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ABSTRACT

The development of alignment and reasoning capabilities in large language mod-
els has seen remarkable progress through two paradigms: instruction tuning and
reinforcement learning from human feedback (RLHF) alignment paradigm, and
distillation-based reasoning fine-tuning paradigm. While both approaches prove
effective independently, the third paradigm of applying RLHF to distillation-
trained models presents significant challenges. Our investigation reveals two crit-
ical phenomena that emerge in this paradigm: Sequence Length Collapse, where
language generation dramatically reduces during early RLHF training, and the Re-
ward Hockey Stick Curve, featuring severe reward score drops followed by grad-
ual recovery. These instabilities fundamentally compromise the model’s align-
ment and reasoning capabilities. To address these challenges, we propose Bal-
anced Actor Initialization (BAI), a two-stage weighted model merging approach.
BAI first merges instruction-following and distillation-based reasoning fine-tuned
models, then further combines this intermediate model with the pretrained model
to preserve foundational knowledge. Through comprehensive experiments across
diverse benchmarks and detailed analysis of training experiments, we demonstrate
that BAI resolves Sequence Length Collapse, mitigates the Reward Hockey Stick
Curve, and enables continuous sequence length improvement during training. Our
analysis reveals that balanced merging ratios achieve optimal trade-offs between
training stability and reasoning capability preservation. Our work provides the
effective solution for stable training in this third paradigm, enabling more capable
reasoning models that combine distillation efficiency with RLHF alignment.

1 INTRODUCTION

The development of alignment and reasoning capabilities in Large Language Models (LLMs) has
emerged as one of the most critical challenges in modern artificial intelligence (OpenAl, 2024} Xu
et al., 2025 Sui et al., 2025; [Liu et al., [2025). Recent breakthroughs in chain-of-thought (CoT)
reasoning (Wei et al.| |2022; |Chen et al.,[2025) have demonstrated the potential for models to engage
in step-by-step problem solving, leading to improvements across diverse reasoning tasks. Moreover,
the recent success of DeepSeek-R1 (Guo et al., 2025) has demonstrated remarkable capabilities in
reasoning and problem-solving, showcasing the potential of advanced post-training methodologies.

Current approaches to developing alignment and reasoning capabilities in language models typically
follow two well-established paradigms. As shown in Figure[I| Paradigm 1 is the instruction tuning
and alignment paradigm, which involves supervised fine-tuning on instruction-following data fol-
lowed by reinforcement learning from human feedback (RLHF) to align model behavior with human
preferences (Ouyang et al., 2022} |Bai et al.,[2022a; Touvron et al., 2023} |Achiam et al., 2023} Team
et al.,2023)). Paradigm 2 is the distillation-based reasoning fine-tuning paradigm, where models are
trained on reasoning data distilled from more powerful models (Guo et al.,[2025)). This approach en-
ables smaller models that originally lack thinking and reasoning capabilities to acquire sophisticated
step-by-step reasoning abilities through supervised learning on distilled data. This paradigm has
proven highly effective because distilling reasoning capabilities from larger models into smaller ones
yields excellent results with significantly lower computational costs compared to training smaller
models through large-scale reinforcement learning (Luo et al., 2025; [Li et al.| 2025a)). Following the
breakthrough of DeepSeek-R1, this paradigm has become increasingly prevalent, with recent works
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Figure 1: The LLMs training pipeline of Paradigm 1 (instruction tuning and RLHF alignment),
Paradigm 2 (distillation-based reasoning fine-tuning), and Paradigm 3 (distillation-based reasoning
fine-tuning and RLHF alignment).

demonstrating substantial performance improvements across various reasoning benchmarks through
the use of large quantities of long chain-of-thought data distilled from giant-sized language models.

Given the success of both paradigms independently, a natural question emerges: can we achieve
further breakthroughs by combining the instruction tuning and alignment paradigm with distillation-
based reasoning fine-tuning? Paradigm 3—applying RLHF to models that have already undergone
distillation-based reasoning fine-tuning-represents a potentially powerful methodology for devel-
oping reasoning models that combine the efficiency of distillation with the alignment benefits of
human feedback optimization. However, this third paradigm presents significant challenges. Our
experiments reveal that applying RLHF to models trained with extensive distillation-based reason-
ing fine-tuning leads to critical training instabilities.

Specifically, models initially generate lengthy reasoning chains after distillation-based reasoning
fine-tuning, but after the first several steps of Proximal Policy Optimization (PPO) based rein-
forcement learning training, the response length experiences a dramatic reduction. We term this
phenomenon Sequence Length Collapse. Simultaneously, we observe what we call the Reward
Hockey Stick Curve, where reward model scores dramatically drop during early RL training before
gradually recovering. These phenomena stem from the fundamental mismatch between specialized
reasoning patterns learned during distillation-based fine-tuning and RL optimization requirements,
often triggering reward hacking behaviors where models exploit reward signals through shortcuts
rather than genuine reasoning improvement. This degradation fundamentally compromises the
model’s ability to produce detailed reasoning chains and comprehensive responses, representing
a critical barrier to successful implementation of the third paradigm.

Guo et al.[(2025) has shown that incorporating a small amount of cold-start data before reasoning-
oriented RL training significantly improves training stability, highlighting the critical importance of
robust model initialization. The significance of this cold-start data lies in creating a more balanced
model initialization that preserves the model’s foundational capabilities while introducing basic rea-
soning patterns, thereby establishing a stable foundation for subsequent reinforcement learning.
Motivated by this observation, we recognize that robust actor model initialization is essential for ad-
dressing the instability issues in the third paradigm. To create such robust initializations and address
the Sequence Length Collapse and Reward Hockey Stick Curve phenomena, we propose an effective
weighted model merging approach, which we call Balanced Actor Initialization (BAI), that creates
robust actor model initializations by combining the pretrained model with instruction-following fine-
tuned models and reasoning fine-tuned models at different ratios. This weight merging approach
provides a more deterministic and controllable initialization scheme, eliminating the dependence
on ambiguous data quantity specifications while offering precise control over the balance between
foundational capabilities and reasoning skills.

Specifically, our proposed BAI approach includes two stages to create robust actor initializations. In
the first stage, we merge the instruction-following SFT model and the distillation-based reasoning
SFT model through weighted linear combination to integrate both instruction-following capabilities
and reasoning abilities. In the second stage, we further combine this intermediate model from the
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first stage with the pretrained model to preserve foundational knowledge while maintaining the ac-
quired specialized abilities. This two-stage approach directly addresses the challenges of integrating
specialized reasoning abilities while preventing the degradation of foundational model capabilities.

