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ABSTRACT

Large vision-language models (LVLMs) have made significant strides in address-
ing complex video tasks, sparking researchers’ interest in their human-like mul-
timodal understanding capabilities. Video description serves as a fundamental
task for evaluating video comprehension, necessitating a deep understanding of
spatial and temporal dynamics, which presents challenges for both humans and
machines. Thus, investigating whether LVLMs can describe videos as comprehen-
sively as humans—through reasonable human-machine comparisons using video
captioning as a proxy task—will enhance our understanding and application of
these models. However, current benchmarks for video comprehension have no-
table limitations, including short video durations, brief annotations, and reliance
on a single annotator’s perspective. These factors hinder a comprehensive assess-
ment of LVLMs’ ability to understand complex, lengthy videos and prevent the
establishment of a robust human baseline that accurately reflects human video
comprehension capabilities. To address these issues, we propose a novel bench-
mark, FIOVA (Five In One Video Annotations), designed to evaluate the differ-
ences between LVLMs and human understanding more comprehensively. FIOVA
includes 3,002 long video sequences (averaging 33.6 seconds) that cover diverse
scenarios with complex spatiotemporal relationships. Each video is annotated by
five distinct annotators, capturing a wide range of perspectives and resulting in
captions that are 4 ∼ 15 times longer than most existing benchmarks, thereby
establishing a robust baseline that represents human understanding comprehen-
sively for the first time in video description tasks. Using the FIOVA benchmark,
we conducted an in-depth evaluation of six state-of-the-art (SOTA) LVLMs, com-
paring their performance with humans. To enhance this evaluation, we proposed
FIOVA-DQ, a novel event-based metric that incorporates weighted event impor-
tance derived from human annotations. Results show that while current LVLMs
demonstrate some perception and reasoning capabilities, they still struggle with
information omission and descriptive depth. Moreover, we found significant dis-
crepancies between LVLMs and humans in complex videos, particularly where
human annotators exhibited substantial disagreement, whereas LVLMs tended to
rely on uniform strategies for challenging content. These findings underscore the
limitations of using a single human annotator as the groundtruth for evaluation
and highlight the need for new evaluation perspectives. We believe this work of-
fers valuable insights into the differences between LVLMs and humans, ultimately
guiding future advancements toward human-level video comprehension.

1 INTRODUCTION

Large Language Models (LLMs) have made significant strides in Natural Language Processing
(NLP), excelling in tasks such as text generation (Li et al. (2024a;b); Mahapatra & Garain (2024))
and question answering (Zhuang et al. (2023); Saito et al. (2024)). Building on these advancements,
large vision-language models (LVLMs), including GPT-4V (Achiam et al. (2023)) and LLaVA (Liu
et al. (2024)), extend LLM capabilities into multimodal domains. LVLMs excel in integrating text,
images, and videos, demonstrating remarkable progress in applications such as text-to-video gener-
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Step 1. Construction of FIOVA dataset

Example prompt: Describe the 
video in details.
Example prompt: Describe the 
video in details.
Example prompt: Describe the 
video in details.

Step 2. Collection responses of LVLMs

LVLMs v.s. HumansLVLMs v.s. Humans

Step 3. Fine-grained evaluation and analysis

LVLM v.s. HumansLVLM v.s. HumansLVLMs v.s. GroundtruthLVLMs v.s. Groundtruth

FIOVAFIOVA

Tarsier (Released in 2024.07 with 7B parameters): A child 
wearing a helmet and gloves is riding a small red bicycle on a 
paved road. The child ....

Tarsier (Released in 2024.07 with 7B parameters): A child 
wearing a helmet and gloves is riding a small red bicycle on a 
paved road. The child ....

Tarsier (Released in 2024.07 with 7B parameters): A child 
wearing a helmet and gloves is riding a small red bicycle on a 
paved road. The child ....

LLaVA-Next-Video (Released in 2024.04 with 7B 
parameters): In the video, we see a young child wearing a 
helmet and riding a small bicycle. The child is in the process 
of learning how to ride the bike, as evidenced by their body 
position and the way they are holding onto the handlebars. The 
child  ....

LLaVA-Next-Video (Released in 2024.04 with 7B 
parameters): In the video, we see a young child wearing a 
helmet and riding a small bicycle. The child is in the process 
of learning how to ride the bike, as evidenced by their body 
position and the way they are holding onto the handlebars. The 
child  ....

LLaVA-Next-Video (Released in 2024.04 with 7B 
parameters): In the video, we see a young child wearing a 
helmet and riding a small bicycle. The child is in the process 
of learning how to ride the bike, as evidenced by their body 
position and the way they are holding onto the handlebars. The 
child  ....
Video-LLaVA (Released in 2023.11 with 7B parameters): 
The video shows a young child riding a small bicycle on a 
street. The child is wearing a helmet and a blue glove on one 
hand. The child falls off the bike and lies on the ground, 
crying. The camera then shows the bike on its side, and  ....

Video-LLaVA (Released in 2023.11 with 7B parameters): 
The video shows a young child riding a small bicycle on a 
street. The child is wearing a helmet and a blue glove on one 
hand. The child falls off the bike and lies on the ground, 
crying. The camera then shows the bike on its side, and  ....

Video-LLaVA (Released in 2023.11 with 7B parameters): 
The video shows a young child riding a small bicycle on a 
street. The child is wearing a helmet and a blue glove on one 
hand. The child falls off the bike and lies on the ground, 
crying. The camera then shows the bike on its side, and  ....

ShareGPT4Video (Released in 2024.06 with 8B 
parameters): The video captures a sequence of events 
involving a child on a red bicycle in an outdoor setting, likely 
a residential area. Initially, the child is seen riding the bicycle 
on a paved surface, wearing a helmet and a brown jacket, with 
a green fence and a building in the background. The child's 
posture suggests they are in motion, possibly turning or 
maneuvering the bike. As the video progresses, the child ....

ShareGPT4Video (Released in 2024.06 with 8B 
parameters): The video captures a sequence of events 
involving a child on a red bicycle in an outdoor setting, likely 
a residential area. Initially, the child is seen riding the bicycle 
on a paved surface, wearing a helmet and a brown jacket, with 
a green fence and a building in the background. The child's 
posture suggests they are in motion, possibly turning or 
maneuvering the bike. As the video progresses, the child ....

ShareGPT4Video (Released in 2024.06 with 8B 
parameters): The video captures a sequence of events 
involving a child on a red bicycle in an outdoor setting, likely 
a residential area. Initially, the child is seen riding the bicycle 
on a paved surface, wearing a helmet and a brown jacket, with 
a green fence and a building in the background. The child's 
posture suggests they are in motion, possibly turning or 
maneuvering the bike. As the video progresses, the child ....

VideoChat2 (Released in 2023.11 with 7B parameters): The 
video shows a young boy wearing a helmet and riding a red 
bicycle down a street. He is riding the bike with both hands on 
the handlebars and appears to be enjoying himself. Suddenly, 
he loses ....

VideoChat2 (Released in 2023.11 with 7B parameters): The 
video shows a young boy wearing a helmet and riding a red 
bicycle down a street. He is riding the bike with both hands on 
the handlebars and appears to be enjoying himself. Suddenly, 
he loses ....

VideoChat2 (Released in 2023.11 with 7B parameters): The 
video shows a young boy wearing a helmet and riding a red 
bicycle down a street. He is riding the bike with both hands on 
the handlebars and appears to be enjoying himself. Suddenly, 
he loses ....

VideoLLaMA2 (Released in 2024.06 with 7B parameters): 
The video shows a young child riding a red bicycle on a street. 
The child is wearing a helmet and gloves, and appears to be 
enjoying himself as he rides the bike ....

VideoLLaMA2 (Released in 2024.06 with 7B parameters): 
The video shows a young child riding a red bicycle on a street. 
The child is wearing a helmet and gloves, and appears to be 
enjoying himself as he rides the bike ....

VideoLLaMA2 (Released in 2024.06 with 7B parameters): 
The video shows a young child riding a red bicycle on a street. 
The child is wearing a helmet and gloves, and appears to be 
enjoying himself as he rides the bike ....

Collection of diverse long videos (3,002 videos with 38 themes)Collection of diverse long videos (3,002 videos with 38 themes)Collection of diverse long videos (3,002 videos with 38 themes)

Annotation each video sequence by 5 people

Human1: A little gray boy is riding a bike. After a distance, 
the bike suddenly falls...
Human1: A little gray boy is riding a bike. After a distance, 
the bike suddenly falls...

Human2: A child sits on a bicycle seat to take it away. He 
releases his hand, and...
Human2: A child sits on a bicycle seat to take it away. He 
releases his hand, and...

Human3: A boy on the road is riding a small two-wheeled 
car, after driving...
Human3: A boy on the road is riding a small two-wheeled 
car, after driving...

Human4: A child wearing a hat is riding on a baby carriage  
forward, and then...
Human4: A child wearing a hat is riding on a baby carriage  
forward, and then...

Human5: During the day, a little boy wearing a helmet is 
riding a bike...
Human5: During the day, a little boy wearing a helmet is 
riding a bike...

Annotation each video sequence by 5 people

Human1: A little gray boy is riding a bike. After a distance, 
the bike suddenly falls...

Human2: A child sits on a bicycle seat to take it away. He 
releases his hand, and...

Human3: A boy on the road is riding a small two-wheeled 
car, after driving...

Human4: A child wearing a hat is riding on a baby carriage  
forward, and then...

Human5: During the day, a little boy wearing a helmet is 
riding a bike...

A child wearing a hat is 
riding a baby carriage 

forward, and then ...

Groundtruth generation

Consistency, Context, 
Correctness, Detail 
Orientation, Temporality

Caption quality assessment

A child wearing a hat is 
riding a baby carriage 

forward, and then ...

Groundtruth generation

Consistency, Context, 
Correctness, Detail 
Orientation, Temporality

Caption quality assessment

Figure 1: An overview of FIOVA. The overall workflow is divided into three steps (i.e., construction
of FIOVA dataset (see Section 2), collection responses of LVLMs (see Section 3), and fine-grained
evaluation and analysis (see Section 4)), culminating in a benchmark that comprehensively compares
the video understanding capabilities of humans and LVLMs.

ation (Huang et al. (2024b)) and video captioning (Huang et al. (2024a)). However, evaluating the
true capabilities of LVLMs remains challenging, as traditional evaluation methods—typically based
on text matching or embedding distances—often fail to capture the nuanced understanding required
for human-like video comprehension (Hu et al. (2024b;a; 2022)).

This leads to the fundamental question: “Can video-based LVLMs describe videos as comprehen-
sively as humans?” Video captioning (Aafaq et al. (2019); Ramanishka et al. (2016)) serves as a key
task to assess a model’s ability to perceive, comprehend, and generate meaningful video descrip-
tions. Unlike structured tasks like object recognition (Logothetis & Sheinberg (1996)) or question
answering (Antol et al. (2015)), video captioning demands an in-depth understanding of both spa-
tial and temporal dynamics, presenting significant challenges for both machines and humans. Thus,
investigating this question through reasonable human-machine comparisons using video captioning
as a proxy task will enhance our understanding and application of these LVLMs.

However, current benchmarks (Miech et al. (2019); Lee et al. (2021); Chen & Dolan (2011);
Caba Heilbron et al. (2015); Xu et al. (2016); Chen et al. (2024b); Zhou et al. (2018)) exhibit several
major limitations: they typically feature simple scenarios (videos lasting about 10 seconds), provide
brief annotations (averaging 15 words), and rely on single annotators (see Tab. 1). These constraints
limit the insight into LVLMs’ understanding of complex, long-duration videos and prevent the es-
tablishment of a robust human baseline that accurately reflects human comprehension capabilities.

To address these challenges, we propose a novel benchmark, FIOVA (Five In One Video
Annotations), designed to provide a comprehensive evaluation of the differences between LVLMs
and human understanding. As shown in Fig. 1, FIOVA encompasses three key contributions: (1)
Comprehensive dataset construction: We curated a dataset of 3,002 long video sequences (aver-
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Table 1: Comparison of FIOVA and other video caption datasets. We split the datasets into two
groups: automatic caption by ASR (Automatic Speech Recognition) (Miech et al. (2019); Lee et al.
(2021); Zellers et al. (2021); Xue et al. (2022); Chen et al. (2024b)) or LVLM, and manual caption
(Chen & Dolan (2011); Xu et al. (2016); Zhou et al. (2018); Caba Heilbron et al. (2015); Anne Hen-
dricks et al. (2017); Rohrbach et al. (2015); Wang et al. (2019a; 2024a)). It is worth noting that
FIOVA is the only dataset that provides multiple annotations for each video.

Dataset Text Domain #Videos Avg/Total Video Len Avg Text Len

HowTo100M Automatic caption (by ASR) Open 136M 3.6s 134.5Kh 4.0 words
ACAV Automatic caption (by ASR) Open 100M 10.0s 277.7Kh -
YT-Temporal-180M Automatic caption (by ASR) Open 180M - - -
HD-VILA-100M Automatic caption (by ASR) Open 103M 13.4s 371.5Kh 32.5 words
Panda-70M Automatic caption (by LVLM) Open 70.8M 8.5s 166.8Kh 13.2 words

MSVD Manual caption (1 person) Open 1,970 9.7s 5.3h 8.7 words
LSMDC Manual caption (1 person) Movie 118K 4.8s 158h 7.0 words
MSR-VTT Manual caption (1 person) Open 10K 15.0s 40h 9.3 words
DiDeMo Manual caption (1 person) Flickr 27K 6.9s 87h 8.0 words
ActivityNet Manual caption (1 person) Action 100K 36.0s 849h 13.5 words
YouCook2 Manual caption (1 person) Cooking 14K 19.6s 176h 8.8 words
VATEX Manual caption (1 person) Open 41K ∼10s ∼115h 15.2 words
DREAM-1K Manual caption (1 person) Open 1K 8.9s 2.5h 59.3 words

FIOVA (Ours) Manual caption (5 people) Open 3K 33.6s 28.3h 63.28 words

aging 33.6 seconds) that cover diverse scenarios with complex spatiotemporal relationships. Each
video is annotated by five distinct annotators, capturing a wide range of human perspectives and
resulting in captions that are 4 to 15 times longer than most existing benchmarks, establishing a
robust baseline that comprehensively represents human understanding in video description tasks
(see Section 2). (2) Evaluation of state-of-the-art LVLMs: We conducted an in-depth evaluation
of six representative open-source LVLMs (VideoLLaMA2, LLaVA-NEXT-Video, Video-LLaVA,
VideoChat2, Tarsier, and ShareGPT4Video), ensuring our evaluation reflects the latest advance-
ments in the field. Additionally, we applied diverse processing techniques to model outputs, en-
abling a more comprehensive assessment of their capabilities and limitations (see Section 3). (3)
Fine-grained human-machine comparative analysis: Leveraging the FIOVA benchmark, we per-
formed detailed experiments to analyze the differences between LVLMs and human annotations
across various aspects of video comprehension. To further enhance this analysis, we proposed
FIOVA-DQ, an optimized event-based evaluation metric that incorporates human annotators’ per-
spectives through weighted event importance, enabling a more fine-grained comparison of semantic
understanding, fluency, and content relevance (see Section 4).

By providing a benchmark with multiple human annotations, FIOVA aims to bridge the gap be-
tween LVLM and human video understanding, offering insights into the current state of LVLMs and
guiding the development of future AI systems for video comprehension tasks.

