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ABSTRACT

Embodied planning requires agents to make coherent multi-step decisions based
on dynamic visual observations and natural language goals. While recent vision-
language models (VLMs) excel at static perception tasks, they struggle in interactive
environments. In this work, we introduce an on-policy reinforcement fine-tuning
framework with offline rewards, that preserves the generalization benefits of RFT
while addressing the challenges of sparse rewards and costly interaction, sup-
ported by solid theoretical guarantees. Our approach is evaluated on Embench,
a recent benchmark for interactive embodied tasks, covering both in-domain and
out-of-domain scenarios. Experimental results show that our method significantly
outperforms models of similar or larger scale, including GPT-40-mini and 70B+
open-source baselines, and exhibits strong generalization to unseen environments.
This work highlights the potential of reinforcement-driven reasoning to advance
multi-step planning in embodied Al

1 INTRODUCTION

Embodied task planning serves as a
cornerstone in hierarchical embodied
Al systems(Shi et al., [2025b}, [Zhang
et al., 2024a), where intelligent agents
must not only perceive their environ-
ment but also reason and act within
it to accomplish complex, real-world
tasks(Duan et al.,[2022). Unlike low-
level controllers that govern precise
trajectory execution(Zawalski et al.}
2024; |[Kim et al., |b), high-level plan-
ning is responsible for formulating co-
herent action sequences that translate
complex instructions into manageable
sub-tasks(Wu et al.| [2023)). While con-
ventional language-based reasoning
is confined to static, text-driven con-
texts(Lightman et al., 2023} |Ye et al.}
2025t Shao et al., [2024), embodied
planning operates within dynamic, in-
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Figure 1: Failure case and error breakdown of GPT-40-mini
in the EB-ALFRED environment. Left: A representative
task failure. Right: Distribution of failure types across EB-
ALFRED tasks.

teractive environments that demand sequential decision-making across multiple steps. Despite recent
advancements in VLMs have demonstrated impressive capabilities in static understanding tasks(Zhang
et al.| 2024b), they exhibit substantial limitations when applied to multi-step interactive embodied
planning. Empirical analyses in Figurd] reveal that even state-of-the-art VLMs, which excel in
image captioning or visual question answering, struggle to maintain coherent and efficient decision
sequences in dynamic environments(Yang et al.l 2025)). These shortcomings highlight a critical gap:
effective planning in real-world embodied contexts imposes far greater demands on spatial reasoning,
long-horizon coherence, and generalization capability than current VLM architectures can satisfy.

To address reasoning deficiencies, recent studies have demonstrated that reinforcement learning with
verifiable rewards (RLVR) can substantially enhance the reasoning ability of large models and yield
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stronger generalization across tasks compared to supervised fine-tuning (SFT) (Guo et al., [2025)).
Extensions of this paradigm into multimodal contexts have begun to emerge(Wang et al., [2025a),
tackling tasks such as visual mathematics and diagram-based reasoning(Zhang et al., 2025a; |Shen
et al., |2025; Meng et al.l 2025; Liu et al.}|2025). However, applying such reasoning-enhancement
techniques to embodied planning remains highly challenging due to the fundamental differences
between embodied tasks and conventional reasoning benchmarks: First, the shift from static, single-
turn QA to interactive, multi-turn decision-making introduces continuous feedback loops (Wang
et al.,2025b) , requiring agents to reason and act while being grounded in dynamic environments.
This also leads to sparse rewards as simulators typically provide only a final success/failure signal
after many steps. Second, acquiring reward signals through online interaction is prohibitively
expensive. During training, the model must interact with the environment while undergoing large-
scale fine-tuning, which incurs heavy computational overhead on embodied benchmarks and becomes
impractical when extending to real-world scenarios.

In this work, we bridge the gap by proposing an on-policy reinforcement fine-tuning framework with
offline rewards for multi-turn embodied planning, which mitigates the challenges of costly interactions
and sparse rewards while preserving the key advantages of RFT in generalization and reasoning
capability. The key idea is to compute rewards by comparing model rollouts with expert trajectories,
which are then used for downstream policy optimization via GRPO. Furthermore, We provide a
theoretical analysis that clarifies how our offline reward differs from SFT and enjoys the benefit of RFT.
Moreover, we prove that the policy induced by this reward is bounded relative to the policy learned
with true online interaction, establishing that a lightweight offline approach can effectively substitute
for costly online feedback. Recognizing the discrepancy between simplistic text-based simulations
and the complexities of real-world physics, we conduct evaluations within Embench(Yang et al.,
2023)), an interactive embodied benchmark that faithfully captures environmental dynamics and agent-
environment feedback loops. Experimental results demonstrate that our method significantly improves
planning performance, yielding more efficient and context-aware action sequences. Moreover, our
reinforcement-driven fine-tuning exhibits strong generalization across unseen tasks and environments,
underscoring its potential for practical deployment in real-world embodied Al applications.

Our contributions are as follows:

* We are the first to apply reinforcement fine-tuning to optimize a vision-language model for embodied
task planning, significantly improving the model’s ability to perform coherent multi-step reasoning
and decision-making in dynamic environments.

* We design an on-policy RFT framework with offline rewards that preserves the generalization
benefits of RFT while addressing the challenges of costly simulation and sparse rewards. We
further provide a theoretical analysis showing its distinction from SFT and proving that the policy
induced by offline rewards admits a bounded gap to that learned with true online interaction.

* We conduct extensive evaluation on Embench, an interactive benchmark for embodied Al, showing
that our model not only outperforms comparable-scale models but also surpasses GPT-40-mini and
open-source models with more than 70B parameters. It further demonstrates strong generalization
to unseen domains, validating the generality of reinforcement-based adaptation.

2 METHODOLOGY

2.1 PROBLEM DEFINITION

We formulate embodied task planning as a multi-turn, partially observable decision-making process,
where the agent interacts with an environment through sequential actions based on visual observations.
At each time step ¢, the agent receives an observation o; € O and executes an action a; € A, forming
a history h; = {09, ag, 01, ..., 0+ }.

Given a task instruction g € G described by a natural language command L, the task is associated
with a set of binary goal-checking conditions C(g) = {¢1, ..., ¢ } that must all be satisfied for the
task to be considered successful. The agent generates a trajectory e = (g, 0g, Gg, 01, --., Op, 4y, ), and
the environment reward is defined as r(e) = I[C(g) C {True} |, where I[] is the indicator function.

We parameterize the policy 7y using a vision-language model (VLM), which outputs an action
distribution conditioned on the observation oy, history h;, instruction L, and a fixed prompt P:



Under review as a conference paper at ICLR 2026

Ja H L
Ja | actiontraj  experttraj |

Simulator Multi-turn \/'rl expert traj
VLM Policy

Interaction
1
NG,
on-policy  p n(n+1)

rollout Action traj: r\
= )
optimization Kk +1)

VLM Policy

force-teaching
no rollout

Env
on-policy | _taskievelsgnal_ | l

optimization

Online Reward -
_ Overfitting and lacks
costly simulation and sparse reward fast , step-wise, simple yet effective generalization
pmmmm L ______
i i ! [ n 5 ) e Bl
| Online reward RFT | | On policy RFT with | i SFT !
| —————— J | Offline reward | i )
] @ EEEREEEEEs

Figure 2: Comparison of our on-policy RFT with offline rewards against other methods. Our approach
avoids costly simulation overhead and sparse reward issues, while achieving stronger generalization
through reinforcement fine-tuning.

at+1 ~ 7('9(' ‘ Ot7ht,L,P). (1)

Our objective is to optimize 6 such that the expected task success rate increases:
max Eer, [r(€)]. )

2.2 ON-poOLICY RFT FOR EMBODIED PLANNING WITH OFFLINE REWARD

While reinforcement fine-tuning (RFT) has been shown to retain prior knowledge and elicit reasoning
compared to supervised fine-tuning (SFT), its application to embodied planning poses unique chal-
lenges. First, acquiring rewards via online interaction—where the agent executes sampled trajectories
in simulators to collect feedback—is prohibitively expensive: each rollout requires environment resets,
step-wise rendering, and physics simulation, which scale poorly in LLM post-training and impractical
for real-world scenarios. Second, embodied simulators expose only an episodic success/failure signal,
which poses the sparse reward problem for multi-turn embodied planning.

