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ABSTRACT

Federated learning (FL) is a popular distributed machine learning framework for
edge computing. However, it faces a significant challenge: the communication
overhead caused by frequent model updates between clients and the central server.
Previous studies have overlooked a crucial piece of information: the central server
already knows the initial model on each client before local training begins in every
round. This oversight leads to significant redundancy in communication, as full
model information are transmitted unnecessarily. To address this, we propose a
novel framework called model update distillation (MUD), which leverages this
prior knowledge to decouple model parameters from the network architecture. In-
stead of transmitting raw parameter updates, our method synthesizes and transmits
compact tensor sequences that encode only the essential information for synchro-
nization. This dramatically reduces communication overhead while still allowing
recipients to accurately reconstruct the intended model updates. Extensive ex-
perimental results demonstrate that FedMUD achieves substantial improvements
in communication efficiency, making it a highly effective solution for federated
learning in bandwidth-constrained environments. The PyTorch-like core code can
be found in 3.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017; Shokri & Shmatikov, 2015) has become a promising
approach for privacy-preserving machine learning by allowing model training directly on edge devices,
such as smartphones and IoT sensors, without requiring centralized data storage. This decentralized
framework ensures that sensitive data remains on-device, mitigating privacy and regulatory concerns
(Ching et al., 2018; GDPR, 2016; ADPPA, 2022). With the rise of edge computing, FL has gained
further traction, enabling real-time data processing and decision-making at the source (Feng et al.,
2021; Nguyen et al., 2021). By leveraging the growing computational power of mobile devices, FL.
not only enhances scalability and efficiency in diverse fields like healthcare, finance, and smart cities
but also reduces latency and the need for transmitting raw data to centralized servers.

However, one of the persistent challenges in FL is the growing imbalance between computing power
and communication bandwidth. As shown in Table 1, advances in bandwidth have not kept pace with
computing power. For instance, MediaTek and Qualcomm chips have improved by 53% and 31%,
respectively, over their previous generations (PrimateLabs, 2024). In contrast, the global median
upload bandwidth for mobile devices increased by only 7% from 2023 to 2024 (Ookla, 2024). This
growing disparity highlights a key challenge in FL: modern neural network models, even lightweight
ones like MobileNet, still consist of millions of parameters. Given that edge devices typically rely on
wireless or long-distance connections, with bandwidth often limited to tens of Mbps, this bandwidth
bottleneck severely restricts FL’s potential. As computational power continues to rise, optimizing
communication efficiency in bandwidth-constrained environments is crucial for maintaining FL
performance.

To address this challenge, communication-efficient FL has emerged as an active research area. Re-
searchers have developed various strategies to reduce the communication burden, including techniques
like model compression (e.g., quantization (Liu et al., 2023; Sun et al., 2022) and sparsification (Aji
& Heafield, 2017; Dai et al., 2022)) that minimize the size of model updates. Additionally, methods
like delayed gradient averaging allow devices to perform more local computation before transmitting
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Table 1: Comparison of Median Mobile Upload Bandwidth vs. Chip Computing Power Growth.

Mobile Bandwidth MediaTek Qualcomm
Year  Upload (Mbps) Processer Geekbench 6 Processer Geekbench 6
2023 10.26 Dimensity 9200 5119 Snapdragon 8 Gen 2 5697

2024 11.02 (+7%) Dimensity 9300 7857 (+53%)  Snapdragon 8 Gen3 7466 (+31%)

updates, thus reducing communication frequency (Zhu et al., 2021). Despite these advancements, the
reduction in communication overhead remains limited due to the fundamental relationship between
number of model parameters and network architecture. This interdependence means even minor
updates of each parameter may require transmitting full number of parameters, leading to continued
communication inefficiencies.

In this paper, we uncover a critical yet often overlooked information in federated learning: in each
training round, the central server has prior knowledge of the initial model that each edge client
will use for local training. By exploiting this valuable information, we propose a novel federated
learning framework called Model Update Distillation (FedMUD). Inspired by gradient inversion
(Zhu et al., 2019) and dataset distillation (Wang et al., 2018), FedMUD constructs a synthetic tensor
sequence, which is fed into the initial model of the current round. Specially, after local update,
we fixed the initial model parameters and iteratively optimize this tensor sequence to ensure that
the resulting parameter differences closely match the actual local updates produced by the clients.
Through model update distillation, we condense these parameter differences into a compact tensor
sequence, allowing recipients to accurately reconstruct the intended model updates from the sender.
This decoupling of model updates from the full parameter set significantly reduces communication
overhead, as it eliminates the need to transmit the entire array of raw parameters. By treating the
model’s parameter updates as a whole and compressing them, our approach offers a promising
solution to improve communication efficiency.

The main contributions of this paper are summarized as follows:

» We point out and exploit a crucial piece of information that has been overlooked in previous
research: the central server in federated learning knows the initial model on each client
before local training begins in every round.

* We propose FedMUD, a new framework that treats network parameter updates as a whole,
decoupling them from the network architecture and ensuring a more efficient learning
process.

» Experimental results demonstrate that model update distillation significantly reduces the
amount of communication compared to baselines, without significant accuracy degradation,
enabling a communication-efficient and training-accelerated FL process.