2 CONSTRUCTION OF FIOVA DATASET

Fig. 1 illustrates an overview of our work. In this section, we will introduce the first step in
detail. Initially, we gathered FIOVA dataset D = {(V1, C1), . . . , (Vn, Cn)}, in which Ci =
{ci1, ci2, ci3.ci4, ci5} represents the set of human annotations for video Vi (see Section 2.1). On
this basis, we also combined Ci to form a groundtruth gi as a comprehensive baseline for human
understanding of video Vi (see Section 2.3). Totally, FIOVA contains 3,002 (Vi, Ci, gi) pairs (i.e.,
3,002 videos, 15,010 human original descriptions, and 3,002 groundtruth descriptions).

2.1 VIDEO COLLECTION AND ANNOTATION

We curated a dataset consisting of 3,002 videos and 15,010 descriptions, specifically designed to
evaluate the video comprehension capabilities of LVLMs. It spans 38 diverse themes, encompassing
a wide range of real-world scenarios and interactions (see Appendix B.1).

To ensure high-quality annotations, each video was annotated by five individuals, focusing solely
on the visual content, excluding audio or subtitles, except for naturally occurring text within the
scene. This process emphasizes observable video elements, enhancing the dataset’s relevance for
video comprehension tasks. Annotators followed standardized guidelines to ensure consistency (see
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(d) Word cloud (based on GT) (b) Annotation length distribution for five people (c) Average human caption length with video frames

acc ad ch di do doc duc ear ex fa fi fu gar goa hom ken ki mo mod mot mu ne pon pu rab sad sc sch sp the tr va vi wat win xin you zok
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(a) Statistics of average video frames and video sequences for each theme 

Figure 2: Statistical analysis of key aspects in FIOVA. (a) Statistics of average video frames and
video sequences for each theme, see Tab. A1 for details of each theme. (b) Annotation length
distribution for five people. The distribution of description lengths across human annotators remains
highly consistent. (c) Average human caption length with video frames. The length of human
descriptions increases with the length of the video, but the increase is not large and no redundant
descriptions occur. (d) The word cloud of human descriptions (based on the groundtruth).

Appendix B.2), which included details like time of day, location, and prominent objects or actions,
while avoiding literary or emotionally charged language. Public figures were described generically,
and descriptions strictly adhered to the chronological order of events. These guidelines ensured
neutrality, clarity, and factual accuracy, providing a reliable foundation for evaluation.

FIOVA presents additional challenges that distinguish it from existing datasets, making it more de-
manding for video understanding tasks. As shown in Fig. A1, FIOVA includes videos with varying
resolutions and aspect ratios, requiring models to adapt to different visual formats. Frequent cam-
era switches and diverse main subjects add complexity, challenging models to accurately follow
transitions and identify critical elements. Moreover, FIOVA features footage with lens distortions,
such as those from fisheye lenses, further complicating the interpretation of spatial relationships.
These challenges are intended to stress-test LVLMs, pushing them to achieve higher adaptability
and robustness in video comprehension.

Each video sequence is paired with five distinct English descriptions written by human annotators as
coherent paragraphs of multiple declarative sentences. The number of sentences varied depending
on the video’s complexity, allowing for detailed accounts of events and transitions. With an average
video length of 33.6 seconds, the dataset captures complex actions and interactions, making it ideal
for tasks that require deep video understanding. Tab. 1 compares FIOVA with other existing datasets,
and Fig. 2 presents statistical dimensions of FIOVA. Compared to others, FIOVA is annotated by
multiple annotators and features more detailed and precise descriptions.

2.2 CAPTION QUALITY ASSESSMENT

In Section 2.1, we provided descriptions from five different annotators for each video, capturing
diverse human perspectives to establish a robust human baseline. In addition to this diversity, a con-
solidated human description was generated as the final groundtruth, serving as a refined summary
for video captioning evaluation. To create the groundtruth, we used GPT-3.5-turbo to evaluate de-
scriptions across five key dimensions, following methods similar to those in Video-ChatGPT (Maaz
et al. (2023)) and Tarsier (Wang et al. (2024a)). Following VideoLLaMA2 (Cheng et al. (2024)),
these dimensions are: (1) Consistency: Whether the description is logically coherent and aligned
with the video content. (2) Context: Whether the description accurately captures scene changes
and relationships between events. (3) Correctness: Whether the information is accurate and free
from misleading content. (4) Detail Orientation: Whether the description captures critical details,
such as people, objects, scenes, and events. (5) Temporality: Whether the description follows the
chronological order of events without skipping or over-summarizing. GPT-3.5-turbo assigned scores
ranging from 1 to 10 for each caption across five dimensions (see Appendix D.1.1). This scoring
allowed us to comprehensively analyze the quality of each annotator’s description and identify those
with the highest consistency and accuracy.
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To better visualize the evaluation results, we plotted the score distribution of human annotators
across all videos and all five dimensions. As shown in Fig. 3 (a-e), the score distributions are rela-
tively consistent across different dimensions, indicating that the annotations are representative and
reflect an average human understanding with reasonable cognitive abilities. Notably, the distribution
for Detail Orientation differs slightly from other dimensions, suggesting that human captions gener-
ally provide above-average coverage of content and details, capturing most of the critical points in
the videos. However, there are still deficiencies in specific details or comprehensiveness.

a b

cd

e
f

Figure 3: Distribution of scores from human an-
notators across multi-dimensions. (a-e) The dis-
tribution of human annotation scores as evaluated
by GPT-3.5-turbo, focusing on the dimensions of
consistency, context, correctness, detail orienta-
tion, and temporality. (f) The distribution of dis-
agreement in video descriptions, measured by the
average CV (coefficient of variation) among hu-
man annotators across multi-dimensions.

Building on this, we further examined the vari-
ability among annotators. To quantify this vari-
ability, we calculated the coefficient of varia-
tion (CV) based on the standard deviation and
mean of the scores. A higher CV for a partic-
ular video indicates greater annotation variabil-
ity, suggesting divergent interpretations among
annotators. We refer to this variability as
disagreement, reflecting differences in under-
standing among annotators. To perform a more
detailed analysis of these disagreements, we
added a sixth dimension—Annotation Length
(see Fig. 2 (b))—to the existing five evaluation
dimensions. By calculating the average CV for
each video across all six dimensions (see Al-
gorithm A1), we divided the dataset into eight
distinct sub-groups based on the CV values (see
Fig. 3 (f) and Appendix B.4). Videos with
lower CVs (Group A) indicate high similarity
in annotators’ descriptions across multiple di-
mensions, while higher CVs (Group H) signify
greater discrepancies. This classification not
only provides insight into the variability in hu-
man annotations but also lays a foundation for
subsequent algorithm evaluation, allowing us to
compare different LVLMs to human groups in terms of video comprehension.

2.3 GROUNDTRUTH GENERATION

We used the GPT-3.5-turbo model to synthesize the five human-provided descriptions into a single,
comprehensive video description that serves as the final groundtruth (see Appendix D.1.2). During
this synthesis, the model integrates key elements from each of the five descriptions, balancing the
diversity of perspectives with consistency and coherence. This ensures that the final groundtruth
captures the most salient and informative aspects of the video while maintaining logical flow and
completeness across all relevant dimensions, as illustrated in Fig. 4.

Using GPT-3.5-turbo for synthesis provides a systematic way to combine multiple viewpoints, re-
ducing subjective bias and ensuring that no crucial detail is omitted. Each synthesized groundtruth
represents a consolidated understanding of the video, balancing detail orientation, contextual rele-
vance, and temporal accuracy. By combining the strengths of multiple human annotations, the gen-
erated groundtruth not only supplements individual descriptions but also sets a higher standard of
quality, serving as a more stringent and standardized benchmark for evaluating model performance.

3 LVLMS RESPONSE COLLECTION

As illustrated in step 2 of Fig. 1, in this section, each video Vi is processed by several LVLMs to form
a benchmark of video & description & response pairs, denoted as B = {(Vi, Ci, Ri) | (Vi, Ci) ∈
D}, in which Ri = {ri1, ri2, . . . , rin} represents the set of LVLMs’ response for video Vi.

3.1 BASELINE MODELS SELECTION

We utilized six SOTA open-source LVLMs for our study: VideoLLaMA2 (Cheng et al. (2024)),
Video-LLaVA (Lin et al. (2023)), LLaVA-NEXT-Video (Zhang et al. (2024)), Tarsier (Wang et al.
(2024a)), VideoChat2 (Li et al. (2023)), and ShareGPT4Video (Chen et al. (2024a)). More detailed
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"Gray boy riding a bike", "Bike falls suddenly", "Boy comes 
down from the bike", "Boy lies on the ground pretending to 
fall", "Boy reaches out his hand"

Human1: A little gray boy is riding a bike. After a distance, the bike suddenly falls. 
The boy comes down from the bike, goes to the side, lies on the ground, pretending 
to fall. After a while, He reachs out his hand.

Human2: A child sits on a bicycle seat to take it away. He releases his hand, and the 
bike turns over the right. He takes out his right leg and walks a few steps and falls to 
the ground. Then he stretches out his right hand pointing to the lens.

Human3: A boy on the road is riding a small two-wheeled car,  after driving a 
distance the child stops, the car falls to the ground, the boy comes down from the 
car,  he lies on the road. The little boy lying on the floor strokes his hand and cries.

Human4: A child wearing a hat is riding on a baby carriage forward, and then the 
car falls, the child stands for a while and falls off when he crosses his leg out from 
the car. The child is lying on the ground and then pointing to the camera by a finger.

Human5: During the day, a little boy wearing a helmet is riding a bike without 
pedals, using feet to support forward. The boy release his hand, the bike tilted down 
under the boy. The boy stands and looks down at the bike. The boy crosses the car 
and goes to the side and falls to the ground. The boy smiles and reaches out his hand.

"Child sits on bicycle seat", "Child releases hand", "Bike 
turns over to the right", "Child takes out right leg", "Child 
walks a few steps", "Child falls to the ground", "Child 
stretches out right hand pointing to lens"

"Boy rides two-wheeled car on road", "Child stops car", 
"Car falls to ground", "Boy gets off car", "Boy lies on road", 
"Boy strokes hand", "Boy cries"

"Child rides baby carriage forward", "Carriage falls", 
"Child stands briefly", "Child falls off carriage", "Child lies 
on ground", "Child points to camera"

"Little boy rides bike without pedals", "Boy releases hand, 
bike tilts down", "Boy stands and looks down at bike", "Boy 
crosses car and falls to ground", "Boy smiles and reaches 
out hand"

Groundtruth: A young boy is riding a bike down a road. As he rides, the bike 
suddenly falls over. The boy then gets off the bike, lies on the ground, and pretends 
to fall. After a moment, the boy smiles and reaches out his hand.

Video-LLaVA: The video shows a young child 
riding a small bicycle on a street. The child is 
wearing a helmet and a blue glove on one hand. 
The child falls off the bike and lies on the 
ground, crying. The camera then shows the bike 
on its side, and the child is seen lying on the 
ground. The video ends with the child crying.

"Child riding small bicycle on street"

"Child wearing helmet and blue glove"

"Child falls off bike" 

"Child lies on ground crying"

"Bike on its side"

"Child lying on ground crying"

0.053

0.093

0.334

0.227

0.120

0.173

"Boy rides bike down road"

"Bike falls over suddenly"

"Boy gets off bike"

"Boy lies on ground"

"Boy pretends to fall"

"Boy smiles"

"Boy reaches out hand"

0.114

0.182

0.238

0.219

0.095

0.038

0.114

Precision=0.493
(1*0.093+1*0.227+1*0.173)

Recall=0.333
(1*0.114+1*0.219)

Weighted Weighted

Figure 4: An example of FIOVA (see Fig. A7 for more details) and the calculation process of
FIOVA-DQ.

introductions for these LVLMs can refer to Appendix A.1. These models were prompted with video
description tasks, generating 18,012 responses (see Appendix D.2). The distribution of response
lengths for each LVLM is shown in Fig. 5, which provides insight into the variability of model
outputs. VideoLLaMA2 used default settings with a temperature of 0.2 and a maximum token limit
of 1,024. VideoChat2 and ShareGPT4Video were configured with default settings, a temperature of
1.0, top p of 0.9, and a maximum token limit of 1,024. Video-LLaVA had a temperature of 0.1 and
the same token limit. Tarsier and LLaVA-NEXT-Video were set with a temperature of 0, top p of 1,
and a maximum token limit of 1,024. All models processed 8 frames using four RTX 3090 GPUs.

3.2 EVENT GENERATION

Figure 5: The distribution of response length.

The video descriptions generated by the
LVLMs in the previous section are suitable for
evaluation using traditional metrics. However,
the recently proposed AutoDQ (Wang et al.
(2024a)) provides a novel event-based evalua-
tion approach by extracting events from both
reference and model-generated captions, en-
abling fine-grained assessments based on event
matching. While AutoDQ has demonstrated its
effectiveness in aligning model-generated de-
scriptions with human annotations, it does not
account for the cognitive importance of differ-
ent events as perceived by human annotators. To address this limitation, we propose FIOVA-DQ, an
extended evaluation metric that incorporates human cognitive weights into the event-based evalua-
tion process. By assigning weights to events based on their importance across multiple annotators,
FIOVA-DQ offers a more human-aligned assessment framework (see Section 4.1).

To support a broader range of evaluation metrics and achieve a comprehensive analysis, we used
GPT-3.5-turbo to perform event extraction on both the groundtruth gi and the j-th LVLM’s generated
output rij (see Appendix D.1.3). This ensures consistency and accuracy in event extraction. From
this process, event collections Egti for gi and Erij for rij are generated to support subsequent
analysis. For FIOVA-DQ, each event in Egt

i is assigned a weight based on its average importance
across the five annotators. These weights, normalized to sum to one, reflect the cognitive emphasis
placed on different events by human annotators (see Fig. 4). This weighting mechanism enables
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FIOVA-DQ to evaluate not only the alignment between model outputs and human annotations but
also the relative importance of matched events, offering a more nuanced perspective.

4 FINE-GRAINED EVALUATION AND ANALYSIS

As shown in step 3 of Fig. 1, based on the FIOVA benchmark D, we compare LVLMs with both the
representative human baseline (groundtruth) and the human interval (annotations by five individuals)
across multiple dimensions. This allows for an in-depth analysis of the similarities and differences
in video understanding between humans and LVLMs.

4.1 EVALUATION METHODS

Traditional metrics like BLEU (Papineni et al. (2002)) have limitations in evaluating detailed and
longer video descriptions, often failing to capture the semantic nuances and contextual accuracy
required for a comprehensive assessment. Recent studies have attempted to use models such as
ChatGPT for content rating (Maaz et al. (2023); Achiam et al. (2023)), but the lack of interpretability
in score assignment remains a challenge (see Appendix A.3). Therefore, we adopted AutoDQ (Wang
et al. (2024a)), which extends traditional metrics like BLEU, GLEU, and METEOR by integrating
text and semantic similarity, providing a more holistic evaluation of the alignment between LVLM-
generated captions and human annotations.

To further enhance the evaluation process, we propose FIOVA-DQ, which builds upon AutoDQ
by incorporating cognitive weights derived from human annotators. At first, events are extracted
from both the groundtruth caption (Egti) and the LVLM-generated caption (Erij), as described
in Section 3.2. For AutoDQ, two ratios are computed: (1) the ratio of events in Egti that are
also present in Erij (i.e., recall), and (2) the ratio of events in Erij that are also present in Egti
(i.e., precision). For FIOVA-DQ, these ratios are adjusted using weights assigned to each event in
Egt

i based on their cognitive importance as perceived by annotators. Then, the harmonic mean of
weighted precision and recall (i.e., weighted F1 score) is calculated to provide a balanced measure of
model performance. This adjustment ensures that critical events are given more emphasis, aligning
the evaluation process more closely with human judgment.

