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Abstract

Knowledge distillation (KD) is the prelimi-001
nary step for training non-autoregressive trans-002
lation (NAT) models, which eases the training003
of NAT models at the cost of losing impor-004
tant information for translating low-frequency005
words. In this work, we provide an appeal-006
ing alternative for NAT – monolingual KD,007
which trains NAT student on external mono-008
lingual data with AT teacher trained on the009
original bilingual data. Monolingual KD is010
able to transfer both the knowledge of the011
original bilingual data (implicitly encoded in012
the trained AT teacher model) and that of013
the new monolingual data to the NAT student014
model. Extensive experiments on eight WMT015
benchmarks over two advanced NAT models016
show that monolingual KD consistently out-017
performs the standard KD by improving low-018
frequency word translation, without introduc-019
ing any computational cost. Monolingual KD020
enjoys desirable expandability, which can be021
further enhanced (when given more computa-022
tional budget) by combining with the standard023
KD, a reverse monolingual KD, or enlarging024
the scale of monolingual data. Extensive anal-025
yses demonstrate that these techniques can be026
used together profitably to further recall the027
useful information lost in the standard KD. En-028
couragingly, combining with standard KD, our029
approach achieves 30.4 and 34.1 BLEU points030
on the WMT14 English-German and German-031
English datasets, respectively. Code, data, and032
models will be released.033

1 Introduction034

Non-autoregressive translation (NAT, Gu et al.035

2018) has been proposed to improve the decoding036

efficiency by predicting all tokens independently037

and simultaneously. However, the independence as-038

sumption prevents a model from properly capturing039

the highly multimodal distribution of target trans-040

lations. In response to this problem, a sequence-041

level knowledge distillation (KD, Kim and Rush042

2016) becomes the preliminary step for training 043

NAT models, which produces more deterministic 044

knowledge by reducing the translation modes of 045

the bilingual data (Zhou et al., 2020). 046

Although the standard KD on original bilingual 047

data eases the training of NAT models, distillation 048

may lose some important information in the raw 049

training data, leading to more errors on predicting 050

low-frequency words (Ding et al., 2021b,a). To rem- 051

edy this problem, Ding et al. (2021b) augmented 052

NAT models the ability to learn lost knowledge 053

from the raw bilingual data with an additional ob- 054

jective, and Ding et al. (2021a) first pre-trained 055

NAT models on the raw training data and then fine- 056

tuned them on the distilled training data. While 057

previous studies mainly focus on recalling the lost 058

information during the distillation of the original 059

bilingual data, in this work we propose to improve 060

the prediction of low-frequency words by redis- 061

tributing them in the external monolingual data, 062

which has the great potential to complement the 063

original bilingual data on the word distribution. 064

Specifically, we leverage the monolingual data 065

to perform KD (monolingual KD, §2.2), and train 066

the NAT student model on the distilled monolin- 067

gual data (Figure 1b). Monolingual KD provides 068

appealing benefits. Firstly, the monolingual data 069

and bilingual data in machine translation are gener- 070

ally complementary to each other (Zhang and Zong, 071

2016; Wu et al., 2019; Zhou and Keung, 2020; Sid- 072

dhant et al., 2020; Jiao et al., 2021). Accordingly, 073

monolingual KD is able to transfer both the knowl- 074

edge of the bilingual data (implicitly encoded in the 075

trained teacher model) and that of the monolingual 076

data to the NAT student, without introducing addi- 077

tional computational cost. Secondly, the amount 078

of available monolingual data is several orders of 079

magnitude larger than that of bilingual data, which 080

offers monolingual KD the potential to further im- 081

prove translation performance by exploiting more 082

monolingual data. 083
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(b) Monolingual KD

Figure 1: Illustration of (a) standard bilingual data KD and (b) the proposed monolingual KD. The main difference
between the two KDs lies in constructing the distilled data by (a) reusing the source side of bilingual data, or (b)
introducing a new monolingual data.