Our comprehensive experiments demonstrate that BAI approach successfully resolves Sequence
Length Collapse and effectively mitigates the Reward Hockey Stick Curve phenomenon, while pro-
viding better control and interpretability. Moreover, by addressing these core instabilities, our simple
but effective approach enables the third paradigm to deliver improved performance across diverse
evaluation domains. Through extensive BAI ratio experiments, we demonstrate that different merg-
ing configurations achieve distinct trade-offs between training stability and alignment and reasoning
capability, with balanced ratios demonstrating optimal performance across diverse tasks.

Our paper makes the following key contributions:

* We identify Sequence Length Collapse and Reward Hockey Stick phenomena that emerge
in the third paradigm, providing empirical analysis of their impact on training stability.

* We propose Balanced Actor Initialization (BAI), a two-stage weighted merging approach
that addresses these instability issues, enabling continuous sequence length improvement
while maintaining model performance.

* We demonstrate through extensive experiments that BAI achieves stable training with im-
proved sequence length maintenance, gradual reward increases, and enhanced knowledge
retention across diverse benchmarks.

2 RELATED WORK

The standard RLHF pipeline consists of three stages: SFT on instruction-following, reward model
training using human preference comparisons, and policy optimization using reinforcement learning
algorithms. This approach has proven highly effective for improving model helpfulness, harmless-
ness, and honesty (Bai et al., [2022b)), leading to the success of models like ChatGPT (Achiam et al.,
2023)), Claude (Bai et al., [2022a), and Gemini (Team et al., [2023)).

Recent advances in RLHF have focused on developing more effective and stable optimization algo-
rithms. Proximal Policy Optimization (PPO) (Schulman et al., 2017) remains the most widely used
approach, providing stable policy updates through clipped objective functions. Direct Preference
Optimization (DPO) (Rafailov et al., [2024)) eliminates the need for explicit reward model training
by directly optimizing preferences, simplifying the pipeline while maintaining competitive perfor-
mance. Group Relative Policy Optimization (GRPO) (Shao et al.,2024)) improves sample efficiency
by leveraging group-wise preference comparisons. DAPO (Yu et al., 2025)) provides an open-source
RLHF system designed for large-scale deployment, while VAPO (Yue et al., 2025) focuses on effi-
cient and reliable reinforcement learning specifically for advanced reasoning tasks.

The emergence of reasoning-capable models has introduced new challenges and opportunities
in RLHE. Recent thinking models demonstrate remarkable capabilities in step-by-step reasoning
through explicit chain-of-thought generation. OpenAlI’s ol-style reasoning models (OpenAl, [2024)
pioneered this direction by incorporating sophisticated reasoning protocols into the RLHF frame-
work. Following this breakthrough, DeepSeek-R1 (DeepSeek-Al et al., 2024) demonstrated the
successful application of RLHF to reasoning models, showing significant improvements in math-
ematical and logical reasoning tasks. Subsequently, models like SEED-1.5-Thinking (Seed et al.,
20235)) have further advanced the field by developing superb reasoning capabilities through reinforce-
ment learning approaches.

However, training thinking models presents unique challenges, particularly regarding initialization
strategies and training stability. Unlike traditional language models, reasoning models require care-
ful balance between maintaining reasoning capabilities learned during SFT and adapting to human
preferences through RL (Zheng et al.,[2024a3b). DeepSeek-R1 (DeepSeek-Al et al.,2024) observed
that training directly from base models leads to unstable cold start phases, while using a small
amount of long CoT data for initialization improves stability. Unlike previous approaches that focus
on data-based solutions, we propose BAI as a more controllable approach for achieving stable RLHF
training while preserving reasoning capabilities.
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3 APPROACH

As shown in Figure [T} Paradigm 1 represents the traditional instruction tuning and alignment ap-
proach, Paradigm 2 employs distillation-based reasoning fine-tuning without subsequent RLHF, and
Paradigm 3 combines distillation-based reasoning fine-tuning with RLHF. However, Paradigm 3
faces critical training instabilities that compromise model performance. These instabilities manifest
in two ways: models experience dramatic sequence length reduction during early RL training, los-
ing their ability to generate detailed reasoning chains, while simultaneously exhibiting severe reward
model score fluctuations that disrupt the learning process.

To address the Sequence Length Collapse and Reward Hockey Stick Curve, we propose Balanced
Actor Initialization (BAI), a two-stage weighted model merging approach that creates robust ini-
tializations for RL training. BAI combines multiple models to achieve an optimal balance between
reasoning capabilities, instruction-following abilities, and foundational knowledge retention.

3.1 BALANCED ACTOR INITIALIZATION (BATI)

Our approach focuses on creating robust actor model initializations through strategic model merg-
ing before RL training begins. The core motivation of BAI is to address the initialization challenges
inherent in the third paradigm by leveraging the complementary strengths of different model states
while mitigating their individual limitations. BAI operates in two distinct stages, each address-
ing different aspects of the initialization challenge. The first stage focuses on capability integra-
tion, combining specialized fine-tuned models to create a unified representation of reasoning and
instruction-following abilities. Notably, this stage is flexible and can accommodate scenarios where
only the distillation-based reasoning model is available, without requiring additional instruction-
following components. The second stage emphasizes knowledge preservation, merging the inte-
grated model with the original pretrained model to retain foundational capabilities that are crucial
for stable RL optimization. This hierarchical design ensures that the final initialization maintains
the delicate balance required for successful training in the third paradigm.

3.1.1 MULTI-SFT MODEL MERGING

First, given N well-trained SFT models with different capabilities for merging, we denote the pa-
rameters of the i-th model as Mjf‘ fori € {1,2,...,N}. Each well-trained model is assigned a
weighting coefficient w; that determines its contribution to the final merged model. The merged

SFT model Mfg‘erge is then computed as a weighted linear combination:

merge

N
Msft — Z wiszt (1)
i=1

where the weights sum to one Zivzl w; = 1 to preserve parameter scale. This formulation allows
for flexible integration of instruction-following and reasoning capabilities from different fine-tuning
stages, enabling optimal balance between specialized capabilities while maintaining model stabil-
ity. In this work, our first stage, Multi-SFT Model Merging, effectively combines the instruction-
following SFT model from Paradigm 1 with the distillation-based reasoning SFT model from
Paradigm 2 using uniform weights (w; = 0.5, wa = 0.5) to retain both strong instruction-following
and reasoning capabilities.