2 RELATED WORKS

Communication Frequency Reduction. This strategy involves allowing devices to perform multiple
local updates before transmitting their model updates to the central server, thereby reducing the
frequency of communication rounds (McMahan et al., 2017; Haddadpour et al., 2019; Zhu et al.,
2021). While this approach reduces the overall transmission data amount, it may result in slower
convergence and potential overfitting if not carefully managed.

Gradient Information Compression. This strategy focuses on compressing gradients (Liu et al.,
2023; Reisizadeh et al., 2020). This includes methods such as quantization (Honig et al., 2022),
which reduces the precision of gradient values to decrease the transmitted information volume, and
sparsification (Aji & Heafield, 2017; Dai et al., 2022), which involves sending only a subset of
gradients by retaining the most significant ones and setting others to zero. However, aggressive
quantization and sparsification can lead to information loss and potentially hinder model accuracy.

Networks Pruning. This strategy attempts to remove less influential weights or neurons from the
model, effectively reducing the parameter count and thus the size of gradients (Zhu et al., 2022; Wang
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Figure 1: Overview of FedMUD and the pipelines of FedAvg and FedMUD. (a) illustrates a four-
device scenario where two resource-constrained devices skip local distillation, while the other two
perform full MUD, achieving bi-directional communication efficiency. (b) depicts the FedAvg
pipeline, which incurs significant communication overhead. (c) shows the FedMUD pipeline, where
model updates are compressed before transmission and reconstructed afterward, reducing communi-
cation time through additional computation.

et al., 2022). However, pruning-based methods require careful hyperparameter tuning and may result
in model degradation if not applied judiciously.

Compact Proxy Transmission. This strategy focuses on uploading logits (Sattler et al., 2020; Shao
et al., 2024) or dataset representations (Xiong et al., 2023; Castiglia et al., 2023) or proxy models
(Kalra et al., 2023; Wu et al., 2022). Instead of transmitting raw gradients, devices calculate and
send logits for their data samples to the central server. Alternatively, devices can convey aggregated
representations of their datasets, such as centroids or other statistical summaries (Liu et al., 2022),
which serve as a compact proxy for the raw gradients, and potential impact on model performance.

3 MODEL UPDATE DISTILLATION

As illustrated in Fig. 1, in this paper, we explore FL across N edge devices, each characterized by
varying computational and bandwidth resources. Consider an edge device ¢, which holds a private
local dataset D; = {(:c;, y;) ;-”:il, where the data points are sampled from a distinct distribution
‘P; over the space X x ). The central idea of FL is to collaboratively train a global model without
directly sharing the private data. This is achieved through a process where edge devices intermittently
send their local model updates to a central server, subsequently receiving an updated global model in

return. The primary aim of FL is to develop a global model that effectively minimizes the combined
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risk across all private datasets:

N
1
i L ) .

argn}ulnﬂ(w,l)) = N;EZ(W,’DQ, )
where w denotes the global model parameters. Here, £;(w, D;) = - Sl (w; (¢, y})) repre-
sents the empirical risk for device 4, with ¢ being the loss function, and D symbolizing the overall
training dataset. Our overarching goal is to efficiently reduce both the communication overhead and
the total wall-clock time required for FL.

3.1 MOTIVATION

In the standard FL process, the central server distributes the aggregated global model from the
previous round to each participating device. These devices then perform local training using the
global model as a starting point, updating their local models accordingly. The FedAvg algorithm
a cornerstone of FL, involves sending model updates between the new and old models back to the
server. However, this approach has a significant inefficiency: the data volume transferred in each
communication round remains constant, irrespective of the extent of changes in model parameters, as
long as the network architecture does not change. This results in redundant transmission of update
information. The root of this issue lies in the inherent interdependence between the model parameters
and the network architecture in traditional FL approaches. Since the network’s structure and its
parameters are closely linked, even minor changes in parameters require retransmitting the entire
model, leading to inefficiency in communication.

3.2 OUR STRATEGY

We introduce a novel approach that involves approximating model updates across different training
periods within a single model. This approximation is represented as a synthetic tensor sequence,
drawing inspiration from concepts in dataset distillation (Wang et al., 2018) and gradient inversion
(Zhu et al., 2019). The core idea is for the sender to transmit this tensor sequence, which encapsulates
only the indispensable information required for model updates, thus eliminating the need to transmit
the entire set of raw parameter differences. Upon receiving the tensor sequence, the recipient
can accurately reconstruct the original model update by performing a single gradient descent step,
integrating the information from the received tensor sequence with the state of the previous model.

