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Abstract

We consider the problem of controlling an unknown linear dynamical system under
adversarially changing convex costs and full feedback of both the state and cost
function. We present the first computationally-efficient algorithm that attains an
optimal

√
𝑇-regret rate compared to the best stabilizing linear controller in hindsight,

while avoiding stringent assumptions on the costs such as strong convexity. Our
approach is based on a careful design of non-convex lower confidence bounds for
the online costs, and uses a novel technique for computationally-efficient regret
minimization of these bounds that leverages their particular non-convex structure.

1 Introduction

We study a general setting of online adaptive linear control, where a learner attempts to stabilize an
initially unknown discrete-time linear dynamical system while minimizing its cumulative cost with
respect to an arbitrary sequence of convex loss functions. The system dynamics evolve according to

𝑥𝑡+1 = 𝐴★𝑥𝑡 + 𝐵★𝑢𝑡 + 𝑤𝑡 ,

where 𝑥𝑡 ∈ R𝑑𝑥 , 𝑢𝑡 ∈ R𝑑𝑢 are the (fully observable) system’s state and learner’s control at time step
𝑡, and 𝑤𝑡 ∈ R𝑑𝑥 is the system noise added at step 𝑡 which is a zero-mean i.i.d. Gaussian random
variable. The matrices 𝐴★ ∈ R𝑑𝑥×𝑑𝑥 and 𝐵★ ∈ R𝑑𝑥×𝑑𝑢 are the system parameters, which are assumed
to be unknown ahead of time and need to be learned adaptively. The goal is to minimize regret with
respect to a sequence of convex loss functions 𝑐1, . . . , 𝑐𝑇 over 𝑇 time steps, namely, the difference
between the learner’s cumulative control cost

∑𝑇
𝑡=1𝑐𝑡 (𝑥𝑡 , 𝑢𝑡 ) and the best cumulative cost achieved

by a control policy from a given set of benchmark policies.

This general framework encapsulates numerous variations of learning in linear control that have
been studied extensively in the literature. When the system parameters are known ahead of time
and the costs are fixed and known (convex) quadratics, this amounts to the classical “planning”
formulation of linear-quadratic (LQ) stochastic control; see [12]. The special case where the costs
are fixed and known quadratics but the system parameters are unknown has been addressed much
more recently [1, 21, 31]. This was recently extended to allow for a fixed and known convex
cost [33] and later for stochastic i.i.d. costs [15]. On the other hand, the case where the system
parameters are known but the quadratic costs are allowed to vary arbitrarily between rounds was
first addressed in [20], and has been later extended in various ways to allow for arbitrarily-varying
convex costs [5, 6, 36, 13]. In all of these special cases, we now know of efficient algorithms with
rate-optimal

√
𝑇 regret guarantees.

For the online adaptive linear control problem in its full generality, however, no regret-optimal
algorithms are presently known. The state-of-the-art is due to [36] that achieved 𝑇2/3-regret using a
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simple explore-then-exploit strategy: in the exploration phase, their algorithm estimates the dynamics
parameters by exciting the system with noise; then, in the exploitation phase it runs an online
procedure for known dynamics using the estimated transitions. This simple strategy has also been
shown to achieve the optimal

√
𝑇-regret when the online costs are additionally strongly convex,

demonstrating that the stringent strong convexity assumption allows one to circumvent the challenge
of balancing exploration and exploitation in online adaptive linear control.

In this paper, we resolve this gap and give the first rate-optimal algorithm for the general online
adaptive linear control problem, accommodating arbitrarily changing general convex (and Lipschitz)
costs and unknown system parameters. Our algorithm is computationally efficient and attains a

√
𝑇

regret guarantee with polynomial dependence on the natural parameters of the problem.

Techniques. Our approach builds upon a combination of recent techniques in online linear control.
First, we rely on the Disturbance Action Policies (DAPs) of Agarwal et al. [5]: our algorithm
generates DAPs that choose the control at each time step as a linear transformation of past noise
terms; the DAPs themselves are maintained by online convex optimization algorithms that generate
slowly-changing decisions for guaranteeing the stability of the system throughout the learning process.
Moreover, since the dynamics are unknown, our algorithm estimates the noise terms on-the-fly, and
uses these estimates in place of the true noise vectors (this is akin to a technique in [33]).

Second, following the recent developments of Cassel et al. [15] for the case of stochastic costs, we
perform regret minimization with respect to optimistic lower confidence bounds of the online costs.
However, these confidence bounds turn out to be inherently nonconvex. To maintain computational
efficiency, we adapt a trick of Dani et al. [22] (in the context of stochastic linear bandits) for
relaxing the nonconvex objectives so as to assume the form of a minimum of a small number of
convex objectives; then, we hedge over multiple copies of online gradient descent as “experts” in a
meta-algorithm, where each copy minimizes regret with respect to one of these convex objectives.

Even so, the decisions of the hedging meta-algorithm are random and can thus change abruptly,
interfering with the slowly-moving nature of the DAPs that is crucial for the stability of the system.
We address this issue by using a lazy version of Follow the Perturbed Leader in place of the meta-
algorithm (due to [7]) that employs only a small number of switches between experts. Overall, this
results in a computationally efficient scheme that maintains the

√
𝑇 regret rate of the individual

gradient-based experts.

Related work. The problem of adaptive linear-quadratic control has a long history [e.g., 12]. Recent
years have seen a renewed interest in this problem through the modern view of regret minimization—
building on classic asymptotic results to obtain finite-time guarantees [1, 3, 9, 23, 24, 27, 32]. More
recently [21, 31] provided polynomial-time algorithms obtaining an optimal

√
𝑇 regret rate. The

optimality of the
√
𝑇 rate was proved concurrently by [14, 35].

More recently, [33] gave an efficient algorithm with
√
𝑇 regret for learning the dynamics under

a fixed known convex cost. [33] also observed that the problem of learning both dynamics and
stochastic convex costs under bandit feedback is reducible to an instance of stochastic bandit convex
optimization for which complex, yet polynomial-time, generic algorithms exist [4]. Cassel et al. [15]
later study the problem of learning the dynamics and stochastic convex costs under full-information
feedback. Unlike the approach of [33], their algorithm is based on an “optimism in the face of
uncertainty” principle and is thus conceptually simpler and more efficient to implement.

Our approach relies on the standard assumption that the controller is provided with some initial
stabilizing policy. First proposed in [23], such an assumption yields regret that is polynomial in the
problem dimensions, and was later shown to be necessary by [18].