3.1.2 BALANCED MODEL MERGING FOR RL ACTOR INITIALIZATION

While the merged SFT model Mfﬁ‘erge possesses strong instruction-following capabilities, it often
suffers from catastrophic forgetting of the broad knowledge encoded in the original pretrained
model. Direct use of such specialized models as RL actors can lead to suboptimal performance
due to this knowledge degradation. To address this limitation, we perform a second-stage merging
between the merged SFT model and the original pretrained model:

MBAI = - Mbase + 6 X Msft (2)

merge

where o € [0, 1] ratio and § = (1 — «) ratio represent the merging weight that controls the bal-

ance between pretrained knowledge and instruction-following capabilities, M;f‘erge is the merged
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Paradigm 1 67.8 80.8 38.1 444 48.5 154 18.7 80.9 67.5 513
Paradigm 2 69.7 82.0 40.7 423 50.0 34.6 17.3 71.6 67.5 53.6
Paradigm 3 69.2 80.8 40.5 43.0 51.5 16.0 17.7 71.5 67.2 51.5
BAI 70.2 82.7 40.6 44.9 50.8 359 21.3 81.0 69.3 55.2

Table 1: Performance comparison across different paradigms and the proposed BAI approach. Best
results are highlighted in blue (BAI) and (other methods).

SFT model from the previous step, MP*¢ is the original pretrained model, and MPBA! serves as
our proposed RL actor initialization. The two-stage design addresses key challenges in the third
paradigm: (1) Stage 1 integrates complementary capabilities from different fine-tuning approaches
while maintaining parameter compatibility; (2) Stage 2 preserves the rich factual knowledge and lin-
guistic capabilities of the pretrained model, preventing catastrophic forgetting that commonly occurs
during intensive fine-tuning; (3) The parameterized control through « and 3 provides interpretable
trade-off management and control between knowledge retention and behavioral adaptation.

4 EXPERIMENTS AND ANALYSIS

4.1 IMPLEMENTATION DETAILS

In this work, we conducted RLHF experiments on MoE-2.5B/25B models. These models are scaled
variants of open-source OLMOoE architecture (Muennighoff et al,, 2024) with augmented training
parameters. For PPO-based RLHF, we used AdamW as the optimizer, setting both the actor model
and critic model learning rates to 1 x 1076, The learning rate employed a warmup-constant sched-
uler. The global batch size was 4096, with each prompt sampled once, and the mini-batch size set
to 512. The actor model was initialized using our BAI approach. The critic model was initialized
using a reward model, with the GAE ) set to 0.95 and +y set to 1.0. The training utilized distributed
computing across 8 nodes with a total of 64 GPUs. The training incorporated advanced optimization
techniques including Megatron (Shoeybi et al.| 2019) parallelism and Flash Attention (Dao et al.,
2022), etc. Most RL experiments were trained for 1600 steps, except for Paradigm 3 without BAI
and Paradigm 3 with BAI (o = 0.6, 8 = 0.4 merging ratio), which were trained for 3000 steps.

4.2 PERFORMANCE COMPARISON ACROSS PARADIGMS

We evaluate the effectiveness of our BAI approach by comparing it against the three paradigms
capabilities in language models. All RLHF experiment evaluations are conducted based on
the 1600-step checkpoint to ensure fair comparison. Table [1| presents comprehensive evalua-
tion results across diverse benchmarks spanning knowledge reasoning (MMLU Pro (Wang et al.,
2024), MMLU (Hendrycks et al.| 2020)), question answering (SuperGPQA (Du et al/ [2025),
LiveBench (White et al.| [2024)), MixEval-Hard (Ni et al.} 2024)), conversational ability (ArenaHard-
Gemini as Judge (Li et al., 2024)), mathematical reasoning (AIME 2024 (Mathematical Associa-
tion of America, |2024), MATH (Hendrycks et al.l 2021))), and code generation (MBPP+ (Austin
et al., [2021)). BAI demonstrates superior performance compared to all three paradigms, achieving
the highest overall score of 55.2, representing a significant improvement over the best individual
paradigm (Paradigm 2 at 53.6).

The ArenaHard results reveal particularly interesting patterns when using Gemini as the judge.
Paradigms 1 and 3 receive notably low scores (15.4 and 16.0 respectively), while Paradigm 2 and
BAI achieve substantially higher scores (34.6 and 35.9). This disparity suggests that judgments tend
to favor models that exhibit clear reasoning patterns and coherent response generation. Paradigm
1, lacking extensive reasoning training, produces responses that appear less structured to the judge.
Paradigm 3, despite having reasoning capabilities, suffers from the sequence length collapse and
training instabilities that compromise response quality and coherence. In contrast, Paradigm 2
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MMLU Pro 70.2 69.7 69.8 69.4 70.7 68.3 68.6 68.2 68.1
MMLU 82.7 81.3 81.1 82.1 80.9 81.7 81.8 80.2 81.3
SuperGPQA 40.6 40.8 39.0 40.2 39.6 39.4 37.6 38.7 389
LiveBench 449 44.6 44.0 443 45.0 44.6 45.5 44.8 443
MixEval-Hard 50.8 50.6 50.8 49.9 48.7 51.0 51.2 50.0 47.8
ArenaHard 359 333 29.9 27.0 25.2 20.7 16.0 20.3 11.5

Table 2: Performance evaluation across different merging ratios. Best results are highlighted in blue.

maintains stable reasoning patterns, while BAI not only preserves these patterns but enhances them
through balanced initialization, resulting in the highest ArenaHard score.

BAI shows notable improvements in mathematical reasoning tasks, achieving the highest scores on
both AIME 2024 and MATH benchmarks compared to all other paradigms. These improvements
demonstrate that BAI successfully preserves and enhances reasoning capabilities while avoiding the
degradation typically observed in Paradigm 3. Across most benchmarks, BAI either matches or
exceeds the performance of individual paradigms, achieving the highest scores in these benchmarks,
indicating the robustness and generalizability of our approach across different task domains.

4.3 PERFORMANCE EVALUATION ACROSS BAI CONFIGURATIONS

Table 2| presents the evaluation of performance across different BAI merging configurations, reveal-
ing key insights into the optimal balance between pretrained knowledge and specialized reason-
ing capabilities. The analysis demonstrates a clear trend: configurations with higher SFT weights
(lower « values) consistently achieve superior performance across most benchmarks. The su-
perior performance of SFT-heavy configurations stems from their preservation of reasoning ca-
pabilities and instruction-following behaviors acquired during distillation-based reasoning fine-
tuning. This advantage is particularly pronounced in benchmarks such as MMLU Pro (70.2%),
MMLU (82.7%), and ArenaHard (35.9%), which demand structured problem-solving approaches
that align closely with chain-of-thought methodologies. The consistent top-tier performance of the
(a = 0.1, 8 = 0.9) configuration across diverse evaluation metrics underscores the effectiveness of
prioritizing specialized reasoning patterns over raw pretrained knowledge.

Moreover, configurations with higher pretrain weights (o > 0.6) also demonstrate competitive per-
formance on specific tasks. For instance, certain benchmarks like MixEval-Hard achieve peak per-
formance at (o = 0.7, 8 = 0.3) (51.2%), suggesting that the broad knowledge base from pretraining
remains valuable for tasks requiring extensive factual recall and general linguistic competence. This
task-dependent behavior indicates that the optimal merging ratio may vary based on the specific
cognitive demands of different evaluation scenarios.