Furthermore, we analyze the bilingual links in084

the bilingual and monolingual distilled data from085

two alignment directions (i.e. source-to-target and086

target-to-source). We found that the monolingual087

KD makes low-frequency source words aligned088

with targets more deterministically compared to089

bilingual KD, but both of them fail to align low-090

frequency words from target to source due to in-091

formation loss. Starting from this finding, we pro-092

pose reverse monolingual KD to recall more align-093

ments for low-frequency target words. We then094

concatenate two kinds of monolingual distilled data095

(bidirectional monolingual KD, §2.3) to maintain096

advantages of deterministic knowledge and low-097

frequency information.098

We validated our approach on several transla-099

tion benchmarks across scales (WMT14 En↔De,100

WMT16 Ro↔En, WMT17 Zh↔En, and WMT19101

En↔De) over two advanced NAT models: Mask102

Predict (Ghazvininejad et al., 2019) and Leven-103

shtein (Gu et al., 2019). Experiments demonstrate104

the effectiveness and universality of our approach.105

Specifically, we have the following findings:106

• Monolingual KD achieves better performance107

than the standard KD in all cases, and the pro-108

posed bidirectional monolingual KD can fur-109

ther improve performance by a large margin.110

• Monolingual KD enjoys appealing expandabil-111

ity: enlarging the scale of monolingual data112

consistently improves performance until reach-113

ing the bottleneck of model capacity.114

• Monolingual KD is complementary to the stan-115

dard KD, and combining them obtains further116

improvement by alleviating two key issues of117

NAT, i.e., the multimodality problem and the 118

low-frequency word translation problem. 119

The paper is an early step in exploring monolingual 120

KD for NAT, which can narrow the performance 121

gap between NAT models and the SOTA AT mod- 122

els. We hope the promising effect of monolingual 123

KD on NAT can draw more interest and can make 124

NAT a common translation framework. 125

2 Redistributing Low-Frequency Words 126

2.1 Preliminaries 127

Non-Autoregressive Translation Recent years 128

have seen a surge of interest in NAT (Gu et al., 129

2018), which can improve the decoding effi- 130

ciency by predicting all tokens independently 131

and simultaneously. Specifically, the probabil- 132

ity of generating a target sentence y by given 133

the source sentence x is computed as p(y|x) = 134

pL(T |x; θ)
∏T
t=1 p(yt|x; θ), where T is the length 135

of y, which is predicted by a separate conditional 136

distribution pL(·). The parameters θ are trained to 137

maximize the likelihood of a set of training exam- 138

ples according to L(θ) = argmaxθ log p(y|x; θ). 139

The conditional independence assumption prevents 140

an NAT model from properly capturing the highly 141

multimodal distribution of target translations (mul- 142

timodality problem, Gu et al., 2018). As a result, 143

the translation quality of NAT models often lags 144

behind that of AT models (Vaswani et al., 2017). 145

Standard Knowledge Distillation Knowledge 146

distillation is the preliminary step for training NAT 147

models by reducing the modes in the original bilin- 148

gual data, which makes NAT easily acquire more 149

deterministic knowledge and achieve significant 150
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Figure 2: Word distributions of bilingual and monolin-
gual English data on WMT14 En-De training data. In-
dex is ranked by its frequency in bilingual data, where
we normalize the frequency and report in log-scale.