Past work has also considered adaptive LQG control, namely linear-quadratic control under partial
observability of the state [for example, 36]. However, it turned out that in the stochastic setting,
learning the optimal partial-observation linear controller is in a sense easier than learning the full-
observation controller. It is in fact possible to obtain poly(log𝑇) regret for adaptive LQG [29]. This
result is facilitated by simplifying assumptions on both the noise distribution as well as the benchmark
policy, assumptions which we do not make in this work.

Most works on regret minimization in adaptive control are model-based; meaning, the algorithm
attempts to estimate the model parameters. Previous literature also considered the alternative approach
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of model-free control [e.g., 2, 17, 25, 30, 37]. These works, however, rely heavily on the assumption
of quadratic strongly-convex costs and do not apply to general convex costs.

Lastly, [13, 26, 33] consider control under bandit feedback. These results are unfortunately impeded
by the state-of-the-art in Bandit Convex Optimization, that is either not efficient in practice (namely,
high-degree polynomial runtime) or requires further assumptions on the curvature of the cost functions.
For this reason we focus here on full-information feedback, with the hope that our techniques can be
adapted to bandit feedback in subsequent work, contingent on future advancements in BCO.

2 Preliminaries

2.1 Linear control background

A discrete-time linear control system is one whose dynamics are governed by the following rule:
𝑥𝑡+1 = 𝐴★𝑥𝑡 + 𝐵★𝑢𝑡 + 𝑤𝑡 ,

where 𝐴★ ∈ R𝑑𝑥×𝑑𝑥 , 𝐵★ ∈ R𝑑𝑥×𝑑𝑢 , and where 𝑤𝑡 ∈ R𝑑𝑥 is zero-mean i.i.d. In the planning
version of the problem the controller knows 𝐴★, 𝐵★ and, at each time 𝑡, can choose 𝑢𝑡 as a function
of 𝑥1, . . . , 𝑥𝑡 . After choosing 𝑢𝑡 , the controller incurs a known cost 𝑐(𝑥𝑡 , 𝑢𝑡 ). Classic results
pertain to quadratic costs, and state that the control rule that minimizes the steady state cost 𝐽 (𝜋) =
lim𝑇→∞ E𝜋 [ 1

𝑇

∑𝑇
𝑡=1 𝑐(𝑥𝑡 , 𝑢𝑡 )], chooses 𝑢𝑡 = 𝐾𝑥𝑡 for some matrix 𝐾 ∈ R𝑑𝑢×𝑑𝑥 . Moreover, the

optimal rule 𝜋★ stabilizes the system, implying that 𝐽 (𝜋★) is finite and well-defined for any quadratic
cost function.

We require the following notion of strong stability [20], which is standard in the literature and whose
purpose is to quantify the classic notion of (asymptotic) stability.

Definition 1 (Strong stability). A controller 𝐾 for the system (𝐴★, 𝐵★) is (𝜅, 𝛾)−strongly stable
(𝜅 ≥ 1, 0 < 𝛾 ≤ 1) if there exist matrices 𝑄, 𝐿 such that 𝐴★ + 𝐵★𝐾 = 𝑄𝐿𝑄−1, ∥𝐿∥ ≤ 1 − 𝛾, and
∥𝐾 ∥, ∥𝑄∥∥𝑄−1∥ ≤ 𝜅.

2.2 Problem setup

We address the problem of controlling an unknown linear dynamical system subject to general
adversarial convex costs with full state and cost observation. In particular, the system parameters 𝐴★,
𝐵★ are initially unknown and the learner repeatedly interacts with the system as follows:

(1) The player observes state 𝑥𝑡 ;
(2) The player chooses control 𝑢𝑡 ;
(3) The player observes the cost function 𝑐𝑡 : R𝑑𝑥 × R𝑑𝑢 → R, and incurs cost 𝑐𝑡 (𝑥𝑡 , 𝑢𝑡 ).

Note that (𝑤𝑡 )∞𝑡=1 are unobserved, and the cost 𝑐𝑡 is revealed only after selecting 𝑢𝑡 . Our goal is to
minimize regret with respect to any policy 𝜋 in a benchmark policy class Π. To that end, denote by
𝑥 𝜋𝑡 , 𝑢

𝜋
𝑡 the state and action sequence resulting when following a policy 𝜋; then the regret compared to

𝜋 is defined as

regretT (𝜋) =
𝑇∑︁
𝑡=1

𝑐𝑡 (𝑥𝑡 , 𝑢𝑡 ) − 𝑐𝑡 (𝑥 𝜋𝑡 , 𝑢𝜋𝑡 ),

and we seek to bound this quantity with high probability for a fixed 𝜋 ∈ Π. We focus on the
benchmark policy class of strongly stable linear policies that choose 𝑢𝑡 = 𝐾𝑥𝑡 . i.e.,

Πlin = {𝐾 ∈ R𝑑𝑢×𝑑𝑥 : 𝐾 is (𝜅, 𝛾)-strongly stable}.

We make the following assumptions on our learning problem:

• Non-stochastic convex and Lipschitz costs. The costs 𝑐𝑡 are arbitrarily determined by an oblivious
adversary4 such that each 𝑐𝑡 (𝑥, 𝑢) is convex in the pair (𝑥, 𝑢) and for any (𝑥, 𝑢), (𝑥 ′, 𝑢′) we have
|𝑐𝑡 (𝑥, 𝑢) − 𝑐𝑡 (𝑥 ′, 𝑢′) | ≤ ∥(𝑥 − 𝑥 ′, 𝑢 − 𝑢′)∥;5

4An oblivious adversary does not use past random choices of the learner to select its loss functions.
5In the full version of the paper [16] we also explain how to accommodate quadratic losses via an appropriate

choice of a normalizing constant.
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• i.i.d. Gaussian noise. (𝑤𝑡 )𝑇𝑡=1 is a sequence of i.i.d. random variables such that 𝑤𝑡 ∼ N(0, 𝜎2𝐼);
• Stabilizable system. 𝐴★ is (𝜅, 𝛾)−strongly stable, and ∥𝐵★∥ ≤ 𝑅𝐵.

Note that the assumption that 𝐴★ is strongly stable is without loss of generality. Otherwise, given
access to a stabilizing controller 𝐾0, we show in the full version of the paper [16] a generic black-
box reduction that takes any learning algorithm that assumes strongly-stable 𝐴★, augments its
observations and adds 𝐾0𝑥𝑡 to its predicted actions. This essentially replaces 𝐴★ with 𝐴★ + 𝐵★𝐾0,
which is (𝜅, 𝛾)−strongly stable as desired, and only incurs a 2𝜅 multiplicative factor in the regret.

