
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMMUNICATION-EFFICIENT FEDERATED LEARNING
VIA MODEL UPDATE DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) is a popular distributed machine learning framework for
edge computing. However, it faces a significant challenge: the communication
overhead caused by frequent model updates between clients and the central server.
Previous studies have overlooked a crucial piece of information: the central server
already knows the initial model on each client before local training begins in every
round. This oversight leads to significant redundancy in communication, as full
model information are transmitted unnecessarily. To address this, we propose a
novel framework called model update distillation (MUD), which leverages this
prior knowledge to decouple model parameters from the network architecture. In-
stead of transmitting raw parameter updates, our method synthesizes and transmits
compact tensor sequences that encode only the essential information for synchro-
nization. This dramatically reduces communication overhead while still allowing
recipients to accurately reconstruct the intended model updates. Extensive ex-
perimental results demonstrate that FedMUD achieves substantial improvements
in communication efficiency, making it a highly effective solution for federated
learning in bandwidth-constrained environments. The PyTorch-like core code can
be found in 3.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017; Shokri & Shmatikov, 2015) has become a promising
approach for privacy-preserving machine learning by allowing model training directly on edge devices,
such as smartphones and IoT sensors, without requiring centralized data storage. This decentralized
framework ensures that sensitive data remains on-device, mitigating privacy and regulatory concerns
(Ching et al., 2018; GDPR, 2016; ADPPA, 2022). With the rise of edge computing, FL has gained
further traction, enabling real-time data processing and decision-making at the source (Feng et al.,
2021; Nguyen et al., 2021). By leveraging the growing computational power of mobile devices, FL
not only enhances scalability and efficiency in diverse fields like healthcare, finance, and smart cities
but also reduces latency and the need for transmitting raw data to centralized servers.

However, one of the persistent challenges in FL is the growing imbalance between computing power
and communication bandwidth. As shown in Table 1, advances in bandwidth have not kept pace with
computing power. For instance, MediaTek and Qualcomm chips have improved by 53% and 31%,
respectively, over their previous generations (PrimateLabs, 2024). In contrast, the global median
upload bandwidth for mobile devices increased by only 7% from 2023 to 2024 (Ookla, 2024). This
growing disparity highlights a key challenge in FL: modern neural network models, even lightweight
ones like MobileNet, still consist of millions of parameters. Given that edge devices typically rely on
wireless or long-distance connections, with bandwidth often limited to tens of Mbps, this bandwidth
bottleneck severely restricts FL’s potential. As computational power continues to rise, optimizing
communication efficiency in bandwidth-constrained environments is crucial for maintaining FL
performance.

To address this challenge, communication-efficient FL has emerged as an active research area. Re-
searchers have developed various strategies to reduce the communication burden, including techniques
like model compression (e.g., quantization (Liu et al., 2023; Sun et al., 2022) and sparsification (Aji
& Heafield, 2017; Dai et al., 2022)) that minimize the size of model updates. Additionally, methods
like delayed gradient averaging allow devices to perform more local computation before transmitting

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison of Median Mobile Upload Bandwidth vs. Chip Computing Power Growth.

Mobile Bandwidth MediaTek Qualcomm

Year Upload (Mbps) Processer Geekbench 6 Processer Geekbench 6

2023 10.26 Dimensity 9200 5119 Snapdragon 8 Gen 2 5697

2024 11.02 (+7%) Dimensity 9300 7857 (+53%) Snapdragon 8 Gen 3 7466 (+31%)

updates, thus reducing communication frequency (Zhu et al., 2021). Despite these advancements, the
reduction in communication overhead remains limited due to the fundamental relationship between
number of model parameters and network architecture. This interdependence means even minor
updates of each parameter may require transmitting full number of parameters, leading to continued
communication inefficiencies.

In this paper, we uncover a critical yet often overlooked information in federated learning: in each
training round, the central server has prior knowledge of the initial model that each edge client
will use for local training. By exploiting this valuable information, we propose a novel federated
learning framework called Model Update Distillation (FedMUD). Inspired by gradient inversion
(Zhu et al., 2019) and dataset distillation (Wang et al., 2018), FedMUD constructs a synthetic tensor
sequence, which is fed into the initial model of the current round. Specially, after local update,
we fixed the initial model parameters and iteratively optimize this tensor sequence to ensure that
the resulting parameter differences closely match the actual local updates produced by the clients.
Through model update distillation, we condense these parameter differences into a compact tensor
sequence, allowing recipients to accurately reconstruct the intended model updates from the sender.
This decoupling of model updates from the full parameter set significantly reduces communication
overhead, as it eliminates the need to transmit the entire array of raw parameters. By treating the
model’s parameter updates as a whole and compressing them, our approach offers a promising
solution to improve communication efficiency.

The main contributions of this paper are summarized as follows:

• We point out and exploit a crucial piece of information that has been overlooked in previous
research: the central server in federated learning knows the initial model on each client
before local training begins in every round.

• We propose FedMUD, a new framework that treats network parameter updates as a whole,
decoupling them from the network architecture and ensuring a more efficient learning
process.

• Experimental results demonstrate that model update distillation significantly reduces the
amount of communication compared to baselines, without significant accuracy degradation,
enabling a communication-efficient and training-accelerated FL process.

2 RELATED WORKS

Communication Frequency Reduction. This strategy involves allowing devices to perform multiple
local updates before transmitting their model updates to the central server, thereby reducing the
frequency of communication rounds (McMahan et al., 2017; Haddadpour et al., 2019; Zhu et al.,
2021). While this approach reduces the overall transmission data amount, it may result in slower
convergence and potential overfitting if not carefully managed.

Gradient Information Compression. This strategy focuses on compressing gradients (Liu et al.,
2023; Reisizadeh et al., 2020). This includes methods such as quantization (Hönig et al., 2022),
which reduces the precision of gradient values to decrease the transmitted information volume, and
sparsification (Aji & Heafield, 2017; Dai et al., 2022), which involves sending only a subset of
gradients by retaining the most significant ones and setting others to zero. However, aggressive
quantization and sparsification can lead to information loss and potentially hinder model accuracy.

Networks Pruning. This strategy attempts to remove less influential weights or neurons from the
model, effectively reducing the parameter count and thus the size of gradients (Zhu et al., 2022; Wang

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Aggregation

Broadcasting

Local Training

Uploading

(b) FedAvg Pipeline

Aggregation

MUD

(c) FedMUD Pipeline

Local Training No Actions

No actions

Server:

Reconstruction

Local Training

Aggregation MUD: Model Update Distillation

Reconstruction

No Actions

Uploading / Broadcasting

Server:

Device i:

Device i:

Device A

Device C

Device B

Device D

Global Model

Global Model

data

datadata

data

Local Model

Global Model

Local Model

Global Model

MUD

Local Model

Local Model

MUD

𝝎𝒈
(𝒕−𝟏)

𝝎𝒈
(𝒕)

𝜻𝒈
(𝒕)

(𝝎𝒊
(𝒕)
−𝝎𝒈

𝒕)𝝎𝒊
(𝒕)

𝜻𝒈
(𝒕)𝝎𝒈

(𝒕)

𝝎𝒊
(𝒕)