Finally, we employed a combination of traditional metrics (BLEU, GLEU, and METEOR),
AutoDQ-based metrics (F1, Precision, and Recall), and the newly proposed FIOVA-DQ metrics
(weighted F1, weighted Precision, and weighted Recall) for evaluation. These metrics collectively
enable two main evaluation tasks: (1) Overall evaluation: Assigns quality scores to each gener-
ated caption, assessing whether LVLMs can describe videos at a level comparable to humans using
all metrics. (2) Batch evaluation: Evaluates the relative performance of multiple model outputs,
providing a nuanced understanding of the models’ ability to produce human-like descriptions.

4.2 OVERALL EVALUATION FOR LVLMS

Traditional metrics. According to the results in Tab. 2, Tarsier demonstrates outstanding perfor-
mance across most traditional metrics, while ShareGPT4Video ranks the lowest, with scores signif-
icantly below those of other models.

Tarsier’s success can be attributed to its high lexical overlap with the groundtruth, as its generated
captions frequently match the vocabulary used in the reference descriptions. However, its lower
METEOR score compared to BLEU and GLEU reveals limitations in capturing synonym usage and
morphological variations. This indicates that while Tarsier excels in aligning with the vocabulary of
the groundtruth, it lacks linguistic diversity and expressive flexibility. In contrast, ShareGPT4Video
faces significant challenges on FIOVA despite its demonstrated ability to generate detailed captions
using sliding window-based methods and segment integration, which have been successful in other
video understanding benchmarks. A closer analysis reveals that its captions often contain substantial
redundancy, which adversely affects its performance on traditional metrics like BLEU, GLEU, and
METEOR. These metrics prioritize lexical similarity and penalize repetitive or redundant content,
highlighting ShareGPT4Video’s struggles in maintaining conciseness and relevance.

These results underscore the importance of balancing lexical similarity with linguistic diversity and
reducing redundancy to achieve comprehensive and high-quality video descriptions. This highlights
the need for models that combine precise lexical alignment with expressive richness and efficiency.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison of LVLMs via different metrics. The background color represents the perfor-
mance of the metric. The darker the green, the better the performance.

Traditional Metrics AutoCQ-based Metrics FIOVA-DQ-based Metrics
LVLMs BLEU METEOR GLEU F1 Recall Precision F1 Recall Precision

Tarsier 0.043 0.265 0.119 0.351 0.283 0.628 0.320 0.584 0.584
VIdeoLLaMA2 0.030 0.268 0.088 0.325 0.245 0.680 0.304 0.250 0.645
LLaVA-NEXT-Video 0.020 0.270 0.060 0.301 0.221 0.674 0.286 0.229 0.644
Video-LLaVA 0.027 0.257 0.077 0.285 0.208 0.709 0.269 0.216 0.680
ShareGPT4Video 0.010 0.218 0.034 0.281 0.201 0.731 0.263 0.203 0.714
VideoChat2 0.037 0.281 0.098 0.309 0.237 0.656 0.287 0.243 0.621

AutoDQ-based metrics. To evaluate the performance of LVLMs in video captioning, we utilized
AutoDQ for fine-grained event-based segmentation and comparison between model-generated cap-
tions and groundtruth annotations (see Tab. 2). This approach assesses the models’ understanding
of video content in terms of completeness and granularity.

Tarsier achieved the highest scores in both F1 and Recall, indicating that its captions comprehen-
sively cover the events in the groundtruth. This highlights Tarsier’s strength in content complete-
ness. However, its low Precision score reveals challenges with descriptive accuracy, as its captions
often include irrelevant or inaccurate information. While Tarsier demonstrates a solid understand-
ing of overall video content, its lack of precision suggests a tendency to overgenerate. In contrast,
ShareGPT4Video recorded the highest Precision but the lowest Recall. The high Precision reflects
its ability to generate accurate and error-free descriptions, focusing on key events. However, the low
Recall underscores its conservative approach, as it omits significant portions of the video content.
This trade-off results in captions that are concise yet fail to capture the full scope of the video.

Other LVLMs demonstrated intermediate performance, striking a balance between Recall and Preci-
sion with moderate scores across both metrics. These results reveal the varying strategies employed
by different models—some prioritize content completeness, while others focus on accuracy. The
evaluation highlights the need for future models to achieve a balance, combining comprehensive
content coverage with high descriptive precision to enhance video captioning quality.

FIOVA-DQ-based metrics. We incorporate human-weighted event importance into AutoDQ, re-
sulting in FIOVA-DQ, which more effectively captures human intuitive judgments of description
quality. This approach proves particularly suitable for evaluating the consistency and fluency of
model-generated descriptions in multi-event long videos. Compared to AutoDQ, FIOVA-DQ re-
veals significant discrepancies between Recall and Precision metrics, offering a more granular un-
derstanding of model performance and better reflecting human preferences.

As with AutoDQ, Tarsier achieves the highest F1 and Recall scores. Notably, its Recall metric
shows substantial improvement, indicating that Tarsier effectively captures most events, including
key information emphasized by human annotators. However, its Precision metric decreases further,
exposing deficiencies in event description accuracy under human-weighted evaluation—an aspect
overlooked by previous metrics. For other LVLMs, the FIOVA-DQ metrics exhibit less pronounced
changes compared to AutoDQ but follow a similar trend. The inclusion of human weighting en-
hances the metrics’ sensitivity to human preferences, amplifying both the strengths and weaknesses
of the models as evaluated on the FIOVA dataset.

4.3 BATCH EVALUATION FOR LVLMS

Batch score evaluation for LVLMs. In addition to evaluating the overall score, we conduct batch
score evaluations across eight sub-groups (see Fig. 6). AutoDQ and FIOVA-DQ’s performance
trends are consistent with the overall evaluation, with Tarsier continuing to excel in Recall met-
rics. However, we observe a general decline in performance for most LVLMs in Group H. Group H
consists of nine videos featuring multiple camera switches and frequent scene changes, with a co-
efficient of variation (CV) among human annotators exceeding 70%. These videos represent some
of the most challenging content in the FIOVA dataset, making them particularly difficult to describe
accurately. As expected, most LVLMs struggled to maintain descriptive completeness for Group H,
resulting in notable omissions despite relatively accurate content. Interestingly, Tarsier performed
better than other models in this group, likely due to its superior ability to capture temporal changes.
This indicates that Tarsier is more capable of maintaining coherence amid rapid scene transitions, a
critical factor for generating high-quality descriptions of complex sequences.
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a b c

d e f

e f g

Figure 6: Radar plot of LVLMs on FIOVA and 8 sub-groups. See
Appendix E.2 for details.

In terms of Precision, LVLMs
demonstrated relatively consis-
tent performance across differ-
ent sub-groups, indicating their
ability to accurately capture key
details regardless of video com-
plexity. Like overall evaluation,
Tarsier’s BLEU score is opti-
mal in Group H, and its GLEU
score remains stable across all
sub-groups. GLEU allows for
greater variation and empha-
sizes the fluency and overall
quality of generated content,
while BLEU focuses more on
literal precision in word match-
ing. Thus, when the gener-
ated text is semantically simi-
lar to the reference but differs in
phrasing or word order, GLEU
tends to assign a higher score,
while BLEU is less favorable.

These findings underscore the limitations of traditional metrics in evaluating open-ended video cap-
tioning tasks. Metrics relying solely on lexical matching often fail to account for semantic coherence
and fluency, both of which are critical for generating high-quality descriptions, particularly in com-
plex videos with frequent scene transitions.

Batch ranking for LVLMs. Batch ranking serves as a key component to quantify the differences
in consistency between LVLMs and human annotators when describing videos of varying difficulty
levels. The procedure involves three main steps: (1) evaluating human annotators’ consistency us-
ing six dimensions (Sec. 2.2), (2) assessing LVLM consistency across traditional metrics, AutoDQ,
and FIOVA-DQ (use Algorithm A2), and (3) comparing the rankings of consistency scores between
human and LVLM groups (use Algorithm A3). This approach combines multi-dimensional consis-
tency evaluation with ranking difference analysis, providing a novel perspective for understanding
the descriptive capabilities of LVLMs. A detailed process is shown in Fig. A8.

a b

Figure 7: Comparison between humans and LVLMs based on the
ranking of CV (coefficient of variation). (a) Ranking of CV for
six LVLMs. (b) Difference between the ranking of CV for six
LVLMs and humans.

As shown in Fig. 7 (a), the CV
of model performance decreases
progressively from Group A to
Group H. This trend suggests
that models exhibit greater vari-
ability in performance for sim-
pler videos (e.g., Group A),
whereas their outputs become
more consistent for more com-
plex videos (e.g., Group H).

The higher CV values in Groups
A and B indicate that models employ diverse strategies for straightforward content, resulting in a
broader range of descriptive quality. Conversely, as video complexity increases in Groups E to H,
CV values decline, reflecting more stable outputs. This shift may be attributed to the increased
difficulty of complex videos (e.g., Group H), which imposes stricter requirements on descriptive
capabilities, leading models to adopt more uniform approaches. These findings show the importance
of evaluating models on complex and diverse content, as it reveals their ability to generalize and
maintain stability under challenging conditions, providing deeper insights into their robustness.

Batch ranking for LVLMs and humans. Fig. 7 (b) shows that as the difficulty of accurately
describing videos increases for humans (from Group A to Group H), the negative regions (such as
Groups A and B) indicate that for easily describable videos, human annotators demonstrate more
consistent performance, whereas models exhibit significant variations (see Fig. A19 in Appendix
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E.4). This suggests that the models’ descriptive capabilities are inadequate for simpler video content,
failing to achieve the consistency demonstrated by humans.

Conversely, the positive regions (such as Group H) indicate that, for more challenging videos, human
annotators exhibit greater variability in their descriptions, while the models display more consistent
performance (see Fig. A21 in Appendix E.4). This consistency in models could be due to the
similar strategies or shared limitations they employ when describing complex scenarios, leading to
more uniform outputs. Most intermediate groups (such as C, D, and E) are close to zero, suggesting
that for these videos, the coefficient of variation is relatively similar between models and humans,
with no clear advantage for either (see Fig. A20 in Appendix E.4).

These observations align closely with the Overall and Batch Score Evaluations. In the Overall Score,
LVLMs demonstrate a Precision exceeding 0.6, significantly surpassing Recall. This highlights the
models’ ability to produce accurate descriptions while revealing their limitations in comprehensive-
ness, as critical details are often omitted. In Group H, a marked decline in Recall scores is observed,
with Precision remaining stable, consistent with Batch Ranking results. This pattern suggests that
while LVLMs can generate accurate and consistent descriptions for complex videos, their descriptive
coverage remains insufficient, particularly for multi-event scenarios. Overall, these findings show
the inherent trade-off between accuracy and comprehensiveness in LVLMs’ descriptive capabilities.
Enhancing these models to balance high precision with comprehensive content coverage is essential,
especially in complex video contexts where human annotations often exhibit significant variability.

4.4 SUMMARY

Based on the above results, we conclude that existing LVLMs exhibit notable perception and rea-
soning capabilities, enabling reasonably accurate video descriptions. However, most models face
challenges with information omissions, limiting their ability to generate semantically comprehen-
sive captions. Among the six evaluated models, Tarsier achieved the best overall performance,
effectively leveraging temporal relationships to handle complex videos. Nevertheless, it requires
improvements in descriptive precision and minimizing irrelevant content.

Compared to human-generated captions, LVLMs show significant discrepancies in simpler videos,
often missing subtle nuances that human annotators readily capture. In contrast, for complex videos,
LVLMs demonstrate greater consistency and stability, likely due to uniform strategies adopted under
challenging scenarios. For videos of moderate complexity, LVLMs perform comparably to humans,
balancing accuracy and completeness. However, issues such as hallucinations and redundancy re-
main prominent in some models, as illustrated in Fig.A23, Fig.A22, and Fig. A24. While all six
models perform well in simple scenarios, such as Brazilian Jiu-Jitsu practice, their performance
declines significantly when handling spatiotemporal inconsistencies or frequent scene transitions.
These findings highlight the need for substantial improvements in processing complex video scenes
with intricate temporal dynamics.

The experiments also reveal the limitations of traditional metrics in assessing open-ended video
descriptions. These metrics rely on lexical matching, making them inadequate for capturing the
semantic richness, fluency, and contextual relevance of captions, particularly for tasks involving
diverse content and nuanced understanding. To address these limitations, new evaluation metrics
are urgently needed. Future metrics should emphasize semantic alignment, linguistic fluency, and
content relevance to provide a more comprehensive and accurate evaluation of LVLMs’ capabilities.

5 CONCLUSIONS

This paper proposes FIOVA, a new benchmark designed to evaluate the judgment capabilities of
LVLMs in video captioning across different evaluation settings and to assess their consistency with
human judgments. Our findings indicate that while Tarsier performs well in terms of precision and
temporal utilization, it often generates brief captions that lack detail, limiting comprehensiveness. In
contrast, ShareGPT4Video, although comparable to GPT-4V in its claimed understanding, suffers
from hallucinations and redundancy in its outputs. The FIOVA benchmark provides a complex
environment for comparing LVLMs to human assessments, offering insights into their respective
strengths and limitations across diverse video scenarios. Our results also emphasize the need for
improved LVLMs that can effectively balance accuracy, comprehensiveness, and content relevance,
particularly in complex settings. We hope that FIOVA will support further research in advancing
video description and understanding.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Nayyer Aafaq, Ajmal Mian, Wei Liu, Syed Zulqarnain Gilani, and Mubarak Shah. Video descrip-
tion: A survey of methods, datasets, and evaluation metrics. ACM Computing Surveys (CSUR),
52(6):1–37, 2019.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell, and Bryan Russell.
Localizing moments in video with natural language. 2017.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
nick, and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international
conference on computer vision, pp. 2425–2433, 2015.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic
evaluation measures for machine translation and/or summarization, pp. 65–72, 2005.

Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet: A
large-scale video benchmark for human activity understanding. 2015.

David Chen and William B Dolan. Collecting highly parallel data for paraphrase evaluation. 2011.

Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong
Duan, Bin Lin, Zhenyu Tang, et al. Sharegpt4video: Improving video understanding and genera-
tion with better captions. arXiv preprint arXiv:2406.04325, 2024a.

Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Ekaterina Deyneka, Hsiang-wei Chao,
Byung Eun Jeon, Yuwei Fang, Hsin-Ying Lee, Jian Ren, Ming-Hsuan Yang, et al. Panda-70m:
Captioning 70m videos with multiple cross-modality teachers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13320–13331, 2024b.

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and
audio understanding in video-llms. arXiv preprint arXiv:2406.07476, 2024.

Shiyu Hu, Xin Zhao, Lianghua Huang, and Kaiqi Huang. Global instance tracking: Locating target
more like humans. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1):576–
592, 2022.

Shiyu Hu, Dailing Zhang, Xiaokun Feng, Xuchen Li, Xin Zhao, Kaiqi Huang, et al. A multi-modal
global instance tracking benchmark (mgit): Better locating target in complex spatio-temporal and
causal relationship. Advances in Neural Information Processing Systems, 36, 2024a.

Shiyu Hu, Xin Zhao, and Kaiqi Huang. Sotverse: A user-defined task space of single object tracking.
International Journal of Computer Vision, 132(3):872–930, 2024b.

