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Abstract. Accurate segmentation of abdominal organs in pathological
computed tomography (CT) scans is crucial for diagnosis and treatment
planning. However, this task is challenging due to the diversity of organ
appearances and sizes, as well as the computational limitations in clinical
settings. Task 2 of the FLARE 2024 challenge was launched to encour-
age the development of algorithms capable of efficient abdominal organ
segmentation under strict resource constraints, specifically focusing on
CPU-based inference without access to GPUs. In this paper, we describe
our contribution to this challenge by utilizing nnU-Net with optimiza-
tions for efficient CPU-based inference using OpenVINO. We resampled
the CT scans to an isotropic low resolution to balance segmentation ac-
curacy and computational efficiency. Our method achieved an average
Dice Similarity Coefficient (DSC) of 76.8% and an average Normalized
Surface Dice (NSD) of 80.5% on the public validation set, with an av-
erage running time of 26 seconds per case. These results demonstrate
that our approach effectively addresses the challenges of efficient organ
segmentation under resource constraints, and underscore the potential
for deploying such methods in real-world clinical environments where
computational resources are limited.
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1 Introduction

Accurate organ and lesion segmentation in medical imaging is crucial for improv-
ing diagnostic accuracy, treatment planning, and monitoring the progression of
diseases. In recent years, segmentation challenges in medical imaging have driven
significant advancements in algorithm development, particularly in the field of
abdominal cancer segmentation. However, the task of abdominal organ segmen-
tation on pathological scans presents unique challenges due to the wide variety
of cancer types, lesion sizes, and corresponding differences in appearances of
organs.

Task 2 of the FLARE 2024 challenge builds on earlier iterations of the FLARE
challenge, focusing on abdominal organ segmentation on pathological computed
tomography (CT) scans. The provided dataset spans 2,050 CT scans: 50 with
full annotations for 13 organ classes, and the remaining 2,000 scans with pseudo-
labels created by the winning solution from the 2023 version of the FLARE
challenge. The difficulty in this task mainly lies in handling the pseudo-labeled
data split and the limitations imposed by CPU-based inference with strict time
and resource constraints.

A popular strategy for handling unlabeled data is pseudo-label generation,
which creates inferred labels for unlabeled data points based on the model’s
current predictions. This technique has been widely adopted in semi-supervised
learning tasks, particularly for large unlabeled datasets. Notably, it was suc-
cessfully implemented by the winners of the 2022 FLARE challenge [9,16], who
employed pseudo-labeling to maximize performance on unlabeled datasets. Ap-
plying this strategy – either by actively generating pseudo-labels or using the
pseudo-labels generated by the winning solution from FLARE 2023 – is therefore
straightforward.

This manuscript describes our approach for abdominal organ segmentation in
the presence of lesions in Task 2 of the FLARE 2024 challenge. We employ nnU-
Net [10] with modifications for efficient inference on CPUs using OpenVINO, an
open-source toolkit for optimizing and deploying deep learning models, to adhere
to resource and time constraints during inference. We only focus on optimizing
the nnU-Net model for fast inference and performance using the fully labeled
subset of the provided data, and do not use the unlabeled / pseudolabeled data
at all.

2 Method

Our contribution builds upon the state-of-the-art nnU-Net framework [10]. Due
to the time and resource constraints imposed during inference, we cannot use the
proposed default U-Net configuration, nor the newly proposed ResEncL config-
uration [11]. We employ just-in-time (JIT) compiled functions to accelerate pre-
diction speed, ensuring our model remains efficient even on resource-constrained
devices like laptops and edge devices.
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2.1 Proposed Method

Preprocessing All images are normalized according to nnU-Net’s CT-Normalization,
i.e. intensity clipping to [−958, 270] followed by subtracting −97.3 and dividing
by 137.8. In the default configuration, all images would be resampled to the me-
dian spacing [2.5mm, 0.8mm, 0.8mm], however CPU-based inference with this
high resolution is not practical within the time limit. We therefore experiment
with two spacing configurations, an isotropic spacing of [2.5mm, 2.5mm, 2.5mm]
and, as an ablation, a more typical low-resolution spacing of [5mm, 1.6mm, 1.6mm].