𝜻𝒈
(𝒕)

𝜻𝒊
(𝒕) 𝜻𝒊

(𝒕)

𝜻𝒈
(𝒕)

𝝎𝒈
(𝒕−𝟏)

𝝎𝒈
(𝒕−𝟏)

𝝎𝒊
(𝒕)

𝝎𝒊
(𝒕)(𝝎𝒊

(𝒕)
−𝝎𝒈

𝒕)

𝝎𝒈
(𝒕)

𝝎𝒈
(𝒕)

(a) Overview of FedMUD

Figure 1: Overview of FedMUD and the pipelines of FedAvg and FedMUD. (a) illustrates a four-
device scenario where two resource-constrained devices skip local distillation, while the other two
perform full MUD, achieving bi-directional communication efficiency. (b) depicts the FedAvg
pipeline, which incurs significant communication overhead. (c) shows the FedMUD pipeline, where
model updates are compressed before transmission and reconstructed afterward, reducing communi-
cation time through additional computation.

et al., 2022). However, pruning-based methods require careful hyperparameter tuning and may result
in model degradation if not applied judiciously.

Compact Proxy Transmission. This strategy focuses on uploading logits (Sattler et al., 2020; Shao
et al., 2024) or dataset representations (Xiong et al., 2023; Castiglia et al., 2023) or proxy models
(Kalra et al., 2023; Wu et al., 2022). Instead of transmitting raw gradients, devices calculate and
send logits for their data samples to the central server. Alternatively, devices can convey aggregated
representations of their datasets, such as centroids or other statistical summaries (Liu et al., 2022),
which serve as a compact proxy for the raw gradients, and potential impact on model performance.

3 MODEL UPDATE DISTILLATION

As illustrated in Fig. 1, in this paper, we explore FL across N edge devices, each characterized by
varying computational and bandwidth resources. Consider an edge device i, which holds a private
local dataset Di = {(xi

j , y
i
j)}

mi
j=1, where the data points are sampled from a distinct distribution

Pi over the space X × Y . The central idea of FL is to collaboratively train a global model without
directly sharing the private data. This is achieved through a process where edge devices intermittently
send their local model updates to a central server, subsequently receiving an updated global model in
return. The primary aim of FL is to develop a global model that effectively minimizes the combined

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

risk across all private datasets:

argmin
ω
L(ω,D) ≜ 1

N

N∑
i=1

Li(ω,Di), (1)

where ω denotes the global model parameters. Here, Li(ω,Di) =
1
mi

∑mi

j=1 ℓ
(
ω;

(
xi
j , y

i
j

))
repre-

sents the empirical risk for device i, with ℓ being the loss function, and D symbolizing the overall
training dataset. Our overarching goal is to efficiently reduce both the communication overhead and
the total wall-clock time required for FL.

3.1 MOTIVATION

In the standard FL process, the central server distributes the aggregated global model from the
previous round to each participating device. These devices then perform local training using the
global model as a starting point, updating their local models accordingly. The FedAvg algorithm
a cornerstone of FL, involves sending model updates between the new and old models back to the
server. However, this approach has a significant inefficiency: the data volume transferred in each
communication round remains constant, irrespective of the extent of changes in model parameters, as
long as the network architecture does not change. This results in redundant transmission of update
information. The root of this issue lies in the inherent interdependence between the model parameters
and the network architecture in traditional FL approaches. Since the network’s structure and its
parameters are closely linked, even minor changes in parameters require retransmitting the entire
model, leading to inefficiency in communication.

3.2 OUR STRATEGY

We introduce a novel approach that involves approximating model updates across different training
periods within a single model. This approximation is represented as a synthetic tensor sequence,
drawing inspiration from concepts in dataset distillation (Wang et al., 2018) and gradient inversion
(Zhu et al., 2019). The core idea is for the sender to transmit this tensor sequence, which encapsulates
only the indispensable information required for model updates, thus eliminating the need to transmit
the entire set of raw parameter differences. Upon receiving the tensor sequence, the recipient
can accurately reconstruct the original model update by performing a single gradient descent step,
integrating the information from the received tensor sequence with the state of the previous model.

Algorithm 1: Model Update Distillation

Input: Tensor length m, model update ∆ω(t1, t2) = ω(t1) − ω(t2), number of iterations K
Initialization: Initialize the tensor sequence ζ0 = {(x̂j , ŷj)}mj=1 with the same dimension as local samples
for q = 0, . . . ,K − 1 do

Derive synthetic gradient using using one-step SGD: ∆ωsyn ← ∇ωFi (ω, ζq)
Calculate MSE loss: L = MSE(∆ω(t1, t2),∆ωsyn)
Update tensor sequence: ζq+1 = optimLBFGS(ζq,L)

end
Return: ζK = {(x̂j , ŷj)}mj=1

In the following, we detail the optimization mechanics of MUD. For a model with parameters ω,
we define its parameter difference between two periods t1 and t2 as ∆ω(t1, t2) = ω(t1) − ω(t2).
By approximating ∆ω(t1, t2), we can update the model parameters at timestamp t2 even when
we only have access to the old model ω(t1). To achieve this, we synthesize a tensor sequence
ζ = {(x̂j , ŷj)}mj=1, which is tailored to approximate the parameter difference using one-step gradient
descent on ω(t1). Our objective is to discover the shortest projected path between ω(t1) and ω(t2). To
synthesize the sequence, we minimize the error between the parameter difference and the accumulated
gradient of the sequence on ω(t1):

ζ = argmin
{(xj ,yj)}m

j=1

∥∥∥∥∥∥∆ω (t1, t2)−
m∑
j=1

∂ℓ
(
ω(t1); (xj , yj)

)
∂ω(t1)

∥∥∥∥∥∥
2

2

, (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where m represents the solved length of the optimal sample sequence. The recovery process for ω(t2)

involves a one-step gradient descent on ζ:

ω(t2) = ω(t1) −
∑

(x̂,ŷ)∈ζ

∂ℓ(ω(t1); (x̂, ŷ))

∂ω(t1)
. (3)

The workflow for MUD is shown in Algorithm 1 and the source code is provided in Algorithm 3.
Firstly, an initialization step is executed to create a tensor sequence, denoted as ζ0, which comprises
m synthetic samples. These samples are dimensionally equivalent to the local samples. Subsequent
iterations are conducted to align the synthetic gradients with the actual updates of the local model,
symbolized as ∆ω. Specifically, in the q-th iteration, based on the previously generated tensor
sequence ζq , a one-step stochastic gradient descent (SGD) is applied. This step aims to approximate
the real difference in model parameters ∆ω. To quantify this difference, we introduce the Mean
Squared Error (MSE) loss, which then serves as the objective for minimization, tackled using the
LBFGS optimizer. Through this mechanism, we are able to update the tensor sequence to ζq+1.

As the model size increases, the approximation error between the virtual gradient obtained by the
MUD method and the real model parameter difference tends to grow, especially for large-scale neural
networks. To address this, we introduce a modular alignment approach that segments the network into
modules. Each module uses an independent synthetic dataset to approximate its gradient change. The
number of modules is kept below the local training batch size to ensure it stays within the device’s
computational capacity. By modularizing the network, model update distillation for each sub-module
can be processed in parallel, reducing delays. We will analyze the error introduced by MUD in the
convergence analysis section.