improvement (Zhou et al., 2020). Typically, a151

sequence-level KD (Kim and Rush, 2016) is em-152

ployed for NAT training, as shown in Figure 1a.153

2.2 Monolingual Knowledge Distillation154

Different Distributions of Source Words To155

empirically reveal the difference on word distri-156

bution between bilingual and monolingual data, we157

visualize the overall word distributions, as plotted158

in Figure 2. We can observe the significant differ-159

ence between bilingual and monolingual data in the160

low-frequency part, which indicates that the words161

that occur less in the bilingual data are not nec-162

essarily low-frequent in the external monolingual163

data. Starting from the observation, we propose to164

exploit external monolingual data to offer more use-165

ful information for predicting low-frequent words166

in bilingual data, which are generally lost in the167

standard knowledge distillation.168

Our Approach Researches and competitions169

have shown that fully exploiting the monolingual170

data is at the core of achieving better generaliza-171

tion and accuracy for MT systems (Sennrich et al.,172

2016a; Zhang and Zong, 2016; Barrault et al.,173

2020). In this work we want to transfer the dis-174

tribution of lost information, e.g. low-frequency175

words, from monolingual data to the NAT train-176

ing. Figure 1b shows the pipeline of our proposed177

Monolingual KD for NAT, which differs from the178

Standard KD at how to construct the distilled data.179

Instead of reusing the source side of the original180

bilingual data, monolingual KD performs distilla-181

tion on newly monolingual data, which eliminates182

the dependency on the original training data.183

Intuitively, the monolingual KD can embed both184

the knowledge of the original bilingual data (im-185

Data s 7→ t LFW Links t 7→ s LFW Links

R P F1 R P F1

Raw 66.4 81.9 73.3 72.3 80.6 76.2
−→
KDB 73.4 89.2 80.5 69.9 79.1 74.2
−→
KDM 75.1 87.7 80.9 70.8 81.4 75.7
←−
KDM 63.7 80.2 71.0 81.4 86.2 83.7
←→
KDM 75.7 89.6 82.1 80.5 79.4 79.9

Table 1: Evaluation of aligned links between source-
and target-side low-frequency words on WMT14 En-
De training data. “

−→
KD” denotes the standard KD on

source-language data, and “
←−
KD” denotes reverse KD

on target-language data. The subscripts B and M repre-
sent Bilingual and Monolingual distilled data.

plicitly encoded in the trained teacher model) and 186

that of the newly introduced monolingual data. The 187

comprehensive experiments in the following sec- 188

tion provide empirical support for our hypothesis. 189

In addition, the complementarity between the bilin- 190

gual and monolingual data makes explicitly com- 191

bining Standard KD and Monlingual KD can fur- 192

ther improve model performance. 193

2.3 Bidirectional Monolingual KD 194

Recalling Low-Frequency Target Words KD 195

simplifies the training data by replacing low- 196

frequency target words with high-frequency 197

ones (Zhou et al., 2020; Ding et al., 2021b). This 198

is able to facilitate easier aligning source words 199

to target ones, resulting in high bilingual cov- 200

erage (Jiao et al., 2020). Inspired by the low- 201

frequency word (LFW) links analysis (Ding et al., 202

2021a), we borrow this LFW analysis to show 203

the necessity of leveraging both the source- and 204

target-side monolingual data. Concretely, we fol- 205

low (Ding et al., 2021a) to evaluate the links of 206

low-frequency words aligning from source to tar- 207

get (s 7→ t) with three metrics: Recall (R) repre- 208

sents how many low-frequency source words can 209

be aligned to targets; Precision (P) means how 210

many aligned low-frequency links are correct ac- 211

cording to human evaluation. F1 is the harmonic 212

mean between precision and recall. Similarly, we 213

can analyze in an opposite direction (t 7→ s) by con- 214

sidering the links of low-frequency target words. 215

Table 1 lists the results. Comparing with the 216

standard
−→
KDB, the forward monolingual KD (

−→
KDM 217

in Section 2.2) achieves better alignment quality 218
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of s 7→ t LFW links (F1: 80.9 vs. 80.5) by align-219