To address these limitations, we adopt an offline reward optimization approach that avoids online
execution. Instead of collecting interactive feedback, we compute reward by comparing model-
generated plans to expert trajectories. This design not only circumvents costly simulator interaction
but also alleviates reward sparsity while retaining the generalization advantages over SFT. We will
present the methodological overview in this section and provide deeper analysis in Section [2.3]

Offline Expert Trajectory Construction. We construct our offline expert dataset based on the
ALFRED benchmark (Shridhar et al., 2020), which provides complete ground-truth trajectories for
household tasks in simulated environments. Each expert trajectory e = (g, 0o, ag, 01, @1, ..., Ok, ax,)
is decomposed into & training samples, specifically, for each step n € [1, k], we build an input prompt
L,, containing the task goal g and the preceding action history ag.,—1. The corresponding visual
observation o,, is taken from the n-th step, and the target response a,,. = {ay, ..., ax } includes all
remaining actions. Applying this decomposition to the ALFRED dataset yields 43,898 training
samples for reinforcement fine-tuning.

Reward Function with Expert Trajectory. We instantiate an offline reward from expert trajectories:
given the model’s rollout and its expert action sequence to score the reward for policy optimization.

Let a = {a1,...,a;} be the predicted sequence and a* = {a], ..., aj} the expert reference. Define
n = max{i : a; = a; Vj < i} as the length of the longest correct prefix. We use a smooth,
long-horizon—aware shaping term:

n(n+1)

Raccuracy = ma 3)
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which emphasizes longer consecutive matches and yields stable gradients. Notably, although the
quadratic prefix-based reward is simple, we find it highly effective, surpassing more complex
alternatives. We further analyze its impact in section[3.3]

Complementary to correctness reward, we incorporate a format reward as an auxiliary signal. Prior
studies have shown that structural regularization improves stability and prevents degenerate outputs,
Following prior reinforcement fine-tuning practices (Meng et al., 2025} [Tan et al.| 2025)),we set the
maximum format reward to 0.5 and the accuracy reward to 1.0, yielding the final composite reward.
We provide the detailed format reward components in the Appendix

R(response, answer) = Raccuracy(t€Sponse, answer) + Riormat(response) . 4)

Training Pipeline. For the overall pipeline, we first perform supervised fine-tuning to establish
structured planning priors, and then apply reinforcement fine-tuning as the main part, with the offline
reward to strengthen multi-step reasoning. Concretely, the model generates candidate rollouts, which
are scored against expert trajectories by our reward function; policy parameters are then updated
using GRPO with an additional data filtering strategy to ensure stable optimization.

(1) Supervised Fine-tuning (SFT). We initialize the vision-language model by distilling expert-style
trajectories, training via maximum likelihood to align with commonsense patterns and structured
conventions. This provides a strong initialization for downstream reinforcement learning.

(2) On-policy Reinforcement Fine-tuning (RFT) with GRPO. Building on the offline reward signals,
we adopt Group Relative Policy Optimization (GRPO) (Shao et al.,|2024])) to optimize the policy. For
each prompt, the model samples multiple candidate responses, each scored by the reward function.
Relative advantages are then computed within the group, and gradients encourage high-reward
responses while regularizing against deviation from a reference policy:

1 & :
6; (Chp <7:1(m7 1—67 1+€) 'Ai_B‘IDKL(ﬂ'0|7Tref)> .
(5)

(3) Data Filtering. To ensure informative and stable gradients, we incorporate an online filtering
strategy during RFT, inspired by PRIME (Clui et al., [2025) and MM-Eureka (Meng et al., [2025)).
Prompt groups with too few or too many perfect-reward responses are discarded, maintaining a
balanced learning signal and stabilizing training.

J(0) = Eznp Egyymm,

Conclusion. In this section, we introduced our RFT framework for multi-step embodied planning.
The core idea is to compute offline rewards by prefix-based comparison with expert trajectories, and
to optimize the policy through on-policy GRPO. In the next section, we provide a deeper theoretical
analysis of these properties, clarifying the effectiveness of our approach and its distinctions from
existing methods.

2.3 DEEPER ANALYSIS

We conduct a deeper analysis from two perspectives: (1) the distinction and advantages of offline
reward RFT over SFT, given that both rely on offline ground-truth datasets for supervision (Section
[2.3.1); and (2) the validity of using offline trajectories as a proxy for real environmental feedback,
with an upper bound on the theoretical gap between the two methods (Section

2.3.1 SFT vs. ONLINE/OFFLINE REWARD RFT: FORMAL COMPARISON.

We present the formulations of SFT, offline reward RFT, and online reward RFT as follows.

SFT (token-level cross-entropy on all labels). Here every output token (reasoning or action) is
directly supervised, enforcing strict imitation:

Lsrr(m) = — EgnD, yors(2) [ Z ( logm(y, | ) +log7(ya | m)) ] (6)

t=1 - B
reasoning tokens  action tokens
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While effective, SFT limits reasoning diversity and generalization, whereas RFT alleviates these
limitations. The following two formulations present the details of RFT, whose main difference lies in
the reward source (online vs. offline).

Online reward RFT (policy-gradient with environment feedback).

j}%%T(W) =E x~D, y~7(-|x) [ Aonv(l’aya) logw(y | LL’):| - BDKL(W || 7Tref)~ (7)

from env. reward;

Offline reward RFT (ours; on-policy sampling with expert-derived reward).

TR (m) = E 4D, yorn(-l) [ Ao (2, ya; ye)  logm(y | x)} — BDkL(7 || Teer), (8)
N——————
from expert-comparison

where yg is the expert trajectory and A, is computed from an offline reward model rog (x, y; yE)
(e.g., prefix-accuracy) via a group-wise standardization to form advantages in our settings.

Although both SFT and our offline reward RFT rely on offline datasets for supervision, the formula-
tions reveal two key differences:

Outcome-level vs. token-level supervision (Difference 1). In equation[6} the learning signal is per-
token and covers all output tokens (including intermediate reasoning). While this ensures strict
imitation, it also constrains the diversity of reasoning trajectories and increases the risk of overfitting
to specific paths. In contrast, in equation equation the scalar advantage A(-) depends only on
action tokens y,, as a result, reasoning tokens are shaped indirectly through sequence-level weighting,
preserving flexibility and encouraging diverse reasoning pathways.

Sampling distribution & negative examples (Difference 2). Prior work (Shenfeld et al., [2025) has
shown that on-policy sampling and negative examples are the key reasons why RFT achieves better
generalization and avoids forgetting compared to SFT. Both equation [7and equation [§|optimize under
the current policy distribution y ~ 7(- | z), unlike SFT’s fixed 7g. Also, RFT allows low-quality
samples to receive negative advantages(A < 0). In conclusion, our on-policy offline reward RFT
inherits these two properties, despite relying on an expert-derived reward source, thereby aligning its
training dynamics with online reward RFT.