3.3 DIFFERENCES WITH DISTILLATION-RELATED METHODOLOGIES

We delve into the differences between the MUD and the popular distillation-related methodologies:

– Knowledge Distillation (KD) is a process involving two distinct neural network sets: a larger,
complex “teacher" model, and a smaller, efficient “student" model (Hinton et al., 2015). The primary
goal of KD is to transfer the knowledge from the teacher to the student, enabling the student model to
reach performance levels similar to the teacher. This transfer is generally accomplished by minimizing
the differences in predictions (probabilities or logits) between the teacher and student models when
given the same input data.

– Dataset Distillation (DD) represents an extension of KD where knowledge transfer occurs at the
dataset level rather than between models (Wang et al., 2018). The core idea behind DD is to condense
a large and comprehensive training dataset into a much smaller, but highly representative, synthetic
dataset, given a fixed network initialization. This smaller dataset is designed to retain the essential
characteristics and information of the original dataset, enabling models to be trained effectively on
this distilled dataset instead of the full, larger dataset.

– Differences with KD and DD: From the description provided, it is evident that our proposed
MUD method diverges significantly from both KD and DD in its approach and objectives. Unlike
KD, which is centered on the relationship between a larger, more complex “teacher" model and a
smaller, more efficient “student" model, our MUD focuses on the update within a single model across
different training periods. The primary input in MUD is the parameter disparity observed between
two consecutive training stages of the same model. This approach is fundamentally different from the
input used in DD, which involves a large-scale dataset that typically contains thousands to millions of
images. The output of MUD contrasts sharply with the output of KD, which is the student model
trained to mimic the teacher model. Although MUD’s output bears a resemblance to DD in terms of
its form, the two are fundamentally different in their design intentions.

4 MODEL UPDATE DISTILLATION BASED COMMUNICATION-EFFICIENT FL

We now introduce in detail the proposed MUD based communication-efficient FL (FedMUD) frame-
work, encompassing the following key states: initialization, broadcasting, local training, uploading
and global aggregation. The workflow of this strategy is illustrated in Algorithm 2.

– Initialization: The first M rounds of FedMUD serve as the initialization phase, following the
conventional FedAvg method. After these rounds, the central server holds an updated global model

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2: Model Update Distillation based FL
Input: N edge devices with private datasets {Di}Ni=1, communication round number T , learning rate γ,

initial rounds M , local update number K, batchsize B.
Output: FL-trained global model ωT

g .
Server Executes:

Initialization: After M rounds of FedAvg, the central server has ω(M)
g with ω

(M−1)
g , and the device

has ω(M−1)
g

for each communication round t = M, . . . , T do
Obtain ζ

(t)
g by performing model update distillation between ω

(t−1)
g and ω

(t)
g with Eq. (4)

for each device i = 1, 2, . . . , N in parallel do
Broadcasting ζ

(t)
g to device i

ζ
(t)
i ← Device Executes (i, ζ(t)g)

Reconstruct the local model ω(t)
i by one-step gradient descent on ζ

(t)
i with Eq. (8)

end
ω

(t+1)
g ← 1

N

∑
ω

(t)
i

end
end
Device Executes (i, ζ(t)g):

Reconstruct the global model ω(t)
g by one-step gradient descent on ζ

(t)
g with Eq. (5)

Update the local model as ω(t)
i by local training on Di with Eq. (6)

Obtain ζ
(t)
i by performing model update distillation between ω

(t)
g and ω

(t)
i with Eq. (7)

Return ζ
(t)
i

end

denoted by ω
(M)
g . Subsequent rounds employ model update distillation to reduce the communication

load between the central server and edge devices for both downlink (broadcasting the global model)
and uplink (uploading local updates) communications.

– Broadcasting: In the t-th round (t > M), the server performs model update distillation between
the new global model ω(t)

g and the global model ω(t−1)
g in the last round. This process creates a

compressed datastream ζ
(t)
g , a tensor of length m

(t)
g , significantly reducing the downlink burden. The

optimization solved for this purpose is formulated as:

ζ(t)g = argmin

{(xj ,yj)}
m

(t)
g

j=1

∥∥∥∥∥∥
m(t)

g∑
j=1

∂ℓ(ω
(t−1)
g ; (xj , yj))

∂ω
(t−1)
g

−∆ωg(t− 1, t)

∥∥∥∥∥∥
2

2

, (4)

where ∆ωg(t − 1, t) denotes the difference between ω
(t)
g and ω

(t−1)
g . Instead of broadcasting the

parameter difference, the server broadcasts ζ(t)g = {(x̂j , ŷj)}mj=1 to all participating devices.

– Local Training: Upon receiving the broadcasted tensor ζ(t)g , each edge device recovers the intended
global model ω(t)

g using the global model ω(t−1)
g from the last round. This recovery process is

achieved through one-step gradient descent on ζ
(t)
g :

ω(t)
g = ω(t−1)

g −
∑

(x̂,ŷ)∈ζ
(t)
g

∂ℓ(ω
(t−1)
g ; (x̂, ŷ))

∂ω
(t−1)
g

. (5)

After that, for each edge device i, started from the model ω(t)
g , it performs local training on its private

dataset for K iterations to update its parameters as ω(t,k)
i :

ω
(t,k)
i ← ω

(t,k−1)
i − γ

∑
(x,y)∈Bi

∂ℓ(ω
(t,k−1)
i ; (x, y))

∂ω
(t,k−1)
i

for k ∈ [K], (6)

where ω
(t,0)
i = ω

(t)
g , ω(t)

i = ω
(t,K)
i , and Bi is the i-th random batch drawn from Di.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Wall-clock time and communication cost comparison under the same test accuracy, based
on the average data uploaded per device (MB) and training time (s) after initialization, across four
network architectures and datasets including CIFAR-10 and CRCSlides.

Model Method
CIFAR-10 (Krizhevsky et al., 2009) CRCSlides (Kather et al., 2018; 2019)

Avg. Data ↑ (MB) Wall-clock Time (s) Avg. Data ↑ (MB) Wall-clock Time (s)

GoogLeNet

FedAvg (McMahan et al., 2017) 764.59 (1×) 1,555.73 578.07 (1×) 1,113.84
Top-k (Aji & Heafield, 2017) 653.50 (1.17×) 1,509.71 458.79 (1.26×) 959.99
FedPAQ (Reisizadeh et al., 2020) 364.21 (2.43×) 1,045.38 284.76 (2.03×) 502.32
DAdaQ (Hönig et al., 2022) 483.63 (1.83×) 1,159.15 450.44 (1.54×) 955.71
AdaGQ (Liu et al., 2023) 471.97 (1.62×) 1,153.16 405.66 (1.71×) 905.53
FedMUD 22.94 (33.33×) 965.96 22.15 (26.10×) 842.22