ing more low-frequency source words (R: 75.1 vs.220

73.4). The backward monolingual KD (
←−
KDM) can221

complementarily produce better alignment of low-222

frequency target words (t 7→ s LFW links). As223

we expected, combining the two types of distilled224

data (
←→
KDM) can produce better alignments for both225

low-frequency source (F1: 82.1 vs. 80.5) and target226

words (F1: 79.9 vs. 74.2).227

Our Approach (Bid. Monolingual KD) Based228

on the above observations, we propose to train229

NAT models on bidirectional monolingual data by230

concatenating two kinds of distilled data. Like231

back-translation (Edunov et al., 2018), the reverse232

monolingual distillation
←−
KDM is to synthesize the233

source sentences by a backward AT teacher, which234

is trained in the reverse direction of the original235

bilingual data. The mixture of the source-original236

and target-original synthetic datasets (i.e.
←→
KDM)237

is used to train the final NAT model. We expect238

that the better alignments of LFW links can lead to239

overall improvement of translation performance.240

3 Experiments241

3.1 Experimental Setup242

Bilingual Data We conducted experiments on243

two widely-used NAT benchmarks: WMT14244

English-German and WMT16 English-Romanian245

tasks, which consist of 4.5M and 0.6M sentence246

pairs respectively. To prove the universality of our247

approach on large-scale data, we also validated on248

WMT17 English-Chinese and WMT19 English-249

German tasks, which consist of 20.6M and 36.8M250

sentence pairs respectively. We shared the source251

and target vocabularies, except for En↔Zh data.252

We split the training data into subword units using253

byte pair encoding (BPE) (Sennrich et al., 2016c)254

with 32K merge operations, forming a vocabulary255

of 37k, 32k, 33k/48k and 44k for WMT14 En↔De,256

WMT16 En↔Ro, WMT17 En↔Zh and WMT19257

En↔De respectively. We used case-sensitive token-258

BLEU (Papineni et al., 2002) to measure the trans-259

lation quality (except for En-Zh, we used sacre-260

BLEU (Post, 2018)), and sign-test (Collins et al.,261

2005) for statistical significance test.262

Monolingual Data We closely followed previ-263

ous works to randomly sample monolingual data264

from publicly available News Crawl corpus1 for265

1http://data.statmt.org/news-crawl

Ta
sk Lang. Bilingual data Monolingual Data

# Sent. # Word # Sent. # Word

W
14 En

4.5M
127.7M

4.5M
138.6M

De 132.5M 124.0M

W
16 En

0.6M
16.1M

0.6M
16.5M

Ro 16.7M 17.3M

W
17 En

20.6M
535.7M 20.6M 591.5M

Zh 487.6M 18.4M 540.1M

W
19 En

36.8M
881.0M

36.8M
937.3M

De 911.0M 867.6M

Table 2: Data statistics of parallel and monolingual
data. For fair comparison, the monolingual data has
the same size with the corresponding bilingual data.

the WMT tasks (Sennrich et al., 2016b; Wu et al., 266

2019). We randomly sampled English and Ger- 267

man data from News Crawl 2007∼2020, and ran- 268

domly sampled Romanian data from News Crawl 269

2015. For Chinese monolingual data, we used 270

News Crawl 2008∼2020, News Commendary v16 271

and XMU data. For fair comparison, the mono- 272

lingual data generally has the same size as corre- 273

sponding bilingual data, as listed in Table 2. 274

Model Training We validated our approach on 275

two state-of-the-art NAT models: 276

• MaskPredict [MaskT, Ghazvininejad et al. 2019] 277

that uses the conditional masked language 278

model (Devlin et al., 2019) to iteratively generate 279

the target sequence from the masked input. We 280

followed its optimal settings to keep the iteration 281

number be 10 and length beam be 5. 282

• Levenshtein Transformer [LevT, Gu et al. 2019] 283

that introduces three steps: deletion, placeholder 284

prediction and token prediction, and the decoding 285

iterations adaptively depends on certain condi- 286

tions. We followed their setting and reproduced 287

their reported results. 288

We trained both BASE and BIG Trans- 289

former (Vaswani et al., 2017) as the AT teachers for 290

both standard and monolingual KD. For BIG mod- 291

els, we adopted large-batch training (i.e. 458K to- 292

kens/batch) to optimize the performance (Ott et al., 293

2018). The En↔Ro tasks employed Transformer- 294

BASE as the teacher, and the other tasks used 295

Transformer-BIG as the teacher. We also used 296

large-batch (i.e. 480K tokens/batch) to train NAT 297

models with Adam optimizer (Kingma and Ba, 298

2015). The learning rate warms up to 1 × 10−7 299
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Data MaskT LevT

BLEU 4 BLEU 4
−→
KDB 25.4 – 25.6 –
−→
KDM 25.8 +0.4 26.2 +0.6
←−
KDM 24.9 -0.5 24.5 -1.1
←→
KDM 26.6 +1.2 26.7 +1.1
−→
KDM+