The above differences show our offline reward RFT inherits the key properties of RFT-stronger
generalization compared to SFT-which is further corroborated by the experiments in Section

2.3.2 OPTIMAL-POLICY DISTANCE UPPER BOUND.

In our approach, offline rewards replace real environmental feedback, raising the natural question
of whether such a substitution is valid. In this section, we provide a theoretical upper bound on the
distance between the policies induced by the two reward formulations:

For a fixed prompt z, consider the KL-regularized objective
To(m | @) = Eyen(oy[r(®)] — Ber Dxufn(- | 2) | mer (- | 7)), ©
where Segr > 0 and myef (- | 2) has full support. It is standard that the maximizer has the Gibbs form
oy 2) = e exp(r(y)/Best)

>y et (Y | @) exp(r(y’)/ Bert)

Let yr be a fixed expert trajectory of length k. Define the expert-comparison reward reyp, via the
longest correct prefix, While the environment success reward is not tied to a single trajectory but to
the whole success set Vsyce ().

~n(y)(n(y)+1)
Texp(iy) = W’

(10)

Tenv(y) - ]I{y S ysucc(x)} (1 1)

Let the minimal expert-prefix among all successful trajectories be nmin () = min yey_ . (2) n(y)-
Then the smallest expert-comparison reward among successful trajectories is
min r ( ) . nmin(x) (nmin(z) + 1)
YD) Y E(k+1)

(12)
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We upper bound the pointwise gap:

(13)

nmin(x) (nmin(x) + 1) k—1 }
k(k+1) k41

(L(LC) = H'rexl) - Teanoo < max{ 1-—

The first term controls the max discrepancy among successes (y € YVsucc), While the second term

controls the max discrepancy among failures (y ¢ Vsucc), Using max, <x—_1 ZEZLl)) = %

Lemma 1 (Softmax stability). Letr;, 75 : Y — R be bounded rewards with |71 — r2]|s0 < d. Let
7f be the maximizer of equation [ with r = 7; (thus of the form equation [I0). Then

20 20
Dyxi(m5 || 77) < —. 14
KL( 2 || 1) =~ Besr (14)

DKL('/TI || 71';) <

- ﬂeff ’
Detailed proof will be given in Appendix

* o and 7%

Proposition 1 (Expert-vs-Environment optimal policies are bounded). Let 77, , “nyv be the
maximizers of equation 9| with r = rexp, and r = reny, respectively. Then, with 4, () in equation[13]

we get the policy distance by Pinsker’s inequality,

* * 2 5* (LU) * * * * 5* ((E)
DKL(WCXP H ,/TCUV) < ﬁeff ) H’/TCXP - ,/TCHVHTV < \/% DKL(chp H chv) < - .
(15)

Inequalities equation [T3]establish that the optimal policy under the offline expert-comparison reward
remains provably close to the environment-optimal policy. Importantly, this does not imply that the
sparse environment reward is always superior: when a trajectory ultimately fails, the environment
reward collapses to zero, whereas our expert-based reward can still assign a positive signal propor-
tional to prefix similarity. This alleviates reward sparsity problem in such multi-turn settings while
the bounded discrepancy guarantees that optimization under the offline reward remains directionally
aligned with the online environment objective.

3 EXPERIMENTS

We conduct a series of experiments to evaluate the effectiveness of our proposed reinforcement
fine-tuning (RFT) framework for multi-step embodied planning. Specifically, we aim to answer the
following key questions:

(Q1) How well does our method perform in interactive benchmarks for multi-step embodied task
planning? (Section [3.1))

(Q2) Is reinforcement fine-tuning necessary and uniquely beneficial, especially compared to
supervised fine-tuning ? (Section [3.2)

(Q3) Is our prefix-based offline reward design truly effective, for example when compared to more
complex reward formulations? (Section[3.3)

3.1 EXPERIMENT RESULTS IN EMBENCH (Q1)

3.1.1 EXPERIMENTAL SETTINGS

Benchmark Most prior works in embodied planning reduce evaluation to static visual question
answering, which fails to capture the interactive and sequential nature of real-world decision-making.
To address this gap, we adopt Embench(Yang et al., [2025), a benchmark designed for evaluating
multimodal agents in dynamic, interactive environments.

Embench provides a unified framework across four embodied settings and supports over 1,100
tasks involving manipulation, navigation, and spatial reasoning. We evaluate on two environments:
EB-ALFRED, built on ALFRED(Shridhar et al., 2020) and AI2-THOR(Kolve et al., 2017), and EB-
Habitat, based on Habitat 2.0’s rearrangement tasks(Savva et al.,2019). The benchmark organizes
tasks into different subsets. Among them, the Base set forms the core task pool, while the Common
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Model EB-ALFRED (Seen) EB-Habitat (Unseen)

Avg Base Com  Cplx Visual Spatial Avg Base Com Cplx  Visual Spatial

Closed-Source MLLMs

Claude-3.5-Sonnet 65.2 70 62 72 62 60 70.4 96 68 74 74 40
Gemini-2.0-flash 50.8 58 58 50 46 42 38.4 76 30 30 30 26
GPT-40 54.8 62 52 68 44 48 53.6 82 34 62 58 32
GPT-40-mini 26.4 32 24 32 20 24 36.8 68 38 28 28 22
Open-Source MLLMs
LLaMA-3.2-90B 35.2 38 34 44 28 32 45.6 94 24 50 32 28
LLaMA-3.2-11B 15.2 24 8 16 22 6 26.8 62 16 24 14 18
Qwen2.5-VL-72B 40.8 50 42 42 36 34 41.2 72 28 42 40 24
Qwen2.5-VL-7B 2.0 4 2 2 2 0 14 38 4 12 4 12
InternVL2.5-78B 36.8 38 34 42 34 36 532 80 42 56 58 30
InternVL2.5-8B 3.6 2 0 12 0 4 19.6 48 6 16 10 18
Open-Source Reasoning MLLMs
R1-VL-7B 2 2 2 6 0 0 8.4 24 0 4 6 8
MM-Eureka-Qwen-7B 32 6 4 4 2 0 19.2 40 16 14 10 16
Open-Source Embodied MLLMs
RoboBrain 0.4 2 0 0 0 0 17.6 38 6 18 8 18
Tapa 0.0 0 0 0 0 0 0.0 0 0
Open-Source Embodied + Reasoning MLLMs
Ours(base) 2.0 4 2 2 2 0 14 38 4 12 4 12
Ours(SFT) 22 34 22 24 12 18 13.6 34 2 10 10 12
Ours(SFT+RFT) 49.2 60 60 48 38 40 224 56 8 18 16 14

Table 1: Side-by-side comparison: left EB-ALFRED (Seen) vs. right EB-Habitat (Unseen). Abbrevi-
ations: Com = Common, Cplx = Complex

Sense, Complex Instruction, Spatial Awareness, Visual Appearance are constructed via prompt-
level augmentation that increases reasoning or perception difficulty, such as adding commonsense
constraints or syntactic complexity. Notably, our RL fine-tuning is conducted solely on the Base
set without any prompt augmentation, demonstrating its ability to generalize beyond the training
distribution.