The assumption that the noise distribution is known is a standard one that appears in several past
works [23, 31, 21, 33]. However some works, e.g., [6, 13, 35], only assume light-tailed (sub-
Gaussian or bounded) noise with lower bounded covariance. In the context of this work, the known
distribution assumption is used to generate one “fresh” noise sample per time step (see Algorithm 1
and Section 3.3 for further details). We conjecture that recycling past noise estimates could replace
the noise generation thus dismissing the known distribution assumption, but leave this as an open
problem for future research.

2.3 Disturbance Action Policies

We use the, now standard, class of Disturbance Action Policies (DAPs) first proposed by [5]. This
class is parameterized by a sequence of matrices {𝑀 [ℎ] ∈ R𝑑𝑢×𝑑𝑥 }𝐻ℎ=1. For brevity of notation, these
are concatenated into a single matrix 𝑀 ∈ R𝑑𝑢×𝐻𝑑𝑥 defined as 𝑀 =

(
𝑀 [1] · · ·𝑀 [𝐻 ] ) . A DAP 𝜋𝑀

chooses actions

𝑢𝑡 =

𝐻∑︁
ℎ=1

𝑀 [ℎ]𝑤𝑡−ℎ,

where recall that the 𝑤𝑡 are system disturbances. Consider the benchmark policy class6

ΠDAP = {𝜋𝑀 : ∥𝑀 ∥𝐹 ≤ 𝑅M}.
There are two main reasons for considering the DAP parameterization. First, the loss functions are
convex in 𝑀 , a fact which is generally untrue for 𝐾 in a linear policy 𝑢𝑡 = 𝐾𝑥𝑡 . This paves the way
for tools from the online convex optimization literature. Second, as shown in [5, Lemma 5.2], if
𝐻 ∈ Ω(𝛾−1 log𝑇) and 𝑅M ∈ Ω(𝜅2

√︁
𝑑𝑢/𝛾) then ΠDAP is a good approximation for Πlin in the sense

that a regret guarantee with respect to ΠDAP gives the same guarantee with respect to Πlin up to a
constant additive factor. In light of the above, our regret guarantee will be given with respect to ΠDAP.

Bounded memory representation. As observed in recent literature, the linear dynamics have an
infinitely long memory, i.e., all past actions have some effect on the current state, and as such on the
losses. However, due to the stability of 𝐴★, the effective memory of the system, 𝐻, is essentially a
constant. To see this, unroll the transition model to get that

𝑥𝑡 = 𝐴
𝐻
★ 𝑥𝑡−𝐻 +

𝐻∑︁
𝑖=1

(
𝐴𝑖−1
★ 𝐵★𝑢𝑡−𝑖 + 𝐴𝑖−1

★ 𝑤𝑡−𝑖
)
= 𝐴𝐻

★ 𝑥𝑡−𝐻 + Ψ★�̃�𝑡−1 + 𝑤𝑡−1, (1)

where Ψ★ = [𝐴𝐻−1
★ 𝐵★, . . . , 𝐴★𝐵★, 𝐵★, 𝐴

𝐻−1
★ , . . . , 𝐴★] ∈ R𝑑𝑥×𝑑Ψ and �̃�𝑡 = [𝑢T

𝑡−𝐻 , . . . , 𝑢
T
𝑡 ,

𝑤T
𝑡−𝐻 , . . . , 𝑤

T
𝑡−1]

T ∈ R𝑑Ψ , where 𝑑Ψ := 𝐻𝑑𝑢 + (𝐻 − 1)𝑑𝑥 . Now, since 𝐴★ is strongly stable, the term
𝐴𝐻
★ 𝑥𝑡−𝐻 quickly becomes negligible. Following the notation set by [15], this observation is combined

with the DAP policy parameterization to define the following bounded memory representations. Let

𝑃(𝑀) =

©­­­­­­­­­­­«

𝑀 [𝐻 ] 𝑀 [𝐻−1] · · · 𝑀 [1]

𝑀 [𝐻 ] 𝑀 [𝐻−1] · · · 𝑀 [1]

. . .
. . .

. . .

𝑀 [𝐻 ] 𝑀 [𝐻−1] · · · 𝑀 [1]

𝐼

. . .

𝐼

ª®®®®®®®®®®®¬
, (2)

6We note that a more common definition uses
∑𝐻

ℎ=1∥𝑀
[ℎ] ∥ to measure the size of the class. We chose the

Frobenius norm for simplicity of the analysis, but replacing it would not change the results significantly.
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and for an arbitrary sequence of disturbances 𝑤 = {𝑤𝑡 }𝑡≥1 define

𝑢𝑡 (𝑀;𝑤) =
∑𝐻

ℎ=1 𝑀
[ℎ]𝑤𝑡−ℎ;

𝜌𝑡 (𝑀;𝑤) = (𝑢𝑡+1−𝐻 (𝑀;𝑤)T, . . . 𝑢𝑡 (𝑀;𝑤)T, 𝑤𝑡+1−𝐻 , . . . , 𝑤𝑡−1)T = 𝑃(𝑀)𝑤𝑡+1−2𝐻:𝑡−1;
𝑥𝑡 (𝑀;Ψ, 𝑤) = Ψ𝜌𝑡−1 (𝑀;𝑤) + 𝑤𝑡−1. (3)

Notice that 𝑢𝑡 , 𝜌𝑡 , 𝑥𝑡 do not depend on the entire sequence 𝑤, but only 𝑤𝑡−𝐻:𝑡−1, 𝑤𝑡+1−2𝐻:𝑡−1, and
𝑤𝑡−2𝐻:𝑡−1 respectively. Importantly, this means that we can compute these functions with knowledge
of only the last (at most) 2𝐻 disturbances. While this notation does not reveal this fact explicitly, it
helps with both brevity and clarity.

Algorithm 1 OCO in Adaptive Linear Control
1: input: confidence parameter 𝛿, memory length 𝐻, optimism parameter 𝛼, regularization parame-

ters 𝜆Ψ, 𝜆𝑤 , learning rate 𝜂𝐺 , noise bound𝑊 .
2: set 𝑖 = 1, 𝜏 = 1, 𝑉1 = 𝜆Ψ 𝐼, 𝑀1 = 0 and �̂�𝑡 = 0, �̃�𝑡 , 𝑢𝑡 = 0 for all 𝑡 < 1 .
3: define loss scaling function:

𝐶𝑀 (Ψ) :=
√

8𝑊𝑅M𝐻∥Ψ∥𝐹 + 𝛼
√︁

2/𝐻 (2 + 𝑅−1
M
√︁
𝑑𝑥).