−→
KDB 26.7 +1.3 26.8 +1.2

←−
KDM+

−→
KDB 26.6 +1.2 26.5 +0.9

←→
KDM+

−→
KDB 27.1 +1.7 27.3 +1.7

Table 3: BLEU scores of different monolingual distilla-
tion strategies. “+

−→
KDB” means concatenating two sets

of distilled data for model training, and “4” denotes
improvement/decline over

−→
KDB. We used the same AT

teacher and trained all models for the same steps.

for 10K steps, and then decays for 60k steps with300

the cosine schedule (Ro↔En models only need 4K301

and 21K steps, respectively). Following the com-302

mon practices (Ghazvininejad et al., 2019; Kasai303

et al., 2020), we evaluate the performance on an en-304

semble of 5 best checkpoints (ranked by validation305

BLEU) to avoid stochasticity.306

3.2 Ablation Study on Monolingual KD307

In this section, we evaluated the impact of different308

components of the monolingual KD on WMT14309

En-De validation sets.310

Impact of Distillation Strategy Table 3 lists the311

results of different distillation strategies. The for-312

ward monolingual KD (“
−→
KDM”) consistently out-313

performs its standard counterpart (“
−→
KDB”) (i.e.314

25.8 vs. 25.4, and 26.2 vs. 25.6), which we at-315

tribute to the advantage of monolingual KD on316

exploiting both the original bilingual data knowl-317

edge (implicitly encoded in the trained AT teacher318

model) and the new monolingual data knowledge.319

Concatenating forward- and reverse-KD (
←→
KDM)320

can further improve the NAT performance, which321

is consistent with the findings in Table 1.322

We also investigated whether monolingual KD323

is complementary to standard KD (i.e. “+
−→
KDB”324

column). As seen, standard KD consistently im-325

proves translation performance across monolin-326

gual KD variants. Another interesting finding is327

that although reverse monolingual KD (
←−
KDM) sig-328

nificantly underperforms its forward counterpart329

(
−→
KDM) when used alone, they achieve comparable330

Sampling
←→
KDM +

−→
KDB

MaskT LevT MaskT LevT

RANDOM 26.6 26.7 27.1 27.3

LOW-FREQ 26.4 26.6 26.9 27.1
LM-SEL 26.9 26.8 27.4 27.5

Table 4: Impact of monolingual data sampling.

performance when using together with standard 331

KD. We discuss in details how the two KD models 332

complement each other in Section 3.4. 333

Impact of Monolingual Data Sampling Some 334

researchers may doubt that our approach heavily 335

depends on the sampled monolingual data. To dis- 336

pel the doubt, we investigated whether our model 337

is robust to the selected monolingual data by vary- 338

ing the sampling strategies. Specifically, we con- 339

ducted experiments on the full set of monolingual 340

data from News Crawl 2007∼2020, which con- 341

sist of 243M English and 351M German sentences. 342

We compared with two representative approaches 343

that sampled data with different priors: (1) LOW- 344

FREQ samples difficult examples containing low- 345

frequency words (Fadaee and Monz, 2018); (2) 346

LM-SEL selects high quality examples with lan- 347

guage model (Moore and Lewis, 2010). 348

As listed in Table 4, the difference of three sam- 349

pling strategies w.r.t BLEU is not significant under 350

the significance test p < 0.05 (Collins et al., 2005), 351

demonstrating that our approach is robust to the 352

monolingual data sampling. For the simplicity and 353

robust applicability of our approach across differ- 354

ent scenarios, we used RANDOM sampling as the 355

default strategy in the following experiments. 356

3.3 Main Results 357

NAT Benchmarks Table 5 lists the results on 358

the WMT14 En↔De and WMT16 En↔Ro bench- 359

marks. Encouragingly, the conclusions in Sec- 360

tion 3.2 hold across language pairs, demonstrating 361

the effectiveness and universality of our approach. 362

We also compared the performance against several 363

previous competitive NAT models. Although the re- 364

sults are not directly comparable since we used ad- 365

ditional monolingual data, our approach improves 366

previous SOTA BLEU on the NAT benchmarks. 367

Notably, our data-level approaches neither modify 368

model architecture nor add extra training loss, thus 369

does not increase any latency (“Speed”), maintain- 370
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Model Iter. WMT14 WMT16