All models generate step-by-step plans from egocentric inputs and execute them in simulation. Since
our training data is collected from the ALFRED , EB-Habitat serves as an fully out-of-domain setting
for generalization evaluation. More details are provided in Appendix

Baselines We compare our method against a range of baselines, including: (1) proprietary models
such as Claude-3.5-Sonnet(cla)), Gemini-2.0-flash(gem), GPT-40(gpt, |a), and GPT-40-mini(gpt, |b);
(2) open-source general VLMs like LLaMA-3.2-Vision-11B(lla), Qwen2.5-VL-7B(Bai et al., 2025,
and InternVL2.5-8B(Chen et al., 2024)); (3) reasoning-oriented models such as MM-Eureka(Meng
et al.} 2025)) and R1-VL(Zhang et al.| 2025a)); and (4) embodied VLMs including RoboBrain(J1 et al.)
and TAPA(Wu et al., [2023)). For evaluation, we convert visual inputs into text for TAPA due to its
lack of vision capabilities. Further details on each baseline are provided in Appendix [G while some
very recent models like |Shi et al.| (2025a); |Zhang et al.|(2025b) are excluded due to unavailability of
open-source implementations and reproducibility challenges.

Evaluation Metrics We follow the original Embench (Yang et al.l 2025)) to use task success rate
as the primary evaluation metric. A task is marked as successful only if all predefined goal-checking
conditions are satisfied at the end of execution.

To support multi-turn planning, Embench adopts an iterative evaluation protocol where the model
generates a new action sequence based on the latest observation at each round. The environment
executes the actions and returns updated states until task success or step limit is reached.

3.1.2 MAIN RESULTS IN EMBENCH

In-Domain Results We conduct comprehensive in-domain evaluations on the EB-ALFRED environ-
ment. As shown in Table|l} our proposed model achieves a task success rate of 49.2%, approaching
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Gemini-2.0-flash (50.8%) and surpassing all other open-source models including Qwen2.5-VL-
72B(40.8%) and Llama-3.2-90B(35.2%).

Several key observations emerge from the re-
sults: (1) Our methods and training pipeline
lead to consistent performance gains in embod-
ied task planning for both base and other ad-
vanced tasks. (2) Existing open-source reason- Base 2 4 14 38

Variant EB-ALFRED (Seen) EB-Habitat (Unseen)

Avg Base Avg Base

ing models and embodied VLMs perform poorly ~SFT only 2 34 136 30

in Embench. While reasoning models produce  RFT oMY 144 2 176 40
bose intermediate steps, they struggle to ex- o ot 32 w0 L %

ver . ps, they strugs SFT — SFT 37.6 50 11.6 22

ecute correct action sequences. Similarly, em- ¢z ppp (ours)  49.2 60 2.4 56

bodied VLMs lack the generalization ability to

transfer to Embench tasks. (a) Ablation study on training stages in EB-ALFRED

and EB-Habitat.

. Model Overall Acc SpatialMap MazeNav SpatialGrid
Out-of-Domain Results To evaluate general-
ization, we tested our models in the EB-Habitat Base 0.475 0.696 0.256 0.542
environment, which differs from ALFRED in SFTonly 0.488 0.682 0.328 0.524
SFT+RFT 0.503 0.748 0.260 0.605

terms of scenes, objects, action space, and task
types. As shown in the right part of Table [Tl () visual reasoning accuracy on spatial VQA subsets.
our method exhibits strong out-of-domain per-

formance, outperforming all baseline models Table 2: RFT Generalization Experiment

of similar 7B size, including general-purpose,

reasoning-augmented, and embodied VLMs.The

result highlight Reinforcement fine-tuning leads to substantial improvements even in completely
unseen environments.

3.2 RFT GENERALIZES WHILE SFT OVERFITS (Q2)

Is Reinforcement Fine-Tuning Necessary? A key question is whether the performance gain of
GRPO-based reinforcement fine-tuning (RFT) stems from the optimization process itself, or merely
from exposure to additional trajectory data. To investigate this, we compare five training strategies:
(1) Base: the original Qwen2.5-VL-7B model without any tuning; (2) SFT only: supervised fine-
tuning (SFT) on distilled trajectories; (3) RFT—SFT: first applying RFT, then re-align with SFT; (4)
SFT—SFT: conducting SFT , followed by additional SFT using the same trajectories during RFT.
This variant isolates the effect of data exposure from optimization. and (5) SFT—RFT (ours): our
proposed pipeline with SFT followed by GRPO-based RFT.

As shown in Table our SFT — RFT pipeline achieves the best performance across both seen
and unseen environments. While SFT — SFT brings moderate gains over SFT only on seen tasks,
it surprisingly degrades performance in unseen domains—exposing the limitations of supervised
fine-tuning. In contrast, our SFT — RFT approach not only boosts more in-domain accuracy but
also enhances generalization, confirming the necessity of offline reward-driven optimization beyond
simple trajectory exposure.

Does RFT Overfit to Embodied Benchmarks? To further evaluate the generalization capability
of RFT, we assess whether fine-tuning on Embench harms the model’s performance on its original
training domains besides embodied task planning. Specifically, we evaluate on SpatialEval (Wang
et al., [2024a)), a benchmark designed to assess general spatial understanding across three diverse
tasks: spatial maps, maze navigation, and spatial grids.

As shown in Table 2b} the SFT-RFT model not only avoids degradation on general spatial reasoning
tasks but also improves performance on spatial map and spatial grid tasks. This indicates that our
reinforcement-based fine-tuning pipeline promotes structured reasoning without overfitting to the
embodied benchmark. The structured action plans and reward-aligned outputs learned through RFT
appear to benefit broader visuospatial understanding.
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3.3 ABLATION STUDY ON REWARD DESIGN (Q3)

To validate the effectiveness of our prefix-based reward, we conduct a series of ablation studies
focusing on reward allocation, reward computation, and training dynamics, as illustrated in Figure [3]

(a) Reward allocation. We compare different allocations between accuracy and format signals, includ-
ing our design (1LAccuracy+0.5Format), Format-Heavy (lFormat+0.5Accuracy),
Format-Only, and Accuracy—-Only. As shown in Figure Eka, left), our allocation achieves the
best performance, followed by the format-heavy variant. Format—Only fails to provide meaningful
gains, while Acc—0Only underperforms ours, confirming that format guidance plays a necessary role.

(b) Reward computation. We further compare different reward formulations: our quadratic pre-
fix curve n(n + 1)/k(k + 1), a linear prefix variant n/k, and two embedding-based methods
(Embed-Cosine and Embed-0T). In Embed-Cosine, both the rollout and expert trajectory are
encoded using the Qwen3-Embedding-0.8B model, and the cosine similarity between their embed-
dings is taken as the reward. In Embed-0T, the same embeddings are compared via an OT(optimal
transport) distance computed with the Sinkhorn algorithm(Cuturi, 2013).

Results in Figure [3{a, right) show that our simple prefix reward consistently outperforms embedding-
based similarities. As highlighted in Figure 3[b), embedding-based rewards quickly saturate within
200 steps, yielding high training scores but weak test performance. In contrast, our prefix reward
produces lower and noisier training signals, yet, as shown in Figure[3{c), test performance steadily
improves. We attribute this to its simplicity: the prefix-based design introduces greater learning
difficulty, which acts as an implicit regularizer, preventing the model from exploiting spurious
correlations and instead encouraging gradual long-horizon alignment with expert trajectories for
more robust policy optimization.

