, approaching random guess, while also improv-
ing prediction consistency by roughly 20% across seeds (see Table 2). These results confirm the
complementarity of the two stages: Stage I provides deterministic removal of linear features, while
Stage II attenuates residual nonlinear dependencies and stabilizes model outputs.

We further analyze the sensitivity to the poisoning ratio by varying the fraction of triggered samples
from 1% to 100%. As shown in Figure 4(c), InstantForget maintains near-random accuracy on Du

across the entire range while preserving stable performance on Dr, demonstrating the robustness
and scalability of our approach.

Runtime (s)

(a) Runtime

FLOPs

(b) FLOPs (c) Accuracy vs. Client

Figure 4: Overall comparison of runtime, FLOPs, and different unlearn client dataset.
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Table 1: Comparison of functional unlearning performance with other SOTA methods in different
datasets. Accuracy (%) is reported as mean ± std over five runs. Dr: retain set (clean), Du: forget
set (triggered). The comparison methods include FedCDP (Wang et al., 2022), FedRecovery (Zhang
et al., 2023b), and Ferrari (Gu et al., 2024).

Datasets Baseline Retrain Fine-tune FedCDP FedRecovery Ferrari Ours

MNIST Dr 95.65±1.39 97.19±2.49 96.16±0.37 68.82±6.85 40.81±4.31 95.93±0.45 92.70±0.32
Du 97.43±3.69 0.00±0.00 72.64±0.24 69.37±0.83 53.72±3.14 0.11±0.01 9.78±0.05

FMNIST Dr 91.07±0.54 93.85±1.08 94.36±1.98 68.46±0.39 42.93±2.50 92.83±0.61 68.63±0.06
Du 94.51±6.29 0.00±0.00 43.91±1.98 72.19±0.49 48.15±4.37 0.90±0.03 0.05±0.02

CIFAR-10 Dr 87.63±1.16 91.12±1.60 92.02±3.15 54.91±6.91 27.49±4.96 89.91±0.95 70.95±1.05
Du 95.05±2.30 0.00±0.00 88.44±0.92 62.75±5.07 49.26±2.23 0.29±0.04 0.05±0.14

CIFAR-20 Dr 75.06±6.41 81.91±4.68 82.67±1.32 55.67±6.12 28.43±6.71 72.88±3.12 57.24±4.54
Du 94.21±4.11 0.00±0.00 86.53±1.45 50.11±7.41 30.64±6.73 0.78±0.08 0.02±0.04

CIFAR-100 Dr 54.14±3.96 73.54±5.70 73.66±6.57 34.62±12.24 15.62±7.78 69.57±3.81 52.14±0.67
Du 88.98±6.63 0.00±0.00 65.38±4.76 57.29±3.62 46.17±9.25 0.15±0.01 0.02±0.02

Table 2: Ablation study of InstantForget on five datasets. We report mean backdoor accuracy (%)
AccDu over all random seeds. Lower is better. Stage I: subspace projection, Stage II: inference-time
randomized smoothing.

Dataset Stage I Stage II Full (I+II)
MNIST 11.10±0.42 22.05±0.55 9.78±0.05
FashionMNIST 0.10±0.03 18.99±0.74 0.05±0.02
CIFAR-10 16.39±1.12 23.47±1.38 0.05±0.14
CIFAR-20 7.34±0.64 19.53±0.82 0.02±0.04
CIFAR-100 7.59±0.57 70.43±2.17 0.02±0.02

5 LIMITATIONS

Despite the strong performance and efficiency of InstantForget, there are two main limitations.

(1) Limited scope of unlearning scenarios. Our method targets feature-level backdoor unlearning
with known triggers and has not been extensively validated in class-level forgetting or client-level
removal. These settings may require adaptive subspace estimation or hybrid strategies that combine
inference-time editing with lightweight fine-tuning.

(2) Sensitivity to dataset complexity. The effectiveness of our approach varies with feature space
structure: results on MNIST leave slightly higher residual attack success rates than on CIFAR
datasets, suggesting that nonlinear trigger components may require iterative projection or more ex-
pressive transformations.

These limitations highlight promising directions for extending InstantForget to more general un-
learning tasks and improving robustness across diverse data distributions.

6 CONCLUSION

We presented InstantForget, a training-free, purely inference-time framework for functional fea-
ture unlearning. By formalizing unlearning as a problem of behavioral equivalence, our method
directly edits the input–output mapping of a frozen model without gradient updates, retraining, or
additional federated communication. The two-stage design—subspace projection to remove linear
trigger contributions and gated randomized smoothing to suppress nonlinear residuals—achieves
near-retraining forgetting quality while maintaining competitive retain-set accuracy, yielding over
800× speedup and orders-of-magnitude fewer FLOPs compared to retraining. Beyond backdoor
forgetting, InstantForget highlights a general paradigm for inference-time functional editing, with
potential applications to model repair, personalization, and privacy-preserving deployment. Future
work will explore adaptive subspace estimation, tighter theoretical guarantees, and extensions to
class-level and client-level unlearning, moving toward scalable, low-carbon, and trustworthy un-
learning solutions suitable for large-scale federated learning systems.
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behaviors without retraining, which aligns with the responsible development of robust and trustwor-
thy AI systems. No potentially harmful applications are promoted. We disclose all implementation
details and hyperparameters to enable transparent evaluation and facilitate future reproducibility
studies.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of our model architecture, data prepro-
cessing, and evaluation metrics in the main text and Appendix. All hyperparameters (e.g., sensi-
tive subspace dimension, projection strength, noise standard deviation, smoothing parameters) are
reported. Our implementation is based on PyTorch and will be released as open-source upon accep-
tance, including scripts to reproduce all reported results. We also include results averaged over five
random seeds to account for stochasticity and report standard deviations where appropriate.
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This paper makes limited use of Large Language Models (LLMs) such as ChatGPT solely for lan-
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ative AI tools were used for generating novel content, experimental results, or scientific claims.
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