4: for 𝑡 = 1, 2, . . . , 𝑇 do
5: play 𝑢𝑡 =

∑𝐻
𝑖=1 𝑀

[ℎ]
𝑡 �̂�𝑡−ℎ .

6: set 𝑉𝑡+1 = 𝑉𝑡 + 𝜌𝑡 𝜌T
𝑡 for 𝜌𝑡 = (𝑢T

𝑡+1−𝐻 , . . . , 𝑢
T
𝑡 , �̂�

T
𝑡+1−𝐻 , . . . , �̂�

T
𝑡−1)

T .
7: observe 𝑥𝑡+1 and cost function 𝑐𝑡 .
8: calculate

(𝐴𝑡 𝐵𝑡 ) = arg min
(𝐴 𝐵) ∈R𝑑𝑥×(𝑑𝑥+𝑑𝑢 )

𝑡∑︁
𝑠=1

∥(𝐴 𝐵)𝑧𝑠 − 𝑥𝑠+1∥2 + 𝜆𝑤 ∥(𝐴 𝐵)∥2
𝐹 , where 𝑧𝑠 =

(
𝑥𝑠
𝑢𝑠

)
.

9: estimate noise �̂�𝑡 = Π{ ∥𝑤 ∥≤𝑊 } [𝑥𝑡+1 − 𝐴𝑡𝑥𝑡 − 𝐵𝑡𝑢𝑡 ].
10: sample �̃�𝑡 ∼ N(0, 𝜎2𝐼𝑑𝑥

).
11: if det(𝑉𝑡+1) > 2 det(𝑉𝜏𝑖 ) then
12: start new epoch: 𝑖 = 𝑖 + 1, 𝜏𝑖 = 𝑡 + 1.
13: estimate system parameters

Ψ𝜏𝑖 = arg min
Ψ∈R𝑑𝑥×𝑑Ψ

{
𝑡∑︁

𝑠=1
∥Ψ𝜌𝑠 − 𝑥𝑠+1∥2 + 𝜆Ψ∥Ψ∥2

𝐹

}
.

14: initialize A = new instance of BFPL★
𝛿/6 , and set 𝑀𝜏𝑖 = . . . = 𝑀𝜏𝑖+2𝐻 = 0.

15: else if 𝑡 ≥ 𝜏𝑖 + 2𝐻 then
16: define expert loss functions: ∀𝑘 ∈ [𝑑Ψ] × [(2𝐻 − 1)𝑑𝑥], 𝜒 ∈ {±1}

𝑓𝑡 (𝑀; 𝑘 , 𝜒) = 𝑐𝑡 (𝑥𝑡 (𝑀;Ψ𝜏𝑖 , �̃�), 𝑢𝑡 (𝑀; �̃�)) − 𝛼𝜎𝜒 ·
(
𝑉
−1/2
𝜏𝑖 𝑃(𝑀)

)
𝑘
.

17: define loss vector ℓ̃𝑡 ∈ R2(2𝐻−1)𝑑𝑥𝑑
2
Ψ s.t. (ℓ̃𝑡 )𝑘,𝜒 = 𝑓𝑡 (𝑀𝑡 (𝑘 , 𝜒); 𝑘 , 𝜒)/𝐶𝑀 (Ψ𝜏𝑖 ).

18: update experts: ∀𝑘 ∈ [𝑑Ψ] × [(2𝐻 − 1)𝑑𝑥], 𝜒 ∈ {±1}

𝑀𝑡+1 (𝑘 , 𝜒) = ΠM
[
𝑀𝑡 (𝑘 , 𝜒) − 𝜂𝐺∇𝑀 𝑓𝑡 (𝑀𝑡 (𝑘 , 𝜒); 𝑘 , 𝜒)

]
.

19: update prediction (𝑘𝑡+1, 𝜒𝑡+1) = A(ℓ̃𝑡 ) and set 𝑀𝑡+1 = 𝑀𝑡+1 (𝑘𝑡+1, 𝜒𝑡+1)

3 Algorithm and Main Result

In this section we present our algorithm for regret minimization in linear systems with unknown
dynamics and adversarial convex costs; see Algorithm 1. We denote by ΠM the projection onto M.
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The algorithm mediates between least squares estimation of the system dynamics (Lines 8 and 13),
and optimizing the policy w.r.t. adversarially-changing cost functions. For OCO, the algorithm uses
a combination of Online Gradient Descent [38] (Line 18) and BFPL★

𝛿 [7] (Line 14)—an experts
algorithm that also guarantees an overall small number of switches with probability at least 1 − 𝛿.
Our algorithm uses DAP parameterization (Line 5; see Section 2.3 and notations therein), and feeds
the aforementioned online optimization algorithms with lower confidence bounds of the online costs.
See below for further details on the algorithm’s operation.

We have the following guarantee for Algorithm 1. The proof is deferred to the full version of the
paper [16].

Theorem 2 (Simplified version of Theorem 7 in the full version of the paper [16]). Let 𝛿 ∈ (0, 1)
and suppose that we run Algorithm 1 with parameters 𝑅M , 𝑅𝐵 ≥ 1 and for proper choices of
𝑊, 𝐻, 𝜆𝑤 , 𝜆Ψ, 𝜂𝐺 , 𝛼. If 𝑇 ≥ 8 then for any 𝜋 ∈ ΠDAP, with probability at least 1 − 𝛿,

regret𝑇 (𝜋) ≤ poly(𝜅, 𝛾−1, 𝜎, 𝑅𝐵, 𝑅M , 𝑑𝑥 , 𝑑𝑢, log(𝑇/𝛿))
√
𝑇.

Our algorithm is comprised of multiple components working in tandem. We now give a brief overview
of each of the components and how they play together. We note that some components previously
appeared in [15], and provide a detailed comparison at the end of the section.

3.1 Prerequisites: system estimation and DAP parameterization

Parameter estimation: The algorithm proceeds in epochs. At the beginning of each epoch, it estimates
the unrolled model via least squares using all past observations (Line 13), and the estimate Ψ𝜏𝑖 is then
kept fixed throughout the epoch. The epoch ends when the determinant of 𝑉𝑡 is doubled (Line 11);
intuitively, when the confidence of the unrolled model increases substantially.7 Throughout the epoch,
the algorithm maintains estimates of the transition noise (�̂�𝑡 )𝑇𝑡=1 (Lines 8 and 9). We observe that
these noise estimates are essentially produced for “free” and no explicit exploration is needed.