MobileNet

FedAvg (McMahan et al., 2017) 707.28 (1×) 1,605.59 547.65 (1×) 1,346.58
Top-k (Aji & Heafield, 2017) 597.82 (1.18×) 1,662.05 402.68 (1.36×) 1,487.54
FedPAQ (Reisizadeh et al., 2020) 341.01 (2.07×) 1,295.97 239.82 (2.28×) 976.733
DAdaQ (Hönig et al., 2022) 497.24 (1.42×) 1,519.40 367.55 (1.49×) 1,276.83
AdaGQ (Liu et al., 2023) 443.49 (1.59×) 1,373.24 285.23 (1.92×) 1,026.71
FedMUD 24.57 (28.79×) 1,096.67 20.58 (26.61×) 854.61

ShuffleNet

FedAvg (McMahan et al., 2017) 352.64 (1×) 918.94 396.71 (1×) 1,198.45
Top-k (Aji & Heafield, 2017) 320.16 (1.10×) 1,105.13 306.58 (1.29×) 1,354.72
FedPAQ (Reisizadeh et al., 2020) 167.04 (2.11×) 859.19 168.34 (2.36×) 1,125.46
DAdaQ (Hönig et al., 2022) 205.44 (1.72×) 816.87 219.18 (1.81×) 1,269.67
AdaGQ (Liu et al., 2023) 220.26 (1.60×) 866.52 268.05 (1.48×) 1,394.71
FedMUD 18.94 (19.02×) 694.17 26.75 (14.83×) 976.53

ResNet-18

FedAvg (McMahan et al., 2017) 1,153.98 (1×) 2,252.93 967.85 (1×) 1,808.97
Top-k (Aji & Heafield, 2017) 848.51 (1.36×) 1,821.35 762.09 (1.27×) 1,507.63
FedPAQ (Reisizadeh et al., 2020) 588.77 (1.96×) 1,490.32 441.94 (2.19×) 970.22
DAdaQ (Hönig et al., 2022) 785.02 (1.47×) 1,800.66 559.45 (1.73×) 1,159.14
AdaGQ (Liu et al., 2023) 682.83 (1.69×) 1,350.30 514.81 (1.88×) 1,056.11
FedMUD 28.16 (40.98×) 1,216.71 24.38 (38.70×) 871.39

– Uploading: After local training, each device i executes model update distillation between the
received global model ω(t)

g and the updated local model ω(t)
i :

ζ
(t)
i = argmin

{(xj ,yj)}
mt

i
j=1

∥∥∥∥∥∥
m(t)

g∑
j=1

∂ℓ(ω
(t)
g ; (xj , yj))

∂ω
(t)
g

−
(
ω(t)
g − ω

(t)
i

)∥∥∥∥∥∥
2

2

. (7)

Here m(t)
i is related to the difference between ω

(t)
i and ω

(t)
g , which varies in each round. Each device

i uploads the synthetic samples ζ
(t)
i to the server. The amount of ζ(t)i is much smaller than the

parameter disparity ω
(t)
g − ω

(t)
i , thus the uplink communication burden can be significantly reduced.

– Global Aggregation: Upon receiving the uploaded tensor ζ(t)i , the central server performs one-step
gradient descent to recover the intended updated local model ω(t)

i for each device i. This is achieved
by addressing the following optimization problem:

ω
(t)
i = ω(t)

g −
∑

(x̂,ŷ)∈ζ
(t)
i

∂ℓ(ω
(t)
g ; (x̂, ŷ))

∂ω
(t)
g

. (8)

The server then aggregates the reconstructed local models ω(t)
i from all selected devices to obtain an

updated global model ω(t+1)
g :

ω(t+1)
g =

1

N

N∑
i=1

ω
(t)
i . (9)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6 12 18 24 3070

72

74

76

78

80

82

84

Ac
cu
ra
cy
 (
%
)

ResNet-18
GoogLeNet

(a) Different partitioned modules m

1 5 10 200

10

20

30

40

50

Av
er
ag

e
da

ta
 u
pl
oa

de
d
(M

B)

ResNet-18
GoogLeNet

(b) Different local epochs K

Figure 2: Ablation analysis of FedMUD’s performance with varying (a) number of partitioned
modules m and (b) number of local epochs K on the client devices.

5 EXPERIMENTS

Baselines. We evaluate FedMUD against five state-of-the-art methods, covering quantization, sparsi-
fication, and knowledge distillation approaches: 1) Top-k (Aji & Heafield, 2017) is a sparsification
technique that reduces communicated gradients by selecting the largest k elements, with k set to 50%
of the total parameters. 2) FedPAQ (Reisizadeh et al., 2020) is the first federated learning quantization
scheme, which compresses models uploaded by clients and distributed by the server to 8-bit. 3)
DAdaQ (Hönig et al., 2022) employs a dual adaptive quantization algorithm that adjusts quantization
levels dynamically across rounds and clients. 4) AdaGQ (Liu et al., 2023) adapts quantization levels
in each round based on gradient norms and client bandwidth. 5) FedKD (Wu et al., 2022) improves
communication efficiency by creating a smaller messenger model via knowledge distillation between
the server and clients. While recently published methods like FedDST (Bibikar et al., 2022) and
FedCS (Jiang & Borcea, 2023) are relevant, their original papers only test on a three-layer CNN.
Thus, we exclude them from our comparison, as their effectiveness on more complex models remains
unclear.

Datasets. Experiments are conducted on two benchmark datasets: CIFAR-10 and a real-world
medical image dataset CRCSlides (Kather et al., 2018; 2019), which is collected for predicting
survival from colorectal cancer histology slides. It contains 100,000 images for training and 7,180
images for testing. The image size is 3× 32× 32. Similar to prior work (Liu et al., 2023), we use σd

to denote the level of Non-IID data, which corresponds to the fraction of data that belongs to only one
class at each device. In our experiments, we set σd = 0.2, representing the scenario where 20% of
each local dataset contains samples from only one class, while the remaining 80% contains samples
from other classes. Detailed experiment settings are included in the Appendix A.

5.1 PERFORMANCE COMPARISON

Wall-clock Training Time Comparison. We assess the wall-clock times of our method and compar-
ative methods required to achieve identical accuracy levels. We test four architectures—GoogLeNet,
MobileNet, ShuffleNet, and ResNet-18—across two datasets, CIFAR-10 and CRCSlides, and also
compare communication costs. The results, shown in Table 2, indicate that on CIFAR-10 using
ResNet-18, our method reaches 80% accuracy in 1216.71 s, versus FedAvg’s 2252.93 s. Additionally,
the average data upload per device for our method is 28.16 MB, a 40.98× reduction compared to
FedAvg’s 1153.98 MB. On CRCSlides, our method excels further: using GoogLeNet, it achieves 76%
accuracy in 842.22 s, while FedAvg takes 1113.84 s. The average data upload per device is 22.15 MB,
far lower than FedAvg’s 578.07 MB, resulting in a 26.10× reduction. These results highlight our
method’s suitability for bandwidth-constrained edge devices, improving efficiency while significantly
reducing communication costs.

