
Under review as a conference paper at ICLR 2022

WHAT CAN MULTI-CLOUD CONFIGURATION
LEARN FROM AUTOML?

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-cloud computing has become increasingly popular with enterprises looking
to avoid vendor lock-in. While most cloud providers offer similar functionality,
they may differ significantly in terms of performance and/or cost. A customer
looking to benefit from such differences will naturally want to solve the multi-
cloud configuration problem: given a workload, which cloud provider should be
chosen and how should its nodes be configured in order to minimize runtime or
cost? In this work, we consider this multi-cloud optimization problem and publish
a new offline benchmark dataset, MOCCA, comprising 60 different multi-cloud
configuration tasks across 3 public cloud providers, to enable further research in this
area. Furthermore, we identify an analogy between multi-cloud configuration and
the selection-configuration problems that are commonly studied in the automated
machine learning (AutoML) field. Inspired by this connection, we propose an
algorithm for solving multi-cloud configuration, CloudBandit (CB). It treats the
outer problem of cloud provider selection as a best-arm identification problem,
in which each arm pull corresponds to running an arbitrary black-box optimizer
on the inner problem of node configuration. Extensive experiments on MOCCA
indicate that CB achieves (a) significantly lower regret relative to its component
black-box optimizers and (b) competitive or lower regret relative to state-of-the-art
AutoML and multi-cloud methods, whilst also being cheaper and faster.

1 INTRODUCTION

We are currently living in the era of cloud computing, in which cloud providers compete to offer
computing resources, including servers, storage and managed software, to businesses and consumers
via the internet. Cloud is a high growth segment: according to Gartner (2021), worldwide end-user
spending on public cloud services is forecast to grow 23.1% in 2021 to total $332.3 billion. From an
enterprise perspective, there are many benefits to utilizing cloud services including, but not limited to:
increased flexibility, reduced costs, improved security and rapid scaling.

Coupled to the rise of cloud is the growing popularity of containers and container orchestration
platforms. A container image (e.g., Docker) is an executable package of software that includes
everything needed to run an application: code, runtime, system tools, system libraries and settings
(Soltesz et al., 2007; Merkel, 2014). At runtime, container images become containers and can be
deployed quickly and reliably from one computing environment to another, making them well-suited
to the world of cloud computing. Many of today’s workloads, such as machine learning (ML) training,
are distributed in nature and require the deployment and management of multiple containers, all
working together in parallel. Container orchestration platforms such as Kubernetes (Brewer, 2014)
enable running such systems resiliently, providing features like auto-scaling and failure management.

Most cloud providers now offer a Kubernetes service, meaning that they require only a few commands
to create a Kubernetes cluster, and the user can specify the desired number of nodes and how each
node should be configured (how many CPUs, memory, etc.). Given a Kubernetes cluster, one can
easily run a complex distributed workload, whilst remaining agnostic to which cloud provider is
providing the resources in the backend. This level of abstraction presents the savvy business or
consumer with a new optimization opportunity, which we will refer to as the multi-cloud configuration
problem. Namely, given a workload, which cloud provider should be selected, and how should the
nodes in the cluster be configured, in order to minimize runtime or cost?

1

Under review as a conference paper at ICLR 2022

In practice, this optimization problem is of particular interest to businesses with complex, distributed
workloads that must be run repeatedly. For instance, consider a business with a ML-based recom-
mendation engine that must be trained, in a distributed fashion, once every hour. By solving the
multi-cloud configuration problem, the business will be able to exploit price/performance differences
that may exist between cloud providers to improve their bottom-line. However, any optimization
algorithm will involve making a certain number of evaluations (e.g., running the workload on a
particular cloud provider, with a particular node configuration), and these evaluations will themselves
incur a certain dollar cost. For this reason, effective algorithms with fast convergence are of particular
interest in this domain, and are the primary focus of this paper.

The main contributions of our work are as follows:

• We formally introduce the multi-cloud configuration problem and draw an interesting
connection with the selection-configuration problems that are commonly studied in the
automated machine learning (AutoML) field.

• Inspired by AutoML approaches, we propose a best-arm identification algorithm, Cloud-
Bandit, for solving the multi-cloud configuration problem.

• We present a new dataset, MOCCA, for offline benchmarking of optimization algorithms
applied to 60 multi-cloud configuration tasks, across 3 public cloud providers.

• Extensive experiments on MOCCA show that CloudBandit outperforms many generic
black-box optimizers and state-of-the-art selection-configuration algorithms.

2 PROBLEM STATEMENT AND BACKGROUND

2.1 MULTI-CLOUD CONFIGURATION AS OPTIMIZATION

The runtime/cost of a workload in the cloud depends on many factors, such as the number of nodes
used, the vCPU count, the amount of memory allocated to each node, the manufacturer/generation
of the backend CPU, the network on which the nodes communicate and the region in which the
nodes are deployed. While some of these parameters (e.g., vCPU count and amount of memory) are,
on the surface, common across different cloud providers, most providers do not give the option to
set these parameters freely. Instead, one must select from a set of available VM categories (often
parameterized into sub-categories like family, type or size) that define which CPU will be used, how
many vCPUs and how much memory will be assigned to the node, as well as what network interfaces
are used. These (sub-)categories are significantly different across cloud providers, making it difficult
to construct a multi-cloud optimization problem over parameters that are common across all cloud
providers (e.g., vCPU count) without introducing complex constraints.

Instead, it is much easier to view the multi-cloud configuration problem as an optimization over a
hierarchical domain, where the domain for each cloud provider comprises a unique set of categorical
parameters. Let {C1, C2, ..., Cn} denote the set of available cloud providers and Pi the set of all
possible node configurations for the i-th cloud provider for i = 1, 2 . . . , n. We can then define the
functions fi(p) : Pi → R, which, for the i-th cloud provider with node configuration p, may measure
either workload runtime, monetary cost or some other optimization target. We can then formally
define the multi-cloud configuration problem as follows:

i∗ = argmin i∈[1,n] [min p∈Pi fi(p)] (1)

We note that this is a joint optimization problem comprising the outer selection problem, i.e., which
cloud provider to use, as well as the inner configuration problem, i.e., how to configure the nodes.

2.2 RELATED WORK IN CLOUD LITERATURE

Configuration subproblem. There is a significant body of work studying the configuration subprob-
lem: i.e., given a cloud environment Ci, how to find the number and types of computing instances that
would maximize the performance or minimize the cost of a workload deployment. Chen et al. (2021)
present a cloud configuration framework that builds prediction models from small-scale experiments
to estimate the performance of experiments on large-scale clusters. Mahgoub et al. (2020) introduce

2

Under review as a conference paper at ICLR 2022

an online system that adjusts the database and VM configurations as the behavior of the workload
changes. Mariani et al. (2017) define a method to estimate the cloud performance of a workload
by employing hardware-agnostic application profiles and random-forest-based prediction models.
Other prior art from the cloud literature considered employing black-box optimizers (BBOs), such as
Bayesian Optimization (BO), to optimize the cloud instance type, cluster size, or both (Yadwadkar
et al., 2017a; Alipourfard et al., 2017; Bilal et al., 2020; Hsu et al., 2018b). Additionally, a number of
works have looked at improving the performance of BO by augmenting it with low-level performance
metrics captured from the workload Hsu et al. (2018a;c).

Selection subproblem. None of the approaches mentioned so far have addressed the cloud configu-
ration problem in the multi-cloud setting. However, there has been work in the direction of cloud
provider selection (without configuration). Chen et al. (2020) introduce a provider selection optimizer
(FrugalML) for a specific workload, namely ML inference. Given input data, FrugalML suggests
which cloud providers (cloud APIs) should optimally be used for running an inference task so that
the user budget is met and the prediction accuracy is increased. Moreover, the selection problem has
been widely addressed in the context of multi-cloud service composition (MCSC). Pang et al. (2020)
propose a method based on formal concept analysis and skyline hierarchical computation to obtain
an optimal MCSC in a mobile edge computing environment. To solve MCSC under uncertain QoS
attributes, Haytamy & Omara (2020) describe a method based on Particle Swarm Optimization. Souri
et al. (2020) use formal verification to prove the correctness of a MCSC approach that finds the service
composition with the minimum number of cloud providers under given QoS user requirements.