(c) Effect of training steps. Finally, we examine how success rates evolve with different RFT steps.
Figure [3c) shows that the Base subset saturates around 500 steps, but continued training yields
steady gains in other subsets (Visual, Spatial, Complex), driving the overall Avg upward from 22.0 to
49.2. This emergent transfer is particularly noteworthy given that our RFT training data exclusively
contains Base-type tasks, highlighting the generalization capability induced by our reinforcement
optimization process.

4 CONCLUSION

In this work, we addressed the challenge of multi-step embodied planning by introducing an on-
policy RFT framework with offline rewards. Our approach avoid costly simulator interaction and
sparse reward while preserving the generalization benefits of RFT. Supported by theoretical analysis
and extensive experiments on Embench, we demonstrated that this method significantly improves
reasoning and decision-making capabilities. More broadly, our results highlight the potential of offline
reward—driven reinforcement tuning as a scalable paradigm for advancing embodied Al and other
multi-turn agentic RL settings, enabling vision-language models to perform coherent long-horizon
planning and paving the way toward practical deployment in real-world applications.
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B USE OoF LLMs

Large language models (LLMs) were employed to provide assistance with language refinement
during the preparation of this paper. We emphasize that the LLMs were used only as writing
aids; all conceptual contributions—including research problem formulation, methodological design,
experimental analysis, and interpretation of findings—are the sole work of the authors.

C RELATED WORK

C.1 EMBODIED TASK PLANNING

Embodied task planning focuses on decomposing high-level natural language instructions into
executable sequences of sub-tasks, enabling agents to perform complex behaviors in interactive
environments. With the emergence of large language and vision-language models(Xi et al., [2025}
Xu et al.| 2024]), researchers have explored using pretrained LLMs or VLMs to generate plans from
textual and visual observations, typically relying on carefully crafted prompts(Shin et al.; [Rana et al.;
Hu et al.; Kim et al.| ja; |Singh et al.; [Fu et al., 2024) or auxiliary tools(Rana et al.;|Ahn et al.; Silver
et al.) to provide necessary planning cues. While simple and data-efficient, such methods often
struggle with spatial grounding and temporal coherence in visually rich environments. Advanced
methods have tried to fine-tune LLMs or VLMs to improve planning performance. Several works
have employed supervised fine-tuning pipelines(Wu et al.,[2023; |Chen et al.; Ji et al.), while others
adopt preference optimization methods(Wang et al.; [Song et al., [2024) such as Direct Preference
Optimization (DPO)(Rafailov et al., |2023)) to better align model behavior with expert planning
preferences.

Despite these advances, most existing methods operate in static or offline settings, where plans are
generated without actual interaction with the environment. In this work, we address this limitation
by evaluating our model in interactive environments(Yang et al., 2025).while a recent work (Shi
et al.}2025a) also adopts Embench, their focus lies in data augmentation and SFT, whereas we study
reinforcement fine-tuning and propose an on-policy RFT with offline rewards.

C.2 VISION-LANGUAGE MODEL REASONING

Reasoning in vision-language models (VLMs) involves drawing inferences from both textual and
visual inputs, often requiring spatial, temporal, or causal understanding(Wang et al., |2025a}; [2024b).
A common approach is Chain-of-Thought (CoT) prompting(Wei et al.| |2022)), where the model
generates intermediate steps to clarify its reasoning. In multimodal settings, Multimodal Chain-
of-Thought (MCoT) extends this idea by integrating visual inputs like images and videos into the
reasoning process(Zhang et al., 2023 Mondal et al.| [2024} |[Mitra et al., 2024)).

More recently, R1-style reinforcement learning(Guo et al.,[2025; |Shao et al.| [2024)) has emerged as an
effective framework for enhancing reasoning capabilities. These methods optimize reasoning quality
through reward-guided learning, enabling models to self-correct and generate more detailed reasoning
processes. Originally developed for text-based reasoning, R1 approaches have since been extended
to multimodal domains, including image-based QA(L1u et al., 2025} |Shen et al., 2025; Zhang et al.,
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20254), visual math problems(Meng et al.,|2025; Huang et al.| [2025} Team et al.| 2025)), and video
reasoning(Li et al.l 2025). In the context of embodied Al, some early studies(Zhao et al.| [2025;
Zhang et al., 2025bj Tan et al., [2025) have applied R1-based training to question answering tasks,
however, they primarily focus on short-horizon QA tasks.In contrast, our work is the first to adopt
R1-style reinforcement fine-tuning for long-horizon embodied planning, addressing the challenges of
sparse and costly online rewards while preserving the generalization benefits of RFT for structured
multi-step decision-making.

D PROOF OF LEMMA 1 (SOFTMAX STABILITY)

Lemma 1 (Softmax stability). Let 1,7, : )V — R be bounded rewards on a finite (or countable)
outcome space Y, and assume a reference policy 7o (- | ) with full support. Fix Seg > 0 and define,
fori € {1,2},

Teet (y | @) exp(r4(y)/ Berr)
Ey/ 7Tref(y/ | (,C) exp (ri (y/)/ﬁeff>

mi(y [ z) =

If H’I’1 — TQHOO < ¢, then
26
S -
Beff

26
ﬂeff .

DKL(ﬂ'{ I ﬂ';) and DKL(ﬂ'§ I ﬂ'{) <

Proof. Fix x and omit it from notation. Introduce the “potentials”

r1(y) r2(y)
5cff ’ ﬁcff ’
and the partition functions Zy = > exp(f(y)), Z; = >, exp(g(y)). Then ni(y) =

exp(f(y))/Zs and 75 (y) = exp(9(y))/Zg4. We will bound Dy, (77 ||73); the reverse bound follows
by symmetry.

f(y) = logmet(y) + g(y) = logmet(y) +

Step 1: KL in terms of potentials. By definition,

DMM@=Zﬂ@m2$=ZﬂMWWwW+bﬂrm4

=Eyr; [f(y) —9(y)] + logZ, —log Z;.

Step 2: Bounding the expectation term. Since ||r; — 12|/ < 0, we have

T —T 5
17 =gl = || 5222 < 5
Thus 5
Eﬂ'* - S - e’} S .
(=gl < If =4l B

Step 3: Lipschitzness of log-sum-exp. For any vectors a, b on ),
lo b(y) _ a(y) < _
gy e og Y e < max (b(y) - a(y)),
Yy Yy
i b(y) = Y) e b(y)—a(y) max(b—a) (v) i
which follows from }_ e”¥) =37, e?W)eby)—aly) < gmax(b—a >, "), By swapping a, b one
also has log Y- e®) —log Y- €"¥) < max, (a(y) — b(y)). Hence

)

|log Zy —log Zs| < [lg— fllee < 5.

ﬂeff
Step 4: Combine the bounds. Putting Steps 2-3 into Step 1 yields

) ) 26

Dxi(7ny||73) < — + = .

KL( ! || 2) 5ef’f 5eff ﬁef‘f
Exchanging the roles of (r1, f, Zy) and (re, g, Z4) gives Dy, (73||77) < 25/ Beq as well. O
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E ADDITIONAL DETAILS OF SFT TRAINING STAGE

E.1 TRAINING DATASET DETAILS

To initialize the model with structured planning priors, we construct a supervised fine-tuning (SFT)
dataset via response distillation from a high-capacity proprietary model. Specifically, we query
Gemini-2.0-flash on a subset of EB-ALFRED tasks from the Embench benchmark and collect its
response traces. For each task prompt, we record the full model output, including both intermediate

reasoning and executable plan.