Bin Huang, Xin Wang, Hong Chen, Zihan Song, and Wenwu Zhu. Vtimellm: Empower llm to grasp
video moments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14271–14280, 2024a.

Hanzhuo Huang, Yufan Feng, Cheng Shi, Lan Xu, Jingyi Yu, and Sibei Yang. Free-bloom: Zero-
shot text-to-video generator with llm director and ldm animator. Advances in Neural Information
Processing Systems, 36, 2024b.

Sangho Lee, Jiwan Chung, Youngjae Yu, Gunhee Kim, Thomas Breuel, Gal Chechik, and Yale
Song. Acav100m: Automatic curation of large-scale datasets for audio-visual video representa-
tion learning. 2021.

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang,
and Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355,
2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xuchen Li, Xiaokun Feng, Shiyu Hu, Meiqi Wu, Dailing Zhang, Jing Zhang, and Kaiqi Huang.
Dtllm-vlt: Diverse text generation for visual language tracking based on llm. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7283–7292, 2024a.

Xuchen Li, Shiyu Hu, Xiaokun Feng, Dailing Zhang, Meiqi Wu, Jing Zhang, and Kaiqi Huang.
Visual language tracking with multi-modal interaction: A robust benchmark. arXiv preprint
arXiv:2409.08887, 2024b.

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united
visual representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

Nikos K Logothetis and David L Sheinberg. Visual object recognition. Annual review of neuro-
science, 19:577–621, 1996.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. arXiv preprint
arXiv:2306.05424, 2023.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Khan. Videogpt+: Integrating
image and video encoders for enhanced video understanding. arXiv preprint arXiv:2406.09418,
2024.

Joy Mahapatra and Utpal Garain. Impact of model size on fine-tuned llm performance in data-to-text
generation: A state-of-the-art investigation. arXiv preprint arXiv:2407.14088, 2024.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef
Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated video
clips. 2019.

Andrew Mutton, Mark Dras, Stephen Wan, and Robert Dale. Gleu: Automatic evaluation of
sentence-level fluency. In Proceedings of the 45th Annual Meeting of the Association of Com-
putational Linguistics, pp. 344–351, 2007.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Vasili Ramanishka, Abir Das, Dong Huk Park, Subhashini Venugopalan, Lisa Anne Hendricks,
Marcus Rohrbach, and Kate Saenko. Multimodal video description. In Proceedings of the 24th
ACM international conference on Multimedia, pp. 1092–1096, 2016.

Anna Rohrbach, Marcus Rohrbach, Niket Tandon, and Bernt Schiele. A dataset for movie descrip-
tion. 2015.

Kuniaki Saito, Kihyuk Sohn, Chen-Yu Lee, and Yoshitaka Ushiku. Unsupervised llm adaptation for
question answering. arXiv preprint arXiv:2402.12170, 2024.

Andrea Sottana, Bin Liang, Kai Zou, and Zheng Yuan. Evaluation metrics in the era of gpt-
4: reliably evaluating large language models on sequence to sequence tasks. arXiv preprint
arXiv:2310.13800, 2023.

Yoad Tewel, Yoav Shalev, Roy Nadler, Idan Schwartz, and Lior Wolf. Zero-shot video captioning
with evolving pseudo-tokens. arXiv preprint arXiv:2207.11100, 2022.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
description evaluation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4566–4575, 2015.

Jiawei Wang, Liping Yuan, and Yuchen Zhang. Tarsier: Recipes for training and evaluating large
video description models. arXiv preprint arXiv:2407.00634, 2024a.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang Wang, and William Yang Wang. Vatex: A
large-scale, high-quality multilingual dataset for video-and-language research. 2019a.

Xin Wang, Jiawei Wu, Da Zhang, Yu Su, and William Yang Wang. Learning to compose topic-
aware mixture of experts for zero-shot video captioning. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, pp. 8965–8972, 2019b.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024b.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for bridging
video and language. 2016.

Hongwei Xue, Tiankai Hang, Yanhong Zeng, Yuchong Sun, Bei Liu, Huan Yang, Jianlong Fu, and
Baining Guo. Advancing high-resolution video-language representation with large-scale video
transcriptions. 2022.

Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu, Jae Sung Park, Jize Cao, Ali Farhadi, and
Yejin Choi. Merlot: Multimodal neural script knowledge models. 2021.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023.

Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu,
and Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024. URL
https://llava-vl.github.io/blog/2024-04-30-llava-next-video/.

Jiaming Zhou, Junwei Liang, Kun-Yu Lin, Jinrui Yang, and Wei-Shi Zheng. Actionhub: a
large-scale action video description dataset for zero-shot action recognition. arXiv preprint
arXiv:2401.11654, 2024.

Luowei Zhou, Chenliang Xu, and Jason Corso. Towards automatic learning of procedures from web
instructional videos. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36:
50117–50143, 2023.

13

https://llava-vl.github.io/blog/2024-04-30-llava-next-video/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A COMPREHENSIVE RELATED WORKS

A.1 LVLMS FOR VIDEO CAPTION

In recent years, research on Large Vision-Language Models (LVLMs) has seen a notable surge, with
some models even claiming to achieve performance on par with GPT-4V (Achiam et al. (2023))
in handling general video tasks such as visual question answering and video description. These
advanced models aim to bridge the gap between visual and linguistic understanding, allowing for
more sophisticated interactions with video content.

One of the standout models in this domain is Tarsier (Wang et al. (2024a)), which employs CLIP-
ViT to encode individual video frames and leverages a Large Language Model (LLM) to model
the temporal relationships between these frames. Through a carefully crafted two-stage training
process, Tarsier demonstrates superior capabilities in generating video descriptions compared to
existing open-source models, making it a leading player in this rapidly evolving space.

Building on earlier innovations, VideoLLaMA2 (Cheng et al. (2024)) advances video captioning by
improving on its predecessor, VideoLLaMA (Zhang et al. (2023)). It introduces a custom-designed
Spatio-Temporal Convolution (STC) connector that effectively captures the complex interplay be-
tween spatial and temporal elements in video data. This enhancement enables the model to generate
more accurate and context-aware video descriptions and address broader video understanding tasks.

Another notable development comes from ShareGPT4Video (Chen et al. (2024a)), which advances
video understanding in LVLMs and video generation in text-to-video models (T2VM) to new lev-
els. By generating dense, detailed, and precise captions, ShareGPT4Video achieves state-of-the-art
(SOTA) performance across three advanced video benchmarks, significantly enhancing the quality
of video descriptions and the overall understanding of complex video content.

Video-LLaVA (Lin et al. (2023)) further pushes the boundaries of foundational LLMs by align-
ing visual representations with the language feature space, working towards a more unified LVLM
architecture. This alignment is critical in enhancing the model’s ability to understand and gener-
ate coherent, contextually appropriate captions that seamlessly integrate both visual and linguistic
elements.

VideoChat2 (Li et al. (2023)) stands out for its impressive capabilities in spatio-temporal reasoning,
event localization, and causal reasoning. By integrating a video backbone with a large language
model via a learnable neural interface, VideoChat2 excels in tasks that require a deeper understand-
ing of temporal sequences and the causal relationships between events in video data. This makes it
particularly effective in scenarios that demand detailed analysis and interaction with dynamic video
content.

The emergence of these models has prompted researchers to ask a fundamental question: “Can
video-based LVLMs describe videos like humans and exhibit human-level understanding?” This
question forms the basis of our work. We selected these state-of-the-art models as evaluation sub-
jects and conducted a comprehensive comparison of human and machine video understanding using
the FIOVA benchmark.

A.2 VIDEO CAPTION DATASET

As the field of video understanding continues to evolve, researchers have introduced a growing
number of video description datasets that cater to various levels of complexity and diversity in video
content. These datasets play a crucial role in advancing video captioning models by providing
training and evaluation materials that reflect real-world challenges.

One of the well-known datasets in this field is YouCook-II (Zhou et al. (2018)), which comprises
2,000 cooking videos evenly distributed across 89 distinct recipes. These videos, sourced from
YouTube, encompass a wide range of cooking techniques and present various challenges typical of
open-domain videos. The dataset features variations in camera angles, camera movement, lighting
conditions, and background changes, making it an excellent resource for testing models on dynamic
and complex scenarios.
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The Microsoft Video Description (MSVD) (Chen & Dolan (2011)) dataset offers another founda-
tional benchmark for video captioning tasks. It includes 1,970 short video clips from YouTube, each
paired with human-annotated sentences that provide natural language descriptions of the video con-
tent. This dataset is widely used for training and evaluating models, given its open-domain nature
and the diversity of content it covers.

Further expanding the scope, the MSR-Video to Text (MSR-VTT) (Xu et al. (2016)) dataset offers
a larger and more diverse collection of open-domain videos for captioning tasks. It consists of
7,180 videos subdivided into 10,000 clips, organized into 20 distinct categories that encompass a
broad range of scenarios, from sports to news events, and more. The MSR-VTT dataset serves as a
benchmark for evaluating a model’s capability to handle diverse, real-world video content, making it
an important resource for researchers seeking to enhance the generalization abilities of their models.

Currently the largest dataset in the field, Panda-70M (Chen et al. (2024b)), features an astounding
70 million videos paired with high-quality text captions. This extensive dataset has significantly
accelerated the development of video understanding by providing a vast array of training examples
that capture a wide spectrum of real-world video content. Its scale and diversity allow researchers
to train more robust models capable of handling complex, open-world scenarios.

Notably, FIOVA stands out as the only dataset that provides multiple annotations for each video,
offering richer insights into how different viewers perceive and describe the same content. Addi-
tionally, the length of the video descriptions in FIOVA is considerably longer than in other datasets,
providing more detailed and nuanced explanations of the video content. This makes FIOVA an
exceptional resource for testing the ability of models to generate comprehensive, contextually rich
descriptions, pushing the boundaries of what video captioning systems can achieve.

A.3 VIDEO CAPTION EVALUATION

In the early stages of video description research, the primary focus was on pretraining video-
language models, followed by fine-tuning on specific datasets for video captioning tasks. The
performance of these models was typically assessed using well-established metrics such as BLEU
(Papineni et al. (2002)), GLEU (Mutton et al. (2007)), METEOR (Banerjee & Lavie (2005)), and
CIDEr (Vedantam et al. (2015)). These metrics, while useful for measuring the quality of gener-
ated descriptions based on syntactic and semantic alignment, often led to models that could achieve
impressive results on specific datasets. However, a significant limitation was that these models fre-
quently struggled to generalize well beyond their training data, especially when confronted with
more diverse or open-world videos (Wang et al. (2024a)).

To address this challenge, recent research efforts have shifted towards developing models capa-
ble of zero-shot video description (Tewel et al. (2022); Wang et al. (2019b); Zhou et al. (2024)).
These models aim to generate accurate captions for unseen videos without requiring fine-tuning
on task-specific datasets. Although promising, the simplicity of many standard video description
benchmarks limits their ability to fully evaluate these models’ capabilities. These benchmarks often
focus on straightforward, short videos with basic actions, which fails to stress-test models on more
complex, nuanced content.

As the complexity of videos increases—whether in terms of length, visual diversity, or intricate
narrative structure—traditional evaluation metrics struggle to reflect the true quality and relevance
of the generated captions. This mismatch highlights the need for more sophisticated evaluation
methods. In response, researchers have recently proposed using advanced language models, such
as ChatGPT, for automatic evaluation (Sottana et al. (2023)), which has gained popularity for tasks
like open-ended question answering. While this approach offers more flexibility in evaluating the
nuances of video descriptions, directly assigning a numerical score to an entire video description
often lacks interpretability, with the meaning of each score level being ambiguous and inconsistent
(Maaz et al. (2023)).

To overcome the limitations of traditional evaluation metrics, we adopted AutoDQ (Wang et al.
(2024a)), a recently proposed approach for automatic scoring. AutoDQ offers significant advantages
over traditional methods, as it combines both text similarity and semantic similarity to evaluate
the alignment between the LVLMs’ video captions and human-generated captions. This approach
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enables a more comprehensive evaluation of both the lexical accuracy and the semantic integrity of
the descriptions, making it better suited for assessing the quality of detailed, nuanced video captions.

The AutoDQ evaluation process involves two main stages. First, events are extracted from both
the groundtruth and the LVLM-generated captions. In the next stage, these events are compared to
calculate two key metrics: recall, which measures how much of the groundtruth’s events are cap-
tured by the model-generated caption, and precision, which evaluates how accurately the generated
content aligns with the events present in the groundtruth. Finally, the F1 score—a balanced measure
of precision and recall—is used to provide an overall assessment of the model’s performance. This
method allows for a more nuanced understanding of how effectively a model captures the content of
a video, considering both completeness and accuracy.

In our evaluation of LVLMs using the FIOVA benchmark, we employed both traditional metrics
(such as BLEU, GLEU, and METEOR) and the advanced AutoDQ approach. By combining these
evaluation methods, we aim to provide a more comprehensive analysis of model performance, cap-
turing both the lexical alignment and the deeper semantic relationships that are crucial for effective
video comprehension. This combined approach ensures a scientifically rigorous comparison be-
tween LVLMs and human-generated video captions, particularly in complex video scenarios.
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B DETAILED INFORMATION OF FIOVA DATASET

B.1 THEME ABBREVIATIONS AND CORRESPONDING MEANINGS

Table A1: The video theme of the FIOVA dataset.

Prefix Video Theme & Description

acc Accident: This category encompasses records of sudden events such as traffic accidents and unexpected colli-
sions.

ad Advertisement: This category includes video content of commercial advertisements and product promotions for
marketing communication.

ch Children: This category captures scenes of children’s daily activities, play, and interactions.
di Dialogue: This category includes video content featuring conversations, discussions, and communicative inter-

actions.
do Daily Observations: This category records observations and events from everyday life.
doc Documentary: This category encompasses documentaries with educational, informational, or historical content.
duc Daily Unique Content: This category showcases videos of unique or unusual events in daily life.
ear Event Action Record: This category records actions and behaviors during specific activities or events.
ex Examination: This category involves records of exams, tests, or other assessment activities.
fa Family Activities: This category captures scenes of family activities, parent-child interactions, and family life.
fi Film Industry: This category includes video content related to film production, actor performances, and behind-

the-scenes of movies.
fu Fun: This category includes videos with entertaining, fun, or humorous content.
gar Gathering Activities Recordings: This category records videos of social activities, gatherings, and collective

events.
goa Games of Action: This category includes videos of action games, sports competitions, and outdoor activities.
hom Home: This category captures scenes of home environments, domestic life, and family relationships.
ken Kinetic Engaging Narratives: This category includes videos with dynamic participation, physical activities, and

interactive narratives.
ki Kids Interaction: This category records interactions and social activities among children.
mo Motion: This category involves videos of physical movement, action displays, and dynamic expressions.
mod Movement Onsite Display: This category showcases videos of on-site activities, movements, and mobility.
mot Motor: This category includes videos of mechanical motion, vehicle operation, and engine functionality.
mu Music: This category records videos of music performances, music creation, and musical activities.
ne News Event: This category includes videos of news reports, news events, and news interviews.
pon People’s Ordinary Narratives: This category records videos of ordinary people’s daily lives and personal stories.
pu Public Utility: This category showcases videos of public services, public utilities, and municipal engineering.
rab Recreational Activities and Behavior: This category includes videos of recreational activities, leisure behaviors,

and entertainment venues.
sad Sports and Daily Activities: This category records videos of sports activities, daily exercises, and outdoor

activities.
sc Scholarly Contexts: This category includes videos of scholarly research, educational contexts, and academic

discussions.
sch Social and Cultural Happenings: This category records videos of social events, cultural activities, and commu-

nity life.
sp Sports and Physical activities: This category includes videos of sports, physical exercises, and competitive

activities.
the Typical Human Experiences: This category records videos of typical human experiences, universal emotions,

and everyday challenges.
tr Thematic Representation: This category includes videos of thematic presentations, topic discussions, and the-

matic events.
va Vacation and Activities: This category records videos of vacation activities, leisure travel, and holiday experi-

ences.
vi Various Interactions: This category includes videos of various interactions, social activities, and interpersonal

relationships.
wat Wildlife and Adventure Themes: This category records videos of wildlife, adventure activities, and nature

exploration.
win Warm Interactive Narratives: This category includes videos of warm interactions, touching stories, and positive

communications.
xin Experiences Interactions Narratives: This category records videos of experiential interactions, event narratives,

and personal experiences.
you Youthful Unison Observed: This category records videos of collective activities among young people, team-

work, and youthful vitality.
zok Zoom Occurrences Kinetics: This category includes videos of fast-paced actions, dynamic events, and high-

energy activities.
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Figure A1: The representative data of FIOVA. Each video is strictly selected based on themes.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

To ensure the legality, diversity, and high quality of the FIOVA dataset, we implemented a systematic
approach to video sourcing and selection, as described below:

Legitimacy of Video Sources. All videos in the FIOVA dataset were sourced from legal and pub-
licly accessible copyright-compliant platforms. The acquisition process adhered to the following
principles:

• Public Copyright Resources: Videos were selected from platforms with explicit public
copyright permissions, such as YouTube. These videos are explicitly allowed for non-
commercial research purposes according to the terms of their source platforms.