Algorithm 1: Model Update Distillation

Input: Tensor length m, model update Aw(t1,t2) = w) — w*2) number of iterations K
Initialization: Initialize the tensor sequence (o = {(&;,9;)} ;=1 with the same dimension as local samples
forq=0,..., K —1do

Derive synthetic gradient using using one-step SGD: Awsyn Vo F; (w, (q)

Calculate MSE loss: £ = MSE(Aw(t1,t2), Awsyn)

Update tensor sequence: (q+1 = optim; grag(Cq, £)
end
Return: (x = {(2;,9;)}7

In the following, we detail the optimization mechanics of MUD. For a model with parameters w,
we define its parameter difference between two periods t; and to as Aw(ty,t2) = wlt) — ()
By approximating Aw(t1,t2), we can update the model parameters at timestamp ¢ even when
we only have access to the old model w(**). To achieve this, we synthesize a tensor sequence
¢ = {(2&;,9;)}L1, which is tailored to approximate the parameter difference using one-step gradient
descent on w(). Our objective is to discover the shortest projected path between w™) and w*2). To
synthesize the sequence, we minimize the error between the parameter difference and the accumulated
gradient of the sequence on w(®1):

2
"0 (W) (24, y;
¢ = argmin Aw(tl,tg)—z ( BW(EI)J y])) ) @)
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where m represents the solved length of the optimal sample sequence. The recovery process for w(*2)
involves a one-step gradient descent on (:

A (w™); (2,9))
(t2) — ,(t1) _ A\
wt2) — (0 Z(i,g)ec Gy . 3)

The workflow for MUD is shown in Algorithm 1 and the source code is provided in Algorithm 3.
Firstly, an initialization step is executed to create a tensor sequence, denoted as , which comprises
m synthetic samples. These samples are dimensionally equivalent to the local samples. Subsequent
iterations are conducted to align the synthetic gradients with the actual updates of the local model,
symbolized as Aw. Specifically, in the g-th iteration, based on the previously generated tensor
sequence (,, a one-step stochastic gradient descent (SGD) is applied. This step aims to approximate
the real difference in model parameters Aw. To quantify this difference, we introduce the Mean
Squared Error (MSE) loss, which then serves as the objective for minimization, tackled using the
LBFGS optimizer. Through this mechanism, we are able to update the tensor sequence to (.

As the model size increases, the approximation error between the virtual gradient obtained by the
MUD method and the real model parameter difference tends to grow, especially for large-scale neural
networks. To address this, we introduce a modular alignment approach that segments the network into
modules. Each module uses an independent synthetic dataset to approximate its gradient change. The
number of modules is kept below the local training batch size to ensure it stays within the device’s
computational capacity. By modularizing the network, model update distillation for each sub-module
can be processed in parallel, reducing delays. We will analyze the error introduced by MUD in the
convergence analysis section.

3.3 DIFFERENCES WITH DISTILLATION-RELATED METHODOLOGIES

We delve into the differences between the MUD and the popular distillation-related methodologies:

— Knowledge Distillation (KD) is a process involving two distinct neural network sets: a larger,
complex “teacher” model, and a smaller, efficient “student" model (Hinton et al., 2015). The primary
goal of KD is to transfer the knowledge from the teacher to the student, enabling the student model to
reach performance levels similar to the teacher. This transfer is generally accomplished by minimizing
the differences in predictions (probabilities or logits) between the teacher and student models when
given the same input data.

— Dataset Distillation (DD) represents an extension of KD where knowledge transfer occurs at the
dataset level rather than between models (Wang et al., 2018). The core idea behind DD is to condense
a large and comprehensive training dataset into a much smaller, but highly representative, synthetic
dataset, given a fixed network initialization. This smaller dataset is designed to retain the essential
characteristics and information of the original dataset, enabling models to be trained effectively on
this distilled dataset instead of the full, larger dataset.

— Differences with KD and DD: From the description provided, it is evident that our proposed
MUD method diverges significantly from both KD and DD in its approach and objectives. Unlike
KD, which is centered on the relationship between a larger, more complex “teacher” model and a
smaller, more efficient “student" model, our MUD focuses on the update within a single model across
different training periods. The primary input in MUD is the parameter disparity observed between
two consecutive training stages of the same model. This approach is fundamentally different from the
input used in DD, which involves a large-scale dataset that typically contains thousands to millions of
images. The output of MUD contrasts sharply with the output of KD, which is the student model
trained to mimic the teacher model. Although MUD’s output bears a resemblance to DD in terms of
its form, the two are fundamentally different in their design intentions.

4 MODEL UPDATE DISTILLATION BASED COMMUNICATION-EFFICIENT FL

We now introduce in detail the proposed MUD based communication-efficient FL (FedMUD) frame-
work, encompassing the following key states: initialization, broadcasting, local training, uploading
and global aggregation. The workflow of this strategy is illustrated in Algorithm 2.

— Initialization: The first M rounds of FedMUD serve as the initialization phase, following the
conventional FedAvg method. After these rounds, the central server holds an updated global model
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Algorithm 2: Model Update Distillation based FL

Input: N edge devices with private datasets {Di}f\[:l, communication round number 7, learning rate +,
initial rounds M, local update number K, batchsize B.

Qutput: FL-trained global model wg.