Impact of the Number of Modules. To investigate the impact of the number of modules m on
our method’s performance, we plot the global model’s test accuracy on CIFAR-10 by searching
over m ∈ 6, 12, 18, 24, 30. The results are shown in Fig. 2a. At m = 6, FedMUD struggles to
approximate the ResNet-18 model’s parameter updates effectively. However, as m increases to 18,
accuracy reaches 82.81%. Further increases beyond 18 yield diminishing returns, with accuracy at
82.64% for m = 30. For GoogLeNet, an initial accuracy of 78.36% is achieved at m = 12, rising
slightly to 78.94% at m = 30. These findings suggest that with fewer modules, FedMUD struggles

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

to synthesize tensors that accurately reflect parameter updates, leading to suboptimal performance.
As m increases, allowing finer granularity, performance plateaus, with minimal gains from further
increases.

Impact of the Number of Local Epochs. To explore the influence of local training epochs, denoted
as E, on the efficacy of our federated learning approach, we conduct experiments to assess the
global model’s test accuracy on the CIFAR-10 dataset across various E values, specifically E ∈
1, 5, 10, 20, 50. The results are shown in Fig. 2b. As E increases, our results show a decrease
in data uploads and wall-clock time up to a point, indicating improved communication efficiency.
However, with E = 20 and beyond, while data transfer continues to decrease, computational time
rises, revealing a trade-off between reducing communication rounds and increasing computation.
This balance is crucial for optimizing federated learning systems under varying network and privacy
conditions.

Table 3: Accuracy comparison under almost
the same wall-clock training time.

Model Method CIFAR-10
Accuracy (%) Wall-clock Time (s)

GoogLeNet

FedAvg 77.62 1,704.15
Top-k 72.17 1,685.13
FedPAQ 74.35 1,675.07
DAdaQ 73.57 1,686.26
AdaGQ 74.09 1,668.33
FedMUD 78.36 1,662.24

ResNet-18

FedAvg 80.59 2,354.67
Top-k 71.64 2,347.13
FedPAQ 80.36 2,344.34
DAdaQ 79.78 2,359.74
AdaGQ 80.22 2,355.12
FedMUD 82.81 2,333.45

Model Accuracy Comparison. We further provide
an accuracy comparison under almost the same wall-
clock training time. For our method, the total number
of communication rounds is set to 100, while the
round count for other baseline methods is determined
by the rounds reached when their training time ex-
ceeds 100 rounds for our method. As shown in Table
3, FedPAQ has the largest total number of rounds
among the baselines and also achieved the highest ac-
curacy of 80.36%. FedAvg has the fewest total rounds
due to the complete transmission of model informa-
tion, which severely limits its performance under the
bandwidth constraints of edge devices, achieving an
accuracy of 80.59%. Under the same time budget, our
method allows for the most communication rounds
and achieves an accuracy of 82.81%.

Table 4: Results of 20% participation with
more devices under.

N Method
CIFAR-10

Avg. Data ↑ (MB) Wall-clock Time (s)

50
FedAvg 976.52 9573.58
FedMUD 35.56 (27.46×) 8756.44

100
FedAvg 1174.91 24573.62
FedMUD 35.53 (33.06×) 19538.15

200
FedAvg 1896.43 45716.49
FedMUD 63.98 (29.64×) 40269.37

Partial Participation with More Devices. To eval-
uate the scalability and performance of our method
with varying device numbers, we conducted exper-
iments with a fixed device participation rate of 0.2
and total device counts of 50, 100, 200, and 500.
The results are shown in Table 4. As expected, in-
creasing the number of devices noticeably affects the
model’s convergence speed. Specifically, as the num-
ber of devices grows, more communication rounds
are needed for convergence, likely due to reduced
individual device participation per round, which im-
pacts the global model’s update frequency. However,
our method demonstrates significant communication efficiency compared to FedAvg. For instance,
with 50 devices, our approach cuts data uploaded per device by a factor of 29.64. This advantage is
even more pronounced at larger scales: with 500 devices, our method achieves a 42.13-fold reduction
in communication overhead compared to FedAvg.

Table 5: Results of average data uploaded and
wall-clock time without initialization phase.

Model Method
CIFAR-10

Avg. Data ↑ (MB) Wall-clock Time (s)

ResNet-18

FedAvg 1,768.29 4,027.61
Top-k 1,498.73 4,321.33

FedPAQ 954.83 3,499.12
DAdaQ 1,492.37 4,583.69
AdaGQ 1,374.82 4,267.61

FedMUD 132.48 (13.35×) 3,733.52

Without Initialization Phase. Although in practical
industrial applications, the initial model is rarely a
randomly initialized one, we intentionally presented
results without an initialization phase to rigorously
evaluate the performance of our method. As shown
in Table 5, even under these conditions, our method
still achieves significant reductions in communica-
tion overhead. Specifically, our approach requires an
average data upload of only 68.84 MB per device,
compared to 1768.29 MB for FedAvg. Even when
compared to the best-performing quantization-based
method, which requires 954.83 MB, our method
demonstrates superior communication efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

��		�
������
���	� ��������������	������
���	� ������	������
���	�

	����� ����� 	�������� ���
 ����
�

����

����
�
��
���

��
��

���
�
��
��
�

(a) ResNet-18 on CIFAR-10

	����� ����� 	�������� ���
 ����
�

���

����

����

�
��
���

��
��

���
�
��
��
�

(b) GoogLeNet on CIFAR-10

	����� ����� 	�������� ���
 ����
�

���

����

����

�
��
���

��
��
���
�
��
��
�

(c) ResNet-18 on CRCSlides

	����� ����� 	�������� ���
 ����
�

���

����

�
��
���

��
��
���
�
��
��
�

(d) GoogLeNet on CRCSlides

Figure 3: Computation and communication time comparison of FedMUD and baseline methods. We
display the proportion of MUD computation in our overall computation time.

5.2 COMPUTATION AND COMMUNICATION TIME ANALYSIS

To analyze how FedMUD reduces total training time, we dissect both communication and computation
times in Fig.3. For comparison, we also show the proportions of these times for other methods.
Our approach requires relatively longer computation time due to the MUD process but benefits
from significantly reduced communication time, improving overall training efficiency and device
utilization. FedAvg has the shortest computation time, as it transmits complete model information,
allowing it to reach target accuracy in fewer rounds. Among quantization-based methods, FedPAQ
has the longest computation time, needing more rounds to compensate for information loss from
quantization. DAdaQ and AdaGQ use adaptive quantization strategies that reduce communication
rounds but require longer communication times. These results highlight the trade-offs between
computation and communication times in different federated learning methods, underscoring the
effectiveness of FedMUD in optimizing overall training efficiency and device utilization.

6 LIMITATIONS DISCUSSION

The MUD procedure requires additional computational cost, and it may be unrealistic to use synthetic
tensor to precisely approximate the model parameter update for ultra-large networks. However,
in the context of edge computing, models like ResNet-18 are already considered quite large, as
most commonly deployed architectures, such as MobileNet and GhostNet, are designed to be more
lightweight and efficient.Moreover, the additional computation is offset by the significant reduction in
communication overhead. Despite these limitations, we believe our method offers valuable insights
and a novel perspective on communication-efficient federated learning.

7 CONCLUSION

In this study, we introduced model update distillation-based communication-efficient federated
learning (FedMUD), a novel approach where devices and the server synthesize tensor sequences to
represent small model updates, rather than transmitting raw model differences. Our key innovation
lies in distilling the structural essence of model updates, as opposed to directly compressing them.
This enables the transmission of only essential information for synchronization, bypassing the need to
transmit the entire set of raw parameter differences. Experimental results demonstrate that FedMUD
substantially reduces communication overhead without sacrificing accuracy significantly.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

ADPPA. American data privacy and protection act, 2022. URL https://www.congress.gov/
bill/117th-congress/house-bill/8152.