• Compliance Statement: We strictly followed the terms of use of these platforms, ensuring
that all selected videos comply with applicable copyright regulations. By choosing videos
permitted for non-commercial research, we ensured the dataset’s compliance.

Diversity in Video Selection. To construct a dataset capable of evaluating LVLMs across diverse
scenarios, we prioritized diversity during the video selection process in the following aspects:

• Coverage of Themes and Scenes: The FIOVA dataset spans a wide range of themes,
including daily activities, sports events, and natural landscapes. This diversity ensures that
LVLMs can be evaluated across a variety of real-world scenarios.

• Rich Dynamic Complexity: Videos were carefully selected to represent complex dynamic
characteristics, such as intricate spatiotemporal relationships, multi-agent interactions, and
mixed short- and long-term sequences. These features reflect the actual challenges of se-
mantic understanding tasks faced by LVLMs.

Video Screening and Quality Control. To ensure the quality of the dataset, we designed and
executed a rigorous video screening and quality control process, comprising the following steps:

• Initial Screening: During the initial phase, videos meeting public copyright criteria were
selected, with a focus on diversity in content.

• Manual Review: Each video underwent manual review to ensure clarity, narrative consis-
tency, and suitability for video understanding tasks.

• Multidimensional Processing: At the processing stage, videos were grouped and balanced
to ensure an appropriate distribution of length, content, and event complexity within the
dataset, providing a reliable foundation for comprehensive LVLM evaluation.

By adhering to these strategies, the FIOVA dataset ensures legality, diversity, and high quality, serv-
ing as a representative framework for the evaluation and optimization of LVLMs.
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B.2 HUMAN ANNOTATION RULES

Annotation Scheme and Standards.

1. Annotators should label based solely on the visual content of the video, without referring
to the audio content or any subtitles in the video, except for the text that appears naturally in
the scene (such as store signs, road signs, etc.). Annotators can choose to use this information or
not, based on their judgment.
- Example: If a news image appears with the title “Earthquake Report,” this text can be
referenced. However, if text appears in the form of movie subtitles at the bottom of the video, it
should not be used.

2. Annotators should describe each video using a few simple declarative sentences to form
a paragraph. The number of sentences depends on the changes in events and scenes in the
video, and the content can be appropriately enriched.

3. Introduce simple and observable scene information, such as time (morning, noon, evening,
late night), location (e.g., on a basketball court, beside a highway, in a bar), and the main objects
and their positions in the scene (e.g., a truck overturned in the middle of the road, spectators
filling the stands around the stadium). Avoid using overly literary descriptions.

4. Do not include the names of public figures in the video, such as Obama, Clinton, Sun Yang,
Yao Ming, Yang Mi, etc.Use third-person references such as “a man,” “a woman,” “a boy,” “a
girl,” “he,” “she,” etc., instead.

5. Optionally include observable details of characters, such as clothing, hairstyle and color,
age, etc., e.g., “A basketball player wearing a white jersey dribbled past another player wearing
a black jersey.”

6. Describe the behaviors and actions of individual characters as well as interactions
between them. For interactions between multiple people, use references such as “this person,
that person,” “one person, another person,” “the one on the left, in the middle, on the right,” or
“this group, that group” to refer to different entities. There are no strict requirements for the
specific language used, but the relationships and actions must be clearly and concisely described.

7. Do not use emotionally biased words (mostly adjectives or adverbs), such as “pitiful,”
“disgusting,” “joyfully,” etc.

8. Do not use idioms (e.g., “a dime a dozen”), proverbs (e.g., “No pain no gain”), or internet
slang (e.g., “imho (in my humble opinion)”).

9. Do not use overly literary descriptions or speculate on the psychological state of characters.
For example: “As she thought of her youth slipping away, a faint sorrow appeared on her face.”

10. Do not use subjective inference terms, such as “obviously.” Sentences should be concise;
use shorter phrases where possible, e.g., replace “at the same time” with “meantime.”

11. Do not use unnecessary conjunctions if there is no causal relationship between events in
the video.

12. Avoid redundant or conversational language. For example: instead of “Just after Andy
rode his bike home, he immediately ran out again,” simplify to “After a boy rode home, he ran
out again” or “A boy rode home and then ran out again.”

13. The events in the video must be described in the order in which they occur, without
skipping ahead or using summarizing language.
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To ensure the quality and robustness of the annotations in the FIOVA dataset, a carefully designed
annotator arrangement strategy was implemented. Below, we describe the approach taken and its
contributions to the diversity and representativeness of the dataset.

Annotator Assignment. Unlike some datasets annotated by a fixed group of individuals, the anno-
tation of FIOVA involved multiple groups of annotators. Specifically:

• Dynamic Annotator Groups: Each video was independently annotated by five annotators;
however, the annotators assigned to different videos varied.

• Training and Standardization: All annotators were required to undergo rigorous training
to ensure a thorough understanding of the annotation guidelines and the ability to deliver
consistent, high-quality annotations.

Diversity in Annotations. The use of multiple annotator groups was a deliberate choice aimed
at enhancing the diversity, coverage, and adaptability of the GT. The key benefits of this approach
include:

• Diverse Descriptive Perspectives: Allowing different annotators to work on the dataset
brought varied linguistic styles and perspectives, minimizing bias that might arise from
relying on a fixed annotator group.

• Comprehensive Semantic Coverage: The involvement of diverse annotators improved
the coverage of video details, capturing nuanced aspects of the scenes and events depicted.

• Enhanced Robustness: The diversity in annotators’ perspectives enabled the GT to bet-
ter generalize and adapt to various evaluation scenarios, ensuring that the dataset remains
applicable across diverse use cases.

Quality Control Measures. While annotator diversity introduces variability in descriptive styles,
robust quality control measures were implemented to ensure the reliability and consistency of the
annotations. These measures include:

• Standardized Guidelines: A unified set of annotation instructions was provided to all
annotators, ensuring consistency across annotations.

• Post-Annotation Review: All annotations underwent a quality review process to verify
their alignment with video content and eliminate errors.

• Semantic Integration: Using GPT-3.5-turbo, the annotations from five annotators were
integrated into a single, cohesive description, balancing consistency with the retention of
diverse perspectives.

Through these measures, the FIOVA dataset provides a robust, diverse, and high-quality GT that
supports the evaluation of LVLMs in long-video description tasks.
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B.3 WORD CLOUD FOR FIVE PEOPLE ANNOTATION AND LVLMS CAPTION

(h) Human2 

(d) Tarsier

(h) Human2 

(d) Tarsier

(k) Human5

(g) Human1 

(c) VideoChat2 

(k) Human5

(g) Human1 

(c) VideoChat2 

(j) Human4 

(f) LLaVA-NEXT-Video 

(b) VideoLLaMA2

(j) Human4 

(f) LLaVA-NEXT-Video 

(b) VideoLLaMA2

(i) Human3 

(e) ShareGPT4Video

(a) Video-LLaVA 

(i) Human3 

(e) ShareGPT4Video

(a) Video-LLaVA 

Figure A2: Word cloud for five people annotation and LVLMs caption.
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B.4 DISTRIBUTION OF DISAGREEMENT AMONG HUMAN ANNOTATORS (BASED ON MULTIPLE
DIMENSIONS)
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Figure A3: The distribution of the multi-dimensional coefficient of variation for 8 groups. Please
refer to Section 2.2 for more details. The dataset is divided based on the coefficient of variation
(CV) of human annotators across multiple dimensions, resulting in 8 groups. Each group represents
a different degree of disagreement among the 5 annotators, ranging from the smallest (Group A) to
the largest (Group H).
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Figure A4: Distribution of multiple dimensions coefficient of variation (CV) and their mean value
on FIOVA.
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B.5 EXAMPLES FOR VARIOUS GROUPS

To demonstrate the evaluation capability of GPT-3.5-turbo more intuitively, we provide the follow-
ing cases to show the characteristics of different groups.

B.5.1 HIGH CONSISTENCY GROUP SAMPLE (GROUP A)

Figure A5: An example of videos in Group A.

The descriptions are highly consistent in style, semantically comprehensive, and linguistically fluent.
The following are the annotators’ descriptions:

• Human 1: A little boy wearing a red hat stands on the scooter and slips forward. He
waves his hand. He steps off the scooter. He looks at the scooter sliding forward and runs
forward. The boy presses the scooter, then the scooter stops. The boy grabs the scooter
with both hands.

• Human 2: A little boy wearing a helmet is playing skateboard in the open air. He jumps
down and pauses. He looks at the skateboard slipping away. He runs following the skate-
board and squats down, and stops the skateboard with his hand. He picks up the skateboard
and holds it in the arms.

• Human 3: A child wearing a hat stands on a skateboard. There is a car next to the
skateboard. The skateboard slides forward. The child goes down from the skateboard, and
the skateboard continues sliding forward. The child catches up the skateboard and stops
the skateboard by his hands. The child picks up the skateboard.

• Human 4: A boy wears a skateboard helmet. The skateboard slides forward. The boy
waves hands to the camera len. The boy goes down from the skateboard. The skateboard
still moves forward. The boy chases the skateboard and stops it. The boy picks up the
skateboard.

• Human 5: A boy standing on a skateboard is doing skateboarding. The boy lands on one
foot, while the other foot also takes off from the skateboard. The skateboard continues
moving forward. The boy catches up the skateboard and stops it.

The evaluation results by GPT-3.5-turbo indicate that the descriptions exhibit minimal differences
in contextual consistency (CV: 0.00%) and context (CV: 0.00%), while showing small variations in
correctness (CV: 4.56%) and temporality (CV: 4.56%). The detail orientation has a slightly higher
variation (CV: 8.84%), and the length of descriptions displays the largest variation (CV: 11.40%).
Overall, the average CV across all dimensions is 4.89%. These findings demonstrate highly con-
centrated semantic distributions across annotators, indicating strong agreement in their descriptions
despite minor differences in specific dimensions.

B.5.2 HIGH VARIABILITY GROUP SAMPLE (GROUP H)

Figure A6: An example of videos in Group H.

The descriptions differ significantly in content, detail, and linguistic style:
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• Human 1: A woman wearing a small glasses is reading books. A woman wearing a big
glasses is looking forward. A man sitting beside a lot of books and holding a book looks at
the front. The woman wearing big glasses lies on the ground. A group of cranes walk by, a
man and a woman dancing behind. A woman in pink walks, a man and a woman dancing
behind. A black woman lies down and reads, a red dress woman sitting in a chair looks at
the right. The woman with big glasses waves around the crane. A man wearing glasses is
reading. The pink dress woman is walking through, the man wearing glasses is reading,
the black woman is lying on a black and white shirt and reading. A man wearing a hat
dances and walks through the black man upside down. A woman is lying next to a group of
cranes. A woman steps on the book and walks. The woman in pink is dancing and walking
through, a crane also comes.

• Human 2: The lens sweeps a lady from top to bottom, and then there appears a woman
with curly hair. A man is wearing a suit, the man lying down is looking at her. Lens
switch, the lady is lying on the floor, a group of white flamingos walk by, someone next to
them is dancing. A man and a woman push around, the first lady appears lying down and
reading, the man in suit also wears glasses reading, the curly hair women and flamingos
are dancing, someone next to them stretches his leg doing exercise.

• Human 3: In a yard, a black-skinned woman is carrying a bag in the hands and reading
a book, another long-haired woman is staring at the camera. A woman wearing a suit
is lying on the stool, holding A book and looks at the lens, the long hair woman is lying
on the carpet. A group of birds walk through the hall, a red dress man pushes a blonde
woman away, the black skin woman next to him sitting to the side reads, another woman
with black skin is lying down and reading. A woman wearing a red hat is sitting to the
side, the long hair woman shakes hands, a woman in suit wears glasses, another woman
wearing a striped shirt lies next to the carpet. The man in red keeps beating, A woman
lying on the table raises her legs, the long hair woman is lying on the carpet, a pink dress
woman is shaking the body and walking through.

• Human 4: A woman standing next to some leaves. A woman is lying on the ground. Some
geese are walking. A man and a woman are talking. A man is reading a book. A woman is
sitting in a chair. A woman is waving her hands. A man is wearing glasses. Several people
are lying on the ground. A man is leaning up and a man is walking by his side.

• Human 5: A woman carrying a bag is standing and reading. A woman wearing glasses
looks at the camera. A person holding a book looks at the woman. The woman wearing
glasses is lying on the ground. Several people are dancing, a person is lying down and
reading, a person is sitting on a chair. A man is waving his hands. The reading people
wears the glasses. A man jumps forward and looks at another person who stands on the
stool. The women with glasses is lying on the ground. A person steps on the book. Everyone
does their own thing.

The evaluation results by GPT-3.5-turbo highlight significant variability across annotators’ semantic
coverage and linguistic styles. Consistency exhibits the highest variability with a CV of 98.54%,
followed by correctness (CV: 105.34%), temporality (CV: 76.70%), and context (CV: 49.79%). De-
scriptions also show notable differences in detail orientation (CV: 53.93%) and length (CV: 37.87%).
Overall, the average CV across all dimensions is 70.36%, reflecting substantial semantic inconsis-
tency. These findings underline the diversity in annotators’ understanding and descriptions of the
video, capturing a wide range of perspectives and interpretative styles.
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B.6 EXAMPLE FOR CORRESPONDENCE BETWEEN VIDEOS, HUMAN DESCRIPTIONS, AND
GENERATED GROUNDTRUTH

#600 #620 #640 #660 #680

#500 #520 #540 #560 #580

#400 #420 #440 #460 #480

#300 #320 #340 #360 #380

#200 #220 #240 #260 #280

#100 #120 #140 #160 #180

#000 #020 #040 #060 #080

Human1: (#000) A little gray boy is riding a bike. (#220) After a distance, the bike 
suddenly falls. (#440) The boy comes down from the bike, goes to the side, (#500) lies on 
the ground, pretending to fall. (#640) After a while, He reachs out his hand.