Server Executes:

Initialization: After M rounds of FedAvg, the central server has wéM) with wéM_l), and the device
has w§M_ 2
for each communication round ¢t = M, ..., T do

Obtain Qgt) by performing model update distillation between wétﬂ) and wét) with Eq. (4)
for each devicet = 1,2,..., N in parallel do

Broadcasting Céw to device ¢
Q(t) < Device Executes (i, ;t))

Reconstruct the local model wl@ by one-step gradient descent on (l@ with Eq. (8)
end

AV LT

end

end

Device Executes (¢, (f,t)):

Reconstruct the global model wét) by one-step gradient descent on Cét) with Eq. (5)
Update the local model as wgt) by local training on D; with Eq. (6)

Obtain Cft) by performing model update distillation between wg(,t) and wl(t) with Eq. (7)
Return Cft)

end

denoted by wéM). Subsequent rounds employ model update distillation to reduce the communication

load between the central server and edge devices for both downlink (broadcasting the global model)
and uplink (uploading local updates) communications.

— Broadcasting: In the ¢-th round (¢ > M), the server performs model update distillation between

(t) (t=1)
g g

the new global model wy ’ and the global model w

compressed datastream (ét) , a tensor of length mg’), significantly reducing the downlink burden. The
optimization solved for this purpose is formulated as:

in the last round. This process creates a

m(t) 2
S otwy s (25, ))
(t) — : 9 o \T5Y¥i)) _
Co arg mln(t) Z PG Awy(t—1,1)] 4)
{(ej )y 11771 g 2
where Aw,(t — 1,¢) denotes the difference between w_((,t) and wétil). Instead of broadcasting the

parameter difference, the server broadcasts C_,gt) = {(#;,9;)}jL, to all participating devices.

— Local Training: Upon receiving the broadcasted tensor C_(gt), each edge device recovers the intended

global model wét) using the global model w_((]tfl) from the last round. This recovery process is

o0(wy ™ V; (2,9))

achieved through one-step gradient descent on Cét):
. 5)
ow gt -b

(t) _ ,,(t=1) _
Yo' =% Z(m)ecé”
(t)

After that, for each edge device 1, started from the model wy ’, it performs local training on its private

dataset for K iterations to update its parameters as wgt’k):

(t,k—1)
k k—1 55(% i (2,9))
AV Ny 3 BT ke k), ®
(z.)€B; Wi
where wl(t’o) = wét), wgt) = wgt’K), and B; is the i-th random batch drawn from D;.
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Table 2: Wall-clock time and communication cost comparison under the same test accuracy, based
on the average data uploaded per device (MB) and training time (s) after initialization, across four
network architectures and datasets including CIFAR-10 and CRCSlides.

Model Method CIFAR-10 (Krizhevsky et al., 2009) J CRCSlides (Kather et al., 2018; 2019)
Avg. Data T (MB) Wall-clock Time (s) [ Avg. Data T (MB) Wall-clock Time (s)
FedAvg (McMabhan et al., 2017) 764.59 (1x) 1,555.73 578.07 (1x) 1,113.84
Top-k (Aji & Heafield, 2017) 653.50 (1.17 %) 1,509.71 458.79 (1.26 x) 959.99
GooglLeNet FedPAQ (Reisizadeh et al., 2020) 364.21 (2.43%) 1,045.38 284.76 (2.03x) 502.32
DAdaQ (Honig et al., 2022) 483.63 (1.83 %) 1,159.15 450.44 (1.54x) 955.71
AdaGQ (Liu et al., 2023) 471.97 (1.62x) 1,153.16 405.66 (1.71x) 905.53
FedMUD 22.94 (33.33 %) 965.96 22.15 (26.10x) 842.22
FedAvg (McMabhan et al., 2017) 707.28 (1x) 1,605.59 547.65 (1x) 1,346.58
Top-k (Aji & Heafield, 2017) 597.82 (1.18x) 1,662.05 402.68 (1.36x) 1,487.54
MobileNet FedPAQ (Reisizadeh et al., 2020) 341.01 (2.07 %) 1,295.97 239.82 (2.28%) 976.733
DAdaQ (Honig et al., 2022) 497.24 (1.42x) 1,519.40 367.55 (1.49%) 1,276.83
AdaGQ (Liu et al., 2023) 443.49 (1.59 %) 1,373.24 285.23 (1.92x) 1,026.71
FedMUD 24.57 (28.79 %) 1,096.67 20.58 (26.61 x) 854.61
FedAvg (McMahan et al., 2017) 352.64 (1x) 918.94 396.71 (1x) 1,198.45
Top-k (Aji & Heafield, 2017) 320.16 (1.10%) 1,105.13 306.58 (1.29 %) 1,354.72
ShuffleNet FedPAQ (Reisizadeh et al., 2020) 167.04 2.11x) 859.19 168.34 (2.36 %) 1,125.46
DAdaQ (Honig et al., 2022) 205.44 (1.72x) 816.87 219.18 (1.81 %) 1,269.67
AdaGQ (Liu et al., 2023) 220.26 (1.60%) 866.52 268.05 (1.48 %) 1,394.71
FedMUD 18.94 (19.02x) 694.17 26.75 (14.83x) 976.53
FedAvg (McMabhan et al., 2017) 1,153.98 (1x) 2,252.93 967.85 (1x) 1,808.97
Top-k (Aji & Heafield, 2017) 848.51 (1.36x) 1,821.35 762.09 (1.27x) 1,507.63
ResNet-18 FedPAQ (Reisizadeh et al., 2020) 588.77 (1.96 %) 1,490.32 441.94 (2.19%x) 970.22
DAdaQ (Honig et al., 2022) 785.02 (1.47x) 1,800.66 559.45 (1.73 x) 1,159.14
AdaGQ (Liu et al., 2023) 682.83 (1.69%) 1,350.30 514.81 (1.88 %) 1,056.11
FedMUD 28.16 (40.98 x) 1,216.71 24.38 (38.70 x) 871.39