En-De De-En En-Ro Ro-En

AT Models
Transformer-BASE (En↔Ro Teacher) n/a 27.3 31.3 33.9 34.1
Transformer-BIG (En↔De Teacher) n/a 29.2 32.4 - -

Existing NAT Models with Standard KD
DisCo (Kasai et al., 2020) 4.8 27.3 31.3 33.2 33.3
Imputer (Saharia et al., 2020) 8.0 28.2 31.8 34.4 34.1
Mask-Predict (Ghazvininejad et al., 2019)

10.0
27.0 30.5 33.1 33.3

+Raw Data Pre-Train (Ding et al., 2021a) 27.8 - - 33.9
Levenshtein (Gu et al., 2019)

2.5
27.3 - - 33.3

+Raw Data Pre-Train (Ding et al., 2021a) 28.2 - - 33.8

Our NAT Models
Mask-Predict

+Standard KD

10.0

27.0 31.1 32.9 33.3
+Mono. KD 28.2† 31.8 33.6† 33.7

+Standard KD 28.7† 32.3† 33.9† 34.1†

+Bidirectional Mono. KD 29.1† 32.6† 34.2† 34.3†

+Standard KD 30.1† 33.7† 35.0† 35.3†

Levenshtein
+Standard KD

2.5

27.3 30.9 32.7 33.2
+Mono. KD 28.6† 32.1† 33.5† 33.9

+Standard KD 29.1† 32.6† 34.0† 34.2†

+Bidirectional Mono. KD 29.5† 33.6† 34.3† 34.2†

+Standard KD 30.4† 34.1† 34.9† 35.4†

Table 5: Comparison with previous work on NAT benchmarks. “Iter.” indicates the number of iterative refinement.
“†” indicates statistically significant difference (p < 0.01) from standard KD.

ing the intrinsic advantages of NAT models. The371

main side-effect of our approach is the increased372

training time for training an additional AT teacher373

model to build distilled data in the reverse direc-374

tion. Fortunately, we can eliminate the side-effect375

by using only the monolingual KD (“Mono. KD”),376

which still consistently outperforms the standard377

KD without introducing any computation cost.378

Larger-Scale WMT Benchmarks To verify the379

effectiveness of our method across different data380

sizes, we further experimented on two widely-used381

large-scale MT benchmarks, i.e. WMT17 En↔Zh382

and WMT19 En↔De. As listed in Table 6, our bidi-383

rectional monolingual KD outperforms standard384

KD by averagely +1.9 and +2.3 BLEU points on385

En↔Zh and En↔De datasets, respectively, demon-386

strating the robustness and effectiveness of our387

monolingual KD approach. By combining with388

standard KD, our methods can achieve further +1.8389

and +0.9 BLEU improvements.390

Model En-Zh En-De

→ ← → ←

AT Teacher 35.6 24.6 40.2 40.1

MaskT
+Stand. KD 33.7 23.4 36.8 37.2
+Mono. KD 34.5 24.9† 37.4 37.9

+Stand. KD 34.8† 25.1† 38.1† 38.5†

+Bid. Mono. KD 35.2† 25.6† 39.2† 39.4†

+Stand. KD 38.2† 25.8† 40.1† 40.5†

LevT
+Stand. KD 33.9 23.3 37.5 37.7
+Mono. KD 34.6 24.6† 38.1 38.4

+Stand. KD 35.1† 24.7† 38.5† 39.1†

+Bid. Mono. KD 35.4† 25.5† 39.6† 40.2†

+Stand. KD 38.5† 25.8† 40.5† 40.8†

Table 6: BLEU scores on large-scale WMT17 En↔Zh
(20.6M) and WMT19 En↔De (36.8M) data.
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Data All High Med. Low

Raw 3.67 2.41 3.28 6.81
−→
KDB 1.95 1.68 1.87 4.52
−→
KDM 1.79 1.66 1.72 4.29

+
−→
KDB 1.77 1.62 1.71 3.95

←→
KDM 1.72 1.52 1.64 4.01

+
−→
KDB 1.64 1.50 1.62 3.69

Table 7: Data complexity of different distillations of
WMT14 En-De training data. Word frequencies are es-
timated on the source sentences of bilingual data.