DAP implementation: While the benefits of ΠDAP are clear, notice that it cannot be implemented as
is since we do not have access to the system disturbances 𝑤𝑡 nor can we accurately recover them
(due to the uncertainty in the transition model). Similarly to previous works, our algorithm thus uses
estimated disturbances �̂�𝑡 to compute its actions. At each time step 𝑡, the algorithm chooses 𝑢𝑡 as a
linear function of the past 𝐻 noise estimates, and parameterized by 𝑀𝑡 (Line 5). 𝑀𝑡 itself is updated
using OCO on surrogate cost functions that are formed as a composition between 𝑐𝑡 (𝑥, 𝑢) and the
bounded memory representations 𝑢𝑡 (𝑀; �̂�), 𝑥𝑡 (𝑀;Ψ𝜏𝑖 , �̂�), implicitly assuming that 𝑀𝑡 was kept
fixed for the last 𝐻 time steps. It is therefore crucial that these representations closely reflect the state
and action that are actually observed, hence the OCO procedure has to make sure that the sequence
(𝑀𝑡 )𝑇𝑡=1 changes slowly (more on this below).

Construction of lower confidence bounds: The algorithm uses the estimated unrolled model to
minimize regret with respect to lower confidence bounds of the form:

𝑐𝑡 (𝑥𝑡 (𝑀;Ψ𝜏𝑖 , �̂�), 𝑢𝑡 (𝑀; �̂�)) − 𝛼′ · ∥𝑉−1/2
𝜏𝑖 𝜌𝑡−1 (𝑀; �̂�)∥. (4)

This lower confidence bound follows immediately by combining the Lipschitzness of 𝑐𝑡 and standard
self-normalizing concentration bounds [1]. In our analysis, we show that it indeed lower bounds
𝑐𝑡 (𝑥𝑡 , 𝑢𝑡 ). Such lower confidence bounds are used extensively in multi-armed bandit and reinforce-
ment learning literature to efficiently combine exploration and exploitation [10, 11]. Intuitively, their
minimization steers the resulting policy towards state-action pairs that either yield low cost, or are
insufficiently explored.

3.2 Key idea: making the algorithm efficient

The functions in Eq. (4) are, unfortunately, nonconvex (being a difference of two convex functions),
and thus cannot be used in OCO algorithms in their current form. However, we overcome this by
relaxing the functions in Eq. (4); we do so in two steps. First, we move to an expected, amortized
notion of optimism. We can do this since since �̂� ≈ 𝑤, which are i.i.d, and thus standard concentration
arguments imply that the realized bonus term is close to its conditional expectation, which takes the
form: √︃

E


𝑉−1/2

𝜏𝑖 𝜌𝑡−1 (𝑀;𝑤)


2

= 𝜎


𝑉−1/2

𝜏𝑖 𝑃(𝑀)



𝐹
,

7Concretely, the volume of the confidence ellipsoid around the unrolled model decreases by a constant factor.
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where 𝑃(𝑀) is define in Eq. (2). Second, building on a trick from [22] in the context of linear bandit
optimization, we further bound



𝑉−1/2
𝜏𝑖 𝑃(𝑀)




𝐹
≤ 𝑑Ψ



𝑉−1/2
𝜏𝑖 𝑃(𝑀)




∞ (where ∥·∥∞ is the entry-wise

matrix infinity norm). Due to an adaptivity issue (more on this below), we also replace the estimated
noises �̂� in the cost term with random simulated noises �̃� ∼ N(0, 𝜎2𝐼). After this relaxation, the
resulting optimistic cost can be written as a minimum of convex functions of the form

𝑓𝑡 (𝑀; 𝑘 , 𝜒) = 𝑐𝑡 (𝑥𝑡 (𝑀;Ψ𝜏𝑖 , �̂�), 𝑢𝑡 (𝑀; �̂�)) − 𝛼𝜎𝜒 ·
(
𝑉
−1/2
𝜏𝑖 𝑃(𝑀)

)
𝑘
, (5)

where 𝑘 ∈ [𝑑Ψ] × [(2𝐻 − 1)𝑑𝑥] is a matrix coordinate , 𝜒 ∈ {±1} is a sign variable , and 𝛼 = 𝑑Ψ𝛼
′.

Crucial to this trick is the fact that, unlike Eq. (4), the linearized non-convex term is independent of
the time index 𝑡. This observation yields computationally-efficient regret minimization via a two-tier
approach described as follows. We run a different copy of Online Gradient Descent [38] for each value
of 𝑘 , 𝜒, maintaining a different set of DAP parameters 𝑀𝑡 (𝑘 , 𝜒), and fed with 𝑓𝑡 (·; 𝑘 , 𝜒) (Line 18).
On top of the OGD algorithms, we run an experts meta-algorithm to minimize 𝑓𝑡 (𝑀𝑡 (𝑘 , 𝜒); 𝑘 , 𝜒)
over 𝑘 , 𝜒 (Line 19), treating the output of each OGD algorithm as an expert.

Observe that having initially taken expectation over the noises yields an exploration bonus term that,
for fixed 𝑀, is fixed throughout each epoch. This makes sure that our OCO algorithms, that are
restarted at every epoch, can compare against 𝑀★ (the best in hindsight) with 𝑘 and 𝜒 being fixed at
the start of the epoch.

3.3 Additional challenges

Stabilizing the meta-algorithm: Our hedging approach nevertheless comes at a price. The choices
of the meta-algorithm are inherently random, thus 𝑀𝑡 might change abruptly between consecutive
rounds (recall that DAP require slowly-changing 𝑀𝑡 ). We therefore use a version of Follow the Lazy
Leader (BFPL★; [7]) that guarantees, with high probability, both no-regret and a small number of
switches. The small number of switches in conjunction with the fact that each of the expert algorithms
generate slowly-changing decisions, guarantee that 𝑀𝑡 itself is slowly-changing overall.

Mitigating adaptivity in costs: Even so, the guarantees of BFPL★ hold only against oblivious adver-
saries (and this limitation is inherent, as [7] discuss extensively), yet the loss sequence constituting
of the functions in Eq. (5) is unfortunately not oblivious. This is because the noise estimate �̂� were
generated using policies derived from previous choices of BFPL★. We overcome this hindrance
relying on the fact that the noise vectors are drawn from a known (Gaussian) distribution. This allows
to sample i.i.d. copies of the noise vectors �̃� (Line 10) that we use in �̃� instead of �̂�, arriving at the
functions defined in Line 16, and ensuring that BFPL★ receives obliviously-generated losses.