Joint selection-configuration problem. To the best of our knowledge, the joint cloud selection-
configuration problem has been less studied. Yadwadkar et al. (2017b) consider the problem of
finding the best VM for a single-node workload across multiple cloud providers. The problem
is framed as a prediction task and a random forest model is trained on a dataset comprising low-
level performance metrics from pre-existing workloads. The trained model can then be used to
effectively predict the performance of each VM for unseen workloads. An orthogonal direction,
with which our paper is aligned, treats the multi-cloud configuration problem as an optimization
task and aims to develop algorithms that do not require information collected from pre-existing
workloads. Ramamurthy et al. (2020) propose a search-based method that ranks cloud providers for
a given workload. The VM configuration for each cloud provider is optimized independently, using
an arbitrary optimization algorithm that may take into account memory and/or disk space constraints.
Shi et al. (2020) describe a Genetic Algorithm that finds a multi-cloud deployment configuration for
multi-service applications. To decrease the complexity of the search, the authors design a clustering
algorithm that groups dependent services, so that services in the same cluster are deployed to the
same location (provider or region). Challenges arise with this approach when mutations occur that
cross cloud providers, since the set of VMs offered by each provider differ significantly.

Figure 1: Relationship between multi-cloud configuration and AutoML.

AutoML

RF XGBoost NN
• n_trees
• max_depth

• n_layers
• layer_size
• activation

• eta
• max_depth

Multi-cloud

Cloud A Cloud B Cloud C
• A_family
• A_size
• nodes

• C_class
• C_cpu
• nodes

• B_type
• B_memory
• nodes

2.3 RELATION TO AUTOML

In Bilal et al. (2020) the authors make an analogy between cloud configuration and hyperparameter
tuning in machine learning. They point out important differences between these two problems. Firstly,
cloud configurations consist mostly of integer or categorical variables, whereas hyperparameters
in machine learning are often continuous. Secondly, cloud configurations are typically complex
and expensive to evaluate (involving spinning up a cluster of nodes), whereas hyperparameter
configurations may be easily evaluated on a single node. Despite these differences, the authors found

3

Under review as a conference paper at ICLR 2022

that methods that work well for hyperparameter tuning (such as BO with random forests or gradient
boosted trees) are also extremely effective for solving the cloud configuration problem.

The key insight of this paper is to go one step further and notice that, due to its hierarchical nature, the
selection-configuration problem defined in (1) bears a striking resemblance to the joint optimization
problem at the heart of AutoML. Namely, in AutoML one must select which ML model to use (e.g.,
neural networks vs. gradient-boosted decision trees), and decide how to configure each model (e.g.,
how each hyperparameter should be chosen). Figure 1 illustrates this analogy.

2.4 RELATED WORK IN AUTOML

Having established this analogy, it makes sense to ask the question: can existing methods from
AutoML be applied to the multi-cloud configuration problem (1)? We now proceed to review the
state-of-the-art with this question in mind.

Two early, ground-breaking AutoML solutions were auto-sklearn (Feurer et al., 2019) and Auto-
WEKA (Thornton et al., 2013). Both of these frameworks remain highly active GitHub projects, and
both use sequential model-based algorithm configuration (SMAC) for solving the model selection-
configuration problem. SMAC, introduced in Hutter et al. (2011) and recently extended in Lindauer
et al. (2021), implements a form of BO that takes into account the natural hierarchy present in
selection-configuration problems. SMAC is itself an actively maintained GitHub project, and provides
APIs that can be used to solve arbitrary selection-configuration problems (rather than being specific
to AutoML). Accordingly, SMAC can be easily applied to multi-cloud configuration.

More recent works have proposed splitting the model selection-configuration problem into simpler
subproblems and solving them in an alternating fashion. In principle, all of these approaches can be
readily applied to the analogous problem of (1). Firstly, an approach based on the alternating direction
method of multipliers (ADMM) was proposed in Liu et al. (2020). Secondly, in Rakotoarison et al.
(2019), it was proposed to use Monte-Carlo tree search to solve the selection problem, and BO to
solve the configuration problem. Finally, Li et al. (2020) proposed Rising Bandits (RB), an algorithm
that treats the model selection problem as a best-arm identification problem, in which each arm
corresponds to a ML model and each arm pull corresponds to running BO with a fixed budget to
optimize the corresponding model configuration. These methods, in particular RB, served as a main
inspiration for the algorithmic approach described in the next section.

On the other hand, there exist AutoML solutions which cannot be applied to multi-cloud configuration
in a straightforward manner. For example, frameworks like H2O’s AutoML (LeDell & Poirier, 2020)
and AutoGluon (Erickson et al., 2020) do not perform selection, but rather form ensembles of
different, configured ML models. While ensembling has proven very successful in the AutoML
context, achieving better accuracy than a single model, it does not have a natural analogy in the
context of optimization problem (1). Other AutoML frameworks, such as TPOT (Olson & Moore,
2016), focus more on the problem of feature engineering to achieve high accuracy, rather than
selection-configuration, and thus do not relate directly to problem of minimizing runtime and/or
cost of cloud workloads. Another popular direction in AutoML are multi-fidelity approaches like
Hyperband (Li et al., 2017) or BOHB (Falkner et al., 2018) that try to eliminate bad configurations
very quickly by evaluating them using a small resource (for instance, a small subset of the training
examples). Such methods cannot be applied to multi-cloud configuration in the general setting since
we may not know the specifics about the workload that is to be optimized, and even if we did, it may
not admit any sensible notion of resource. Finally, there exist numerous commercial offerings in the
AutoML space such as Google Cloud Platform AutoML Tables, IBM AutoAI, H2O Driverless AI,
and many more. These proprietary offerings typically provide ML-specific interfaces and the details
of how they solve the problem internally remains unknown.

3 CLOUDBANDIT - A MULTI-CLOUD CONFIGURATION SOLUTION

3.1 ALGORITHM DESCRIPTION

We propose treating the multi-cloud configuration problem as a non-stochastic best-arm identification
problem, as defined in Jamieson & Talwalkar (2016). Specifically, we have n arms, each arm
corresponding to a different cloud provider. Pulling an arm corresponds to running an iteration of

4

Under review as a conference paper at ICLR 2022

an arbitrary BBO algorithm to find the best configuration for the corresponding cloud provider. Let
reward ri,k denote the best runtime or cost obtained by pulling the i-th arm k times. Assuming that
the reward for the i-th arm eventually converges to µi = limτ→∞ ri,τ = min p∈Pi

fi(p), then the
multi-cloud configuration problem (1) is equivalent to the problem of identifying argmini µi. To
have an efficient algorithm, we would like to achieve this whilst minimizing the total number of arm
pulls, henceforth referred to as the total budget.

We now describe CloudBandit (CB), a simple algorithm for solving the best-arm identification
problem defined above. The algorithm maintains an active set of arms A, which is initially equal
to the complete set of all arms (i.e., all cloud providers). The algorithm then performs a number of
rounds equal to the number of providers. The k-th round (for k = 1 . . . , n) begins by pulling all
arms in the active set bk times. Next, the arm in the active set with the worst reward is identified and
eliminated from the active set. Before proceeding to the next round, the budget is increased by a
multiplicative factor: bk+1 = bkη. At the end of the n-th round, the best identified configuration is
returned, for the sole remaining provider.

The CB algorithm is defined in full in Algorithm 1. The algorithm has two hyperparameters: the
initial budget b1 and the growth factor η. The total budget of CB can be expressed in terms of these
two hyperparameters: B =

∑n
i=1(n−i+1)b1η

i−1. By using relatively small b1 and setting η > 1, it
is hoped that the algorithm can eliminate slow (or expensive) cloud providers very quickly, whilst
exploring the more promising cloud providers exponentially more than those that are eliminated.

Algorithm 1 CloudBandit

1: Initialize set of arms (cloud providers): A = {1, 2, . . . , n} and b̂ = 0
2: Set initial budget b1 and budget growth factor η.
3: for k = 1, . . . , n do
4: for i ∈ A do
5: Run bk iterations of component BBO for provider i.
6: Receive best configuration pi,b̂+bk , and corresponding reward: ri,b̂+bk = fi(pi,b̂+bk).
7: end for
8: Identify the best arm: i∗ = argmini∈A ri,b̂+bk .
9: Eliminate the worst arm: A = A \ {argmaxi∈A ri,b̂+bk}

10: Increment b̂ = b̂+ bk and set budget for next round: bk+1 = η · bk.
11: end for
12: Output best provider i∗ and its configuration pi∗,b̂.