To ensure diversity and robustness, we repeat this process across three separate sampling rounds. The
final dataset comprises a total of 4,245 training samples. Each sample includes a natural language
instruction, egocentric image observations, and the model’s full response in a structured format. An

example training instance is shown in figure [E-]]

{
"messages": [
{
"role": "user",
"content": {EB-ALFRED prompt}
}l
{

"role": "assistant",

"content": "{"reasoning_and_reflection": "The user wants me

to rinse off a ladle and move it to the table. First I need
to find the ladle, pick it up, find the sink, put the ladle
down in the sink, find the faucet, turn on the faucet to
rinse the ladle, turn off the faucet, pick up the ladle,
find the table, and put the ladle on the table.", "visual_
state_description”: "I can see a garbage can and a fridge in
the current view.", "language_plan": "First, locate a
ladle and pick it up. Then, find a sink and put the ladle
down in the sink. Next, find a faucet, turn it on to rinse
the ladle, and then turn it off. After that, pick up the
rinsed ladle, find a dining table, and place the ladle on

the table.", "executable_plan": [ { "action_id": 64,
"action_name": "find a Ladle" o { "action_id":
109, "action_name": "pick up the Ladle" }, { "
action_id": 79, "action_name": "find a Sink" b {
"action_id": 133, "action_name": "put down the object in
hand" by { "action_id": 2, "action_name": "find a
Faucet" }, { "action_id": 155, "action_name": "
turn on the Faucet" o { "action_id": 156, "action
_name": "turn off the Faucet" }, { "action_id": 64,
"action_name": "find a Ladle" o { "action_id":
109, "action_name": "pick up the Ladle" }, { "
action_id": 18, "action_name": "find a DiningTable" b
{ "action_id": 133, "action_name": "put down the
object in hand" 1] I
}
1/
"images": [

"example.png"
]
by
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"id": "trial_T20190909_062150_965386_remain_0",

"question": "{Our_RFT_prompt}",

"answer": "[’Goto handtowelholder’, ’'Pickup handtowel’, '
Goto garbagecan’, ’'Put handtowel’]",

"message": "[{\"role\": \"system\", \"content\": \"Solve the

question. The user asks a question, and you solves it. You
first thinks about the reasoning process in the mind and
then provides the user with the answer.\"}, {\"role\": \"
user\", \"content\": [{\"type\": \"image\", \"image\": \"
example.jpg\"}, {\"type\": \"text\", \"text\": \"{Our_RFT_
prompt }\"}]1}]"

}l

E.2 TRAINING HYPERPARAMETERS

We perform full-parameter supervised fine-tuning on the Qwen2.5-VL-7B model using the
LLaMA-Factory(Zheng et al.,[2024) framework. The training is conducted on 4 NVIDIA A100
40GB GPUs for approximately 8 hours. All hyperparameters are summarized in Table 3]

Component Setting ‘ Component Setting
Model Configuration
image_max_pixels 262144 freeze_vision_tower true
freeze_language_model false freeze_multi_modal_projector  true
deepspeed config ds_z3_config.json
Dataset Configuration
dataset alfred_sft template qwen2_vl
cutoff_len 2048 max_samples 1000
overwrite_cache true preprocessing_workers 16
dataloader_workers 4

Training Configuration

stage sft finetuning_type full
do_train true num_train_epochs 3.0
learning_rate le-5 per_device_batch_size 1
grad_accum_steps 2 Ir_scheduler cosine
warmup_ratio 0.1 bf16 true
ddp_timeout 180000000

Table 3: Detailed hyperparameters used in supervised fine-tuning.

E.3 TRAINING RESULTS

We record the final metrics and loss curve from the supervised fine-tuning process, as shown in
Figure[5] The table summarizes key training statistics after 3 epochs of full-parameter tuning.
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Figure 4: Summary of SFT training results. Training Loss of SFT stage
— oones
Metric Value 144
Epochs 3.0 1
Total FLOPs  3.13el13 L
Training Loss ~ 0.252 < 084
Runtime (s) 21111.79 06 |
Samples/sec 0.142 04 |
Steps/sec 0.018 02

0.0 T T T T T T T
o 50 100 150 200 250 300 350
step

Figure 5: Training loss curve during SFT stage.

F ADDITIONAL DETAILS OF RFT TRAINING STAGE

F.1 TRAINING DATASET DETAILS

We construct our reinforcement fine-tuning (RFT) dataset based on the ALFRED benchmark, fol-
lowing the decomposition and formatting strategy described in Section [2| Notably, we do not reuse
the SFT-distilled dataset for reinforcement fine-tuning. This decision is motivated by two key con-
siderations: (1) the distilled data may contain suboptimal trajectories, introducing noise into the
learning signal; (2) the distilled instruction format is tightly coupled with the benchmark evaluation
prompts, whereas our constructed dataset introduces instruction variations that encourage greater
policy generalization and better isolate the impact of reinforcement learning.

The resulting dataset contains 43,898 samples, each formatted to include a natural language instruc-
tion, a visual observation, and a ground-truth action sequence used for reward computation. We
provide a full example of a training sample from the RFT dataset for reference in figurgB.2]

F.2 FORMAT REWARD

To encourage valid and interpretable plans, we design a structured format reward inspired by
Embench |Yang et al.| (2025)), which requires the model’s output to include four key sections:
reasoning_and_reflection, visual_state_description, language_plan, and
executable_plan. The reward is composed of three components:

Rformat = Rstructure + Rvalid + Rmatcha (] 6)

Each component reflects a specific aspect of format quality and all three components are weighted
proportionally according to a 2:1:1 ratio:

* Rgructure rewards the presence of all required top-level fields, ensuring structural complete-
ness.

* Ryaig measures the proportion of steps that include syntactically correct action_id and
action_name pairs, reflecting output well-formedness.

* Rmaten evaluates the number of actions that align with a predefined schema, ensuring
semantic correctness and avoiding hallucinated actions.

F.3 TRAINING HYPERPARAMETERS

We implement reinforcement fine-tuning using the OpenRLHF(Hu et al., 2024)) framework, adopting
the Generalized Reinforced Preference Optimization (GRPO) algorithm(Shao et al.,2024) to optimize
policy learning from structured reward feedback. A full list of training hyperparameters is provided
in Table
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Hyperparameter Value Hyperparameter Value
ref_num_nodes 1 vllm_num_engines 8
ref_num_gpus_per_node 8 actor_num_gpus_per_node 8
actor_num_nodes 1 vllm_tensor_parallel_size 1
vllm_gpu_memory_utilization  0.65 vllm_enable_sleep True
vllm_sync_backend nccl temperature 1.0
max_epochs 1 max_episodes 10
prompt_max_len 3000 max_samples_len 10000
generate_max_len 4096 advantage_estimator group_norm
zero_stage 3 actor_learning_rate le-6
init_kl_coef 0.0 n_samples_per_prompt 8
micro_train_batch_size 1 micro_rollout_batch_size 2
train_batch_size 128 rollout_batch_size 128
freeze_prefix visual enable_accuracy_filter True
accuracy_lower_bound 0.1 accuracy_upper_bound 0.9

Table 4: Hyperparameter configuration used during reinforcement fine-tuning.

F.4 TRAINING LOG AND RESULT

We record the reinforcement fine-tuning process using several key indicators, as visualized in Figure[6}

The total reward refers to the combined score of the format reward and the accuracy reward. Due to
the use of an online filtering strategy during training, we distinguish between two types of accuracy
reward: accuracy reward (filtered), which reflects the reward from selected high-quality samples that
pass the filtering criteria, and accuracy reward (original), which represents the average reward across
all generated responses prior to filtering.