The ArenaHard benchmark reveals the most dramatic sensitivity to merging ratios, with performance
declining precipitously from 35.9% to 11.5%. This steep degradation highlights the fundamental
importance of instruction-following and conversational reasoning capabilities that are primarily en-
coded in the SFT component. The results suggest that while pretrained knowledge provides a foun-
dation, the specialized behavioral patterns learned during distillation-based reasoning fine-tuning
are indispensable for complex interactive reasoning tasks in the third paradigm.

4.4 REWARD HOCKEY STICK CURVE PHENOMENON IN PARADIGM 3

Paradigm 3 faces a critical challenge in the form of reward model instability during RLHF training.
When models undergo extensive distillation-based reasoning fine-tuning and are subsequently used
as both the reward model and RL actor, we observe the Reward Hockey Stick Curve phenomenon
characterized by a "Hockey Stick”-shaped trajectory in reward scores.

Figure [2] and Figure [§] illustrates this phenomenon across different sequence length ranges during
RLHF training. As shown by the pink curves, the Reward Hockey Stick Curve exhibits three distinct
phases: an initial decline where RM scores decrease from their starting values after distillation-based
reasoning fine-tuning, a trough phase where performance plateaus at the lowest point, and a recovery
phase featuring gradual improvement that often surpasses the original performance levels.
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Figure 2: Reward Hockey Stick Curve phenomenon for different generated sequence length. The
pink curve represents Paradigm 3 without BAI, while the blue curve represents Paradigm 3 with
BALI Each figure represents the reward scores of samples with generated lengths in the interval from
1100 to (7 + 1)100, where i represents integers ranging from 9 to 16.

This phenomenon stems from the fundamental mismatch between the specialized reasoning patterns
learned during distillation-based fine-tuning and the requirements of RL optimization. The intensive
parameter updates during reasoning fine-tuning create optimization landscapes that are highly sen-
sitive to distribution shifts, leading to reward signal instability when transitioning from supervised
to RL-generated samples. This mismatch often triggers reward hacking behaviors, where the model
learns to exploit the reward signal in unintended ways, initially achieving higher scores through
shortcuts rather than genuine reasoning improvement. This instability undermines training consis-
tency and represents a core barrier to successful implementation of the third paradigm. The Hockey
Stick Curve motivates our BAI approach. BAI addresses the underlying causes of reward instability
and reward hacking tendencies, enabling stable training dynamics from the onset of RL training.

4.4.1 MITIGATING THE REWARD HOCKEY STICK CURVE THROUGH BAI

To address the Reward Hockey Stick Curve phenomenon in the third paradigm, we demonstrate how
our BAI approach effectively mitigates this critical training instability. To validate our method’s ef-
fectiveness, we employ a balanced (o = 0.5, f = 0.5) merging ratio between the pretrained model
and the distillation-based reasoning SFT model, deliberately chosen to demonstrate robustness with-
out extensive hyperparameter optimization.

As shown by the blue curves in Figure 2]and Figure[6] BAI approach substantially mitigates the Re-
ward Hockey Stick Curve phenomenon, maintaining stable training trajectories. The effectiveness
of our approach stems from several key factors: BAI creates a more balanced parameter distribu-
tion that reduces extreme specialization, preserves broad knowledge from pretraining that enhances
stability, exhibits more stable gradient flows during early RL training, and reduces overfitting to spe-
cific reasoning patterns. Importantly, the balanced initialization effectively mitigates reward hacking
behaviors by providing more robust starting points that are less susceptible to exploiting reward sig-
nal shortcuts. The consistent performance across different sequence length ranges indicates that BAI
addresses fundamental training dynamics rather than superficial symptoms, while the simple ratio
demonstrates the method’s practical viability.

To further investigate the influence of different configurations for our BAI approach, we conduct
a comprehensive comparison across different merging ratios. Figure [/| presents the reward score
trajectories for three BAI configurations: (o = 0.1,8 = 0.9) (red curves), (« = 0.5,3 = 0.5)
(blue curves), and (o = 0.9, = 0.1) (grey curves), analyzed across different sequence length
ranges. The results reveal distinct performance patterns across different sequence length ranges. For
shorter sequences, all three configurations demonstrate relatively stable performance, with the bal-
anced (o = 0.5, 8 = 0.5) configuration showing slight advantages in convergence speed and final
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BAI vs. with BAIL Right figure represents KL divergence stability analysis with BAI approach.

reward scores. However, as sequence length increases, the differences become more pronounced.
The SFT-heavy configuration (o« = 0.1, 8 = 0.9) consistently achieves the highest reward scores
across longer sequence ranges, demonstrating superior performance for complex reasoning tasks
that require extended chain-of-thought generation. This advantage becomes particularly evident in
the long sequence ranges, where the red curves consistently outperform other configurations by
substantial margins. In contrast, the pretrain-heavy configuration (o« = 0.9, 5 = 0.1) shows more
conservative performance gains, with grey curves typically plateauing at lower reward levels. While
this configuration provides stability, it appears to sacrifice some reasoning capability for robustness,
particularly in longer sequence generation tasks. The balanced (« = 0.5, = 0.5) configuration
achieves a middle ground, demonstrating competitive performance across all sequence lengths while
maintaining training stability. This configuration represents an optimal choice for balancing reason-
ing capability with training robustness, confirming the effectiveness of balanced merging ratios.

4.5 ADDRESSING SEQUENCE LENGTH COLLAPSE THROUGH BAI

The paradigm 3 faces another critical challenge in the form of Sequence Length Collapse, where
models experience dramatic reduction in sample generation during early RL training phases. As
illustrated in Figure [3a] models initialized from pure distillation-based reasoning fine-tuned models
exhibit catastrophic drops in generated sequence length within the first few training steps, with no
recovery throughout the entire training process. This phenomenon fundamentally undermines the
model’s ability to generate comprehensive reasoning chains and detailed responses. The sequence
length collapse occurs due to the distributional mismatch between specialized reasoning patterns
learned during distillation-based fine-tuning and RL optimization requirements. When transitioning
to RL training, the reward model optimization creates tension between the specialized SFT patterns
and reward signal expectations. This mismatch triggers an over-correction mechanism where the
model rapidly shortens responses to achieve higher immediate rewards, effectively engaging in re-
ward hacking by producing concise responses that score well but lack reasoning depth. The concen-
trated parameter updates during distillation-based reasoning fine-tuning create brittle optimization
landscapes that are susceptible to rapid degradation under RL gradient updates.