— Uploading: After local training, each device ¢ executes model update distillation between the

received global model w( ) and the updated local model w(t)
o 2
) _ IS s ) (oo
¢ = arg min Z 0 - (wg —w, . 7
{(73]’?/])}7:1 g=1 2
Here m( ) is related to the difference between %@ and wét), which varies in each round. Each device

1 uploads the synthetic samples Ci(t) to the server. The amount of Ci(t) is much smaller than the
parameter disparity wét) — %@» thus the uplink communication burden can be significantly reduced.

— Global Aggregation: Upon receiving the uploaded tensor Cl-(t), the central server performs one-step

gradient descent to recover the intended updated local model wft)

by addressing the following optimization problem:

for each device . This is achieved

@) /s »
) _ 0 _ W(wy; (2,9))
w; " = wg Z(i,@)e(,§t> 6 ® . (8)
The server then aggregates the reconstructed local models %@ from all selected devices to obtain an
updated global model wétﬂ):
1N
Wt = = S, ©)
i=1
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Figure 2: Ablation analysis of FedMUD’s performance with varying (a) number of partitioned
modules m and (b) number of local epochs K on the client devices.

5 EXPERIMENTS

Baselines. We evaluate FedMUD against five state-of-the-art methods, covering quantization, sparsi-
fication, and knowledge distillation approaches: 1) Top-k (Aji & Heafield, 2017) is a sparsification
technique that reduces communicated gradients by selecting the largest k elements, with & set to 50%
of the total parameters. 2) FedPAQ (Reisizadeh et al., 2020) is the first federated learning quantization
scheme, which compresses models uploaded by clients and distributed by the server to 8-bit. 3)
DAdaQ (Honig et al., 2022) employs a dual adaptive quantization algorithm that adjusts quantization
levels dynamically across rounds and clients. 4) AdaGQ (Liu et al., 2023) adapts quantization levels
in each round based on gradient norms and client bandwidth. 5) FedKD (Wu et al., 2022) improves
communication efficiency by creating a smaller messenger model via knowledge distillation between
the server and clients. While recently published methods like FedDST (Bibikar et al., 2022) and
FedCS (Jiang & Borcea, 2023) are relevant, their original papers only test on a three-layer CNN.
Thus, we exclude them from our comparison, as their effectiveness on more complex models remains
unclear.

Datasets. Experiments are conducted on two benchmark datasets: CIFAR-10 and a real-world
medical image dataset CRCSlides (Kather et al., 2018; 2019), which is collected for predicting
survival from colorectal cancer histology slides. It contains 100,000 images for training and 7,180
images for testing. The image size is 3 x 32 x 32. Similar to prior work (Liu et al., 2023), we use o4
to denote the level of Non-IID data, which corresponds to the fraction of data that belongs to only one
class at each device. In our experiments, we set 04 = 0.2, representing the scenario where 20% of
each local dataset contains samples from only one class, while the remaining 80% contains samples
from other classes. Detailed experiment settings are included in the Appendix A.

5.1 PERFORMANCE COMPARISON

Wall-clock Training Time Comparison. We assess the wall-clock times of our method and compar-
ative methods required to achieve identical accuracy levels. We test four architectures—GoogLeNet,
MobileNet, ShuffleNet, and ResNet-18—across two datasets, CIFAR-10 and CRCSlides, and also
compare communication costs. The results, shown in Table 2, indicate that on CIFAR-10 using
ResNet-18, our method reaches 80% accuracy in 1216.71 s, versus FedAvg’s 2252.93 s. Additionally,
the average data upload per device for our method is 28.16 MB, a 40.98 x reduction compared to
FedAvg’s 1153.98 MB. On CRCSlides, our method excels further: using GooglLeNet, it achieves 76%
accuracy in 842.22 s, while FedAvg takes 1113.84 s. The average data upload per device is 22.15 MB,
far lower than FedAvg’s 578.07 MB, resulting in a 26.10x reduction. These results highlight our
method’s suitability for bandwidth-constrained edge devices, improving efficiency while significantly
reducing communication costs.

Impact of the Number of Modules. To investigate the impact of the number of modules m on
our method’s performance, we plot the global model’s test accuracy on CIFAR-10 by searching
over m € 6,12,18,24,30. The results are shown in Fig. 2a. At m = 6, FedMUD struggles to
approximate the ResNet-18 model’s parameter updates effectively. However, as m increases to 18,
accuracy reaches 82.81%. Further increases beyond 18 yield diminishing returns, with accuracy at
82.64% for m = 30. For GoogLeNet, an initial accuracy of 78.36% is achieved at m = 12, rising
slightly to 78.94% at m = 30. These findings suggest that with fewer modules, FedMUD struggles
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to synthesize tensors that accurately reflect parameter updates, leading to suboptimal performance.
As m increases, allowing finer granularity, performance plateaus, with minimal gains from further
increases.