We note that, after each round of CloudBandit, it is actually possible to utilize all previously-evaluated
configurations by passing them on to the component optimizers in following rounds. However, due to
the way most BBO software tools are implemented, this presents quite some technical challenges.
We discuss how these challenges can be overcome and the effect of passing this information forward
in Appendix B. However, all results in the main manuscript use the vastly simpler approach, where
each component optimizer instance is independent.

3.2 CLOSELY RELATED ALGORITHMS

Successive Halving. A popular method for solving best-arm identification problems is successive
halving (SH). It was first proposed in Karnin et al. (2013) for the stochastic setting, in which
each arm pull corresponds to sampling from a probability distribution, and later generalized to the
non-stochastic setting in Jamieson & Talwalkar (2016). SH is similar to CloudBandit, in that it
maintains an active set of arms which are progressively eliminated, and arms that survive are explored
exponentially more than arms that don’t. The key difference is that SH eliminates a constant fraction
(1/η) of the arms in each round. While this approach may also be effective in the multi-cloud
configuration setting when the number of providers is fairly large, when this number is relatively
small (e.g., n = 3), it is hard to define a reasonable elimination schedule due to rounding issues.

Rising Bandits. In Li et al. (2020), the authors treat the model selection-configuration problem
from AutoML as a best-arm identification problem, and propose a new algorithm: Rising Bandits

5

Under review as a conference paper at ICLR 2022

(RB). In RB, each arm corresponds to a different ML model, and each arm pull corresponds to
running a fixed number of iterations of BO to tune the hyperparameters of the corresponding model.
The reward is given by the best validation loss found by the optimizer. This algorithm is different
to CloudBandit in three important respects. Firstly, each arm pull in RB corresponds to running a
number of iterations of BO (rather than an arbitrary BBO). Secondly, in RB, the arms are pulled a
fixed number of times in each round (i.e., bk is constant). Finally, RB does not eliminate arms by
simply discarding the arm with the worst reward. Instead, RB makes a theoretical assumption about
the way the validation loss converges as a function of BO iterations. Specifically, RB assumes that
after a certain number of pulls all arms will reach a point of diminishing returns. The authors derive a
theoretical criteria for when this point is reached, at which point an arm is eliminated.

4 MOCCA: AN OFFLINE MULTI-CLOUD BENCHMARK DATASET

Multi-cloud configuration is an exciting new optimization problem, and we feel that the ML com-
munity would be interested in developing new algorithms for this emerging application. However,
running online experiments can be time-consuming and costly, making this area of research inacces-
sible to many in our community. For this reason, offline benchmark datasets that allow researchers to
compare different optimization algorithms without performing all the necessary cloud experimenta-
tion are highly desirable. While Hsu et al. (2018c) provided an offline dataset regarding configuration
of cloud workloads for a single-provider, to the best of our knowledge there are no datasets relating
to the multi-cloud scenario. Thus, in order to accelerate our own experimentation, as well as to open
this problem up to others, we have constructed MOCCA (Dataset for Multi-Cloud Configuration
Algorithms) – a multi-cloud benchmark dataset, which will be made publicly available. In this section
we will describe some important details regarding how this dataset was constructed.

Cloud provider and configuration space. Our experimental data was collected by running workloads
on top of Kubernetes clusters, deployed on three different cloud providers. The process of deploying a
Kubernetes cluster on each of the providers follows the same general pattern but differs in the details
such as provider-specific tooling and authentication. The number of nodes in the cluster is treated
as an integer parameter that is common across all providers, and for each provider, we introduce a
number of provider-specific categorical variables corresponding the various options (e.g., family, size,
type) that are available for configuring the nodes. Throughout the paper, as well as in the dataset
itself, the names of the cloud providers (as well as their configuration options) have been anonymized.
The total dimensionality of the resulting hierarchical configuration space is 88.

Workloads. We consider various ML training and data pre-processing workloads from the dask-ml
package, a library for scalable ML that runs on top of the Dask framework (Dask Development Team,
2016). For our purposes, Dask workloads were attractive for two main reasons. Firstly, Dask is a
distributed framework and workloads can be seamlessly scaled out across nodes. Some workloads
may benefit greatly from such scaling, others may suffer in terms of performance as more nodes are
added. For this reason, it is typically more difficult to find the optimal configuration of a distributed
workload, compared to the single-node case, leading to a more interesting optimization problem for
our benchmark. Secondly, Dask has a clean integration with Kubernetes: it is simple to deploy a
Dask cluster (using Helm charts) on top of a set of Kubernetes pods. Furthermore, this process is
agnostic to where the Kubernetes pods are located, resulting in straightforward scripting even in the
multi-cloud setting.

Optimization tasks. In our benchmark an optimization task comprises: (a) a workload defined as a
(Dask task, input dataset) pair, and (b) an optimization target which can be either runtime or cost. We
collected data for 30 different workloads (10 Dask tasks running on 3 input datasets) and 2 different
optimization targets, leading to a total of 60 different optimization tasks. Details regarding all Dask
tasks and datasets can be found in Appendix A. For the runtime target, we recorded the total time
taken by a given workload for each cloud provider and configuration, including all data transfer
overheads. To generate data for the cost target, we estimate the cost by multiplying the runtime by
the listed price-per-hour for each node, as well as a factor equal to the number of nodes. While this
is an imperfect estimate, and will not take into account additional data transfer costs, more precise
estimates are difficult to obtain since cloud billing typically occurs monthly in an aggregate manner.

6

Under review as a conference paper at ICLR 2022

5 EXPERIMENTAL RESULTS

5.1 CHOOSING THE COMPONENT BBO

To begin our experimental evaluation, we will investigate the effect of using different BBOs as
components inside CB. The goal of this experiment is twofold. Firstly, we would like to determine
which BBO provides the best performance. Secondly, we would like to verify that the performance
of a given BBO is consistently improved when used inside CB relative to being naively applied to the
flattened parameter space. In our experiment we consider four different BBOs: random search (RS),
BO with Gaussian processes (GP), BO with random forests (RF) and RBFOpt. While RS is perhaps
the simplest baseline, in Li & Talwalkar (2020) it was found to be a surprisingly strong baseline
in an AutoML context. BO with a GP surrogate model was proposed in Snoek et al. (2012) for
hyperparameter tuning tasks, whereas Bilal et al. (2020) found BO with RF to perform better for the
cloud configuration task. In both cases, we use the BO implementation provided by scikit-optimize
(Louppe, 2017). RBFOpt is a relatively new BBO and has been shown in Costa & Nannicini (2018)
to outperform a wide range of BBOs on a variety of optimization tasks. It is based on the radial basis
function method, originally proposed in Gutmann (2001), and was recently improved in Nannicini
(2020) to provide better support for categorical variables.

For each BBO, we evaluated its performance both when used as a standalone optimizer, and when
used as a component within CB. Experiments were performed for all 30 workloads in the MOCCA
dataset, for both time and cost optimization targets. When used inside CB, we used a default growth
factor of η = 2 and varied the value of initial budget b1 = 1, . . . , 8, which for the n = 3 providers in
the dataset, results in a total budget of B = 3b1+2b1η+ b1η

2 = 11b1 evaluations. In order to ensure
a fair comparison in terms of number of evaluations, when used as a standalone optimizer, each BBO
was run by varying the budget between B = 11, 22, . . . , 88 evaluations. Default hyperparameters
were used for all BBOs, both when used inside CB and when used as a standalone optimizer, with
the exception of BO with RF, where the hyperparameters from Bilal et al. (2020) were used. For
each workload, optimization target and optimization algorithm, we performed 50 experiments using
different random seeds. As an evaluation metric we used the regret: the relative distance to the true
minimum, averaged over all seeds.

Figure 2: Probability distribution functions (PDF) for a representative workload.