To address this challenge, we evaluate our BAI approach across different merging ratios, examining
how the balance between pretrained and SFT parameters affects sequence length stability. Figure []
presents the mean sequence lengths for different merging ratios during RL training. The results
reveal consistent behavior: every merging ratio effectively reduces or eliminates the initial sequence
length collapse compared to the pure SFT baseline. More importantly, ratios closer to the balanced
(a = 0.5, 8 = 0.5) configuration exhibit the most desirable behavior—not only do they prevent the
initial collapse, but they also demonstrate progressive sequence length growth throughout training.

This progressive improvement in balanced merging ratios can be attributed to the optimal equilib-
rium between knowledge preservation and reasoning capability. Ratios heavily weighted toward
the pretrained model (e.g., (&« = 0.9,8 = 0.1)) lack sufficient reasoning initialization, requir-
ing longer training to develop CoT capabilities. Conversely, ratios favoring the SFT model (e.g.,
(e = 0.1,8 = 0.9)) retain more reasoning patterns but inherit instability from the specialized
fine-tuning. The balanced (o« = 0.5, = 0.5) and (o« = 0.6, 8 = 0.4) ratios achieve an optimal
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compromise, preserving enough pretrained stability to prevent collapse while maintaining sufficient
reasoning capability to enable progressive development.

Importantly, the sequence length growth observed in balanced ratios highlights that optimal model
development requires consideration of both performance metrics and training dynamics. While SFT-
heavy configurations may achieve higher immediate benchmark scores, the progressive sequence
length improvement in balanced ratios demonstrates healthier learning patterns that are more likely
to sustain long-term capability development. This finding underscores that effective reasoning model
training should not solely pursue metric optimization but must also ensure stable and progressive
training states. To further validate the long-term sequence length growth of our approach, we ex-
tended training for the (o« = 0.6, 8 = 0.4) configuration by an additional 1, 400 steps. As illustrated
in Figure sequence length continues to grow progressively with training steps. This demon-
strates that our BAI approach not only prevents initial collapse but also establishes a foundation for
sustained capability development, suggesting that longer training could yield substantial improve-
ments in reasoning depth and comprehensiveness. This balance creates a more robust optimization
landscape that supports both immediate stability and long-term capability growth, establishing the
foundation for effective reasoning model development in the third paradigm.

4.6 KL DIVERGENCE ANALYSIS OF BAI CONFIGURATIONS

To better understand the training dynamics enabled by our BAI approach, we analyze the KL diver-
gence between the training policy and the sampling policy throughout the RL training process. The
KL divergence serves as a critical indicator of policy stability during optimization, with effective
training characterized by controlled divergence patterns that balance adaptation with stability.

Figure [3c| presents the KL divergence trajectories for three representative BAI configurations, re-
vealing distinct behavioral patterns: SFT-heavy (a« = 0.1, 8 = 0.9) demonstrates the most stable
patterns with minimal fluctuations, reflecting consistent policy behavior from specialized reasoning
patterns. Pretrain-heavy (o = 0.9, 8 = 0.1) configuration exhibits the most volatile pattern with
frequent spikes, indicating challenges in adapting broad pretrained parameters to specific RL ob-
jectives. The balanced (o = 0.5, 8 = 0.5) configuration achieves a middle ground with moderate
fluctuations that indicate healthy optimization dynamics while maintaining better stability than the
pretrain-heavy setup. These KL divergence patterns provide additional evidence supporting our BAI
approach, demonstrating that balanced merging ratios enable effective adaptation to reward signals
while maintaining training stability. More detailed analysis can be found in Section[A.3]

5 CONCLUSION

In this paper, we investigate the development of reasoning capabilities in large language models
through three established paradigms: the instruction tuning and alignment paradigm (Paradigm
1), distillation-based reasoning fine-tuning (Paradigm 2), and their combination through applying
RLHF to distillation-trained models (Paradigm 3). Although Paradigms 1 and 2 have proven ef-
fective independently, Paradigm 3 faces critical training instabilities. Our analysis identified two
fundamental challenges in Paradigm 3: Sequence Length Collapse, where models experience dra-
matic reduction in language generation during early RL training, and the Reward Hockey Stick
Curve, featuring initial reward score degradation followed by gradual recovery. These phenom-
ena fundamentally compromise the model’s ability to maintain detailed reasoning chains and stable
training dynamics. To address these challenges, we proposed Balanced Actor Initialization (BAI),
a two-stage weighted model merging approach. BAI creates robust actor initializations that pre-
vent training instabilities while maintaining specialized reasoning capabilities. Our experimental
evaluation across diverse benchmarks demonstrates BAI’s effectiveness. BAI outperforms all three
individual paradigms while maintaining stable training throughout the RL process. The approach
consistently eliminates sequence length collapse, mitigates reward curve instabilities, and enables
continuous sequence length improvement during training. These results confirm that BAI success-
fully enables stable training in Paradigm 3, allowing practitioners to leverage both the efficiency of
distillation and the alignment benefits of reinforcement learning from human feedback optimization.
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A APPENDIX

A.1 USAGE OF LLM.

We utilized ChatGPT to improve the manuscript’s readability.

A.2 MEAN RESPONSE LENGTH ACROSS BAI MERGING RATIOS

This section provides comprehensive empirical evidence for the sequence length behaviors observed
across different BAI merging ratios during RL training. Figure[d]presents the complete experimental
results for nine different merging configurations, ranging from heavily pretrained-weighted (o =
0.1, 8 = 0.9) to heavily SFT-weighted (o = 0.9, § = 0.1) ratios.

Pretrained-Heavy BAI Configurations: Models with ratios (o« = 0.1, = 0.9), (« = 0.2,8 =
0.8), and (o = 0.3, 8 = 0.7) exhibit the most dramatic sequence length growth patterns. These con-
figurations begin training with relatively shorter initial sequences but demonstrate steep, sustained
growth throughout the training process. The (o = 0.1, 8 = 0.9) configuration shows the most
aggressive growth. This behavior reflects the model’s gradual acquisition of reasoning capabilities
from a more general pretrained foundation.
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Figure 4: Mean sequence length on different BAI merging ratio.

Balanced BAI Configurations: The balanced ratios (« = 0.4,8 = 0.6), (o = 0.5,8 = 0.5),
and (oo = 0.6, 8 = 0.4) demonstrate the most stable and progressive sequence length development.
These configurations successfully avoid the catastrophic collapse observed in pure SFT baselines
while maintaining steady upward trajectories. Notably, the (o« = 0.6, 3 = 0.4) configuration ex-
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hibits particularly smooth growth with minimal variance, suggesting optimal stability in the opti-
mization landscape.