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. arXiv
preprint arXiv:1704.05021, 2017.

Dmitrii Avdiukhin and Shiva Kasiviswanathan. Federated learning under arbitrary communication
patterns. In International Conference on Machine Learning, pp. 425–435. PMLR, 2021.

Sameer Bibikar, Haris Vikalo, Zhangyang Wang, and Xiaohan Chen. Federated dynamic sparse
training: Computing less, communicating less, yet learning better. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 6080–6088, 2022.

Timothy Castiglia, Yi Zhou, Shiqiang Wang, Swanand Kadhe, Nathalie Baracaldo, and Stacy Pat-
terson. Less-vfl: Communication-efficient feature selection for vertical federated learning. arXiv
preprint arXiv:2305.02219, 2023.

Travers Ching, Daniel S Himmelstein, Brett K Beaulieu-Jones, Alexandr A Kalinin, Brian T Do,
Gregory P Way, Enrico Ferrero, Paul-Michael Agapow, Michael Zietz, Michael M Hoffman, et al.
Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal
Society Interface, 15(141):20170387, 2018.

Rong Dai, Li Shen, Fengxiang He, Xinmei Tian, and Dacheng Tao. Dispfl: Towards communication-
efficient personalized federated learning via decentralized sparse training. arXiv preprint
arXiv:2206.00187, 2022.

Chenyuan Feng, Zhongyuan Zhao, Yidong Wang, Tony Q. S. Quek, and Mugen Peng. On the
design of federated learning in the mobile edge computing systems. IEEE Transactions on
Communications, 69(9):5902–5916, 2021. doi: 10.1109/TCOMM.2021.3087125.

GDPR. General data protection regulation, 2016. URL https://gdprinfo.eu/.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Local
sgd with periodic averaging: Tighter analysis and adaptive synchronization. Advances in Neural
Information Processing Systems, 32, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

Robert Hönig, Yiren Zhao, and Robert Mullins. Dadaquant: Doubly-adaptive quantization for
communication-efficient federated learning. In International Conference on Machine Learning, pp.
8852–8866. PMLR, 2022.

Xiaopeng Jiang and Cristian Borcea. Complement sparsification: Low-overhead model pruning for
federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 8087–8095, 2023.

Shivam Kalra, Junfeng Wen, Jesse C Cresswell, Maksims Volkovs, and HR Tizhoosh. Decentralized
federated learning through proxy model sharing. Nature communications, 14(1):2899, 2023.

Jakob Nikolas Kather, Niels Halama, and Alexander Marx. 100,000 histological images of human
colorectal cancer and healthy tissue. Zenodo10, 5281, 2018.

Jakob Nikolas Kather, Johannes Krisam, Pornpimol Charoentong, Tom Luedde, Esther Herpel, Cleo-
Aron Weis, Timo Gaiser, Alexander Marx, Nektarios A Valous, Dyke Ferber, et al. Predicting
survival from colorectal cancer histology slides using deep learning: A retrospective multicenter
study. PLoS medicine, 16(1):e1002730, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Toronto, ON, Canada, 2009.

Heting Liu, Fang He, and Guohong Cao. Communication-efficient federated learning for hetero-
geneous edge devices based on adaptive gradient quantization. In IEEE INFOCOM 2023-IEEE
Conference on Computer Communications, pp. 1–10. IEEE, 2023.

11

https://www.congress.gov/bill/117th-congress/house-bill/8152
https://www.congress.gov/bill/117th-congress/house-bill/8152
https://gdprinfo.eu/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ping Liu, Xin Yu, and Joey Tianyi Zhou. Meta knowledge condensation for federated learning. arXiv
preprint arXiv:2209.14851, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Dinh C. Nguyen, Ming Ding, Quoc-Viet Pham, Pubudu N. Pathirana, Long Bao Le, Aruna Senevi-
ratne, Jun Li, Dusit Niyato, and H. Vincent Poor. Federated learning meets blockchain in edge
computing: Opportunities and challenges. IEEE Internet of Things Journal, 8(16):12806–12825,
2021. doi: 10.1109/JIOT.2021.3072611.

Ookla, 2024. URL https://www.speedtest.net/global-index.

PrimateLabs, 2024. URL https://www.socpk.com/geekbench6/.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and quanti-
zation. In International Conference on Artificial Intelligence and Statistics, pp. 2021–2031. PMLR,
2020.

Felix Sattler, Arturo Marban, Roman Rischke, and Wojciech Samek. Communication-efficient
federated distillation. arXiv preprint arXiv:2012.00632, 2020.

Jiawei Shao, Fangzhao Wu, and Jun Zhang. Selective knowledge sharing for privacy-preserving
federated distillation without a good teacher. Nature Communications, 15(1):349, 2024.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd
ACM SIGSAC conference on computer and communications security, pp. 1310–1321, 2015.

Jun Sun, Tianyi Chen, Georgios B. Giannakis, Qinmin Yang, and Zaiyue Yang. Lazily aggregated
quantized gradient innovation for communication-efficient federated learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(4):2031–2044, 2022. doi: 10.1109/TPAMI.2020.
3033286.

Hui-Po Wang, Sebastian Stich, Yang He, and Mario Fritz. Progfed: effective, communication, and
computation efficient federated learning by progressive training. In International Conference on
Machine Learning, pp. 23034–23054. PMLR, 2022.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation. CoRR,
abs/1811.10959, 2018. URL http://arxiv.org/abs/1811.10959.

Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. Communication-efficient
federated learning via knowledge distillation. Nature communications, 13(1):2032, 2022.

Yuanhao Xiong, Ruochen Wang, Minhao Cheng, Felix Yu, and Cho-Jui Hsieh. Feddm: Iterative
distribution matching for communication-efficient federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16323–16332, 2023.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural information
processing systems, 32, 2019.

Ligeng Zhu, Hongzhou Lin, Yao Lu, Yujun Lin, and Song Han. Delayed gradient averaging: Tolerate
the communication latency for federated learning. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 29995–30007, 2021.

Zhuangdi Zhu, Junyuan Hong, Steve Drew, and Jiayu Zhou. Resilient and communication efficient
learning for heterogeneous federated systems. Proceedings of machine learning research, 162:
27504, 2022.