Human2: (#000) A child sits on a bicycle seat to take it away. (#200) He releases his hand, 
and the bike turns over the right. (#440) He takes out his right leg and walks a few steps and 
(#500) falls to the ground. (#640) Then he stretches out his right hand pointing to the lens.

Human3: (#000) A boy on the road is riding a small two-wheeled car,  (#220) after driving 
a distance the child stops, the car falls to the ground, (#440) the boy comes down from the 
car,  (#500) he lies on the road. (#600) The little boy lying on the floor strokes his hand and 
cries.

Human3: (#000) A boy on the road is riding a small two-wheeled car,  (#220) after driving 
a distance the child stops, the car falls to the ground, (#440) the boy comes down from the 
car,  (#500) he lies on the road. (#600) The little boy lying on the floor strokes his hand and 
cries.

Human4: (#000) A child wearing a hat is riding on a baby carriage forward, (#220) and 
then the car falls, the child stands for a while and (#440) falls off when he crosses his leg 
out from the car. (#500) The child is lying on the ground and then  (#640) pointing to the 
camera by a finger.

Human5: (#000) During the day, a little boy wearing a helmet is riding a bike without 
pedals, using feet to support forward. (#200) The boy release his hand, the bike tilted down 
under the boy. (#240) The boy stands and looks down at the bike. (#440) The boy crosses 
the car and goes to the side and (#500) falls to the ground. (#600) The boy smiles and 
(#640) reaches out his hand.

Groundtruth: (#000) A young boy is riding a bike down a road. (#220) As he rides, the 
bike suddenly falls over. (#440) The boy then gets off the bike, (#500) lies on the ground, 
and pretends to fall. (#640) After a moment, the boy smiles and reaches out his hand.

Figure A7: A detailed example for correspondence between videos, human descriptions, and gener-
ated groundtruth.
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Fig. A7 illustrates the detailed annotation process for a selected video from the FIOVA dataset, ac-
companied by annotations from five human annotators and the synthesized groundtruth generated
by GPT-3.5-turbo. The upper panel presents sampled frames extracted at 20-frame intervals, cap-
turing key events in the video sequence. The lower panel provides individual descriptions from the
five annotators (Human1-Human5), highlighting their observations, followed by the synthesized GT
created by integrating these annotations.

The video depicts a young boy riding a bicycle down a road. The boy encounters multiple events,
including stopping the bike, falling off, and pretending to fall intentionally. Finally, the boy lies
on the ground and points toward the camera. Each human annotator provides a unique perspective
while describing the same sequence of events. A detailed comparison of their annotations reveals:

• Core Event Agreement: All annotators capture the core sequence of events: riding the
bike (#000), stopping (#200), falling off the bike (#440), lying on the ground (#500), and
gesturing toward the camera (#640). These observations form the backbone of the GT
synthesis process.

• Diversity in Detail and Focus: Annotators vary in their descriptions of finer details, such
as:

– Human1: Focuses on the boy’s playful intent, explicitly mentioning the “pretending
to fall” action at #500.

– Human3: Interprets the boy’s actions differently, describing him as “stroking his hand
and crying” at #600, which contrasts with other annotations.

– Human5: Highlights additional context by describing the boy’s method of riding
”without pedals” and his subsequent smile and pointing gesture.

This diversity reflects the richness of multi-perspective annotations in capturing both objective
events and subjective interpretations.

The groundtruth generated by GPT-3.5-turbo combines the perspectives of the five annotators into a
cohesive narrative that captures key events while addressing conflicts in the descriptions:

• Resolution of Annotation Conflicts:
– “Pretending to Fall”: Human1’s explicit mention of “pretending” is corroborated by

other annotations, leading to its inclusion in the groundtruth.
– “Crying” vs. “Smiling”: Human3 describes the boy as “crying,” while Human5

interprets the action as “smiling.” Upon integrating contextual information—such as
the playful nature of the fall mentioned by Human1 and Human5—the groundtruth
concludes that the boy smiles after the fall, aligning with the majority perspective.

• Maintaining Core Event Coverage: The groundtruth ensures complete coverage of
events, including the boy riding, stopping, falling, lying on the ground, and pointing to
the camera.

This case exemplifies the strength of multi-perspective annotation combined with LLM-based syn-
thesis for generating high-quality groundtruth. This process not only captures the complexity of
human interpretations but also ensures a unified and accurate representation of video content. The
approach highlights the unique advantages of FIOVA in evaluating LVLMs’ ability to describe com-
plex, multi-event videos with human-like precision.
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C CALCULATION PROCESS OF COEFFICIENT OF VARIATION (CV)

Average CV across 
multi-dimensions

Caption quality 
assessment (by LLM)

Traditional Metrics AutoDQ FIOVA-DQ

Average CV across 
multi-dimensions

Five Evaluation Dimensions 

Length

Ranking of current video 
sequence based on 

humans’ CV

Ranking of current video 
sequence based on 
LVLMs’ CV

Ranking of current video 
sequence based on 
LVLMs’ CV

Ranking across all videos Ranking across all videos

Ranking differences between LVLMs and Humans

Calculate CV 
(coefficient of 
variation) for each 
evaluate dimension

STEP 1 STEP 2

STEP 3

Average CV across 
multi-dimensions

Caption quality 
assessment (by LLM)

Traditional Metrics AutoDQ FIOVA-DQ

Average CV across 
multi-dimensions

Five Evaluation Dimensions 

Length

Ranking of current video 
sequence based on 

humans’ CV

Ranking of current video 
sequence based on 
LVLMs’ CV

Ranking across all videos Ranking across all videos

Ranking differences between LVLMs and Humans

Calculate CV 
(coefficient of 
variation) for each 
evaluate dimension

STEP 1 STEP 2

STEP 3

Figure A8: Batch ranking for multi-dimensional consistency and human-machine comparison.

Fig. A8 illustrates the Batch Ranking process used in FIOVA to evaluate video descriptions by
comparing human and machine consistency. The process consists of three main steps:

• Step 1. Human Caption Consistency Evaluation (see Algorithm A1): The quality of
five human-provided captions is assessed across six evaluation dimensions (i.e., Consis-
tency, Context, Correctness, Detail Orientation, Temporality, and Length) using an LLM.
The coefficient of variation (CV) is calculated for each dimension to measure the diversity
among human descriptions. The average CV across all dimensions determines the over-
all consistency score for the video, which is used to group videos into different categories
(A-H).

• Step 2. LVLM Consistency Evaluation (see Algorithm A2): Captions generated by
six representative LVLMs are assessed across traditional metrics (e.g.., BLEU, GLEU,
METEOR), event-level semantic consistency metrics (AutoDQ), and the newly proposed
FIOVA-DQ metric. The CV is calculated for each metric across the six models to evaluate
their consistency. The average CV provides the overall consistency score for the LVLM
group on each video.

• Step 3. Human-Machine Comparison (see Algorithm A3): The videos are ranked based
on their consistency scores for humans and LVLMs separately. The ranking difference
between human annotations and LVLMs provides a quantitative measure of the alignment
and divergence in descriptive strategies between humans and machines.

This framework allows for a fine-grained analysis of model performance compared to human bench-
marks, revealing the strengths and weaknesses of LVLMs in long video description tasks.
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Algorithm A1 Framework for CV calculation between humans
Input: D = {(V1, C1), . . . , (Vn, Cn)}: FIOVA dataset;
Ci = {ci1, ci2, ci3, ci4, ci5}: human annotations for video Vi;
E = {Consistency,Context,Correctness,Detail Orientation,Temporality,Length}: evaluation di-
mensions;
Output: CV human

dimension: Dictionary of coefficient of variation between humans for each evaluation
dimension;

CV human
video : Dictionary of mean coefficient of variation between humans for each video;

Intervals: Dictionary of intervals dividing CV human
video

/* Step 1: Calculate CV for each dimension */

1 Initialize CV human
dimension ← {} // Dictionary to store CV for each dimension

2 for d← 1 to |E| do
3 Initialize CVE[d] ← {} // Dictionary to store CV for each video in dimension E[d]

4 for i← 1 to |D| do
5 Initialize scores list Si ← []

for j ← 1 to |Ci| do
6 sij ← score of cij in E[d]

Append sij to Si

7 Calculate mean µi of Si

Calculate standard deviation σi of Si

Calculate coefficient of variation cvi ← σi

µi

CVE[d][i]← cvi // Store CV for video Vi

8 CV human
dimension[E[d]]← CVE[d]

/* Step 2: Calculate mean CV for each video */

9 Initialize CV human
video ← {} // Dictionary to store mean CV for each video

10 for i← 1 to |D| do
11 Initialize sum of CVs sumCV ← 0

for d← 1 to |E| do
12 sumCV ← sumCV + CV human

dimension[E[d]][i]

13 Calculate mean meanCV ← sumCV

|E|
CV human

video [i]← meanCV // Store mean CV for video Vi

/* Step 3: Divide CV human
video into intervals based on the maximum value */

14 Sort CV human
video in ascending order by value and store sorted keys as sorted keys

Calculate max CV ← max(CV human
video .values())

Calculate number of intervals N ← ⌈max CV × 10⌉ // Each interval represents 10%

15 Initialize Intervals← {} // Dictionary to store interval information for each video

16 for i← 1 to |sorted keys| do
17 video id← sorted keys[i]

cv ← CV human
video [video id]

Calculate interval index index← ⌊cv × 10⌋
if index ≥ N then

18 index← N − 1

19 Intervals[video id]← index // Store interval for video Vi

20 return CV human
dimension, CV human

video , Intervals

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Algorithm A2 Framework for CV calculation between LVLMs
Input: D = {(V1, R1), . . . , (Vm, Rm)}: FIOVA dataset;
Ri = {ri1, ri2, . . . , rin}: LVLMs’ responses for video Vi;
E = {F1,Recall,Precision,BLEU,METEOR,GLEU}: evaluation dimensions;
Output: CV lvlm

dimension: Dictionary of coefficient of variation for each evaluation dimension;
CV lvlm

video: Dictionary of mean coefficient of variation between LVLMs for each video;
/* Step 1: Calculate CV for each dimension */

21 Initialize CV lvlm
dimension ← {} // Dictionary to store CV for each dimension

22 for d← 1 to |E| do
23 Initialize CVE[d] ← {} // Dictionary to store CV for each video in dimension E[d]

24 for i← 1 to |D| do
25 Initialize scores list Si ← []

for j ← 1 to |Ri| do
26 sij ← score of rij in E[d]

Append sij to Si

27 Calculate mean µi of Si

Calculate standard deviation σi of Si

Calculate coefficient of variation cvi ← σi

µi

CVE[d][i]← cvi // Store CV for video Vi

28 CV lvlm
dimension[E[d]]← CVE[d]

/* Step 2: Calculate mean CV for each video */

29 Initialize CV lvlm
video ← {} // Dictionary to store mean CV for each video

30 for i← 1 to |D| do
31 Initialize sum of CVs sumCV ← 0

for d← 1 to |E| do
32 sumCV ← sumCV + CV lvlm

dimension[E[d]][i]

33 Calculate mean meanCV ← sumCV

|E|
CV lvlm

video[i]← meanCV // Store mean CV for video Vi

34 return CV lvlm
dimension, CV lvlm

video
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Algorithm A3 Calculate ranking differences
Input: CV lvlm

video: Dictionary of mean coefficient of variation between LVLMs for each video;
CV human

video : Dictionary of mean coefficient of variation between humans for each video;
Output: Rankingshuman: Dictionary of rankings based on humans’ CV;
Rankingslvlm: Dictionary of rankings based on LVLMs’ CV;
Rankingsdiff : Dictionary of difference between Rankingshuman and Rankingslvlm;
/* Step 1: Rank videos based on CV human

video and CV lvlm
video */

35 Sort CV human
video by value in ascending order and store the sorted video IDs as sorted idshuman

// Ranking by CV values from smallest to largest

36 Sort CV lvlm
video by value in ascending order and store the sorted video IDs as sorted idslvlm

// Ranking by CV values from smallest to largest

37 Initialize Rankingshuman ← {} // Dictionary to store human rankings

38 Initialize Rankingslvlm ← {} // Dictionary to store LVLM rankings

39 for rank ← 1 to |sorted idshuman| do
40 video id← sorted idshuman[rank]

Rankingshuman[video id]← rank

41 for rank ← 1 to |sorted idslvlm| do
42 video id← sorted idslvlm[rank]

Rankingslvlm[video id]← rank
/* Step 2: Calculate difference between rankings */

43 Initialize Rankingsdiff ← {} // Dictionary to store ranking differences

44 foreach video id ∈ CV human
video .keys() do

45 Rankingsdiff [video id]← |Rankingshuman[video id]−Rankingslvlm[video id]|
46 return Rankingshuman, Rankingslvlm, Rankingsdiff
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D PROMPTS

D.1 GPT-AIDED EVALUATION PROMPTS

D.1.1 PROMPT FOR EVALUATION OF HUMAN ANNOTATIONS

The Prompt for Consistency of Annotation (by GPT).

Prompt
You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs
for video-based caption. Your task is to compare the provided text and determine if they are
factually consistent. Here’s how you can accomplish the task:
——
##INSTRUCTIONS:
- Focus on the consistency of the text with the expected content or background. The text should
correspond to the correct information and should not contain any contradictions or significant
differences.
- The text must be consistent in the information it provides about the content.
- Consider synonyms or paraphrases as valid matches, but only if they maintain the consistency
in the conveyed information.
- Evaluate the consistency of the text.
- DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a
single evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

User:
Please evaluate the following video caption:
Provided caption: “{Caption}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

The Prompt for Context of Annotation (by GPT).

Prompt
You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs
for video-based caption. Your task is to compare the provided text and determine if they are
factually consistent. Here’s how you can accomplish the task:
——
##INSTRUCTIONS:
- Evaluate whether the text aligns with the overall context of the expected content or background.
It should not provide information that is out of context or misaligned.
- The text must capture the main themes and sentiments relevant to the content.
- Consider synonyms or paraphrases as valid matches.
- Provide your evaluation of the contextual understanding of the text.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

User:
Please evaluate the following video caption:
Provided caption: “{Caption}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.
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The Prompt for Correctness of Annotation (by GPT).

Prompt
You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs
for video-based caption. Your task is to compare the provided text and determine if they are
factually consistent. Here’s how you can accomplish the task:
——
##INSTRUCTIONS:
- Focus on the factual correctness of the text. The text should not contain any misinterpretations
or misinformation.
- The text must be factually accurate and align with the expected content or context.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the factual accuracy of the text.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

User:
Please evaluate the following video caption:
Provided caption: “{Caption}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

The Prompt for Detailed Orientation of Annotation (by GPT).

Prompt
You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs
for video-based caption. Your task is to compare the provided text and determine if they are
factually consistent. Here’s how you can accomplish the task:
——
##INSTRUCTIONS:
- Check if the text covers all major points relevant to the content. The text should not leave out
any key aspects.
- Evaluate whether the text includes specific details rather than just generic points. It should pro-
vide comprehensive information that is tied to specific elements of the content.
- Consider synonyms or paraphrases as valid matches.
- Provide a single evaluation score that reflects the level of detail orientation of the text, consid-
ering both completeness and specificity.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a sin-
gle evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

User:
Please evaluate the following video caption:
Provided caption: “{Caption}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

The Prompt for Temporality of Annotation (by GPT).