3.4 Analysis391

In this section, we provide some insights into how392

monolingual KD works. We report the results on393

WMT14 En-De data using Mask-Predict.394

Monolingual KD Reduces Complexity of Train-395

ing Data by Improving Low-Frequency Word396

Alignment We first present data-level qualitative397

analyses to study how monolingual KD comple-398

ments bilingual KD. Zhou et al. (2020) revealed399

that standard KD improves NAT models by reduc-400

ing the complexity of original bilingual data. Along401

this thread, we used the data complexity metric to402

measure different distilled datasets. Formally, the403

translation uncertainty of a source sentence x can404

be operationalized as conditional entropy:405

H(Y|X = x) = −
∑
y∈Y

p(y|x) log p(y|x)406

≈
Tx∑
t=1

H(y|x = xt),407

where Tx denotes the length of the source sentence,408

x and y represent a word in the source and target409

vocabularies, respectively.410

We run fast-align on each parallel corpus to411

obtain word alignment. For fair comparison, we412

sampled the subsets (i.e. 4.5M) of “
←→
KDM” and413

“
←→
KDM+

−→
KDB” to perform complexity computation.414

As seen in Table 7, standard KD significantly re-415

duces the data complexity compared to that of the416

bilingual data (1.95 vs. 3.67), and monolingual417

KD reduces even more data complexity. Addition-418

ally, the data complexity can be further reduced by419

combining with standard KD.420

Monolingual KD Mainly Improves Low-421

Frequency Word Translation We first fol-422

lowed Ding et al. 2021b to measure the translation423

Data WMT14 En-De WMT14 De-En

H M L H M L
AT Teacher
Raw Data 84.7 80.2 73.0 85.4 81.1 74.2

NAT Student
−→
KDB 82.4 78.2 68.4 83.7 79.6 69.9
−→
KDM 82.9 78.4 69.5 83.9 80.1 71.2
+
−→
KDB 83.1 78.7 70.8 84.3 80.5 72.1

←→
KDB 84.1 79.1 72.7 85.0 80.9 73.4
+
−→
KDB 84.6 79.7 73.6 85.2 81.4 75.2

Table 8: Accuracy of word translation. Darker color de-
notes more improvement over standard KD. “H/M/L”
represent high/medium//low frequency words, which
are estimated on the source sentences of bilingual data.

accuracy of words with different frequencies, 424

as shown in Table 8. The improvements over 425

low-frequency words are the major reason for the 426

performance gains, where the monolingual KD 427

and bidirectional monolingual KD outperform the 428

standard KD by averagely +1.2% and +3.9%, re- 429

spectively. These findings confirm our hypothesis 430

that monolingual KD can improve the translation 431

of low-frequency words by redistributing them 432

in the new monolingual data. Combining with 433

standard KD can further improve the accuracy of 434

translating low-frequency words, which reconfirms 435

our hypothesis on the complementarity between 436

the two KD methods on low-frequency words. 437

3.5 Further Exploiting Monolingual Data 438

In this section, we provide some potential direc- 439

tions to further improve NAT performance by mak- 440

ing the most of monolingual data. 441

Exploiting Monolingual Data at Scale One 442

strength of monolingual KD is the potential to ex- 443

ploit more monolingual data to further improve 444

translation performance. To validate our claim, we 445

scaled the size of monolingual data by {2×, 5×, 446

10×}, which are randomly sampled from the full 447

set of monolingual data. As shown in Table 9, 448

enlarging the monolingual data consistently im- 449

proves the BLEU scores, while this trend does not 450

hold when further scaling the monolingual data 451

(i.e. 10×). One possible reason is that the limited 452

capacity of NAT-base models cannot fully exploit 453

the large data, which suggests future exploration of 454

larger NAT architectures. 455
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Mono WMT14 En-De WMT14 De-En

Size MaskT LevT MaskT LevT

Bidirectional Monolingual KD
1× 29.1 29.5 32.6 33.6
2× 29.7 30.1 33.1 33.9
5× 30.6 30.9 33.9 34.5
10× 30.4 30.8 33.3 34.4

Combining with Standard KD
1× 30.1 30.4 33.7 34.1
2× 30.7 30.9 34.2 34.5
5× 31.3 31.7 34.5 34.7
10× 30.9 31.5 34.2 34.6

Table 9: BLEU scores of using monolingual data at
scale. We train all models with the same training steps.