12

https://www.speedtest.net/global-index
https://www.socpk.com/geekbench6/
http://arxiv.org/abs/1811.10959

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A EXPERIMENT SETTINGS

Implementations details. We implement FedMUD alongside baseline methods utilizing the PyTorch
framework on a system outfitted with four Nvidia RTX 3090 GPUs. Our simulation involves 10
virtual devices, with a device sampling rate of 1, ensuring each device’s participation in model
updating during every communication round. The data transmission rate for each device is randomly
set between 50 Mbps and 100 Mbps by default. All methods employ stochastic gradient descent for
local training, with a learning rate set at 0.01. Specifically, for FedMUD, the LBFGS optimization
technique is utilized for synthesizing the tensor sequence, offering the advantage of adaptively
controlling the step size to efficiently identify an optimal tensor sequence. The tensor length for each
module is set to 10, with the number of iterations also set to 10. For the ResNet-18 architecture,
we segmented it into 18 modules, while the GoogLeNet model was partitioned into 11 modules.
The batch size is set as 32, and devices are configured to upload model updates at the end of every
epoch. All compared methods initialize their networks by pre-training using FedAvg for 30 rounds.
Since they share the same initialization process, the experimental results and analyses presented
subsequently include only the costs after initialization. It is worth noting that, the initialization step is
crucial for achieving training stability. For example, the accuracies of Top-k and AdaGQ drop by as
much as 13% and 10% respectively if the initialization step is removed.

B PYTORCH CODE OF THE CORE IDEA OF MUD

Here we provide the core code of MUD, as shown in Algorithm 3.

Algorithm 3: PyTorch Code of Model Update Distillation
import torch

def compute_tensor(self, syn_model, n_sample, n_classes, iter_num):
Randomly generate m synthetic samples
syn_size = [n_sample] +

list(next(iter(self.train_loader))[0].shape[1:])
syn_inputs = torch.randn(tuple(syn_size), device=self.device,

requires_grad=True)
syn_labels = torch.randn((n_sample, n_classes), device=self.device,

requires_grad=True)
optimizer = torch.optim.LBFGS([syn_inputs, syn_labels])
Get the real gradients
real_gradients = torch.cat([v.clone().flatten() for v in

self.dw.values()])
Iteratively optimize the synthetic samples
for iter in range(iter_num):

def closure():
optimizer.zero_grad()
Get the synthetic gradients
syn_preds = syn_model(syn_inputs)
syn_loss = torch.nn.CrossEntropyLoss()(syn_preds,

syn_labels)
syn_dw = torch.autograd.grad(loss, syn_model.parameters(),

create_graph=True, allow_unused=True)
syn_gradients = torch.cat([v.flatten() for v in syn_dw])
loss = torch.nn.MSELoss()(syn_gradients, real_gradients)
loss.backward()
return loss

optimizer.step(closure)
return syn_inputs, syn_labels

C CONVERGENCE ANALYSIS OF FEDMUD

Analysis for FedMUD.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Aussumption 3.1 (Smoothness). All local functions fi(i ∈ [N]) are L-smooth.

Aussumption 3.2 (Bounded second moment). There exists a constant Gmax > 0 such that:
E
[
||∇Fi(x)||2

]
≤ G2

max, ∀i ∈ [N],∀x ∈ Rd, where ∇Fi(x) is an unbiased stochastic gra-
dient of fi at x.

Definition 3.3 (Virtual Sequence). We construct a virtual sequence which is consistent with standard
federated learning, directly transmitting parameter update differences each round between server and
devices. The global model of this virtual sequence can be represented as:

θ(t) = ω(0)
g −

T∑
t=1

η avgi

(
γG

(t−1)
i,v

)
, t = 1, ..., T, (10)

Where
{
θ(t)

}T

t=1
is the global model generated by virtual sequence at round t, ω0

(g) is the initial global

model, γ is the local learning rate, η is the global learning rate, G(t−1)
i,v is the gradient contributions

from device i at virtual round t− 1, and t indexes the global training rounds from 1 to T .

The virtual sequence is constructed to establish the relationship between the global sequence{
ω
(t)
g

}T

t=1
generated by our method and the global sequence

{
θ(t)

}T

t=1
generated by standard

federated learning. We will complete the convergence analysis by bounding the distance between
ω
(t)
g and θ(t).

In Sections 3 and 4, for simplicity, we use ω(t)
i to denote the local model reconstructed by our method

after the device receives the sequence tensor. Here we use ω
(t)
i,o to represent the original local model.

In this section, we mainly analyze how the error between the reconstructed local model ω(t)
i and the

original model ω(t)
i,o affects the convergence.

Aussumption 3.4 (Bounded error). There exists a constant ∆ ≥ 0 such that:

Eξ∼Si

∥∥∥ω(t)
i − ω

(t)
i,o

∥∥∥ ≤ ∆2, ∀i ∈ [N],∀x ∈ Rd. (11)

Lemma 3.5 (Distance Bound). For
{
θ(t)

}T

t=1
of virtual sequence and

{
ω
(t)
g

}T

t=1
,
{
ω
(t)
i

}T

t=1
of

model update distillation FL, we have:
E
[∥∥∥θ(t) − ω

(t)
i

∥∥∥2] ≤ 4η2(γGmax + (T − 1)∆)2,

E
[∥∥∥θ(t) − ω

(t)
g

∥∥∥2] ≤ η2(γGmax + (T − 1)∆)2.

(12)

Proof:

E
[∥∥∥θ(t) − ω(t)

g

∥∥∥2] = E

∥∥∥∥∥
t∑

τ=1

η avgi

(
γG

(τ−1)
i

)
−

t∑
τ=1

η avgi

(
γG̃

(τ−1)
i +∆

)∥∥∥∥∥
2

≤ η2E

∥∥∥∥∥
t∑

τ=1

avgi

(
γG

(τ−1)
i − (γG̃

(τ−1)
i +∆)

)∥∥∥∥∥
2

≤ η2(γGmax + (T − 1)∆)2.

(13)

Similarly, E
[∥∥∥ω(t)

g − ω
(t)
i

∥∥∥2] ≤ eta2(γGmax + (T − 1)∆)2. Combining these bounds, we have

the following.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

E
[∥∥∥θ(t) − ω

(t)
i

∥∥∥2] = E
[∥∥∥θ(t) − ω(t)

g + ω(t)
g − ω

(t)
i

∥∥∥2]
≤ 2

(
E
[∥∥∥θ(t) − ω(t)

g

∥∥∥2]+ E
[∥∥∥ω(t)

g − ω
(t)
i

∥∥∥2])
≤ 4η2(γGmax + (T − 1)∆)2.

(14)

Theorem 3.6 (Convergence Rate). Let fmax = f
(
ω
(0)
g

)
− f (ω⋆), where ω⋆ is the minimizer for f ,

we have:

1

T

T∑
t=1

E
[∣∣∣∇f (

ω(t)
g

)∣∣∣2] = O(
fmax

ηγT
+ ηγ

Lσ2

N
+ η2L2(γGmax + (T − 1)∆)2). (15)

Proof: Similar to (Avdiukhin & Kasiviswanathan, 2021) Theorem 2.4.

From smoothness Lipschitz condition on the gradients:

E
[∥∥∥∇f (

ω(t)
g

)
−∇f

(
θ(t)

)∥∥∥2] ≤ L2E
[∥∥∥ω(t)

g − θ(t)
∥∥∥2] ≤ L2η2(γGmax + (T − 1)∆)2, and

E
[∥∥∥∇fi (ω(t)

i

)
−∇fi

(
θ(t)

)∥∥∥2] ≤ L2E
[∥∥∥ω(t)

i − θ(t)
∥∥∥2] ≤ 4L2η2(γGmax + (T − 1)∆)2.