Impact of the Number of Local Epochs. To explore the influence of local training epochs, denoted
as F, on the efficacy of our federated learning approach, we conduct experiments to assess the
global model’s test accuracy on the CIFAR-10 dataset across various E values, specifically £ €
1,5,10,20,50. The results are shown in Fig. 2b. As E increases, our results show a decrease
in data uploads and wall-clock time up to a point, indicating improved communication efficiency.
However, with E = 20 and beyond, while data transfer continues to decrease, computational time
rises, revealing a trade-off between reducing communication rounds and increasing computation.
This balance is crucial for optimizing federated learning systems under varying network and privacy
conditions.

Model Accuracy Comparison. We further provide Table 3: Accuracy comparison under almost
an accuracy comparison under almost the same wall-  the same wall-clock training time.

clock training time. For our method, the total number
of communication rounds is set to 100, while the

round count for other baseline methods is determined Model ‘ Method }Accuracy (‘VS)H\?all{l-tfock Time (5)
by the rounds reached when their training time ex- FedAvg 77.62 1,704.15
ceeds 100 rounds for our method. As shown in Table EL’SQRQ L s
3, FedPAQ has the largest total number of rounds — GoogleNet||p\ 4, 7357 1.686.26
among the baselines and also achieved the highest ac- AdaGQ 74.09 1,668.33
curacy of 80.36%. FedAvg has the fewest total rounds FedMUD| _ 78.36 1,662.24
due to the complete transmission of model informa- ?ﬁ‘;ﬁ:g 5(1):249& %gﬁ:%
tion, which severely limits its performance under the . = |[FedPAQ 80.36 234434
bandwidth constraints of edge devices, achieving an Eﬁ:ég ;g;g ;222?‘21
accuracy of 80.59%. Under the same time budget, our FedMUD|  82.81 233345

method allows for the most communication rounds
and achieves an accuracy of 82.81%.

Partial Participation with More Devices. To eval- Taple 4: Results of 20% participation with
uate the scalability and performance of our method more devices under.
with varying device numbers, we conducted exper-

iments with a fixed device participation rate of 0.2 CIFAR.10

and total device counts of 50, 100, 200, and 500. N || Methed o ~Wall-dlock Time (5
The results are shown in Table 4. As expected, in- FedAvg 976,52 0573.58
creasing the number of devices noticeably affects the 0 ceamun | 35.56 (27.46%) 875644
model’s convergence speed. Specifically, as the num- FedAvg 1174.91 24573.62
ber of devices grows, more communication rounds 100 FedMUD | 35.53 (33.06x) 19538.15

are needed for convergence, likely due to reduced 500 || FedAvE 1896.43 45716.49
individual device participation per round, which im- FedMUD | 63.98 (29.64) 40269.37

pacts the global model’s update frequency. However,

our method demonstrates significant communication efficiency compared to FedAvg. For instance,
with 50 devices, our approach cuts data uploaded per device by a factor of 29.64. This advantage is
even more pronounced at larger scales: with 500 devices, our method achieves a 42.13-fold reduction
in communication overhead compared to FedAvg.

Without Initialization Phase. Although in practical Table 5: Results of average data uploaded and
industrial applications, the initial model is rarely a  wall-clock time without initialization phase.

randomly initialized one, we intentionally presented
results without an initialization phase to rigorously

CIFAR-10
Model || Method

gvaluate the performance of our m.ethod. As shown Avg, Data | (MB) Wall-clock Time (5)
in Table 5, even under these conditions, our method — = e
still achieves significant reductions in communica- ; 1” | 498,73 432133
. . . op- R . ) .33
tion overhead. Specifically, our approach requires an P

. FedPAQ 954.83 3,499.12
average data upload of only 68.84 MB per device, ResNet1§)| 40 149237 14583.60
compared to 1768.29 MB for. FedAvg: Eyen when AdaGQ 1.374.82 426761
compared to the best-performing quantization-based FedMUD| 132.48 (13.35%) 3733.52

method, which requires 954.83 MB, our method
demonstrates superior communication efficiency.
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Figure 3: Computation and communication time comparison of FedMUD and baseline methods. We
display the proportion of MUD computation in our overall computation time.

5.2 COMPUTATION AND COMMUNICATION TIME ANALYSIS

To analyze how FedMUD reduces total training time, we dissect both communication and computation
times in Fig.3. For comparison, we also show the proportions of these times for other methods.
Our approach requires relatively longer computation time due to the MUD process but benefits
from significantly reduced communication time, improving overall training efficiency and device
utilization. FedAvg has the shortest computation time, as it transmits complete model information,
allowing it to reach target accuracy in fewer rounds. Among quantization-based methods, FedPAQ
has the longest computation time, needing more rounds to compensate for information loss from
quantization. DAdaQ and AdaGQ use adaptive quantization strategies that reduce communication
rounds but require longer communication times. These results highlight the trade-offs between
computation and communication times in different federated learning methods, underscoring the
effectiveness of FedMUD in optimizing overall training efficiency and device utilization.