Comparison with [15]. Algorithm 1 here shares some components with Algorithm 1 of [15]. In
particular, the parameter estimation and DAP implementation are identical. However, there are some
crucial differences. Most notably, the optimistic cost minimization must handle the non-stationary
adversarial costs rather than the stationary stochastic ones. As such Algorithm 1 employs a regret
minimization scheme with respect to the non-convex optimistic costs (Section 3.2) as opposed to a
simpler empirical risk minimization (ERM) in [15]. The stability and adaptivity challenges above are
also unique to our adversarial setting. In [15] these are avoided by changing the decision only a small
(logarithmic) number of times, which can only be done for stochastic costs.

4 Analysis

In this section we give a (nearly) complete proof of Theorem 2 in a simplified setup, inspired by [33],
where 𝐴★ = 0. The analysis in the general case is significantly more technical and thus deferred from
this extended abstract (see the full version of the paper [16] for full details).

Suppose that 𝐴★ = 0 and thus 𝑥𝑡+1 = 𝐵★𝑢𝑡 + 𝑤𝑡 , assume that 𝑐𝑡 (𝑥, 𝑢) = 𝑐𝑡 (𝑥), i.e., the costs do not
depend on 𝑢, and aim to minimize the pseudo regret,

max
𝑢:∥𝑢 ∥≤𝑅𝑢

𝑇∑︁
𝑡=1

[𝐽𝑡 (𝐵★𝑢𝑡 ) − 𝐽𝑡 (𝐵★𝑢)],

where 𝐽𝑡 (𝑥) = E𝑤𝑐𝑡 (𝑥 + 𝑤), is the expected instantaneous cost, which can be computed from 𝑐𝑡 (𝑥)
for a known noise distribution. The resulting problem is an instance of the following variant of online
convex optimization, which we now define with clean notation as to avoid confusion with our general
setting.
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4.1 Simplified setting: OCO with a Hidden Linear Transform

Consider the following setting of online convex optimization. Let S ⊆ R𝑑𝑎 be a convex decision set.
(We denote by ΠS the projection onto S.) At round 𝑡 the learner:

(i) predicts 𝑎𝑡 ∈ S;

(ii) observes cost function ℓ𝑡 : R𝑑𝑦 → R and state 𝑦𝑡+1 = 𝑄★𝑎𝑡 + 𝜖𝑡 ;
(iii) incurs cost ℓ𝑡 (𝑄★𝑎𝑡 ).

We have that 𝜖𝑡 ∈ R𝑑𝑦 are i.i.d. noise terms, 𝑄★ ∈ R𝑑𝑦×𝑑𝑎 is an unknown linear transform, and
𝑦𝑡 ∈ R𝑑𝑦 are noisy observations. The cost functions are chosen by an oblivious adversary, and we
consider minimizing the regret, defined as

regret𝑇 = max
𝑎∈S

𝑇∑︁
𝑡=1

[ℓ𝑡 (𝑄★𝑎𝑡 ) − ℓ𝑡 (𝑄★𝑎)] .

Assumptions. We make the following assumptions:

• ℓ𝑡 (·) are convex and 1−Lipschitz;

• There exist known𝑊, 𝑅𝑄 ≥ 0 such that ∥𝜖𝑡 ∥ ≤ 𝑊 , and ∥𝑄★∥ ≤ 𝑅𝑄.

• For all 𝑎 ∈ S we have ∥𝑎∥ ≤ 𝑅𝑎/2.

Algorithm 2 OCO with a hidden linear transform
1: input: optimism parameter 𝛼, regularizer 𝜆, learning rates 𝜂𝐺 , 𝜂𝑀
2: set: 𝑉1 = 𝜆𝐼, 𝑄1 = 0, 𝑖 = 1, 𝜏1 = 1, and 𝑎1 (𝑘 , 𝜒) ∈ S, 𝑝𝑡 (𝑘 , 𝜒) = 1/2𝑑𝑎 ∀𝑘 ∈ [𝑑𝑎], 𝜒 ∈ {±1}.
3: for 𝑡 = 1, 2, . . . , 𝑇 do
4: draw (𝑘𝑡 , 𝜒𝑡 ) ∼ 𝑝𝑡 , and play 𝑎𝑡 = 𝑎𝑡 (𝑘𝑡 , 𝜒𝑡 ).
5: observe 𝑦𝑡+1 = 𝑄★𝑎𝑡 + 𝑤𝑡 and cost function ℓ𝑡 , and set 𝑉𝑡+1 = 𝑉𝑡 + 𝑎𝑡𝑎T

𝑡 .
6: if det(𝑉𝑡+1) > 2 det(𝑉𝜏𝑖 ) then
7: start new episode 𝑖 = 𝑖+1, 𝜏𝑖 = 𝑡 +1, and set 𝑝𝑡+1 (𝑘 , 𝜒) = 1/2𝑑𝑎, 𝑎𝑡+1 (𝑘 , 𝜒) = 𝑎𝑡 (𝑘 , 𝜒).
8: estimate parameters: 𝑄𝜏𝑖 = arg min𝑄∈R𝑑𝑦×𝑑𝑎

∑𝑡
𝑠=1{∥𝑄𝑎𝑠 − 𝑦𝑠+1∥2 + 𝜆∥𝑄∥2

𝐹 }.
9: else

10: define expert loss functions: ℓ̄𝑡 (𝑎 ; 𝑘 , 𝜒) = ℓ𝑡 (𝑄𝜏𝑖𝑎) − 𝛼𝜒 · (𝑉−1/2
𝜏𝑖 𝑎)𝑘 .

11: update experts: 𝑎𝑡+1 (𝑘 , 𝜒) = ΠS
[
𝑎𝑡 (𝑘 , 𝜒) − 𝜂𝐺∇𝑎 ℓ̄𝑡 (𝑎𝑡 (𝑘 , 𝜒); 𝑘 , 𝜒)

]
. ⊲ OGD

12: update prediction: 𝑝𝑡+1 (𝑘 , 𝜒) ∝ 𝑝𝑡 (𝑘 , 𝜒) exp(−𝜂𝑀 ℓ̄𝑡 (𝑎𝑡 (𝑘 , 𝜒); 𝑘 , 𝜒)). ⊲ MW

Algorithm. Our algorithm for this simplified setup is detailed in Algorithm 2. Unlike the full control
setting, the adversarial costs here have no memory, thus enable the following simplifications compared
to Algorithm 1. First, we can forgo the DAP parameterization and directly optimize the prediction 𝑎𝑡 .
This both removes the need to estimate the disturbances, and simplifies the construction of the lower
confidence bound. Moreover, the lack of memory obviates the need to make our predictions change
slowly over time, and we replace the BFPL★ sub-routine with Multiplicative Weights (MW) [see 8].

4.2 Analysis

The main result of this section bounds the regret of Algorithm 2 with high probability.