We also report two types of length statistics: response length, which quantifies the number of tokens
generated by the model for each output, and rotal length, which denotes the combined token length
of the input prompt and generated response.

Accuracy Rewards(Original) Format Rewards

/‘

/

Accuracy Rewards
045 M 06 045
04

200 400 600 800 1,000 0 200 400 600 800

!

260 3600
08

240 3580
07

220 3560

1000 0 200 400 600 800

Total Length

1,000
Total Rewards Response Length

3620

1000 0 200 400 600 800 1,000 0 200 400 600 800 1,000
. ~ 0 A

Figure 6: Training curve during reinforcement fine-tuning. The figure shows the progression of total
reward, filtered and unfiltered accuracy reward, and generation length statistics.
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G ADDITIONAL DETAILS FOR EVALUATION

G.1 DETAILED INTRODUCTION TO EMBODIEDBENCH

EmbodiedBench is a comprehensive interactive benchmark designed to evaluate vision-language
agents in embodied planning scenarios. Unlike static visual question answering settings, Embod-
iedBench offers dynamic, simulation-based environments where agents must generate and execute
multi-step plans grounded in first-person visual observations and natural language instructions. The
benchmark spans four embodied environments and supports over 1,100 diverse tasks with hierarchical
action levels, covering both high-level planning and low-level control.

In our work, we focus on two high-level planning environments within EmbodiedBench:

EB-ALFRED. EB-ALFRED is built upon the ALFRED dataset (Shridhar et al., 2020) and imple-
mented on top of the AI2-THOR simulator (Kolve et al.,2017). It supports eight core skill types such
as pick up, put down, find, open/close, and turn on/off. The environment provides egocentric visual
inputs and textual feedback (e.g., success/failure messages), enabling agents to adaptively plan and
act. Compared to the original ALFRED setup, EB-ALFRED enhances object diversity and simulator
robustness. Specifically, it supports multiple object instances of the same type, merges redundant
actions (e.g., unified put down), and dynamically adjusts the action space size (ranging from 171 to
298). These improvements provide a more realistic and flexible environment for assessing embodied
planning capabilities.

EB-Habitat. EB-Habitat extends the Language Rearrangement benchmark (Savva et al., [2019),
based on the Habitat 2.0 simulator. It focuses on five high-level skills: navigation, pick, place,
open, and close. Unlike ALFRED, navigation in EB-Habitat is constrained to receptacle-type targets,
requiring more sophisticated exploration and scene understanding. The environment includes 282
instruction templates and places more emphasis on spatial reasoning and location-aware planning,
making it a complementary testbed for generalization.

Task Subsets. To enable fine-grained capability analysis, Embench introduces six distinct task
subsets. Due to space limitations, we omit the subset "Long Horizon" from the main table and report
its results in the Appendix.

* Base: Evaluates standard task-solving skills under low to medium complexity, testing general
planning competence.

» Common Sense: Assesses agents’ ability to reason over implicit object references and everyday
knowledge.

* Complex Instruction: Presents long, noisy or ambiguous contexts to evaluate the agent’s ability
to extract user intent.

* Spatial Awareness: Requires understanding object relationships in space, such as relative positions
or arrangements.

* Visual Appearance: Involves identifying objects via attributes like color or shape, testing fine-
grained visual recognition.

* Long Horizon: Contains tasks demanding long sequences of actions (often exceeding 15 steps),
stressing planning depth and temporal consistency.

Each subset is designed to probe a specific capability of embodied reasoning, such as commonsense
inference, spatial understanding, or long-horizon planning. In our experiments, we evaluate model
performance across all six subsets to provide a fine-grained analysis. As shown in Table[5] these
categories span a wide range of reasoning challenges. Notably, since our reinforcement fine-tuning
dataset only includes Base tasks, we observe a significantly larger performance gain in this category,
whereas improvements in other subsets are relatively modest. This highlights the need for more
diverse training data to support generalizable planning across varied task types.

Overall, Embench provides a rigorous, scalable, and diagnostic framework for benchmarking embod-
ied agents across diverse real-world challenges. In our setup, we use EB-ALFRED for in-domain
training and evaluation, while EB-Habitat serves as an out-of-domain testbed to examine generaliza-
tion performance.
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Table 5: Examples of each task type from EB-ALFRED and EB-Habitat.

Task Subset

ALFRED Example

Habitat Example

Base
Common Sense

Complex Instruction

Spatial Awareness
Visual Appearance

Long Horizon

Put washed lettuce in the refrigerator.

Place washed leafy green vegetable in a
receptacle that can keep it fresh.

Place the washed lettuce in the refrigera-
tor. This way, it’s ready for any delightful
recipe ideas you have.

Put two spray bottles in the cabinet under
the sink against the wall.

Put a knife in a blue container onto the
black table in the corner.

Pick up knife, slice apple, put knife in
bowl, heat apple slice in microwave, put
apple slice on table.

Move one of the pear items to the indicated
sofa.

Prepare for a game by delivering some-
thing to play with to the TV stand.

When you find the fridge door open, go
ahead and move one bowl to the sofa; oth-
erwise, transport one hammer to the sofa.
Move a spatula from the right counter to
the right receptacle of the left counter.
Deliver a small red object with green top to
the indicated large gray piece of furniture.
Move the rubrics cube to the left counter;
the towel to the left counter, and the bowl
to the brown table.

G.2 DETAILED INTRODUCTION TO BASELINES

To comprehensively evaluate our proposed method, we compare it against a diverse set of baselines,
covering both proprietary and open-source models, as well as models specifically optimized for
multimodal reasoning and embodied planning.

(1) Closed-source models: we include several leading proprietary vision-language models as strong
general-purpose baselines, including Claude-3.5-Sonnet(cla), Gemini-2.0-flash(geml)), GPT-4o(gpt, a)),
and GPT-4o0-mini(gpt, |b).

(2) Open-source general VLMs: we evaluate widely adopted open-source VLMs trained for generic
multimodal tasks, such as LLaMA-3.2-Vision-11B(lla), Qwen2.5-VL-7B(Bai et al.| [2025) and
InternVL2.5-8B(Chen et al.| [2024).

(3) Open-source reasoning VLMs: we further include two representative models that have been
explicitly optimized for multimodal reasoning, including MM-Eureka(Meng et al.,|[2025)) and R1-
VL(Zhang et al., 2025a).

MM-Eureka extends rule-based reinforcement learning to multimodal reasoning, enabling models
to improve through reward-driven optimization without supervised fine-tuning. It reproduces key
behaviors from language-only RL systems, such as reflection and reward-aligned response growth,
achieving strong data efficiency and reasoning performance.

R1-VL enhances step-by-step reasoning in multimodal LLMs via StepGRPO, a reinforcement
learning framework with dense, rule-based rewards for accuracy and logical consistency. It surpasses
imitation learning by guiding models to self-correct flawed reasoning, achieving superior results on
multiple benchmarks.

We also attempted to evaluate other open-source reasoning models, such as VisualRFT(Liu et al.,
2025)) and Open-R1(Facel 2025). However, their inference speed was prohibitively slow, resulting
in impractically long evaluation time on interactive benchmarks. Additionally, their final planning
performance remained poor for embodied planning scenarios.

(4) Embodied VLMs: we also include RoboBrain(Ji et al.) and TAPA(Wau et al., 2023)), two represen-
tative open-source large models designed for embodied tasks.

TAPA is the first model specifically optimized for embodied multi-step planning, but it lacks visual
perception capability; thus, we convert visual observations into textual descriptions for evaluation.