SFT-Heavy BAI Configurations: Configurations with higher SFT weighting, including (o =
0.7, = 0.3), (¢ = 08,8 = 0.2), and (o« = 0.9, 8 = 0.1), show progressively diminished se-
quence length growth. The (o = 0.9, 8 = 0.1) configuration demonstrates the most concerning
behavior, with sequence lengths remaining relatively flat throughout training. This pattern indicates
that heavy reliance on SFT parameters introduces instabilities that inhibit natural sequence length
development during RL optimization.

The variance patterns across different configurations provide additional insights into training sta-
bility. Pretrained-heavy configurations exhibit higher variance during early training phases, which
gradually stabilizes as the model develops reasoning capabilities. In contrast, balanced configura-
tions maintain consistent variance throughout training, indicating more stable optimization dynam-
ics. SFT-heavy configurations show increasing variance in later training phases, suggesting potential
optimization instabilities that could lead to training degradation.

The progressive sequence length growth observed in pretrained-heavy and balanced configurations
suggests that these merging strategies create optimization landscapes conducive to sustained ca-
pability development. The steep growth curves in configurations like (¢« = 0.1, = 0.9) and
(a = 0.2, 8 = 0.8) indicate that extended training could yield substantial improvements in reason-
ing depth and comprehensiveness. Conversely, the behavior in SFT-heavy configurations demon-
strates inherent limitations in their capacity for continued development. This finding has important
implications for computational resource allocation, as extending training for these configurations
may yield diminishing returns compared to more balanced approaches.

A.3 ADDITIONAL ANALYSIS OF KL DIVERGENCE IN BAI TRAINING

To better understand the training dynamics enabled by our BAI approach, we analyze the KL diver-
gence between the training policy and the sampling policy throughout the RL training process. The
KL divergence serves as a critical indicator of policy stability during optimization, with effective
training typically characterized by controlled divergence patterns that avoid both excessive drift and
stagnation.
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Figure 5: KL divergence analysis across BAI configurations.

Figure [5| presents the KL divergence trajectories for three representative BAI configurations: (o =
0.1,8 = 0.9) (SFT-heavy), (o = 0.5,8 = 0.5) (balanced), and (a = 0.9, = 0.1) (pre-train
heavy). The results reveal distinct behavioral patterns that correlate with the merging characteristics
and provide insight into the underlying optimization dynamics. The BAI (« = 0.1, 5 = 0.9) config-
uration demonstrates the most stable KL. divergence patterns with minimal fluctuations throughout
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training. This stability stems from the specialized reasoning patterns acquired during fine-tuning,
which provide consistent policy behavior under RL optimization.

In contrast, the (« = 0.9, 8 = 0.1) configuration exhibits the most volatile KL divergence pattern
with frequent spikes and irregular fluctuations. This instability reflects the challenge of adapting
the heavy pretrained parameters to specific RL objectives, where the broad parameter configuration
struggles to maintain consistent policy behavior.

The balanced BAI (« = 0.5, 8 = 0.5) configuration achieves a great ground, exhibiting moderate
KL divergence fluctuations that indicate healthy optimization dynamics. While showing more vari-
ation than the SFT-heavy configuration, it maintains better stability than the pretrain-heavy setup,
demonstrating effective adaptation while preserving training consistency.

These KL divergence patterns provide additional evidence supporting our BAI approach and help
explain the superior performance of balanced configurations. The controlled divergence in balanced
merging ratios indicates that BAI enables effective adaptation to reward signals while maintaining
training stability, establishing favorable conditions for sustained learning and capability growth.

A.4 FUTURE DIRECTIONS

Although our BAI approach demonstrates significant effectiveness in addressing training instabili-
ties in the third paradigm, several directions warrant further investigation. Future work could explore
adaptive merging strategies that dynamically adjust weights during training, investigate the applica-
tion of similar approaches to other model architectures and training objectives to better understand
the optimization dynamics underlying these phenomena. Additionally, extending our analysis to
other specialized fine-tuning domains beyond reasoning, such as agent training and multi-modalities,
could validate the broader applicability of weighted model merging strategies.

The success of BAI establishes that proper actor initialization is fundamental to stable training in
the third paradigm. By demonstrating that strategic model weight interpolation can create robust
initializations that prevent training instabilities, this work highlights the critical importance of ini-
tialization strategies in modern language model development. Our findings open new avenues for
developing initialization methodologies that enable reasoning models to successfully leverage both
distillation efficiency and human feedback optimization while maintaining training stability through-
out the process.

A.5 RELATED WORK ON MODEL MERGING

Model merging has emerged as a powerful technique for combining the capabilities of multiple
trained models without requiring additional training data or computational resources. Solar (Kim
et al., 2023)) demonstrated that simple weight averaging could improve model performance across
different domains. This foundational approach has since been extended to more sophisticated merg-
ing strategies.

Recent advances in model merging include task-specific weight interpolation (Matena & Raffel,
2022; Kim et al.l [2023)), where models trained on different tasks are combined to create multi-
capable systems. The TIES-Merging approach (Yadav et al., [2024) addresses sign conflicts and
magnitude differences when merging models with overlapping capabilities. Fisher-weighted averag-
ing (Matsuokal 2022)) leverages Fisher information to determine optimal combining weights, while
SLERP-based approaches (Goddard et al.||2024) use spherical linear interpolation for smoother pa-
rameter transitions.

More recently, evolutionary and optimization-based merging methods have gained attention. Recent
works (Akiba et al.| 2024 |Li et al., [2025b)) introduced algorithms for discovering optimal merging
configurations, while DARE (Tang et al., [2024) addresses redundant parameters during merging.
These approaches demonstrate that model merging can achieve performance comparable to or ex-
ceeding individual specialized models across diverse tasks.

Different from all these works, which primarily focus on merging models to create multi-capable
systems for inference, our work addresses this gap by specifically examining model merging as an
effective approach for creating robust initializations for reinforcement learning training, particularly
in the context of reasoning model development.
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Figure 6: Reward Hockey Stick Curve phenomenon for different generated sequence length. The
pink curve represents Paradigm 3 without BAI, while the blue curve represents Paradigm 3 with
BAI. Each figure represents the reward scores of samples with generated lengths in the interval from
ix100 to (i+1)x100, where i represents integers ranging from 0 to 19.

B.1 MORE DETAILS ABOUT REWARD HOCKEY STICK CURVE PHENOMENON

Figure [6] provides more observations of the reward Hockey Stick Curve phenomenon across three
BAI configurations and all sequence length ranges. The red curves (o« = 0.1, = 0.9) consis-
tently demonstrate the most stable reward trajectories, avoiding the characteristic initial decline and
maintaining steady improvement throughout training. This stability is particularly evident in longer
sequences where other configurations show significant volatility.