Prompt
You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs
for video-based caption. Your task is to compare the provided text and determine if they are
factually consistent. Here’s how you can accomplish the task:
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——
##INSTRUCTIONS:
- Focus on the temporal consistency of the text. It should correctly reflect the sequence of events
or details as they are presented.
- Consider synonyms or paraphrases as valid matches, but only if the temporal order is main-
tained.
- Evaluate the temporal accuracy of the text.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a sin-
gle evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

User:
Please evaluate the following video caption:
Provided caption: “{Caption}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

An Example of Evaluation Consistency of Annotation (by GPT).

Prompt: You are an intelligent chatbot designed for evaluating the factual accuracy of generative
outputs for video-based caption. Your task is to compare the provided text and determine if they
are factually consistent. Here’s how you can accomplish the task:
——
##INSTRUCTIONS:
- Focus on the consistency of the text with the expected content or background. The text should
correspond to the correct information and should not contain any contradictions or significant
differences.
- The text must be consistent in the information it provides about the content.
- Consider synonyms or paraphrases as valid matches, but only if they maintain the consistency
in the conveyed information.
- Evaluate the consistency of the text.

- DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a
single evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.

User:
Please evaluate the following video caption:
Provided caption: “A silver car is running slowly on the road. A red motorcycle running
beside crashed on a red car. The motorcycle is overturned. The following vehicles began to
slow down. A man in a blue coat riding a motorcycle parked next to the fallen motorcycle.
From the red car two people came out. The slow motion of the vedio re-played.”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide a single
evaluation score from 1 to 10. For example, your response should look like this: {“score”:
[score]}.
GPT: {“score”: 3}

D.1.2 PROMPT FOR GROUNDTRUTH GENERATION

The Prompt for Groundtruth Generation (by GPT).

Prompt
Given five video descriptions. Combine the five video descriptions into a single, coherent de-
scription that captures the essence of the video clip.
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Please generate the response in the form of a Python dictionary string with keys “gt”. The value
of “gt” is a List(str), of which is groundtruth for this video description.

User:
Video description 1: “{Caption1}”
Video description 2: “{Caption2}”
Video description 3: “{Caption3}”
Video description 4: “{Caption4}”
Video description 5: “{Caption5}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide one
Python dictionary string. For example, your response should look like this: {“gt”: [gt]}

An Example of Groundtruth Generation (by GPT).

Prompt: Given five video descriptions. Combine the five video descriptions into a single, coher-
ent description that captures the essence of the video clip.
Please generate the response in the form of a Python dictionary string with keys “gt”. The value
of “gt” is a List(str), of which is groundtruth for this video description.

User:
Video description 1: “A silver car is running slowly on the road. A red motorcycle running
beside crashed on a red car. The motorcycle is overturned. The following vehicles began to
slow down. A man in a blue coat riding a motorcycle parked next to the fallen motorcycle.
From the red car two people came out. The slow motion of the vedio re-played.”
Video description 2: “A silver business car on the side of the road is driving, followed by a
motorcycle, and a red car in front of a commercial car changing lanes crashed on a mo-
torcycle, and the man on the motorcycle fell to the ground. A white van in the following
stopped. The motorcycle driver in red stood up and the following motorcycle stoped, the
man in blue came down to help the blue men pick up the package. From the red car two
men and one women waled to the man in red. The crash process is re played back in slow
motion. ”
Video description 3: “The vehicle on the road was running normally. A red car crashed into
the motorcycle next to it when changing lanes. The motorcycle was knocked down and the
two men on the motorcycle fell. A motorcycle that passed by stopped to inquire about the
situation. The two men on the motorcycle stood up, and the red car stopped. From the car
down two men and a woman came. The crash scene is replayed again. ”
Video description 4: “On the highway cars were driving normal. A motorcycle when driving
hit a car which drove from the side lane to middle lane. The motorcycle driver fell in from
of a van and several motocycles passed by. A motorcycle driver helped the man stand on
the ground. A few people from the crashed car came over to check, and then slow down the
crash video. ”
Video description 5: “In the daytime, a front silver hatchback in the right side of the road
was running slowly. On the left side a motorcycle quickly passed, with two people. The mo-
torcycle passed the silver car, which collided with a red car in front which was turning left,
and the car was knocked to the ground and then climbed up. Rear vehicles stoped. From
the rear three motorcycles came, one of which stopped next to the one who was knocked
over. From the red car a woman and three men came out, and went to the people who was
hit. Slow motion played back the accident moment. ”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide one
Python dictionary string. For example, your response should look like this: {“gt”: [gt]}
GPT: { “gt”: [ “A silver car and a red motorcycle are driving on the road. The red car in front of
the silver car changes lanes and collides with the motorcycle, causing it to crash. The motorcycle
driver falls to the ground. A white van and several motorcycles behind stop. A man in a blue coat
riding a motorcycle stops to help the fallen motorcycle driver. Two men and a woman from the
red car come out to check on the situation. The crash scene is then replayed in slow motion.” ] }
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D.1.3 PROMPT FOR EVENT EXTRACTION

The Prompt for Event Extraction (by GPT).

Prompt
Given a video description. Extract at most 10 key events from the video description paragraph.
Requirements:
- Every event is represented by a brief sentence within 10 words, with a subject, a predicate and
optionally an object,avoid unnecessary appearance descriptions.
- Every event must be atomic, meaning that it can not be further split into multiple events.
- Scene cuts and camera motions are NOT events.
- Substitute pronouns by the nouns they refer to.
Please generate the response in the form of a Python dictionary string with keys “events”. The
value of “events” is a List(str), of which each item is an event.

User:
Video description: “{Caption}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the
Python dictionary string. For example, your response should look like this: {“events”: [event1,
event2,...]}

An Example of Event Extraction (by GPT).

Prompt:
Given a video description. Extract at most 10 key events from the video description paragraph.
Requirements:
- Every event is represented by a brief sentence within 10 words, with a subject, a predicate and
optionally an object,avoid unnecessary appearance descriptions.
- Every event must be atomic, meaning that it can not be further split into multiple events.
- Scene cuts and camera motions are NOT events.
- Substitute pronouns by the nouns they refer to.
Please generate the response in the form of a Python dictionary string with keys “events”. The

value of “events” is a List(str), of which each item is an event.

User:
Video description: A silver car and a red motorcycle are driving on the road. The red car
in front of the silver car changes lanes and collides with the motorcycle, causing it to crash.
The motorcycle driver falls to the ground. A white van and several motorcycles behind stop.
A man in a blue coat riding a motorcycle stops to help the fallen motorcycle driver. Two
men and a woman from the red car come out to check on the situation. The crash scene is
then replayed in slow motion.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the
Python dictionary string. For example, your response should look like this: {“events”: [event1,
event2,...]}
GPT:
{ “events”: [
“Silver car and red motorcycle drive on road”,
“Red car changes lanes and collides with motorcycle”,
“Motorcycle driver falls to ground”,
“White van and motorcycles behind stop”,
“Man in blue coat riding motorcycle helps driver”,
“Men and woman from red car check situation”,
“Crash scene replayed in slow motion” ]
}
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D.1.4 PROMPT FOR CROSS CHECKING

The Prompt for Cross Checking (by GPT).

Prompt
Given a video description and a list of events. For each event, classify the relationship between
the video description and the event into three classes: entailment, neutral, contradiction.
- “entailment” means that the video description entails the event.
- “contradiction” means that some detail in the video description contradicts with the event.
- “neutral” means that the relationship is neither “entailment” or “contradiction”.
Output a list in Json format: [ {“event”: “copy an event here”, “relationship”: “put class name
here” }, ... ].

User:
Video description: “{Caption}”
Events: “{Event}”
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only output the
JSON. Output:

An Example of Cross Checking (by GPT).

Prompt:
Given a video description and a list of events. For each event, classify the relationship between
the video description and the event into three classes: entailment, neutral, contradiction.
- “entailment” means that the video description entails the event.
- “contradiction” means that some detail in the video description contradicts with the event.
- “neutral” means that the relationship is neither “entailment” or “contradiction”.
Output a list in Json format: [ {“event”: “copy an event here”, “relationship”: “put class name

here” }, ... ].

User:
Video description: The video clip shows a road scene in Singapore. It begins with a view of
a wet road, possibly from rain. The scene then transitions to a road with moving vehicles,
including cars and buses. A silver car is prominently featured in the center, moving slowly
due to traffic. Motorcycles and other vehicles are seen passing by the car. On the right side
of the road, there is a group of people who appear to be involved in an incident or accident.
The background consists of trees and roadside barriers.
Events:
{ “events”: [
“Silver car and red motorcycle drive on road”,
“Red car changes lanes and collides with motorcycle”,
“Motorcycle driver falls to ground”,
“White van and motorcycles behind stop”,
“Man in blue coat riding motorcycle helps driver”,
“Men and woman from red car check situation”,
“Crash scene replayed in slow motion” ]
}
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only output the
JSON. Output:
GPT:
{ “event”: “Silver car and red motorcycle drive on road”, “relationship”: “entailment” },
{ “event”: “Red car changes lanes and collides with motorcycle”, “relationship”: “neutral” },
{ “event”: “Motorcycle driver falls to ground”, “relationship”: “entailment” },
{ “event”: “White van and motorcycles behind stop”, “relationship”: “neutral” },
{ “event”: “Man in blue coat riding motorcycle helps drive”, “relationship”: “contradiction” },
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{ “event”: “Men and woman from red car check situation”, “relationship”: “entailment” },
{ “event”: “Crash scene replayed in slow motion”, “relationship”: “contradiction” }

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

D.2 VIDEO CAPTION PROMPTS

We use the video description prompt provided by the official repository. If there is no official prompt,
we will use “Describe the video in details.” as a standard prompt.

Table A2: The URLs of official LVLMs repository in this work.

LVLMs Main Creator #Parameters Access

VideoLLaMA2 (Cheng et al. (2024)) Alibaba Group 7B Weights
Video-LLaVA (Lin et al. (2023)) Peking University 7B Weights
ShareGPT4Video (Chen et al. (2024a)) University of Science and Technology of China 8B Weights
Tarsier (Wang et al. (2024a)) ByteDance 7B Weights
VideoChat2 (Li et al. (2023)) Shanghai AI Laboratory 7B Weights
LLaVA-NEXT-Video (Zhang et al. (2024)) ByteDance 7B Weights

The Prompt for VideoLLaMA2, Video-LLaVA, ShareGPT4Video, Tarsier, and VideoChat2.

Describe the video in details.

The Prompt for LLaVA-NEXT-Video.

Please provide a detailed description of the video, focusing on the main subjects, their actions,
and the background scenes.

Along with the prompt, we opted to use 8 frames per video as the input data. This decision was made
to balance evaluation efficiency and information capture, aligning with the standard experimental
paradigms in the current field of video tasks. The details are as follows:

• Consistency with Experimental Paradigm: FIOVA is designed to provide an open and
high-quality evaluation benchmark for long-video description tasks, enabling comparisons
of LVLM performance and their differences from human annotators. To ensure repro-
ducibility and scalability, our experimental setup (including frame selection) followed the
widely adopted fixed-frame sampling strategy in the video understanding field. This choice
facilitates horizontal comparisons with existing works and offers a reference framework for
future research.

• Methodological Generality: The number of input frames is a critical factor in long-video
tasks. Selecting 8 frames balances computational cost and semantic capture, enabling ef-
fective performance evaluation. This strategy has been validated in many related works,
such as VideoGPT+ Maaz et al. (2024) and Emu-3 Wang et al. (2024b), which also adopt
8 frames as input. These examples highlight the representativeness of this setup for long-
video understanding tasks. Additionally, current LVLMs typically face constraints on the
number of input frames; too many frames could lead to resource limitations or perfor-
mance degradation. The 8-frame setup is well-suited to the computational capabilities of
mainstream LVLMs while avoiding information redundancy.

• Fairness and Feasibility of the Evaluation Platform: All experimental results in our
study are based on the 8-frame setup. This configuration validates FIOVA’s evaluation
capability while ensuring fairness and feasibility. The selection of 8 frames strikes a bal-
ance among semantic capture, experimental efficiency, and model constraints, making it a
reasonable setting aligned with the standard experimental paradigms in video tasks.

Although this study adopts the 8-frame setup, the FIOVA benchmark is designed with flexibility for
expansion. Researchers can adjust the frame sampling strategy according to specific research needs,
further exploring LVLMs’ potential in complex long-video tasks. We also plan to open frame-setting
options in future studies to support diversified experimental designs.
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E DETAILED EXPERIMENTAL RESULTS

E.1 LVLMS V.S. HUMANS ON TRADITIONAL METRICS

Table A3: Comparison of LVLMs and Humans on FIOVA based on traditional metrics (BLEU,
METEOR, and GLEU). The background color represents the performance of the metric. The darker
the green, the better the performance.

Metrics LVLMs Human1 Human2 Human3 Human4 Human5 GT

Tarsier 0.025 0.025 0.024 0.025 0.024 0.043
VideoLLaMA2 0.018 0.019 0.018 0.018 0.018 0.030
LLaVA-NEXT-Video 0.013 0.014 0.014 0.014 0.013 0.020
Video-LLaVA 0.017 0.019 0.018 0.018 0.017 0.027
ShareGPT4Video 0.006 0.007 0.006 0.006 0.006 0.010

BLEU (↑)

VideoChat2 0.021 0.024 0.023 0.022 0.022 0.037

Tarsier 0.232 0.232 0.229 0.230 0.231 0.265
VideoLLaMA2 0.245 0.248 0.246 0.247 0.247 0.268
LLaVA-NEXT-Video 0.246 0.249 0.248 0.249 0.247 0.270
Video-LLaVA 0.238 0.242 0.240 0.240 0.240 0.257
ShareGPT4Video 0.194 0.196 0.197 0.195 0.192 0.218

METEOR (↑)

VideoChat2 0.256 0.260 0.257 0.258 0.258 0.281

Tarsier 0.091 0.092 0.090 0.091 0.090 0.119
VideoLLaMA2 0.068 0.071 0.070 0.069 0.068 0.088
LLaVA-NEXT-Video 0.047 0.049 0.049 0.048 0.047 0.060
Video-LLaVA 0.061 0.063 0.063 0.062 0.061 0.077
ShareGPT4Video 0.027 0.028 0.027 0.027 0.026 0.034

GLEU (↑)

VideoChat2 0.075 0.078 0.078 0.077 0.076 0.098

In Table A3, it is observed that comparing model outputs with GPT-summarized human captions
(aggregated GT) results in higher metric scores than directly comparing model outputs with single
human captions. Below, we provide an analysis and explanation for this phenomenon:

Improved Information Coverage by GPT-Summarized Descriptions. Each video in the FIOVA
dataset is annotated by five independent annotators who watched the full video before providing
detailed descriptions. Due to their differing focuses, each annotator’s description may emphasize
various aspects, such as:

• Action Details: Certain annotators might prioritize characters’ actions and their sequences.

• Contextual Information: Others may focus on the environment, background, or sec-
ondary events.

GPT-3.5-turbo aggregates these descriptions, effectively integrating multi-perspective information
from all five annotators into a comprehensive and diverse GT. By synthesizing multiple viewpoints,
the aggregated GT captures a broader spectrum of video content, ensuring improved coverage com-
pared to single human descriptions. For instance, as shown in Fig. A7, certain annotators emphasize
the actions of a child, while others document background details. The aggregation process ensures
that both types of information are represented in the GT, enhancing its overall comprehensiveness.

Reasons for Higher Metric Scores. The higher scores observed when comparing model outputs
with aggregated GT can be attributed to two main factors:

• Broader Alignment Possibility: The aggregated GT encompasses richer and more diverse
content, making it easier for model outputs to align with various aspects of the GT. Conse-
quently:

– Model outputs are more likely to match specific details captured by at least one anno-
tator.