(a) Cost target (b) Time target

In Table 1 we present the average percentage regret, across all workloads in the MOCCA dataset, as
a function of the total number of evaluations. Results are provided for the cost optimization target in
Table 1a and for the time optimization target in Table 1b. For each pair of columns corresponding to
a given BBO, the lowest regret is highlighted in bold. From these results, we can make a number of
observations. Firstly, for all BBOs we observe significantly lower regret when the BBO is used as
part of CB, relative to when it is used as a standalone optimizer. On average, the regret is reduced
by 20 percentage points (p.p.) for the cost target and by 7 p.p. for time. Secondly, we notice that
RBFOpt appears to be the best choice of component BBO for CB, consistently achieving the lowest
regret across all budgets. Finally, the best algorithm (CB with RBFOpt) seems to converge to the
true minimum faster for the cost target, relative to the time target. We believe this last observation is
related to the fact that for the cost target, we typically see one provider that is significantly cheaper
that the others, whereas for time the distributions for each provider have more overlap. Statistics are
provided in Figure 2, for a representative workload, to illustrate this characteristic. The sensitivity of
CB to the overlap between distributions, as well as to the number of cloud providers, has been further
investigated using a synthetic dataset in Appendix C.

7

Under review as a conference paper at ICLR 2022

Table 1: Average percentage regret of CB and component BBOs across all workloads in MOCCA.

(a) Optimization for cost

budget RS BO with GP BO with RF RBFOpt

alone in CB alone in CB alone in CB alone in CB

11 87.85 48.01 120.83 54.33 93.75 53.60 66.66 48.01
22 47.91 30.76 38.90 33.56 70.14 27.74 32.93 18.11
33 33.33 18.65 25.79 18.07 62.29 18.27 17.78 6.99
44 24.49 13.56 20.65 12.43 56.54 12.17 12.99 0.53
55 18.71 7.48 18.26 9.94 51.04 9.11 9.29 0.18
66 14.36 4.75 16.40 8.58 46.04 6.42 5.65 0.05
77 11.59 2.61 15.90 7.53 43.06 4.72 4.28 0.00
88 8.11 2.51 15.58 7.19 40.82 3.81 2.28 0.00

(b) Optimization for time

budget RS BO with GP BO with RF RBFOpt

alone in CB alone in CB alone in CB alone in CB

11 38.67 35.05 52.58 38.79 38.60 36.08 38.13 35.05
22 24.04 21.91 40.05 26.26 22.39 21.90 20.21 19.00
33 16.79 15.49 36.83 18.97 17.99 15.36 15.69 12.83
44 12.94 11.44 34.36 14.74 16.64 12.19 13.47 10.12
55 10.48 8.62 32.63 11.91 16.19 10.26 11.54 5.57
66 8.87 7.10 30.90 9.48 15.77 8.88 9.70 4.69
77 7.48 5.89 29.80 8.72 15.57 7.98 8.86 3.93
88 6.13 4.64 28.55 7.90 15.48 7.40 8.19 3.43

5.2 COMPARISON TO EXISTING AUTOML AND MULTI-CLOUD METHODS

While there have been a number of attempts to solve the multi-cloud configuration problem in the
cloud literature, to the best of our knowledge, there is no publicly available code implementing the
solutions from either Ramamurthy et al. (2020) or Shi et al. (2020). On the AutoML side, SMAC is
a highly active GitHub project, and can be readily applied to our problem and compared with CB.
While in principle all of the solutions from Liu et al. (2020); Rakotoarison et al. (2019); Li et al.
(2020) could also be used as baselines, none of the papers refer to publicly available implementations.
Despite this, we have re-implemented the solutions from Li et al. (2020) (RB) and Ramamurthy et al.
(2020) (RM) and included them as baselines.

We thus performed an experiment to compare CB (with RBFOpt as the component BBO) against
SMAC, RB and RM. As in the previous experiment, for CB we used a default growth rate of η = 2
and varied the initial budget b1 = 1, 2, . . . , 8, leading to a range of total budgets B = 11, 22, . . . , 88.
For SMAC and RB we used default hyperparameters. For RM, which allows an arbitrary model to be
used to solve the inner configuration task, we use RBFOpt. The budget for all baselines was varied so
that the total number of evaluations coincided with the budget that was used for CB. We ran each
algorithm with 50 different random seeds, for every workload and target from the MOCCA dataset.
For each workload and target, we then computed the average regret across all random seeds.

The percentage regret, averaged over all workloads, is presented in Table 2. Additionally, for each
algorithm we present the total accumulated cost (or time) incurred, averaged over all workloads.
The cost/time is normalized by the cost/time required for performing an exhaustive search. The
winning results are highlighted in bold. From these results we can draw a few interesting conclusions.
Firstly, for the cost optimization target, CB out-performs SMAC, RB and RM in terms of regret – on
average by 5 p.p., 16 p.p. and 5 p.p. respectively. For larger budgets, SMAC and RM approach the
performance of CB in terms of regret, but incur respectively 57% and 56% higher cost on average. In
fact, for budget 88, SMAC is equivalent to exhaustive search, since it does not try any configuration
more than once. On the other hand, RB is around 45% cheaper than CB on average, but performs
significantly worse in terms of regret, suggesting that the theoretical assumptions made by RB may

8

Under review as a conference paper at ICLR 2022

Table 2: Average regret and normalized accumulated cost/time of CB and baselines.

(a) Optimization for cost

budget regret accumulated cost

CB SMAC RB RM CB SMAC RB RM

11 48.0 72.1 66.7 69.0 7.8 12.5 12.0 19.1
22 18.1 23.0 23.1 26.4 14.7 32.5 13.8 26.5
33 7.0 11.8 20.1 11.9 20.4 48.7 15.3 37.9
44 0.5 3.1 19.3 3.1 27.1 64.7 16.7 62.8
55 0.2 1.8 19.1 0.5 30.6 76.6 18.0 83.8
66 0.0 0.2 19.1 0.1 33.7 86.8 19.4 85.6
77 0.0 0.1 19.1 0.0 36.2 94.5 20.8 88.1
88 0.0 0.0 18.8 0.0 39.1 100.0 22.1 89.2

(b) Optimization for time

budget regret accumulated time

CB SMAC RB RM CB SMAC RB RM

11 35.0 38.1 41.9 37.9 11.9 13.0 12.9 15.0
22 19.0 18.7 28.4 18.5 22.8 28.5 20.2 26.6
33 12.8 14.7 26.1 14.3 32.7 42.7 25.5 39.4
44 10.1 8.0 25.1 12.2 43.0 56.2 30.5 56.4
55 5.6 4.5 24.0 7.1 51.9 68.5 35.3 68.2
66 4.7 2.3 23.5 4.4 61.0 80.1 40.0 73.7
77 3.9 1.1 23.0 4.3 67.3 90.3 44.6 79.7
88 3.4 0.0 22.5 3.5 74.2 100.0 49.2 82.5

not apply in this new application domain. Secondly, for the time optimization target, the average
regret of CB is comparable to that of RM (1 p.p. better on average) but at the same time CB is 18%
faster. CB also performs similarly to SMAC in terms of regret for all but the highest budgets (1 p.p.
worse on average), whilst being 22% faster. Equivalently to the cost target, RB is 35% faster than CB
on average, but in terms of regret, it is 15 p.p. worse on average.

5.3 FURTHER EXPERIMENTS

So far, the baseline models in Section 5.2 were run using default hyperparameters. However, the HPs
of SMAC and Rising Bandits were set to work well in a different domain. Therefore, we perform
a further study of the algorithms’ hyperparameters in Appendix D. Furthermore, we consider a
scenario in which the user wishes to receive more than one cloud provider recommendation at a time.
We analyze and discuss CB’s performance in this scenario, as well as a possible modification to
the algorithm, in Appendix E. Finally, we consider the dynamic nature of cloud’s performance, i.e.
dependence on the data center’s load. We run experiments on selected workloads repeated multiple
times, optimizing various statistical metrics. We present the experimental results in Appendix F.

6 CONCLUSION

In this paper, we have presented a key connection between the model selection-configuration problem
extensively studied in the AutoML field and the multi-cloud configuration optimization task. Inspired
by recent trends in AutoML, we have introduced CB, an algorithm for best-arm identification, that
has been specifically designed with the multi-cloud configuration task in mind. To evaluate the
performance of CB, we have built and will open to the community a first-of-a-kind benchmark
dataset, MOCCA, comprising 60 multi-cloud configuration tasks across 3 public cloud providers.
Our experimental results show that CB achieves lower regret on MOCCA relative to a variety of
BBOs, and comparable or lower regret relative to state-of-the-art AutoML and multi-cloud solutions,
whilst at the same time being either cheaper or faster.