The blue curves (« = 0.5, = 0.5) exhibit moderate Hockey Stick effects in shorter sequences
but achieve increasingly stable performance as sequence length increases. The grey curves (o =
0.9, 8 = 0.1) display the most pronounced Hockey Stick patterns, with severe initial declines and
prolonged recovery phases across most sequence ranges.
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The systematic analysis across all sequence length intervals reveals important insights into the re-
lationship between merging ratios and training stability. In shorter sequences (100-800 tokens), all
configurations eventually converge to similar final performance levels, but the training trajectories
differ significantly in stability and convergence speed. For longer sequences (900+ tokens), the
performance gaps become more pronounced, with SFT-heavy configurations maintaining substan-
tial advantages throughout training. This pattern suggests that the benefits of preserving reasoning
patterns through higher SFT weighting become increasingly critical as task complexity grows.

These detailed results confirm that SFT-heavy BAI configurations effectively mitigate the Hockey
Stick phenomenon while maintaining superior final performance, particularly for complex reasoning
tasks requiring longer sequences. The systematic variation across merging ratios validates our ap-
proach and provides clear guidance for practical implementation based on specific sequence length
requirements.

B.2 REWARD SCORE CURVES ACROSS BAI RATIOS

This section presents a comprehensive analysis of reward score trajectories across different BAI
merging ratios and sequence length ranges. Figure[/|compares three representative BAI configura-
tions: (o = 0.1, 8 = 0.9) (red curves), (o« = 0.5, 3 = 0.5) (blue curves), and (v = 0.9, 8 = 0.1)
(grey curves) across 20 different sequence length intervals ranging from 100 to 2000 tokens.

SFT-Heavy Configuration (o« = 0.1, 5 = 0.9): The red curves consistently demonstrate the high-
est final reward scores across all sequence ranges, with this advantage becoming more pronounced
as sequence length increases. In short sequences, this configuration shows marginal performance
gains in the 400-500 token range. For medium sequences, the red curves demonstrate superior per-
formance across all intervals. In long sequences, the SFT-heavy configuration achieves substantial
advantages, consistently scoring 0.1-0.15 points higher than other configurations, with particularly
steep upward trajectories in the 1300-2000 token ranges. This configuration exhibits robust perfor-
mance scaling with sequence length, indicating that preserved reasoning patterns from distillation-
based fine-tuning provide significant advantages for complex reasoning tasks requiring extended
chain-of-thought generation.

Balanced Configuration (o« = 0.5, 3 = 0.5): The blue curves represent an optimal balance be-
tween performance and stability across all sequence ranges. In short sequences, this configuration
shows slight advantages in convergence stability with rapid initial convergence within the first 500
training steps. For medium sequences, the balanced configuration maintains competitive perfor-
mance while showing more stable training dynamics with smoother curve trajectories. In long se-
quences, while not achieving the highest scores, this configuration demonstrates the most consistent
training dynamics with smooth convergence patterns and reduced variance, making it suitable for
applications prioritizing training reliability.

Pretrain-Heavy Configuration (o = 0.9, 3 = 0.1): The grey curves show the most conservative
performance profile across all sequence ranges. This configuration maintains similar performance to
other configurations in short sequences, but shows consistent but limited improvements in medium
sequences. In long sequences, this configuration exhibits signs of plateauing and sacrifices reasoning
capability, particularly evident in longer sequence generation tasks. However, it provides excellent
training stability throughout all ranges, making it suitable for applications prioritizing training sta-
bility over peak performance.

The analysis reveals important trade-offs for practical applications. For tasks requiring maximum
reasoning performance on complex, long-form problems, the SFT-heavy configuration provides op-
timal results, particularly for sequences exceeding 1000 tokens. For general-purpose applications re-
quiring balanced performance and training stability, the balanced configuration offers the best com-
promise. For applications prioritizing training stability over peak performance, the pretrain-heavy
configuration provides the most conservative approach. The progressive divergence in performance
as sequence length increases demonstrates that merging ratio selection becomes increasingly critical
for applications requiring long-form reasoning, while the choice matters less for shorter sequence
tasks.
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Figure 7: Reward score curve across different BAI ratio. The red curve represents Paradigm 3 BAI
(a = 0.1, 8 = 0.9), the blue curve represents Paradigm 3 with BAI (« = 0.5, 8 = 0.5) , while the
grey curve represents Paradigm 3 with BAI (o« = 0.9, 8 = 0.1). Each figure represents the reward
scores of samples with generated lengths in the interval from ix100 to (i+1)x100, where i represents
integers ranging from O to 19.

C CASE STUDY

To illustrate the qualitative differences underlying our quantitative evaluation results, we present rep-
resentative examples comparing model responses across paradigms. The cases demonstrate distinct
reasoning characteristics: Paradigm 1 shows basic analytical capability but lacks precision, often
containing conceptual errors while arriving at correct answers through mechanical steps. Paradigm
2 exhibits structured reasoning with clear organization and verification steps, but can be overly rigid
and miss nuanced distinctions. Paradigm 3 with BAI produces the most sophisticated responses,
demonstrating deep theoretical understanding, comprehensive analysis, and practical applicability.
These concrete examples validate our performance findings, showing how BAI-enhanced Paradigm
3 achieves superior reasoning quality across diverse domains - from philosophical theory compre-
hension to mathematical problem-solving - explaining its highest benchmark performance and ro-
bust generalization across task types.
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Prompt
Label: A

According to Stevenson, moral disagreements involve:
A) disagreement in interest.

B) disagreement in belief.

C) disagreement in theory.

D) disagreement in practice.

Paradigm 1

1. Analyze each option:

Option A: Disagreement in interest typically refers to differences in what people want or desire.
In the context of moral disagreements, moral issues are not primarily about different interests.
For example, if two people are arguing about whether it is wrong to lie to save a life, it is not
mainly a matter of different interests they have. So, option A is incorrect.

Option B: Stevenson argues that moral disagreements involve disagreement in belief. When
people have moral disagreements, they often have different beliefs about what is right and
wrong. For instance, one person may believe that euthanasia is always wrong based on reli-
gious beliefs, while another person may believe that under certain circumstances, euthanasia is
morally acceptable. This difference is a disagreement in belief about the moral status of eu-
thanasia. So, option B is correct.

Option C: Disagreement in theory is too broad and not the core aspect of what Stevenson em-
phasizes in moral disagreements. The focus is on the underlying beliefs about moral values
rather than differences in theoretical frameworks in general. So, option C is incorrect.

Option D: Disagreement in practice may seem related, but the key aspect of moral disagree-
ments according to Stevenson is the underlying disagreement in beliefs about what is morally
right or wrong, not just differences in how people act in practice. So, option D is incorrect.
Answer: B

Paradigm 2

To determine which option Stevenson identifies as involved in moral disagreements, let’s recall
Stevenson’s views on ethical disagreement. Stevenson argued that moral disagreements primar-
ily stem from differences in attitudes rather than just differences in beliefs.