6 LIMITATIONS DISCUSSION

The MUD procedure requires additional computational cost, and it may be unrealistic to use synthetic
tensor to precisely approximate the model parameter update for ultra-large networks. However,
in the context of edge computing, models like ResNet-18 are already considered quite large, as
most commonly deployed architectures, such as MobileNet and GhostNet, are designed to be more
lightweight and efficient.Moreover, the additional computation is offset by the significant reduction in
communication overhead. Despite these limitations, we believe our method offers valuable insights
and a novel perspective on communication-efficient federated learning.

7 CONCLUSION

In this study, we introduced model update distillation-based communication-efficient federated
learning (FedMUD), a novel approach where devices and the server synthesize tensor sequences to
represent small model updates, rather than transmitting raw model differences. Our key innovation
lies in distilling the structural essence of model updates, as opposed to directly compressing them.
This enables the transmission of only essential information for synchronization, bypassing the need to
transmit the entire set of raw parameter differences. Experimental results demonstrate that FedMUD
substantially reduces communication overhead without sacrificing accuracy significantly.
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A EXPERIMENT SETTINGS

Implementations details. We implement FedMUD alongside baseline methods utilizing the PyTorch
framework on a system outfitted with four Nvidia RTX 3090 GPUs. Our simulation involves 10
virtual devices, with a device sampling rate of 1, ensuring each device’s participation in model
updating during every communication round. The data transmission rate for each device is randomly
set between 50 Mbps and 100 Mbps by default. All methods employ stochastic gradient descent for
local training, with a learning rate set at 0.01. Specifically, for FedMUD, the LBFGS optimization
technique is utilized for synthesizing the tensor sequence, offering the advantage of adaptively
controlling the step size to efficiently identify an optimal tensor sequence. The tensor length for each
module is set to 10, with the number of iterations also set to 10. For the ResNet-18 architecture,
we segmented it into 18 modules, while the GoogLeNet model was partitioned into 11 modules.
The batch size is set as 32, and devices are configured to upload model updates at the end of every
epoch. All compared methods initialize their networks by pre-training using FedAvg for 30 rounds.
Since they share the same initialization process, the experimental results and analyses presented
subsequently include only the costs after initialization. It is worth noting that, the initialization step is
crucial for achieving training stability. For example, the accuracies of Top-k and AdaGQ drop by as
much as 13% and 10% respectively if the initialization step is removed.

B PYTORCH CODE OF THE CORE IDEA OF MUD

Here we provide the core code of MUD, as shown in Algorithm 3.

Algorithm 3: PyTorch Code of Model Update Distillation

import torch

def compute_tensor (self, syn_model, n_sample, n_classes, iter_num):
# Randomly generate m synthetic samples

syn_size = [n_sample] +
list (next (iter (self.train_loader)) [0].shape[l:])
syn_inputs = torch.randn (tuple(syn_size), device=self.device,
requires_grad=True)
syn_labels = torch.randn((n_sample, n_classes), device=self.device,

requires_grad=True)

optimizer = torch.optim.LBFGS ([syn_inputs, syn_labels])

# Get the real gradients

real_gradients = torch.cat([v.clone().flatten() for v in

self.dw.values()])
# Iteratively optimize the synthetic samples
for iter in range(iter_num) :
def closure() :
optimizer.zero_grad()
# Get the synthetic gradients
syn_preds = syn_model (syn_inputs)
syn_loss = torch.nn.CrossEntropyLoss () (syn_preds,
syn_labels)
syn_dw = torch.autograd.grad(loss, syn_model.parameters(),
create_graph=True, allow_unused=True)

syn_gradients = torch.cat ([v.flatten() for v in syn_dw])
loss = torch.nn.MSELoss () (syn_gradients, real_gradients)
loss.backward ()
return loss

optimizer.step(closure)

return syn_inputs, syn_labels

C CONVERGENCE ANALYSIS OF FEDMUD

Analysis for FedMUD.
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Aussumption 3.1 (Smoothness). All local functions f;(i € [N]) are L-smooth.

Aussumption 3.2 (Bounded second moment). There exists a constant G,,,; > 0 such that:
E[[|VE@)]?] < G2,,,, Vi € [N],¥x € RY, where VF;() is an unbiased stochastic gra-
dient of f; at z.

Definition 3.3 (Virtual Sequence). We construct a virtual sequence which is consistent with standard
federated learning, directly transmitting parameter update differences each round between server and
devices. The global model of this virtual sequence can be represented as:

T
a(t) = wgo) - Znavgi (VGE’t’u_l)> ) = 17 "'5T7 (10)
t=1

Where {G(t) }tT:I is the global model generated by virtual sequence at round ¢, w?g) is the initial global

model, v is the local learning rate, 7 is the global learning rate, th; Y is the gradient contributions
from device ¢ at virtual round ¢ — 1, and ¢ indexes the global training rounds from 1 to 7.