Theorem 3. Let 𝛿 ∈ (0, 1) and suppose that we run Algorithm 2 with parameters

𝜂𝐺 =
𝑅𝑎

(2𝛼𝑅−1
𝑎 + 𝑅𝑄)

√
𝑇
, 𝜂𝑀 =

√︁
log(2𝑑𝑎)

2(2𝛼 + 𝑅𝑎𝑅𝑄)
√
𝑇
, 𝜆 = 𝑅2

𝑎, 𝛼 =
√︁
𝑑𝑎

(
𝑊𝑑𝑦

√︃
8 log 2𝑇

𝛿
+
√

2𝑅𝑎𝑅𝑄

)
.

If 𝑇 ≥ 8 then with probability at least 1 − 𝛿,

regret𝑇 ≤ 77𝑑3/2
𝑎

(
𝑊𝑑𝑦

√︃
8 log 2𝑇

𝛿
+ 𝑅𝑎𝑅𝑄

)√︂
𝑇 log2 4𝑑𝑎𝑇2

𝛿
.
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The proof of Theorem 3 is composed of two main lemmas. Similarly to the control setting, we first
define an optimistic loss

ℓ̄𝑡 (𝑎) = ℓ𝑡 (𝑄𝜏𝑖 (𝑡 ) 𝑎) − 𝛼∥𝑉
−1/2
𝜏𝑖 (𝑡 ) 𝑎 ∥∞,

where 𝑖(𝑡) = max{𝑖 : 𝜏𝑖 ≤ 𝑡}. The following lemma shows that the optimistic loss lower bounds the
true loss, and bounds the error between the two.

Lemma 4 (optimism). Suppose that
√
𝑑𝑎∥𝑄𝜏𝑖 (𝑡 ) −𝑄★∥𝑉𝜏𝑖 (𝑡 )

≤ 𝛼. Then for any 𝑎 ∈ R𝑑𝑎 ,

ℓ̄𝑡 (𝑎) ≤ ℓ𝑡 (𝑄★𝑎) ≤ ℓ̄𝑡 (𝑎) + 2𝛼
√︃
𝑎T𝑉−1

𝜏𝑖 (𝑡 ) 𝑎.

Proof. The proof follows standard arguments (see e.g. Lemma 3 in [15]). We first use the Lipschitz
assumption to get

|ℓ𝑡 (𝑄★𝑎) − ℓ𝑡 (𝑄𝜏𝑖 (𝑡 ) 𝑎) | ≤ ∥(𝑄★ −𝑄𝜏𝑖 (𝑡 ) )𝑎 ∥

≤ ∥𝑄★ −𝑄𝜏𝑖 (𝑡 ) ∥𝑉𝜏𝑖 (𝑡 )
∥𝑉−1/2

𝜏𝑖 (𝑡 ) 𝑎 ∥

≤ 𝛼
√
𝑑𝑎

∥𝑉−1/2
𝜏𝑖 (𝑡 ) 𝑎 ∥

≤ 𝛼∥𝑉−1/2
𝜏𝑖 (𝑡 ) 𝑎 ∥∞,

where the second and third transitions also used the estimation error and that ∥𝑎∥ ≤
√
𝑑𝑎∥𝑎∥∞. We

thus have on one hand,

ℓ𝑡 (𝑄★𝑎) ≥ ℓ𝑡 (𝑄𝜏𝑖 (𝑡 ) 𝑎) − 𝛼∥𝑉
−1/2
𝜏𝑖 (𝑡 ) 𝑎 ∥∞ = ℓ̄𝑡 (𝑎),

and on the other hand we also have

ℓ𝑡 (𝑄★𝑎) ≤ ℓ𝑡 (𝑄𝜏𝑖 (𝑡 ) 𝑎) + 𝛼∥𝑉
−1/2
𝜏𝑖 (𝑡 ) 𝑎 ∥∞ = ℓ̄𝑡 (𝑎) + 2𝛼∥𝑉−1/2

𝜏𝑖 (𝑡 ) 𝑎 ∥∞ ≤ ℓ̄𝑡 (𝑎) + 2𝛼
√︃
𝑎T𝑉−1

𝜏𝑖 (𝑡 ) 𝑎,

where the last step also used ∥𝑎∥∞ ≤ ∥𝑎∥. ■

Next, the following result bounds the regret with respect to the optimistic cost functions.

Lemma 5. Define 𝐺𝑖 = ∥𝑄𝜏𝑖 ∥ + 𝛼𝜆−1/2 and �̄� = 2𝛼𝜆−1/2 + 𝑅𝑄 . With probability at least 1 − 𝛿, for
all epochs 𝑖 ≥ 1 simultaneously:

𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

(
ℓ̄𝑡 (𝑎𝑡 ) − ℓ̄𝑡 (𝑎)

)
≤ 3𝑅𝑎

(
�̄� + �̄�−1𝐺2

𝑖

)√︂
𝑇 log

2𝑑𝑎𝑇2

𝛿
.

Proof. First, fix an epoch 𝑖 and notice that 𝑎𝑡 (𝑘 , 𝜒) are the result of running Online Gradient Descent
(OGD) on the functions ℓ̄𝑡 (·; 𝑘 , 𝜒), which are 𝐺𝑖 Lipschitz. A classic regret bound for OGD (see
Lemma 25 in the full version of the paper [16]) then gives us that for all 𝑎 ∈ S and 𝜏𝑖 ≤ 𝑠 ≤ 𝑇

𝑠∑︁
𝑡=𝜏𝑖

ℓ̄𝑡 (𝑎𝑡 (𝑘 , 𝜒); 𝑘 , 𝜒) − ℓ̄𝑡 (𝑎 ; 𝑘 , 𝜒) ≤ 1
2
𝑅𝑎 (�̄� + 𝐺2

𝑖 �̄�
−1)

√
𝑇.

Next, note that MW is invariant to a constant shift in the loss vectors. Letting 𝑎0 ∈ S be arbi-
trary, we have that 𝑝𝑡 is updated according to the MW rule with the loss of each expert being
ℓ̄𝑡 (𝑎𝑡 (𝑘 , 𝜒); 𝑘 , 𝜒) − ℓ𝑡 (𝑄𝜏𝑖𝑎0). Using the Lipschitz property of ℓ𝑡 , these are bounded as

|ℓ̄𝑡 (𝑎𝑡 (𝑘 , 𝜒); 𝑘 , 𝜒) − ℓ𝑡 (𝑄𝜏𝑖𝑎0) | ≤ ∥𝑄𝜏𝑖 ∥∥𝑎𝑡 (𝑘 , 𝜒) − 𝑎0∥ + 𝛼𝜆−1/2∥𝑎𝑡 (𝑘 , 𝜒)∥ ≤ 𝐺𝑖𝑅𝑎 .