He distinguished between two types of disagreement: disagreement in belief (where people
disagree about the facts of a situation) and disagreement in attitude (which involves differing
emotional or evaluative stances). In moral disputes, Stevenson contended that the key source of
conflict is not merely about factual beliefs but about conflicting desires, preferences, or values.
Option A, “disagreement in interest,” might seem related, but Stevenson’s focus was more on
the clash of attitudes or interests rather than a specific type of interest. Option C, “’disagreement
in theory,” is too broad and not specific to moral disagreements. Option D, ”disagreement in
practice,” refers to actions but does not capture the underlying disagreement in attitudes that
Stevenson emphasized.

Option B, ”disagreement in belief,” aligns with Stevenson’s view that moral disagreements often
involve differing factual beliefs about the consequences or nature of an action. However, he
also stressed that the deeper disagreement is in attitudes. But given the options provided, the
most accurate according to Stevenson’s analysis would be that moral disagreements involve
disagreement in belief, even though there’s a broader element of disagreement in attitude.
Answer: B

Paradigm 3

Robert L. Stevenson was a philosopher known for his work on emotivism, a meta-ethical theory
that posits moral statements primarily express emotions or attitudes rather than objective facts.
In his view, moral disagreements do not stem from differences in beliefs about factual matters.
Emotivists like Stevenson argue that when people have moral disagreements, the core issue
isn’t that one person has a belief that the other lacks. Instead, the disagreement arises from
differing attitudes or emotional responses towards a particular action or situation. For instance,
if one person thinks an action is right and another thinks it’s wrong, this isn’t because they have
different beliefs about the action’s consequences or properties; rather, it’s because they have
contrasting emotional reactions towards it.

Thus, moral disagreements, according to Stevenson, involve disagreement in interest—different
emotional or attitudinal stances towards the same object.

Options B, C, and D don’t capture the essence of Stevenson’s position. Disagreement in belief
(B) implies a difference in factual understanding, which emotivism rejects as the primary cause
of moral disputes. Disagreement in theory (C) refers to overarching philosophical frameworks,
which isn’t the main focus here. Disagreement in practice (D) would suggest differing appli-
cation of principles, but Stevenson’s view is that the disagreement is at the level of emotional
response, not practical application.

Answer: A

Table 3: Case Study: Stevenson’s Theory of Moral Disagreements
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Prompt

I would like to build a magic the gathering deck. this deck contains 99 cards. How many lands
should i play to draw on average 3 lands in my starting 7 cards hand. explain the calculus.

Paradigm 1

1. Use the hypergeometric distribution formula: In a Magic: The Gathering deck, assume the
total number of cards in the deck is N = 99 (the size of the deck). Let the number of lands in
the deck be K. The number of cards drawn from the deck is n = 7 (the starting hand size). We
want the expected number of lands in the hand to be E(X) = 3.
The probability mass function of the hypergeometric distribution for the number of successes
(lands in this case) in a sample of size n drawn from a population of size /N containing K
() Cazk)
()
E(X) of a hypergeometric random variable X is given by the formula E(X) =n x £.
2. Solve for the number of lands K: We know that n = 7, N = 99, and E(X) = 3.
Substituting these values into the formula E(X) = n x % we get: 3 =7 X % First, we can
rewrite the equation as 3 = %. To solve for K, we multiply both sides of the equation by 99:
3 x99 =T7K. So, 297 = 7K. Then, we divide both sides by 7 to find K = 2%7 ~~ 42.43.
Since we can’t have a fraction of a land in the deck, we would typically play 42 lands in the
99-card deck to get, on average, 3 lands in the starting 7-card hand.

successes is given by P(X = k) = , where (7) = b,(aailb), The expected value

Paradigm 2

The Gathering deck to have an average of 3 lands in your starting 7-card hand, we need to use
probability and combinatorics.

Key Concepts: 1. Hypergeometric Distribution: This models the probability of drawing a
certain number of ”successes” (lands in this case) from a finite population without replacement.
2. Average (Expected Value): The expected number of lands in a 7-card hand can be calculated
using the hypergeometric distribution formula.

Formula for Expected Value (Mean) of a Hypergeometric Distribution: The expected num-
ber of lands E(X) in a 7-card hand, given a deck of N cards with K lands, is: E(X) = ZE.
We want E(X) = 3. Given N = 99 cards, we can solve for K: 3 = 2K Solving for K:
K = % ~ Qf ~ 42.43. Since we can’t include a fraction of a land, we round up to 43
lands.

Check with a Smaller Example: Let’s verify with a smaller deck (e.g., 10 cards with 4 lands):

Expected lands in a 3-card hand: 1%3 = 1.2. Similarly, in a 7-card hand from 99 cards with 43
lands: E(X) = % ~ 3L ~ 3.04, which is approximately 3 lands.

Conclusion: To have an average of 3 lands in your starting 7-card hand, include 43 lands in
your 99-card deck. This ensures that the expected value aligns with your goal, though individual
hands will vary due to randomness.

Paradigm 3

To determine how many lands you should include in a 99-card Magic: The Gathering deck to
have an average of 3 lands in your starting 7-card hand, we can use the concept of probability
and expected value.

The Basic Idea: The probability of drawing exactly k lands in a 7-card hand from a deck
containing n lands out of 99 total cards can be calculated using the hypergeometric distribution.
The expected value (average) of the number of lands in the starting hand is given by: E(X) =
759". We want E(X) = 3, so we can set up the equation: 75—9" =3.

Solving for n: Let’s solve for n: 7n = 3 x 99, Tn = 297, n = @ ~ 42.4286. Since the
number of lands must be an integer, we round up to the nearest whole number.

Result: To have an average of 3 lands in your starting 7-card hand in a 99-card deck, you should
include 43 lands. Verification: 7532 = 30t ~ 3.0404. This is close to 3, meeting the desired
average.

Why the Hypergeometric Distribution? The hypergeometric distribution is appropriate here
because: 1. We are drawing a fixed sample size (7 cards) without replacement from a finite

population (99 cards). 2. There are two distinct groups: lands and non-lands. The formula

n\[(99—n
for the probability of drawing k lands is: P(X = k) = (")((97;5’“) where (§) is the binomial
7

coefficient (number of ways to choose b items from a). The expected value E(X) simplifies to
;—g, as mentioned earlier.

Conclusion: In a 99-card Magic deck, including 43 lands will give you an average of approxi-
mately 3 lands in your starting 7-card hand. Adjustments can be made based on your playstyle

(e.g., card draw or mana ramp), but 43 is a solid starting point.

Table 4: Case Study: Magic the Gathering Deck Land Calculation
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