Training: nnU-Net generates a default configuration with a patch size of 40x224x192,
batch size of 2 and a U-Net with 6 resolution stages. We use the same patch size
for our low-resolution trainings in order to avoid patch sizes considerably larger
than the median image size of 97x512x512 at full resolutions. We increase the
batch size to 4. Figure 1 shows a schematic overview of the generated network
architeture.

conv + relu

segmentation head

skip connection

conv downsample + relu

transpose conv + relu

Fig. 1. Schematic network architecture of the U-Net created by nnU-Net’s default
configuration.
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Inference: nnU-Net’s inference pipeline is not optimized for CPU-based infer-
ence as required in this challenge. We therefore JIT compile our model using
OpenVINO3 minimizing latency and maximizing the throughput, ensuring that
our approach is viable for CPU-based scenarios. OpenVINO is an open-source
toolkit for optimizing and deploying deep learning models from cloud to edge.
This optimization toolchain converts our trained model into an optimized in-
termediate representation, enabling efficient execution on Intel CPUs and other
compatible hardware. By leveraging OpenVINO, we achieve significant improve-
ments in inference speed by a factor of ∼20, making our solution practical for
use in real-world clinical settings where computational resources are limited.

In addition to this major change, we disable all test time augmentations, and
calculate the argmax directly on the raw logits instead of the softmax probabil-
ities. Furthermore, we swap the default skimage-based resampling function for
the much faster torch resampling, significantly speeding up segmentation export
in exchange for a slight loss in performance.

3 Experiments

3.1 Dataset and evaluation measures

The dataset is curated from more than 40 medical centers under license per-
mission, including TCIA [2], LiTS [1], MSD [19], KiTS [6,8,7], autoPET [5,4],
AMOS [12], AbdomenCT-1K [18], TotalSegmentator [20], and past FLARE chal-
lenges [15,16,17]. The training set includes 2050 abdomen CT scans where 50 CT
scans have complete labels and 2000 CT scans have no labels. The validation and
testing sets include 250 and 300 CT scans, respectively. The annotation process
used ITK-SNAP [22], nnU-Net [10], MedSAM [13], and Slicer Plugins [3,14].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside one efficiency
measures—runtime. These metrics collectively contribute to the ranking compu-
tation. During inference, a GPU is not available and the algorithm should only
rely on a CPU.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Training protocols We trained our models only on the fully labeled subset of
the provided dataset. We used the default nnU-Net pipeline of data augmenta-
tions, consisting of spatial transformations — i.e., rotations, mirroring — and
intensity transformations, without further modifications. The final models were
selected by expected inference times and performance on the public validation
set.
3 https://github.com/openvinotoolkit/openvino and https://docs.openvino.
ai/

https://github.com/openvinotoolkit/openvino
https://docs.openvino.ai/
https://docs.openvino.ai/
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Table 1. Development environments and requirements.

System Ubuntu 20.04
CPU AMD Ryzen 9 3900X processor
RAM 64GB DDR4-3600 RAM
GPU (number and type) One NVIDIA RTX3090 GPU with 24GB VRAM
CUDA version 12.1
Programming language Python 3.11
Deep learning framework torch 2.4.0

Table 2. Training protocols.

Network initialization random
Batch size 4
Patch size 40×224×192
Total epochs 1000
Optimizer SGD
Initial learning rate (lr) 1e-2
Lr decay schedule PolyLR Scheduler
Loss function Soft Dice loss + Cross Entropy loss
Number of model parameters 30.71M

3.3 Test Set Submission

Task 2 of the FLARE challenge allowed for only one submission to the final test
set. We therefore submitted the model trained with isotropic spacing of 2.5mm,
which showed better performance than the half resolution model on the public
validation set (see Table 3).

4 Results and Discussion

4.1 Quantitative results on validation set

The results of the final submission on the public validation set are shown in
Table 3. The model trained with isotropic low-resolution spacing considerably
outperforms the model trained with half resolution. This is likely due to the
large spacing of 5mm in the half resolution model, which leads to a loss of 3D
context compared to the 2.5mm spacing of the isotropic low-resolution model.

4.2 Qualitative results on validation set

Figure 2 shows qualitative results of the submitted method and the ablation on
four cases from the public validation set. The submitted method generally per-
forms well on most abdominal organs. The ablation with half resolution performs
significantly worse, even on comparably large organs like the spleen. The last two
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Table 3. Quantitative evaluation results of the submitted method and an ablation on
the public validation set.