Mono. Mono. to Train BLEU

KD AT NAT AT NAT

n/a × × 29.2 27.0

−→
KDM

× X 29.2 28.7
X × 30.1 27.8
X X 30.1 28.9

←→
KDM

× X 29.2 30.1
X × 31.8 28.2
X X 31.8 30.5

Table 10: Applying monolingual KD for AT teacher
and/or NAT student on WMT14 En-De test set. Raw
data (for AT) and

←→
KDB (for NAT) are used by default.

Augmenting AT Teacher with Monolingual KD456

An alternative to exploit monolingual data is to457

strength the AT teacher with monolingual KD, as458

listed in Table 10. Applying monolingual KD for459

AT teacher is less effective than using it for NAT460

training, which we attribute to the information loss461

when transferred from AT teacher to NAT student.462

Applying monolingual KD to both AT teacher and463

NAT student can further improve the NAT perfor-464

mance, at the cost of more computational cost.465

4 Related Work466

Sequence-level KD (Kim and Rush, 2016) is a467

preliminary step for training NAT models to re-468

duce the intrinsic uncertainty and learning diffi-469

culty (Zhou et al., 2020; Ren et al., 2020). Recent470

studies have revealed that KD reduces the modes471

(i.e. multiple lexical choices for a source word) in472

the original data by re-weighting the training ex- 473

amples (Furlanello et al., 2018; Tang et al., 2020), 474

at the cost of losing some important information, 475

leading to more errors on predicting low-frequency 476

words (Ding et al., 2021b). In response to this prob- 477

lem, Ding et al. (2021a) proposed to rejuvenate 478

low-frequency words by pretraining NAT models 479

on the raw bilingual data. In this study, we attempt 480

to solve this problem from a different perspective – 481

rediscovering low-frequency words from external 482

monolingual data, which can simultaneously ex- 483

ploit the knowledge of bilingual data (implicitly 484

encoded in the parameters of AT teacher). 485

Closely related to our work, Zhou and Ke- 486

ung (2020) improved NAT models by augment- 487

ing source-side monolingual data. Their work can 488

be regarded as a special case of our approach (i.e. 489

“Mono. KD + Standard KD” in Section 3.3), and our 490

work has several more contributions. Firstly, we 491

demonstrated the effectiveness of using only mono- 492

lingual KD for NAT models, which can achieve 493

better performance than the standard KD without 494

introducing any computational cost. Secondly, we 495

proposed a novel bidirectional monolingual KD to 496

exploit both the source-side and target-side mono- 497

lingual data. Finally, we provide insights into how 498

monolingual KD complements the standard KD. 499

5 Conclusion 500

In this work, we propose a simple, effective and 501

scalable approach – monolingual KD to redistribute 502

the low-frequency words in the bilingual data us- 503

ing external monolingual data. Monolingual KD 504

consistently outperforms the standard KD with 505

more translation accuracy of low-frequency words, 506

which attribute to its strength of exploiting both the 507

knowledge of the original bilingual data (implicitly 508

encoded in the parameters of AT teacher) and that 509

of the new monolingual data. 510

Monolingual KD enjoys appealing expandability, 511

and can be further enhanced by (1) combining with 512

a reverse monolingual KD to recall more align- 513

ments for low-frequency target words; (2) com- 514

bining with the standard KD to explicitly com- 515

bine both types of complementary knowledge; (3) 516

enlarging the scale of monolingual data that is 517

cheap to acquire. Our study empirically indicates 518

the potential to make NAT a practical translation 519

system. Future directions include designing ad- 520

vanced monolingual KD techniques and validating 521

on larger-capacity NAT models (e.g. BIG setting). 522
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