9

Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

The algorithms described in this paper enable consumers and businesses to deploy large-scale
workloads in a multi-cloud setting in a more cost-efficient way. In the particular case of ML-based
workloads, we acknowledge that societal concerns exist regarding safety, privacy, fairness and more.
These concerns are often valid, and we acknowledge that helping to scale ML workloads further and
further may have an indirect, potentially negative, impact on the way ML models are used in society.
On the positive side, we feel that helping people optimize their computing workloads across multiple
cloud providers can have a positive economic impact: helping to prevent the emergence of a large,
all-powerful monopoly in the ever-growing cloud industry.

REPRODUCIBILITY STATEMENT

The MOCCA dataset and code to reproduce the tables from the paper have been prepared and are
ready to be shared publicly. We feel strongly about sharing these materials, so that others in the
community can reproduce and improve upon our results. Unfortunately, our institution does not
permit us to share code publicly (e.g. on OpenReview or GitHub) without a clear indication of
authorship. If the paper is accepted, we will upload both the dataset and code, to a repository on
public GitHub.

REFERENCES

Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan Yu,
and Ming Zhang. Cherrypick: Adaptively unearthing the best cloud configurations for big
data analytics. In 14th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 17), pp. 469–482, Boston, MA, March 2017. USENIX Association. ISBN 978-1-
931971-37-9. URL https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/alipourfard.

Alessio Benavoli, Giorgio Corani, and Francesca Mangili. Should we really use post-hoc tests
based on mean-ranks? Journal of Machine Learning Research, 17(5):1–10, 2016. URL http:
//jmlr.org/papers/v17/benavoli16a.html.

Muhammad Bilal, Marco Serafini, Marco Canini, and Rodrigo Rodrigues. Do the best cloud
configurations grow on trees? An experimental evaluation of black box algorithms for optimizing
cloud workloads. Proc. VLDB Endow., 13(12):2563–2575, July 2020. ISSN 2150-8097. doi:
10.14778/3407790.3407845. URL https://doi.org/10.14778/3407790.3407845.

Eric Brewer. An update on container support on google cloud platform, 2014. https:
//cloudplatform.googleblog.com/2014/06/an-update-on-container-
support-on-google-cloud-platform.html, accessed: 5.10.2021.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalml: How to use ml prediction apis more
accurately and cheaply, 06 2020.

Yanjiao Chen, Long Lin, Baochun Li, Qian Wang, and Qian Zhang. Silhouette: Efficient cloud
configuration exploration for large-scale analytics. IEEE Transactions on Parallel and Distributed
Systems, 32(8):2049–2061, 2021. doi: 10.1109/TPDS.2021.3058165.

Alberto Costa and Giacomo Nannicini. Rbfopt: an open-source library for black-box optimization
with costly function evaluations. Mathematical Programming Computation, 10(4):597–629, 2018.

Dask Development Team. Dask: Library for dynamic task scheduling, 2016. URL https://dask.
org.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
learning research, 7(Jan):1–30, 2006.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

10

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
http://jmlr.org/papers/v17/benavoli16a.html
http://jmlr.org/papers/v17/benavoli16a.html
https://doi.org/10.14778/3407790.3407845
https://cloudplatform.googleblog.com/2014/06/an-update-on-container-support-on-google-cloud-platform.html
https://cloudplatform.googleblog.com/2014/06/an-update-on-container-support-on-google-cloud-platform.html
https://cloudplatform.googleblog.com/2014/06/an-update-on-container-support-on-google-cloud-platform.html
https://dask.org
https://dask.org

Under review as a conference paper at ICLR 2022

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter opti-
mization at scale. In International Conference on Machine Learning, pp. 1437–1446. PMLR,
2018.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum,
and Frank Hutter. Auto-sklearn: efficient and robust automated machine learning. In Automated
Machine Learning, pp. 113–134. Springer, Cham, 2019.

Gartner. Gartner forecasts worldwide public cloud end-user spending to grow 23% in 2021,
2021. https://www.gartner.com/en/newsroom/press-releases/2021-04-
21-gartner-forecasts-worldwide-public-cloud-end-user-spending-
to-grow-23-percent-in-2021, accessed: 27.05.2021.

H-M Gutmann. A radial basis function method for global optimization. Journal of global optimization,
19(3):201–227, 2001.

Samar Haytamy and Fatma Omara. Enhanced qos-based service composition approach in multi-cloud
environment. In 2020 International Conference on Innovative Trends in Communication and
Computer Engineering (ITCE), pp. 33–38, 2020. doi: 10.1109/ITCE48509.2020.9047784.

Chin-Jung Hsu, Vivek Nair, Vincent W. Freeh, and Tim Menzies. Arrow: Low-level augmented
bayesian optimization for finding the best cloud vm. In 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), pp. 660–670, 2018a. doi: 10.1109/ICDCS.2018.00070.

Chin-Jung Hsu, Vivek Nair, Tim Menzies, and Vincent Freeh. Micky: A cheaper alternative for
selecting cloud instances. In 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), pp. 409–416, 2018b. doi: 10.1109/CLOUD.2018.00058.

Chin-Jung Hsu, Vivek Nair, Tim Menzies, and Vincent W Freeh. Scout: An experienced guide to
find the best cloud configuration. arXiv preprint arXiv:1803.01296, 2018c.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Proceedings of the 5th International Conference on Learning
and Intelligent Optimization, LION’05, pp. 507–523, Berlin, Heidelberg, 2011. Springer-Verlag.
ISBN 9783642255656. doi: 10.1007/978-3-642-25566-3_40. URL https://doi.org/10.
1007/978-3-642-25566-3_40.

Ronald L Iman and James M Davenport. Approximations of the critical region of the friedman
statistic. Communications in Statistics-Theory and Methods, 9(6):571–595, 1980.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Artificial Intelligence and Statistics, pp. 240–248. PMLR, 2016.

Kaggle. Credit card fraud detection, 2018. https://www.kaggle.com/mlg-ulb/
creditcardfraud.

Kaggle. Santander customer transaction prediction, 2019. https://www.kaggle.com/c/
santander-customer-transaction-prediction.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In International Conference on Machine Learning, pp. 1238–1246. PMLR, 2013.

F. Kawala, A. Douzal-Chouakria, E. Gaussier, and E. Dimert. Prédictions d’activité dans les réseaux
sociaux en ligne. In Actes de la Conférence sur les Modèles et l’Analyse des Réseaux : Approches
Mathématiques et Informatique (MARAMI), pp. 16, 2013. http://archive.ics.uci.
edu/ml/datasets/Buzz+in+social+media+.

Erin LeDell and Sebastien Poirier. H2o automl: Scalable automatic machine learning. In Proceedings
of the AutoML Workshop at ICML, volume 2020, 2020.

Jianjun David Li. A two-step rejection procedure for testing multiple hypotheses. Journal of
Statistical Planning and Inference, 138(6):1521–1527, 2008.

11

https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/c/santander-customer-transaction-prediction
https://www.kaggle.com/c/santander-customer-transaction-prediction
http://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media+
http://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media+

Under review as a conference paper at ICLR 2022

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in Artificial Intelligence, pp. 367–377. PMLR, 2020.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res., 18(1):
6765–6816, January 2017. ISSN 1532-4435.

Yang Li, Jiawei Jiang, Jinyang Gao, Yingxia Shao, Ce Zhang, and Bin Cui. Efficient automatic
cash via rising bandits. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):
4763–4771, Apr. 2020. doi: 10.1609/aaai.v34i04.5910. URL https://ojs.aaai.org/
index.php/AAAI/article/view/5910.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization package for
hyperparameter optimization. arXiv preprint arXiv:2109.09831, 2021.

Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble, Horst Samu-
lowitz, Dakuo Wang, Andrew Conn, and Alexander G. Gray. An ADMM based framework
for automl pipeline configuration. In The Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pp. 4892–4899. AAAI Press, 2020. URL
https://aaai.org/ojs/index.php/AAAI/article/view/5926.

Gilles Louppe. Bayesian optimisation with scikit-optimize. 2017.

Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Subrata Mitra, Ana Klimovic,
Somali Chaterji, and Saurabh Bagchi. OPTIMUSCLOUD: Heterogeneous configuration opti-
mization for distributed databases in the cloud. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pp. 189–203. USENIX Association, July 2020. ISBN 978-1-939133-14-4.
URL https://www.usenix.org/conference/atc20/presentation/mahgoub.

Giovanni Mariani, Andreea Anghel, Rik Jongerius, and Gero Dittmann. Predicting cloud performance
for hpc applications: A user-oriented approach. In 2017 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pp. 524–533, 2017. doi: 10.1109/CCGRID.
2017.11.

Dirk Merkel. Docker: Lightweight linux containers for consistent development and deployment.
Linux J., 2014(239), March 2014. ISSN 1075-3583.

Giacomo Nannicini. On the implementation of a global optimization method for mixed-variable
problems. arXiv preprint arXiv:2009.02183, 2020.

Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on automatic machine learning, pp. 66–74. PMLR, 2016.

Beibei Pang, Fei Hao, Doo-Soon Park, and Carmen De Maio. A multi-criteria multi-cloud service
composition in mobile edge computing. Sustainability, 12(18), 2020. ISSN 2071-1050. doi:
10.3390/su12187661. URL https://www.mdpi.com/2071-1050/12/18/7661.

Herilalaina Rakotoarison, Marc Schoenauer, and Michèle Sebag. Automated machine learning with
monte-carlo tree search. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19, pp. 3296–3303. International Joint Conferences on Artificial
Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/457. URL https://doi.org/
10.24963/ijcai.2019/457.

Arun Ramamurthy, Saket Saurabh, Mangesh Gharote, and Sachin Lodha. Selection of cloud service
providers for hosting web applications in a multi-cloud environment. In 2020 IEEE International
Conference on Services Computing (SCC), pp. 202–209, 2020. doi: 10.1109/SCC49832.2020.
00034.

Tao Shi, Hui Ma, Gang Chen, and Sven Hartmann. Location-aware and budget-constrained service
deployment for composite applications in multi-cloud environment. IEEE Transactions on Parallel
and Distributed Systems, 31(8):1954–1969, 2020. doi: 10.1109/TPDS.2020.2981306.

12

https://ojs.aaai.org/index.php/AAAI/article/view/5910
https://ojs.aaai.org/index.php/AAAI/article/view/5910
https://aaai.org/ojs/index.php/AAAI/article/view/5926
https://www.usenix.org/conference/atc20/presentation/mahgoub
https://www.mdpi.com/2071-1050/12/18/7661
https://doi.org/10.24963/ijcai.2019/457
https://doi.org/10.24963/ijcai.2019/457

Under review as a conference paper at ICLR 2022

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. arXiv preprint arXiv:1206.2944, 2012.

Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson. Container-
based operating system virtualization: A scalable, high-performance alternative to hypervisors.
SIGOPS Oper. Syst. Rev., 41(3):275–287, March 2007. ISSN 0163-5980. doi: 10.1145/1272998.
1273025. URL https://doi.org/10.1145/1272998.1273025.

Alireza Souri, Amir Masoud Rahmani, Nima Jafari Navimipour, and Reza Rezaei. A hybrid formal
verification approach for qos-aware multi-cloud service composition. Clust. Comput., 23(4):
2453–2470, 2020. doi: 10.1007/s10586-019-03018-9. URL https://doi.org/10.1007/
s10586-019-03018-9.

Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Auto-weka: Combined
selection and hyperparameter optimization of classification algorithms. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 847–855,
2013.

Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton Smith, and Randy H. Katz.
Selecting the best vm across multiple public clouds: A data-driven performance modeling approach.
In Proceedings of the 2017 Symposium on Cloud Computing, SoCC ’17, pp. 452–465, New
York, NY, USA, 2017a. Association for Computing Machinery. ISBN 9781450350280. doi:
10.1145/3127479.3131614. URL https://doi.org/10.1145/3127479.3131614.

Neeraja J Yadwadkar, Bharath Hariharan, Joseph E Gonzalez, Burton Smith, and Randy H Katz.
Selecting the best vm across multiple public clouds: A data-driven performance modeling approach.
In Proceedings of the 2017 Symposium on Cloud Computing, pp. 452–465, 2017b.

A DETAILS OF THE MOCCA DATASET

In Table 3 we present the details of Dask tasks, input datasets and optimization targets included in the
MOCCA dataset.

Table 3: Details of the optimization tasks used in the dataset.

Dask tasks Datasets Optimization
targets

• kmeans
• linear regression
• logistic regression
• naive bayes
• poisson regression

• polynomial features
• quantile transformer
• spectral clustering
• standard scaler
• xgboost

• santander (Kaggle, 2019)
• credit card (Kaggle, 2018)
• buzz in social media

(Kawala et al., 2013)

• cost
• runtime

B CONTINUOUS CLOUDBANDIT

In Section 3 we have described the CloudBandit algorithm which may come in two variants: continu-
ous (in each round, CloudBandit utilizes all previously-evaluated configurations by passing them on
to the component BBO) or intermittent (the component optimizer is independent in each round and
does not utilize any of the previously-evaluated configurations). In Section 5 we have presented the
experimental results for the latter variant. In this section we will present the results for the continuous
variant too.

B.1 IMPLEMENTATION CHALLENGES

It is necessary to note that depending on the BBO used, sometimes implementing the continuous
variant of CloudBandit may be difficult or impossible. Some BBOs, e.g. Random Search, are
conceptually unable to utilize any information about past configuration evaluations at all. In other

13

https://doi.org/10.1145/1272998.1273025
https://doi.org/10.1007/s10586-019-03018-9
https://doi.org/10.1007/s10586-019-03018-9
https://doi.org/10.1145/3127479.3131614

Under review as a conference paper at ICLR 2022

cases, using continuous CB can be impossible due to the optimizer’s incompatible API, which e.g.
does not allow the user to pass previous evaluations or to extract all evaluations from the current
round.

In cases when the BBO’s API is incompatible, it may be possible to find a workaround. An example
of such a case is RBFOpt, which does not allow the user to extract all the configurations evaluated
by the optimizer. They can only be extracted in an encoded form used internally by the optimizer.
In order to adjust RBFOpt to be used with the continuous CloudBandit scheme, one can use an
additional wrapper that was developed for the NeurIPS 2020 BBO Challenge 1. The wrapper utilizes
synchronization primitives in order to pause and resume the optimization process, feeding one
evaluation at a time. This way, all configurations can be collected and passed to the optimizer in later
CB rounds.

B.2 COMPARISON AGAINST INTERMITTENT CLOUDBANDIT

Table 4: Average ranks of continuous and intermittent CloudBandit.

(a) Optimization for cost

budget CB BO with GP CB BO with RF CB RBFOpt

intermittent continuous intermittent continuous intermittent continuous

11 3.23 3.13 4.13 4.67 3.33 1.60
22 4.13 4.13 3.70 4.83 2.20 1.00
33 4.00 3.03 4.97 5.70 1.83 1.00
44 3.50 2.67 4.90 5.80 1.27 1.00
55 3.33 2.80 4.87 5.67 1.13 1.00
66 3.37 2.50 4.63 5.73 1.07 1.10
77 3.03 2.53 4.83 5.53 1.10 1.10
88 3.03 2.47 4.90 5.23 1.10 1.13

(b) Optimization for time

budget CB BO with GP CB BO with RF CB RBFOpt

intermittent continuous intermittent continuous intermittent continuous

11 4.00 4.00 3.30 3.07 2.73 3.03
22 4.40 4.33 3.77 3.77 2.10 1.77
33 4.87 4.50 3.73 4.17 2.23 1.50
44 4.67 3.83 3.97 5.00 1.87 1.53
55 4.30 3.73 4.17 5.13 1.70 1.73
66 3.73 3.83 4.20 5.53 1.77 1.57
77 3.73 3.37 4.30 5.57 1.50 1.53
88 3.37 3.10 4.43 5.57 1.47 1.40

In Tables 4a and 4b we present the average ranks of the continuous CloudBandit scheme compared
against the corresponding intermittent scheme for different component BBOs. The ranks were
determined based on all algorithms’ results averaged over 50 random seeds and all workloads in the
MOCCA dataset. Random Search was excluded as a component BBO in this study, since intermittent
and continuous CloudBandit are identical by construction. Best results within each pair of continuous
and intermittent CloudBandit with the same BBO are highlighted in bold.