The virtual sequence is constructed to establish the relationship between the global sequence

T
{wét) }til generated by our method and the global sequence {G(t)}thl generated by standard

federated learning. We will complete the convergence analysis by bounding the distance between
(t) (t)
wg’ and %),

(

%

) to denote the local model reconstructed by our method
(t)

4,0

In Sections 3 and 4, for simplicity, we use w

after the device receives the sequence tensor. Here we use w, , to represent the original local model.

In this section, we mainly analyze how the error between the reconstructed local model wl(t) and the
(®)

original model w; / affects the convergence.

Aussumption 3.4 (Bounded error). There exists a constant A > 0 such that:

Eeos, |[w” —w®|l < A2, Vie [N],vx e R% (11)

T T
Lemma 3.5 (Distance Bound). For {H(t)}tTfl of virtual sequence and {wg(,t)} , {wl@} of

= t=1 t=1
model update distillation FL, we have:

2
g [HW - wf? ] < 472 (1Gmae + (T — 1)A)2,
(12)

e o0 -

2
] < N?(YGax + (T — 1)A)2.
Proof:

2
E {HW _

T=1

2 t t R
} =E HZ navg; (WGET_”) - navg (WGET_U + A)
T=1

2 (13)
<n°E

t
> avg, (VGET_I) ~ (G + A))
T=1

< (YGmax + (T — 1)A)2.

Similarly, E [Hwé” —w®

2
] < eta?(YGmax + (T — 1)A)%. Combining these bounds, we have

the following.
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d

6O _ H }

00— el =]

2
oy e

<4 (YGax + (T — 1)A)2.

6O — ()

)

Theorem 3.6 (Convergence Rate). Let fiax = f (wgo)) f (w*), where w* is the minimizer for f,

we have:
T
1 2 fmax Lo?
T ZE va (”ét)) - + 1= + 1L (VGmax + (T — 1)A)?).  (15)
t=1

] ol mT N

Proof: Similar to (Avdiukhin & Kasiviswanathan, 2021) Theorem 2.4.

From smoothness Lipschitz condition on the gradients:

2 e (o) s (90)[] < 5|
2o () v (00)[] <

First, we bound ), for (Y, we have:

eit+1) — g(t) _ nave, (’YGET)) . (17)

w!(;‘) —

2
} < L2772(7Gmax + (T - 1)A)27 and

(t) (t) 2 2 2 T —1)A)2
w; = 0 < 4L n (’VGmax ( 1) ) .
(16)

By the smoothness property:

[ (000)] <1 (00)] - (57 (0) v 117)) ] £ v 12

(18)

The last term in Eq. 18 can be rewritten as:

32 {lws. ()]

() - ()]

# (@ - va ()] as)
e s (e v ()]

|

Substituting this into the Eq. 18, get:

slr (o)) <els (00)] -2 [(v7 (00) mave, (295 (17)))
# T o (95 () ]+ 75
<ely (0)] - e {97 (00) oves (95 (0)))] 0
~oB (9 (0 o (V4 (u17) -9 ((”))ﬂ
# 8 o (95 () []
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The first term in Eq. 20 can be simplified by avg; (f; (61)) = f (61)):

[0 (09) v (o5 ()] =sos e o). e

For the second term in Eq. 20 we have:

(57 (07) v (1 () . (0]

< (2 lwr ()] 2 [Jovs (75 (o) - w2 (2))])

<0 (w0 (0[] + oo (2 [ 72 (47) - 92 ()] ])) -
m (=] 2] :

<z (IE vf (9(”) AL (YGinax + (T — 1)A)2> . (According to Eq. 16)

For the third term in Eq. 20 we have:

2 Mavgi (Vi (7)) m
=55 [ (75, (0) + (95 (o) - 5 ()
gma@wwgwfwww}wmwgwf@ v ()I)

)~
<L (IE: HVf (e(t))H ] AL (G + (T — 1A) ) (According to Eq. 16)
))

(23)

Substituting Eq. 21, 22, 23 into the Eq. 20 and move E [|| V fe¢
2 o) p(t+1) Lo
e [for (o) ] < ELOO B0 1o

Y 2N
Taking the sum over all iterations:

1yE s (o)) < B BTN L2 2, G -
t=0

||?] to the left of the inequality;

+ 203 L? (7Gax + (T — 1)A)%
(24)

(25)
Finally, we can bound || Vf(w_g,t)) || in terms of || V £(0®) || as:

v ()] <2 (e s (s2) -0 (00) [] & s ()]

<2 Mw (6) m +2L°E {ngﬂ - 9<t>m (26)

<2E Mw (0) m P L(YGomax + (T — 1)A)2.
Substituting this into the inequality above on % Z?:o E [HV f (H(t)) ||2] gives the claimed bound:
F o (o)
T t=0 !
Using the step size n = \/N/\/T, we get:

1o~ [ 2
155 s ()]

no

=0 Fmax + 772L2('meax + (T - 1)A)2 + nfyL—UQ . 27
T N

(28)

fmax N , 5 Lo? >
=0 + —L Gmax + (T -1 A —+ .
( e F L I
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If the approximate error A decays over time 1" at a rate of A; = %, where k£ > 1, then our method

can achieve the same convergence rate as FedAvg, which is O(1/v NT).
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