– The inclusion of diverse content reduces the chance of missing critical information,
resulting in improved BLEU and METEOR scores.
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• Limitations of Single Annotator Descriptions: Single annotators may provide descrip-
tions that focus on limited aspects of a video, potentially omitting significant details. When
compared to model outputs, such descriptions may highlight perceived gaps in coverage,
leading to relatively lower metric scores.

By integrating multi-perspective annotations, aggregated GT provides a richer, more comprehensive
reference for evaluation, ensuring fairness and alignment with FIOVA’s design principles. This strat-
egy not only enhances the reliability of metric-based evaluations but also supports future research
in thoroughly assessing model performance. Aggregated GT will continue to serve as a critical
component of FIOVA for evaluating LVLMs in long-video understanding tasks.
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E.2 RESULTS ON DIFFERENT GROUPS

Table A4: Comparison of LVLMs on FIOVA based on traditional metrics (BLEU, METEOR, and
GLEU), AutoDQ-based metrics, and FIOVA-DQ. The background color represents the performance
of the metric. The darker the green, the better the performance.

Group
Metrics LVLMs A B C D E F G H All

Tarsier 0.058 0.044 0.041 0.042 0.045 0.038 0.052 0.043 0.043
VIdeoLLaMA2 0.028 0.031 0.030 0.030 0.030 0.026 0.024 0.024 0.030
LLaVA-NEXT-Video 0.023 0.020 0.020 0.020 0.021 0.019 0.024 0.013 0.020
Video-LLaVA 0.026 0.028 0.027 0.028 0.026 0.022 0.024 0.020 0.027
ShareGPT4Video 0.014 0.011 0.011 0.010 0.010 0.008 0.010 0.010 0.010

BLEU (↑)

VideoChat2 0.041 0.037 0.036 0.037 0.036 0.031 0.037 0.028 0.037

Tarsier 0.288 0.267 0.263 0.265 0.265 0.255 0.264 0.288 0.265
VIdeoLLaMA2 0.278 0.271 0.267 0.269 0.265 0.260 0.255 0.260 0.268
LLaVA-NEXT-Video 0.277 0.272 0.271 0.268 0.267 0.263 0.264 0.274 0.270
Video-LLaVA 0.265 0.262 0.255 0.260 0.249 0.241 0.246 0.229 0.257
ShareGPT4Video 0.244 0.221 0.219 0.213 0.215 0.208 0.215 0.223 0.218

METEOR (↑)

VideoChat2 0.289 0.286 0.279 0.281 0.277 0.267 0.272 0.269 0.281

Tarsier 0.139 0.120 0.117 0.118 0.119 0.113 0.124 0.137 0.119
VIdeoLLaMA2 0.086 0.088 0.089 0.087 0.087 0.085 0.084 0.089 0.088
LLaVA-NEXT-Video 0.062 0.059 0.060 0.059 0.062 0.060 0.071 0.063 0.060
Video-LLaVA 0.078 0.077 0.076 0.078 0.076 0.072 0.076 0.066 0.077
ShareGPT4Video 0.041 0.035 0.035 0.034 0.033 0.030 0.034 0.037 0.034

GLEU (↑)

VideoChat2 0.106 0.098 0.098 0.098 0.098 0.093 0.103 0.101 0.098

Tarsier 0.366 0.346 0.350 0.359 0.350 0.355 0.329 0.324 0.351
VIdeoLLaMA2 0.346 0.328 0.316 0.332 0.325 0.324 0.304 0.285 0.325
LLaVA-NEXT-Video 0.322 0.297 0.302 0.302 0.304 0.302 0.284 0.268 0.301
Video-LLaVA 0.304 0.283 0.282 0.287 0.288 0.292 0.265 0.331 0.285
ShareGPT4Video 0.277 0.276 0.274 0.295 0.285 0.279 0.306 0.320 0.281

F1 (AutoDQ) (↑)

VideoChat2 0.315 0.315 0.303 0.318 0.301 0.297 0.255 0.160 0.309

Tarsier 0.333 0.305 0.279 0.280 0.265 0.226 0.212 0.193 0.283
VIdeoLLaMA2 0.286 0.268 0.243 0.242 0.222 0.176 0.157 0.147 0.245
LLaVA-NEXT-Video 0.252 0.241 0.227 0.215 0.193 0.151 0.179 0.168 0.221
Video-LLaVA 0.211 0.229 0.207 0.207 0.183 0.150 0.148 0.183 0.208
ShareGPT4Video 0.229 0.216 0.204 0.196 0.183 0.149 0.130 0.140 0.201

Recall (AutoDQ) (↑)

VideoChat2 0.309 0.257 0.231 0.235 0.211 0.186 0.195 0.128 0.237

Tarsier 0.548 0.609 0.626 0.642 0.659 0.645 0.667 0.711 0.628
VIdeoLLaMA2 0.659 0.662 0.681 0.682 0.698 0.727 0.769 0.741 0.680
LLaVA-NEXT-Video 0.593 0.664 0.666 0.678 0.707 0.712 0.669 0.730 0.674
Video-LLaVA 0.657 0.684 0.707 0.708 0.745 0.802 0.766 0.801 0.709
ShareGPT4Video 0.698 0.720 0.730 0.735 0.743 0.758 0.761 0.779 0.731

Precision (AutoDQ) (↑)

VideoChat2 0.605 0.633 0.659 0.665 0.679 0.707 0.730 0.637 0.656

Tarsier 0.318 0.331 0.312 0.324 0.324 0.271 0.231 0.226 0.320
VIdeoLLaMA2 0.367 0.328 0.295 0.305 0.286 0.238 0.211 0.174 0.304
LLaVA-NEXT-Video 0.288 0.303 0.292 0.289 0.261 0.207 0.220 0.301 0.286
Video-LLaVA 0.270 0.287 0.261 0.275 0.252 0.215 0.215 0.230 0.269
ShareGPT4Video 0.272 0.275 0.264 0.266 0.251 0.215 0.178 0.203 0.263

F1 (FIOVA-DQ) (↑)

VideoChat2 0.337 0.301 0.281 0.292 0.270 0.238 0.246 0.133 0.287

Tarsier 0.485 0.567 0.575 0.599 0.613 0.633 0.623 0.716 0.584
VIdeoLLaMA2 0.321 0.277 0.243 0.249 0.227 0.170 0.149 0.114 0.250
LLaVA-NEXT-Video 0.264 0.248 0.235 0.226 0.202 0.144 0.173 0.210 0.229
Video-LLaVA 0.230 0.241 0.207 0.215 0.194 0.156 0.154 0.165 0.216
ShareGPT4Video 0.219 0.218 0.202 0.205 0.185 0.156 0.124 0.145 0.203

Recall (FIOVA-DQ) (↑)

VideoChat2 0.308 0.266 0.233 0.246 0.220 0.186 0.175 0.104 0.243

Tarsier 0.485 0.567 0.575 0.599 0.613 0.633 0.623 0.716 0.584
VIdeoLLaMA2 0.627 0.628 0.640 0.647 0.671 0.702 0.733 0.674 0.645
LLaVA-NEXT-Video 0.549 0.632 0.635 0.652 0.680 0.682 0.652 0.692 0.644
Video-LLaVA 0.630 0.646 0.684 0.677 0.725 0.795 0.755 0.724 0.680
ShareGPT4Video 0.694 0.706 0.707 0.713 0.734 0.750 0.766 0.803 0.714

Precision (FIOVA-DQ) (↑)

VideoChat2 0.553 0.591 0.622 0.636 0.654 0.674 0.731 0.661 0.621
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E.3 COMPARISON BETWEEN HUMANS AND LVLMS IN CAPTION LENGTH

Figure A18: Correlation between LVLMs and humans in video description length (based on 8 sub-
groups). It can be seen that the blue dashed box represents the results of humans, and the description
length is highly consistent between human annotators. The yellow dashed box shows the results of
LVLMs. The description lengths between LVLMs vary greatly, especially for the descriptions of
Group H, which have basically no correlation. The green dashed line is a comparison between
Tarsier, the model with the best performance in multiple indicators, and humans. It can be seen that
Tarsier has a higher correlation with human description length than other models.
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E.4 MORE SPECIFIC EXAMPLES

E.4.1 ERROR TYPE CATEGORIZATION

We annotate the examples (Fig. A19 to Fig. A24) with error categories and identified five common
types of errors:

1. Omission: The model fails to describe critical events or objects in the video. While this
cannot be directly marked in the model’s output, we provide textual analyses of such omis-
sions after the relevant examples.

2. Misrepresentation: The description contains information inconsistent with the video con-
tent. These errors are marked in purple in the model outputs.

3. Redundancy: The model repeats descriptions of the same event. These errors are marked
in yellow in the outputs.

4. Excessive Redundancy: The model overextends or speculates excessively, introducing un-
necessary content. These errors are marked in green in the outputs.

5. Hallucination Issues: The model includes content not present in the video. These errors are
marked in red in the outputs.
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Figure A19: Human performance is relatively consistent, but there is significant variation among
models, indicating that the models have poor descriptive ability in these scenarios. In some sim-
ple scenarios, humans are not only able to quickly capture key content in videos and describe it
effectively, but also show a high degree of consistency. In contrast, LVLMs often struggle to grasp
key details when handling such videos, leading to inadequate descriptive ability. This difficulty pri-
marily stems from the models’ limitations in understanding the overall context and interconnections
within the video, particularly in integrating video events with background information. As a result,
these models often fail to match human performance.
In LVLMs, LLaVA-NEXT-Video, Video-LLaVA, and VideoChat2 all exhibit varying degrees of
redundancy, while ShareGPT4video shows significant hallucination and repetitive description phe-
nomena. Tarsier does not exhibit obvious hallucination or repetitive descriptions, but there are omis-
sions regarding the video content, such as failing to notice the actions after the little boy lies on the
ground.
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Figure A20: There is no significant difference in performance between the models and humans.
When key content in a video is very obvious and easy to identify (such as someone playing baseball
or a clear change of scenery), LVLMs can quickly capture these elements just like humans and gen-
erate corresponding descriptions. This type of video primarily relies on intuitive visual information
rather than deep contextual or cultural background.
In this video, due to the camera switches and the complexity of the video content, each model has
information omissions. In addition, ShareGPT4Video has a lot of repetitive and redundant descrip-
tions. Compared to other models, VideoChat2 incorrectly identifies the entire video as children
playing.
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Figure A21: There is a significant variation in descriptions among humans, but the models perform
more consistently.
Due to the strong artistic elements in this video, the content is quite complex, making it difficult
for humans to reach a consistent descriptive conclusion. As a result, LVLMs struggle to focus on
certain scene details, leading to hallucinations, repetition, and redundancy. This issue is particularly
prominent in ShareGPT4Video.
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Humans often vary in their descriptions of complex videos due to personal experiences, emotions,
cultural backgrounds, and individual preferences, which can make their descriptions differ signif-
icantly. In contrast, LVLMs tend to be more consistent in their descriptions. These models are
trained on vast datasets with the goal of learning a more universal, standardized way of describing.
The training of these models typically focuses on identifying and describing visual elements that
are widely recognized in most contexts, unaffected by individual traits. Thus, these models exhibit
higher consistency and predictability in generating descriptions.
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Figure A22: The performance of the various models was relatively poor in describing this video.
In this video, the performance of the models was unsatisfactory due to the depiction of a woman
immersed in her fantasies. The content of the fantasies and the environment around the woman con-
tain many details, such as camera transitions and temporal discontinuities. These complex elements
make it difficult for the models to accurately interpret and describe the video, resulting in an overall
description that is not clear or easy to understand.
So all LVLMs have varying degrees of content omissions, and most exhibit hallucination and repet-
itive description phenomena.
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Figure A23: The models all demonstrated strong descriptive abilities for this video. Typically,
models excel in describing videos with simple scenes, such as this one showcasing Brazilian Jiu-
Jitsu practice, featuring stable camera work and clear temporal relationships. When dealing with
clear and structured video content, the models are better able to accurately recognize and describe
the activities and actions within the scene.
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The content of this video is relatively simple, so the models perform quite well. The main issues
are repetitive descriptions and redundancy, with hallucinations being relatively rare. Notably, the
other LVLMs identified the martial arts clothing worn by the characters, while Video-LLaVA only
recognized the color but did not distinguish the category.
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Figure A24: In the six LVLMs, ShareGPT4Video exhibits more severe hallucination issues, as
shown in the image with its generation of a large amount of redundant and irrelevant descriptions.
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E.4.2 POTENTIAL CAUSE ANALYSIS

• Architectural Limitations.
– Cross-modal alignment issues: Current LVLMs face significant challenges in ef-

fectively aligning video-text data. For instance, Tarsier processes each frame using
separate visual encoders, while VideoLLaMA2 adopts a shared visual encoder for
all frames. These varying alignment strategies directly impact the models’ ability to
interpret and understand video content comprehensively.

– Insufficient long-sequence modeling: Handling long videos with multiple events re-
quires robust attention mechanisms to ensure coherence and completeness. However,
many LVLMs struggle in this aspect. For example, Video-LLaVA’s descriptions often
prioritize initial scenes while neglecting subsequent parts of the video.

• Training Data Bias.
– Inconsistent or insufficient data diversity: Training data with limited diversity can

lead to biased outputs. For example, Video-LLaVA shows significant difficulty in
recognizing martial arts scenes (Fig. A23) compared to other LVLMs, suggesting gaps
in its training dataset.

– Hallucination issues: Noisy or incomplete training data may propagate hallucinated
content. In Fig. A20, VideoChat2 misidentifies players and spectators in a baseball
stadium as children, illustrating a severe misalignment between the output and actual
video content.

• Generation Strategy Issues.
– Simplistic generation strategies: Using basic generation techniques, such as

beam search, often results in repetitive or incoherent descriptions. For instance,
ShareGPT4Video, while utilizing high-quality training data, demonstrates repetitive
descriptions due to inadequate constraints during generation.

– Weak constraints during generation: Insufficient semantic constraints in generation
processes can lead to hallucinated content or semantic errors.
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E.4.3 SUGGESTIONS FOR IMPROVEMENT AND OPTIMIZATION

• Model Optimization.
– Enhancing detail capture: Refining attention mechanisms to focus on key events and

details can significantly improve the comprehensiveness of video descriptions. Hier-
archical attention mechanisms for long-sequence modeling, as demonstrated by Vide-
oLLaMA2’s STC Connector, offer a promising direction for enhancing spatiotemporal
continuity in descriptions.

– Improving semantic alignment: Incorporating cross-modal alignment constraints,
such as visual-language consistency checks, can reduce semantic discrepancies and
hallucination issues. Models like LLaVA-NeXT-Video emphasize the importance of
maintaining alignment consistency throughout the comprehension process.

– Implementing deduplication strategies: Introducing mechanisms to detect and
eliminate repetitive content during generation can improve description coherence and
reduce redundancy.

• Training Data Optimization.
– Enhancing data diversity: Expanding training datasets to include diverse scenarios,

particularly complex events in long videos, can mitigate bias and improve generaliza-
tion.

– Data cleaning: Removing hallucinated or erroneous examples from training corpora
enhances data quality. For instance, ShareGPT4Video demonstrates notable improve-
ments through high-quality video-text data, though further refinements remain neces-
sary.

• Evaluation Method Enhancement.
– Fine-grained error categorization: Incorporating detailed error categorization

mechanisms within the FIOVA framework can help identify model weaknesses more
precisely. For example, when calculating FIOVA-DQ, event similarity between anno-
tators’ descriptions and LVLM outputs could aid in detecting specific error types.
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