When comparing a number of optimization algorithms across a large collection of tasks, rather than
applying parametric statistical tests (such as Student’s t-test) on a per-task basis, Demšar (2006)
argues that it is preferable to perform non-parametric tests across the collection.

In this case, we have a family of 6 optimization algorithms ranked across 60 different multi-cloud con-
figuration tasks (30 workloads with cost optimization target and 30 workloads with time optimization
target), for 8 different budgets. In order to verify that statistical differences exist within the family,

1https://bbochallenge.com/

14

Under review as a conference paper at ICLR 2022

Table 5: Pairwise p-values comparing continuous vs. intermittent CB.

(a) Optimization for cost

Intermittent vs. Continuous CB
Budget BO with GP BO with RF RBFOpt

11 2.20e-01 6.02e-02 1.09e-03
22 5.00e-01 1.38e-03 1.73e-06
33 5.18e-04 1.02e-03 1.24e-05
44 9.90e-05 4.87e-05 4.49e-02
55 2.95e-02 1.94e-03 1.85e-01
66 2.31e-03 2.59e-04 4.96e-01
77 1.87e-02 8.65e-03 5.00e-01
88 2.35e-02 2.26e-01 4.96e-01

(b) Optimization for time

Intermittent vs. Continuous CB
Budget BO with GP BO with RF RBFOpt

11 5.00e-01 2.62e-01 4.26e-01
22 3.11e-01 3.83e-01 1.66e-01
33 8.53e-02 6.93e-02 1.63e-02
44 2.40e-03 1.55e-03 2.23e-01
55 1.98e-02 1.85e-03 4.24e-01
66 3.37e-01 1.21e-04 1.86e-01
77 1.18e-01 1.57e-05 4.79e-01
88 2.24e-01 1.85e-05 3.87e-01

we first apply the correction of the Friedman omnibus test proposed in Iman & Davenport (1980).
We were able to firmly reject the family-wise null hypothesis (via the omnibus test) with p < 0.004
for all budgets, and both time and cost optimization targets. Secondly, we perform pairwise testing
using the Wilcoxon signed-rank test (Benavoli et al., 2016) (correcting for multiple hypotheses via
the procedure defined in Li (2008)) to verify if differences exist between the optimization algorithms
themselves. The pairwise p-values are presented in Table 5a and Table 5b. The cases for which the
null hypothesis can’t be rejected (p < 0.05) are highlighted in red.

When using BO with GP as the component BBO, we find that the continuous variant improves
the average rank in a majority of cases. For the cost-based target, the p-values suggest that this
improvement is statistically significant, whereas for the time-based target the null hypothesis cannot
be rejected most of the time. For BO with RF, we find that the continuous variant results in worse
performance relative to the intermittent variant. Furthermore, the p-values suggest this worsening is
statistically significant. One explanation for this could be that for BO with RF the number of initial
random evaluations in the component BBO was set to 3 following the best hyperparameters identified
in Bilal et al. (2020), whereas for BO with GP the number of initial random evaluations is set to
10. It may be that using fewer random evaluations results in less exploration and more exploitation,
leading to convergence to local minima, and the continuous variant amplifies this effect. Finally, for
RBFOpt with a time-based target, while we see the average rank improve in many cases, the p-values
suggest these differences are not statistically significant. However, for the cost-based target we do see
a statistically significant improvement in the average rank for lower budgets.

In conclusion, while we do see an improvement from the continuous variant in some scenarios, there
are others where it clearly makes things worse, and others still where statistical differences do not
seem to be present. Since significant technical work may be needed to get the continuous variant
working for some component BBOs (as described in Section B.1), we opted to present the simpler
intermittent scheme in the main manuscript.

15

Under review as a conference paper at ICLR 2022

C SENSITIVITY ANALYSIS

We performed an analysis of how sensitive CloudBandit’s results are, both to the search space
distribution, as well as the number of providers. In those experiments, we compared ranks of
standalone Random Search and CloudBandit using Random Search as the component BBO, calculated
by averaging results over multiple random seeds. To be able to simulate various scenarios, the
sensitivity experiments were conducted using a synthetic dataset. Each provider was assumed to
produce random results drawn from a normal distribution N (µi, σ

2).

Table 6: Average ranks of RS and CB with RS for various scenarios run on a synthetic dataset.

(a) Varying standard
deviation σ

σ
Random Search

alone in CB

1000 1.34 1.33
100 1.34 1.33
10 1.38 1.33
5 1.41 1.31
2 1.49 1.24
1 1.54 1.18

0.1 1.56 1.16

(b) Varying number
of providers n

n
Random Search

alone in CB

12 1.84 1.08
10 1.81 1.10
8 1.78 1.11
6 1.71 1.14
5 1.68 1.15
4 1.62 1.17
3 1.54 1.18
2 1.39 1.18

C.1 SEARCH SPACE DISTRIBUTION

In this experiment, we assume n = 3 providers and the means of the providers’ distributions were
fixed as µi = i for i = 0, . . . , n− 1. We were then able to manipulate the overlap between providers’
distributions by changing the standard deviation σ of the distributions. In Table 6a we present the
average ranks of CB with RS and standalone RS for various standard deviations σ. As expected, for
small values of σ, i.e., when the distributions have almost no overlap, CloudBandit gives clearly better
results than standalone Random Search. For big values of σ, where the distributions significantly
overlap, we can observe that CloudBandit still wins over standalone RS. However, the difference
between average ranks of the two methods is less significant than for small values of σ.

The results presented in Table 6a allow us to explain why CloudBandit gives better results on the
MOCCA dataset when optimizing for cost than in case of optimizing for time, as presented in Tables
1a and 1b. As presented in Figures 2a and 2b, in practice the providers’ distributions show bigger
overlap for runtime measurements than in terms of cost.

C.2 NUMBER OF PROVIDERS

We further evaluated CloudBandit’s results for various numbers of providers n. In this experiment,
each case has a radically different search space size because of the varying number of providers.
Therefore, instead of using the same total budget for each test case, we fix the initial budget of
CloudBandit to b1 = 8. The average ranks of CloudBandit with RS and standalone RS are presented
in Table 6b. In cases where many providers were available, CloudBandit has a significant advantage
over standalone Random Search. The difference between the methods decreases with the decline in
the number of providers, as each arm rejection in CloudBandit carries ever higher risk. However,
even for only 2 providers, CloudBandit gives better results than Random Search.

It should be noted that CloudBandit’s complexity grows rapidly with the growing number of providers.
A possible solution to this issue could be to reject more than one provider at the end of each round in
order to reduce the number of rounds needed. This possible modification could motivate future work
on CloudBandit.

16

Under review as a conference paper at ICLR 2022

D HYPERPARAMETER TUNING

In the previous experiment, default hyperparameters (HPs) were used for both AutoML baselines:
SMAC and RB, and a default growth rate of η = 2 was used for CB, alongside default HPs for the
component RBFOpt. Since the defaults for SMAC and RB were determined for a different application,
it is necessary to check whether their performance, as well as that of CB, can be improved by HP
tuning.

To achieve this, we made a 67%/33% validation/test split of the workloads from MOCCA. For each
of the three algorithms, we defined a HP grid of equal size. The budget for all algorithms was fixed
to 33. We then performed a grid search to optimize the HPs: identifying the HP configuration that
achieved the lowest average regret on the validation set. For each algorithm, the best configuration
was then evaluated on the test set.