Target Public Validation Public Validation (Ablation)
DSC (%) NSD (%) DSC (%) NSD (%)

Liver 95.1± 8.7 92.1± 13.1 90.0± 8.8 79.9± 13.6
Right Kidney 79.3± 29.4 77.6± 29.1 61.4± 32.8 57.7± 30.4

Spleen 85.7± 25.2 83.1± 27.0 54.4± 36.0 54.6± 34.1
Pancreas 77.6± 9.6 84.2± 9.5 36.7± 18.4 44.8± 20.2

Aorta 92.6± 7.2 94.2± 9.8 75.8± 19.6 72.3± 20.5
Inferior vena cava 81.8± 18.6 81.0± 20.4 56.0± 22.5 48.8± 21.5

Right adrenal gland 67.7± 22.1 82.6± 26.0 38.3± 29.5 47.5± 34.7
Left adrenal gland 65.7± 27.9 78.1± 31.1 16.9± 25.4 22.3± 30.6

Gallbladder 56.1± 39.8 55.9± 40.7 35.0± 36.5 32.5± 34.8
Esophagus 77.3± 15.5 87.4± 15.1 52.8± 25.8 61.3± 27.3
Stomach 80.0± 20.2 80.6± 18.4 58.0± 28.6 55.1± 24.9

Duodenum 64.5± 16.8 78.9± 14.9 29.4± 19.5 46.0± 20.9
Left kidney 75.0± 33.9 70.8± 33.6 41.5± 36.1 42.4± 33.9

Average 76.8± 11.7 80.5± 12.7 49.7± 15.3 51.2± 16.0

rows show failure modes of the submitted model. The confusion of left and right
kidneys is a sign of missing context to learn left-right symmetries, which is likely
due to a combination of patch size and low resolution. The prediction of organs
in the legs hints at insufficient data during training and could likely be improved
by including the unlabeled / pseudo-labeled data for training.

4.3 Segmentation efficiency results on validation set

Table 4 shows the running time of the submitted method on 8 selected cases
from the public validation set. The model complies with the time limit for all
of the 8 cases. However, as the testing was performed on a significantly better
CPU, it is expected that the model might exceed the time limit for exceptionally
large cases in the final testing. Our approach prioritizes efficiency, making it suit-
able for deployment on edge devices and in resource-constrained environments.
By utilizing just-in-time (JIT) compiling, we achieve significant reductions in
computational load and inference time, as demonstrated in Table 4.

4.4 Results on final testing set

Tables 5 and 6 show the final results for segmentation performance and efficiency
on the three test set cohorts, respectively. The model shows a large drop in per-
formance for the asian and north american cohorts with respect to the european
cohort, indicating a lack of generalization performance.

4.5 Limitation and future work

The main limitation of our work is that we did not use the unlabeled data for
model development and training, which would likely improve performance and
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Fig. 2. Qualitative results of the two submitted method and the ablation on four ex-
ample cases. The upper two rows show cases, where the model performs well, the lower
two rows show failure cases due to left-right confusion and implausible predictions,
respectively.
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Table 4. Evaluation of segmentation efficiency in terms of the running time. Evaluation
CPU platform: AMD Ryzen 9 3900X processor.

Case ID Image Size Running Time (s)
0005 (512, 512, 124) 17.6
0059 (512, 512, 55) 13.8
0112 (512, 512, 299) 22.9
0134 (512, 512, 597) 44.7
0135 (512, 512, 316) 24.0
0150 (512, 512, 457) 35.4
0159 (512, 512, 152) 22.3
0176 (512, 512, 218) 23.5

Table 5. Segmentation performance on the test set cohorts.

Cohort DSC (%) NSD (%)
Avgerage Median Avgerage Median

Asian 73.9± 12.5 76.6 (66.3, 83.6) 79.3± 14.1 83 (71.5, 90.4)

European 78.2± 13.5 82.1 (73.8, 87.2) 82.7± 14.9 87 (78.7, 92.9)

North American 70.7± 15.5 75.8 (61.8, 81.7) 73.1± 17.5 79.2 (62.6, 86.1)

Table 6. Segmentation efficiency on the test set cohorts.

Cohort Runtime (s)
Avgerage Median

Asian 26± 6.8 25.5 (20.6, 29.3)

European 24.2± 8.4 24.9 (16.9, 27.8))

North American 20.8± 9.7 18.1 (15.8, 20.7)
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reduce implausible predictions as described in the qualitative results section.
Another limitation is the necessity for low resolution in order to comply with
the inference time limit, which leads to a loss of context, especially for smaller
structures.

5 Conclusion

In this paper, we addressed the challenge of CPU-based abdominal organ seg-
mentation on pathological CT scans in the context of Task 2 of the FLARE 2024
challenge. Our approach to this task utilized nnU-Net, building a low-resolution
configuration for efficient segmentation. We resampled the scans to an isotropic
low resolution and compared this to the naive approach of using half resolu-
tion. The isotropic resolution performed significantly better compared to the
half resolution. We hypothesize that the half resolution model loses most of the
3D context due to the large slice thickness of 5mm compared to 2.5mm in the
isotropic case. The model complied with the time limits for inference in local
testing, but might exceed these limitations during final testing on particularly
large scans.
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