A standard regret guarantee of MW (Lemma 26 in the full version of the paper [16]) thus gives us
that with probability at least 1 − 𝛿,

𝑠∑︁
𝑡=𝜏𝑖

ℓ̄𝑡 (𝑎𝑡 (𝑘𝑡 , 𝜒𝑡 ); 𝑘𝑡 , 𝜒𝑡 ) − ℓ̄𝑡 (𝑎𝑡 (𝑘 , 𝜒); 𝑘 , 𝜒) ≤ 𝑅𝑎

(
�̄� + �̄�−1𝐺2

𝑖

)√︂
6𝑇 log

2𝑑𝑎𝑇
𝛿

,

for all 𝑘 ∈ [𝑑𝑎], 𝜒 ∈ {−1, 1}, and 𝜏𝑖 ≤ 𝑠 ≤ 𝑇 .
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Now, let 𝑘∗𝑡 (𝑎), 𝜒∗𝑡 (𝑎) be such that ℓ̄𝑡 (𝑎) = ℓ̄𝑡 (𝑎 ; 𝑘∗𝑡 (𝑎), 𝜒∗𝑡 (𝑎)) for all 𝜏𝑖 ≤ 𝑡 < 𝜏𝑖+1 . Importantly,
notice that 𝑘∗𝑡 (𝑎), 𝜒∗𝑡 (𝑎) are independent of the time index 𝑡. This is because the minimum in ℓ̄𝑡 is
taken over the optimism term, which is independent of 𝑡 inside a given epoch. For ease of notation,
the following will omit the dependence of 𝑘∗, 𝜒∗ on 𝑎 , which will be kept as a fixed (arbitrary)
comparator. Combining the above, with probability ≥ 1 − 𝛿 we have that for all 𝑎 ∈ S:

𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

ℓ̄𝑡 (𝑎𝑡 ) − ℓ̄𝑡 (𝑎) ≤
𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

ℓ̄𝑡 (𝑎𝑡 ; 𝑘𝑡 , 𝜒𝑡 ) − ℓ̄𝑡 (𝑎 ; 𝑘∗, 𝜒∗) (ℓ̄𝑡 (·) ≤ ℓ̄𝑡 (·; 𝑘 , 𝜒))

=

𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

(
ℓ̄𝑡 (𝑎𝑡 (𝑘𝑡 , 𝜒𝑡 ); 𝑘𝑡 , 𝜒𝑡 ) − ℓ̄𝑡 (𝑎𝑡 (𝑘∗, 𝜒∗); 𝑘∗, 𝜒∗)

)
+

𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

(ℓ̄𝑡 (𝑎𝑡 (𝑘∗, 𝜒∗); 𝑘∗, 𝜒∗) − ℓ̄𝑡 (𝑎 ; 𝑘∗, 𝜒∗))

≤ 3𝑅𝑎

(
�̄� + �̄�−1𝐺2

𝑖

)√︂
𝑇 log

2𝑑𝑎𝑇
𝛿

.

Repeating the above with 𝛿/𝑇 and taking a union bound over the epochs (of which there are at most
𝑇) concludes the proof. ■

We are now ready to prove Theorem 3. We focus here on the main ideas, deferring some details to
the full version of the paper [16].

Proof of Theorem 3. We decompose the regret as

regret𝑇 (𝑎) ≤
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑄★𝑎𝑡 ) − ℓ̄𝑡 (𝑎𝑡 )︸                      ︷︷                      ︸
𝑅1

+
𝑇∑︁
𝑡=1

ℓ̄𝑡 (𝑎𝑡 ) − ℓ̄𝑡 (𝑎)︸                ︷︷                ︸
𝑅2

+
𝑇∑︁
𝑡=1

ℓ̄𝑡 (𝑎) − ℓ𝑡 (𝑄★𝑎)︸                    ︷︷                    ︸
𝑅3

,

and conclude the proof by bounding each term on the following good event. Suppose Lemma 5
holds for all epochs with 𝛿/2𝑇 , and that

√
𝑑𝑎∥𝑄𝑡 −𝑄★∥𝑉𝑡

≤ 𝛼 for all 𝑡 ≤ 𝑇 , which follows from a
standard least squares estimation bound (see Lemma 22). Taking a union bound, this event holds with
probability at least 1 − 𝛿. We conclude that Lemma 4 holds and thus 𝑅3 ≤ 0. Moreover, we get that

𝑅1 ≤
𝑁∑︁
𝑖=1

𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

2𝛼
√︃
𝑎T
𝑡𝑉

−1
𝜏𝑖 𝑎𝑡 ≤ 2𝛼

𝑇∑︁
𝑡=1

√︃
2𝑎T

𝑡𝑉
−1
𝑡 𝑎𝑡 ≤ 2𝛼

√√√
2𝑇

𝑇∑︁
𝑡=1

𝑎T
𝑡𝑉

−1
𝑡 𝑎𝑡 ≤ 2𝛼

√︁
10𝑇𝑑𝑎 log𝑇,

where the second inequality uses Lemma 27 of [21], which states that for 𝑉1 ⪰ 𝑉2 ⪰ 0 we have
𝑉1 ⪯ 𝑉2 (det(𝑉1)/det(𝑉2)), the third is due to Jensen’s inequality, and the fourth is a standard algebraic
argument (see Lemma 23).

Now, an immediate corollary (see Eq. (10)) of the least square error bound is that ∥𝑄𝑡 ∥ ≤ 𝛼𝜆−1/2+𝑅𝑄 .

We thus have that 𝐺𝑖 ≤ �̄� for all 𝑖 ≤ 𝑁 . Next, notice that the number of epochs satisfies 𝑁 ≤
2𝑑𝑎 log𝑇 (Lemma 24). We conclude that

𝑅2 =

𝑁∑︁
𝑖=1

𝜏𝑖+1−1∑︁
𝑡=𝜏𝑖

(
ℓ̄𝑡 (𝑎𝑡 ) − ℓ̄𝑡 (𝑎)

)
≤

𝑁∑︁
𝑖=1

3𝑅𝑎

(
�̄� + �̄�−1𝐺2

𝑖

)√︂
𝑇 log

4𝑑𝑎𝑇2

𝛿
(Lemma 5)

≤ 12𝑑𝑎
(
2𝛼 + 𝑅𝑎𝑅𝑄

)√︂
𝑇 log2 4𝑑𝑎𝑇2

𝛿
. ■
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