(16)

First, we bound θ(t), for θ(t), we have:

θ(t+1) = θ(t) − η avgi

(
γG

(τ)
i

)
. (17)

By the smoothness property:

E
[
f
(
θ(t+1)

)]
≤ E

[
f
(
θ(t)

)]
−E

[〈
∇f

(
θ(t)

)
, η avgi

(
γG

(t)
i

)〉]
+
L

2
E
[∥∥∥η avgi (γG(t)

i

)∥∥∥2] .
(18)

The last term in Eq. 18 can be rewritten as:
L

2
E
[∥∥∥η avgi (G(t)

i

)∥∥∥2]
=

η2γ2L

2
E
[∥∥∥avgi (G(t)

i +∇fi
(
ω
(t)
i

)
−∇fi

(
ω
(t)
i

))∥∥∥2]
=

η2γ2L

2
E
[∥∥∥avgi (∇fi (ω(t)

i

)
+

(
G

(t)
i −∇fi

(
ω
(t)
i

)))∥∥∥2]
=

η2γ2L

2
E
[∥∥∥avgi (∇fi (ω(t)

i

))∥∥∥2]+
η2γ2L

2
E
[∥∥∥avgi (G(t)

i −∇fi
(
ω
(t)
i

))∥∥∥2]
=

η2γ2L

2
E
[∥∥∥avgi (∇fi (ω(t)

i

))∥∥∥2]+ η2γ2Lσ
2

2
.

(19)

Substituting this into the Eq. 18, get:

E
[
f
(
θ(t+1)

)]
≤E

[
f
(
θ(t)

)]
− E

[〈
∇f

(
θ(t)

)
, η avgi

(
γ∇fi

(
ω
(t)
i

))〉]
+

η2γ2L

2
E
[∥∥∥avgi (∇fi (ω(t)

i

))∥∥∥2]+ η2γ2Lσ
2

2

≤E
[
f
(
θ(t)

)]
− ηE

[〈
∇f

(
θ(t)

)
, avgi

(
γ∇fi

(
θ(t)

))〉]
− ηE

[〈
∇f

(
θ(t)

)
, avgi

(
∇fi

(
ω
(t)
i

)
−∇fi

(
θ(t)

))〉]
+

η2γ2L

2
E
[∥∥∥avgi (∇fi (ω(t)

i

))∥∥∥2]+ η2γ2Lσ
2

2
.

(20)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The first term in Eq. 20 can be simplified by avgi
(
fi
(
θ(t)

))
= f

(
θ(t)

)
:

ηE
[〈
∇f

(
θ(t)

)
, avgi

(
γ∇fi

(
θ(t)

))〉]
= γηE

[∥∥∥∇f (
θ(t)

)∥∥∥2] . (21)

For the second term in Eq. 20 we have:

ηγE
[〈
∇f

(
θ(t)

)
, avgi

(
∇fi

(
ω
(t)
i

)
−∇fi

(
θ(t)

))〉]
≤ ηγ

2

(
E
[∥∥∥∇f (

θ(t)
)∥∥∥2]+ E

[∥∥∥avgi (∇fi (ω(t)
i

)
−∇fi

(
θ(t)

))∥∥∥2])
≤ ηγ

2

(
E
[∥∥∥∇f (

θ(t)
)∥∥∥2]+ avgi

(
E
[∥∥∥∇fi (ω(t)

i

)
−∇fi

(
θ(t)

)∥∥∥2]))
≤ ηγ

2

(
E
[∥∥∥∇f (

θ(t)
)∥∥∥2]+ 4L2η2(γGmax + (T − 1)∆)2

)
. (According to Eq. 16)

(22)

For the third term in Eq. 20 we have:
η2γ2L

2
E
[∥∥∥avgi (∇fi (ω(t)

i

))∥∥∥2]
=

η2γ2L

2
E
[∥∥∥avgi (∇fi (θ(t))+

(
∇fi

(
ω
(t)
i

)
−∇fi

(
θ(t)

)))∥∥∥2]
≤ η2γ2L

(
E
[∥∥∥avgi (∇fi (θ(t)))∥∥∥2]+ E

[∥∥∥avgi (∇fi (ω(t)
i

)
−∇fi

(
θ(t)

))∥∥∥2])
≤ η2γ2L

(
E
[∥∥∥∇f (

θ(t)
)∥∥∥2]+ 4L2η2(γGmax + (T − 1)∆)2

)
. (According to Eq. 16)

(23)

Substituting Eq. 21, 22, 23 into the Eq. 20 and move E
[
|| ∇f(θ(t)) ||2

]
to the left of the inequality;

E
[∥∥∥∇f (

θ(t)
)∥∥∥2] ≤ (

E
[
f
(
θ(t)

)]
− E

[
f
(
θ(t+1)

)])
ηγ

+ ηγ
Lσ2

2N
+2η3L2(γGmax + (T − 1)∆)2.

(24)
Taking the sum over all iterations:

1

T

T∑
t=0

E
[∥∥∥∇f (

θ(t)
)∥∥∥2] ≤ (

E
[
f
(
θ(0)

)]
− E

[
f
(
θ(T+1)

)])
ηγT

+ηγ
Lσ2

2N
+2η3L2(γGmax+(T−1)∆)2.

(25)

Finally, we can bound || ∇f(ω(t)
g) || in terms of || ∇f(θ(t)) || as:

E
[∥∥∥∇f (

ω(t)
g

)∥∥∥2] ≤ 2

(
E
[∥∥∥∇f (

ω(t)
g

)
−∇f

(
θ(t)

)∥∥∥2]+ E
[∥∥∥∇f (

θ(t)
)∥∥∥2])

≤ 2E
[∥∥∥∇f (

θ(t)
)∥∥∥2]+ 2L2E

[∥∥∥ω(t)
g − θ(t)

∥∥∥2]
≤ 2E

[∥∥∥∇f (
θ(t)

)∥∥∥2]+ η2L2(γGmax + (T − 1)∆)2.

(26)

Substituting this into the inequality above on 1
T

∑T
t=0 E

[∥∥∇f (
θ(t)

)∥∥2] gives the claimed bound:

1

T

T∑
t=0

E
[∥∥∥∇f (

ω(t)
g

)∥∥∥2] = O

(
fmax

ηγT
+ η2L2(γGmax + (T − 1)∆)2 + ηγ

Lσ2

N

)
. (27)

Using the step size η =
√
N/
√
T , we get:

1

T

T∑
t=0

E
[∥∥∥∇f (

ω(t)
g

)∥∥∥2]
= O

(
fmax√
NTγ

+
N

T
L2(γGmax + (T − 1)∆)2 + γ

Lσ2

√
NT

)
.

(28)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

If the approximate error ∆ decays over time T at a rate of ∆t =
∆
Tk , where k > 1, then our method

can achieve the same convergence rate as FedAvg, which is O(1/
√
NT).

17

	Introduction
	Related Works
	Model Update Distillation
	Motivation
	Our Strategy
	Differences with Distillation-related Methodologies

	Model Update Distillation based Communication-Efficient FL
	Experiments
	Performance Comparison
	Computation and Communication Time Analysis

	Limitations Discussion
	Conclusion
	experiment settings
	Pytorch code of the core idea of MUD
	Convergence Analysis of FedMUD