Table 7: Average regret using default and tuned hyperparameters.

optimization
target HP setting CB SMAC RB

val test val test val test

cost best 1.20 0.19 5.14 25.05 10.02 30.95
default 3.50 13.96 5.14 25.05 10.77 38.74

time best 11.69 11.52 12.64 11.75 20.23 22.13
default 13.48 11.53 14.60 14.84 26.04 26.23

Table 8: Detailed test results for CloudBandit and AutoML algorithms.

workload Optimization for cost Optimization for time

CB SMAC RB CB SMAC RB

buzz-polynomial_features 1.88 0.47 1.49 0.35 1.48 6.11
buzz-spectral_clustering 0.00 0.49 1.92 7.91 2.54 17.70
buzz-xgboost 0.00 0.00 0.39 88.97 86.86 138.81
creditcard-naive_bayes 0.00 4.28 22.04 6.18 5.41 9.77
creditcard-standard_scaler 0.00 24.79 20.80 0.92 2.89 4.71
santander-kmeans 0.00 3.23 3.19 1.57 3.90 7.46
santander-linear_regression 0.00 1.44 8.41 1.28 2.17 4.77
santander-poisson_regression 0.00 195.28 239.53 1.71 1.94 4.34
santander-quantile_transformer 0.00 20.53 11.31 0.68 2.44 3.57
santander-xgboost 0.00 0.00 0.39 5.59 7.90 24.01

Table 9: Hyperparameter search space for each of the compared algorithms.

algorithm parameter values best setting
for cost

best setting
for time

CB
b1 1, 2, 3, 4, 5 1 3
rbf cubic, linear, gaussian linear gaussian
algorithm Gutmann, MSRSM Gutmann Gutmann

SMAC
mode SMAC4HPO, SMAC4AC SMAC4HPO SMAC4AC
acq_opt_challengers 50, 500, 5000 500 500
rand_prob 0.1, 0.3, 0.5, 0.7, 0.9 0.5 0.5

RB
estimator RF, GP GP RF
n_init 2, 5, 10, 12, 15 15 15
acq_func LCB, PI, EI PI EI

The results are presented in Table 7 which shows the average regret, on both the validation set and test
set, for each of the three algorithms, using both the default and tuned HPs. We see that, in most cases,

17

Under review as a conference paper at ICLR 2022

HP tuning helped to improve the average regret on the test set, relative to the default HPs. However,
there is no change in the relative order of the algorithms, both for the cost, as well as for the time
optimization target. Additionally, in Table 8 we list the average test scores of best HP configurations
of all 3 algorithms, individually for each test workload. The winning results for each workload and
optimization target were highlighted in bold. Finally, Table 9 lists all hyperparameters tuned for each
algorithm, together with value ranges and best configurations selected for both optimization targets.

E BEST-k ARMS SELECTION

Another extension of CloudBandit is a scenario in which the user wishes to receive more than one
cloud recommendation at a time and choose themself which provider they wish to use. Specifically,
we focus on a case in which k = 2 best providers (and their best configurations) are to be identified.
This can be achieved by running the traditional 1-best-arm identification CloudBandit scheme as
presented in Section 3.1 and suggesting 2 best providers found throughout the optimization process
(the arms that survived up to round n− 1). However, this approach treats the suggested arms unfairly,
as one of the arms receives a significant additional evaluation budget in the final round. To solve this
issue, a simple and effective modification of CloudBandit for this scenario can be the 2-best-arms
scheme, which stops the algorithm when the size of the set of active arms A is down to k = 2 arms,
so that both candidates are treated equally budget-wise.

In order to evaluate CloudBandit’s performance in this scenario, we run both schemes described above
on the MOCCA dataset, this time expecting 2 arm candidates each time. We ensure fair comparison
by setting equal total evaluation budgets (identical starting budgest b1 and different growth factors
η = 2, η = 4 for 1-best-arm and 2-best-arms schemes, respectively). Table 10 presents the average
regrets of both the traditional 1-best-arm CB scheme and the 2-best-arms scheme. The regrets of
the first (better) candidates (denoted as option 1 in Table 10) were calculated with respect to the
true minimum of the MOCCA dataset, similarly to Section 5. The regrets of the second (worse)
candidates (denoted as option 2) were calculated with respect to the minimum over all providers
except for the one which gives the true minimum. The better result across CB schemes for each
candidate is highlighted in bold. The results for both optimization targets were averaged over 50
random seeds and all 30 workloads. As the component BBO, we use RBFOpt in both cases.

Table 10: Average regrets of 2 best provider candidates for 1-best-arm and 2-best-arms CB schemes.

budget
Optimization for cost Optimization for time

2-best-arms 1-best-arm 2-best-arms 1-best-arm

option 1 option 2 option 1 option 2 option 1 option 2 option 1 option 2

11 58.74 96.33 48.01 128.77 34.79 46.56 35.05 63.29
22 21.70 21.21 18.11 72.61 18.59 24.17 19.00 38.27
33 9.03 15.06 6.99 32.94 13.59 16.91 12.83 26.33
44 0.64 11.50 0.53 17.05 9.82 13.84 10.12 19.41
55 0.18 6.20 0.18 11.33 5.34 11.10 5.57 15.00
66 0.00 2.39 0.05 9.22 4.18 8.20 4.69 11.40
77 0.00 0.88 0.00 8.18 3.41 6.48 3.93 8.89
88 0.00 0.41 0.00 7.21 2.51 4.73 3.43 7.07

The 2-best-arms scheme gives much better second candidates for both optimization targets, which
was expected, as this scheme devotes a bigger budget to the second best arm. For the cost optimization
target, the 1-best-arm scheme produces comparable or better first candidates than the 2-best-arms
scheme for most budgets. However, for the runtime optimization target, the 2-best-arms scheme
produces better first candidates than the 1-best-arm scheme, although it gives a smaller evaluation
budget to the winning arm. As it was shown in Figure 2b, there is a significant overlap between
providers’ distributions for the runtime optimization target. Better results of the 2-best-arms scheme
for this optimization target may indicate that when there is too much overlap between providers’
distributions, the regular 1-best-arm CloudBandit scheme can sometimes reject providers too aggres-
sively. In such cases, CloudBandit may therefore benefit from keeping more than one provider in the
final optimization round.

18

Under review as a conference paper at ICLR 2022

F DYNAMIC EFFECTS

One of important issues in the cloud is the dynamic nature of performance, which may differ
depending on the load on the data center at any given instant. The tail effects (worst case scenario
results) are of special interest from the users’ perspective, so that their workloads are guaranteed not
to exceed some acceptable limits.

To analyze CloudBandit’s performance in the dynamic environment, we re-run some of the workloads
from MOCCA multiple times. For this experiment, we chose the 5 fastest workloads, as they should
be the most susceptible to tail effects. We consider various statistical metrics that can be used by
CloudBandit as the optimization metric: the mean, median and 90th percentile of results (as used
by Yadwadkar et al. (2017b)). The experiments were run for the time optimization target and repeated
over multiple random seeds.

Table 11 compares the average regrets of CloudBandit with RBFOpt and standalone RBFOpt for the
analyzed statistical metrics. Additionally, Figures 3a-3c present the probability distribution functions
(PDFs) of the analyzed metrics of all 3 cloud providers for a representative workload. We can see
that despite differences between the PDFs of the analyzed statistical metrics, CloudBandit’s results
are comparable for all of them. This confirms that CloudBandit can be used universally, regardless of
the metric of interest.

Figure 3: PDFs of various statistical metrics for a representative workload.

(a) Provider A (b) Provider B

(c) Provider C

Table 11: Average regrets of CloudBandit using various statistical metrics of the data.

budget mean median 90th percentile

RBFOpt CB RBFOpt CB RBFOpt CB

11 21.45 17.25 19.98 16.54 23.53 19.59
22 12.72 8.03 11.25 8.51 14.18 8.81
33 8.79 6.24 8.42 5.97 10.64 6.74
44 7.04 4.20 6.97 4.66 8.57 4.83
55 6.06 3.81 5.39 3.80 7.25 4.21
66 5.29 2.69 4.45 3.01 5.99 3.23
77 4.23 2.11 3.88 2.01 5.17 1.98
88 3.86 1.67 3.33 1.42 4.41 1.45

19

	Introduction
	Problem Statement and Background
	Multi-cloud configuration as optimization
	Related Work in Cloud Literature
	Relation to AutoML
	Related work in AutoML

	CloudBandit - a multi-cloud configuration solution
	Algorithm Description
	Closely Related Algorithms

	MOCCA: an Offline Multi-Cloud Benchmark Dataset
	Experimental Results
	Choosing the component BBO
	Comparison to existing AutoML and multi-cloud methods
	Further experiments

	Conclusion
	Details of the MOCCA dataset
	Continuous CloudBandit
	Implementation Challenges
	Comparison against intermittent CloudBandit

	Sensitivity analysis
	Search space distribution
	Number of providers

	Hyperparameter Tuning
	Best-k arms selection
	Dynamic effects