RoboBrain is a state-of-the-art VLM for embodied scenarios that integrates robotic and general
multimodal data through a multi-stage training pipeline,leveraging long-horizon video and high-
resolution image supervision to enhance manipulation and planning performance.
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EB-ALFRED (Seen)

Model Avg Base Common Complex Visual Spatial Long

PR ES PR ES PR ES PR ES PR ES PR ES PR ES

Closed-Source MLLMs

Claude-3.5-Sonnet 70.11 149 7267 122 6583 1274 7333 1148 655 1402 6883 1696 745 21.98

Gemini-2.0-flash 57.13 165 61.83 1396 60.67 14.0 5533 15.16 5533 1526 46.67 17.04 63.0 23.56

GPT-40 61.78 16.77 65.67 1254 57.17 16.1 74.67 1392 5833 152 5233 17.58 625 2543

GPT-40-mini 3042 19.69 3633 1732 29.83 18.06 38.0 17.74 2733 1848 31.0 199 200 26.62

Open-Source General MLLMs

Qwen2.5-VL-7B 686 94 567 878 4.0 42 50 528 533 716 0.67 826 205 2272

InternVL2.5-8B 578 7.87 6.17 82 067 49 160 892 40 678 633 752 1.5 1092
Open-Source Reasoning MLLMs

R1-VL-7B 278  4.01 30 322 30 206 60 1.7 067 162 00 266 40 1278

MM-Eureka-Qwen-7B 659 848 867 7.64 533 504 867 972 367 646 0.67 658 125 1542
Open-Source Embodied MLLMs

RoboBrain 122 67 333 6.1 067 63 067 3.68 0.67 756 0 636 20 1022
Tapa 0 0.03 0 0.06 0 0 0 0 0 0.04 0 0.08 0 0
Open-Source Embodied + Reasoning MLLMs
Ours (Base) 686 94 567 878 4.0 42 50 528 533 716 067 826 205 2272
Ours (SFT only) 238 1506 39 13.14 266 13.04 27.6 1256 193 1412 143 15.16 165 2238
Ours (SFT+RFT) 53.03 1763 703 1372 65 153 599 16.12 485 17.06 43 16.88 315 26.7

Table 6: Progress Rate (PR) and Environment Steps (ES) on EB-ALFRED (Seen)

While there exist other VLMs designed for embodied settings, many of them are unavailable for
public use, such as ReasonRFT(Tan et al., 2025))/Shi et al.| (2025a) and Embodied-Reasoner(Zhang
et al.,[2025Db). Other models, such as EmbodiedGPT(Mu et al.) and TAPA(Wu et al.,[2023)), exhibit
poor generalization to new task distributions, achieving near-zero scores on Embench tasks and
revealing a lack of transferable planning capabilities.

G.3 EXPERIMENT RESULTS USING SUPPLEMENTARY METRICS

In addition to task success rate, we provide supplementary evaluation results using two additional
metrics: Progress Rate (PR) and Environment Steps (ES).

Progress Rate (PR) quantifies the degree to which the agent completes the task, measured as
the proportion of goal conditions satisfied by the final environment state. This metric provides a
finer-grained signal than binary success, especially for partially completed tasks.

Environment Steps (ES) refers to the number of actions executed in the environment before task
termination. A lower ES generally indicates more efficient planning and fewer redundant or failed
actions.

Complete results across these metrics are reported in Appendix Tables [6]and [7]

H LIMITATION AND FUTURE WORK

A natural next step is to extend our offline reward paradigm beyond embodied planning, applying it to
broader scenarios such as vision-language-action (VLA) models and other multi-turn reasoning tasks.
In these settings, a hybrid approach that combines offline trajectory-based rewards with selective
online feedback may further enhance adaptability while retaining stability.

In addition, our current focus lies on high-level embodied planning in simulation, producing structured
action sequences that guide downstream controllers. While our method already demonstrates strong
performance and generalization in benchmarks, deploying it on physical robotic platforms remains
an important avenue for validation and integration with low-level control systems.
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EB-Habitat (Unseen)

Model Avg Base Common Complex Visual Spatial Long

PR ES PR ES PR ES PR ES PR ES PR ES PR ES

Closed-Source MLLMs
Claude-3.5-Sonnet 709 10.7 98 6.54 69.5 1046 755 106 751 1074 452 944 621 1642

Gemini-2.0-flash 385 1341 765 856 315 129 34 15.66 327 13.7 37 12 19.8  17.66
GPT-40 60.8 1432 853 9.76 34 1474 675 1334 643 1382 463 1478 672 195
GPT-40-mini 442 188 73.6 1096 46 1878 405 1976 36.8 21.76 475 1886 20.6 227
Open-Source General MLLMs
Qwen2.5-VL-7B 19.05 1258 445 1064 65 14.9 17 11.12 64 1412 288 11.74 11.1 1294
InternVL2.5-8B 26 16.77 529 13.1 13 19.1 22 1648 21.6 1836 354 1824 11.1 1532
Open-Source Reasoning MLLMs
R1-VL-7B 8.06 508 246 59 0 3.78 4 4.38 6 1.8 11.8  7.78 2 6.88
MM-Eureka-Qwen-7B ~ 22.03 13.53 40.5 1024 205 1578 19 1134 159 1566 313 1374 5 14.4
Open-Source Embodied MLLMs
RoboBrain 20.18 1068 39.1 808 95 9.08 21 113 129 139 31.1 1148 75 1024
Tapa 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Open-Source Embodied + Reasoning MLLMs
Ours (Base) 19.05 1258 445 1064 6.5 14.9 17 11.12 64 1412 288 11.74 11.1 1294
Ours (SFT only) 20.05 1240 3875 1062 7 123 195 1276 16 1124 346 1526 45 1226
Ours (SFT+RFT) 27.18 1331 5875 8.72 15 1498 23 13.3 20 1336 37 13.78 933 1576

Table 7: Progress Rate (PR) and Environment Steps (ES) on EB-Habitat (Unseen)

I CASE STUDY AND VISUALIZATION

1.1 CASE STUDY

To better understand how our model performs embodied multi-step planning, we present detailed
case studies illustrating its behavior and reasoning process. Specifically, we compare the outputs
of our reinforcement-tuned model with the base Qwen2.5-VL model to highlight improvements in
planning coherence and action correctness, we also present full multi-step execution trajectories from
our model to show how it plans and interacts with the environment to complete specific tasks.

Figure[7|and Figure[§|show side-by-side comparisons between the two models in the EB-ALFRED and
EB-Habitat environments, respectively. We observe that the base model often produces incomplete or
illogical plans, while our model generates more structured and context-aware action sequences, along
with interpretable reasoning steps.

Figure [0} Figure[TO}Figure [TT]and Figure [I2]further visualize full planning trajectories executed by
our model in representative tasks from EB-ALFRED and EB-Habitat. These examples demonstrate
the model’s ability to maintain long-horizon coherence, correctly interpret dynamic observations, and
recover from intermediate failures.

1.2 PROMPT

In this section, we document the full prompt formats used in both evaluation and training stages,
including for EB-ALFRED, EB-Habitat, and our reinforcement fine-tuning (RFT) process.

EB-ALFRED Prompt. The EB-ALFRED prompt is used for evaluating models within the EB-
ALFRED environment of Embench. Our SFT stage also adopts this prompt format.

EB-Habitat Prompt. This prompt format is used in Embench’s EB-Habitat environment, which
differs from EB-ALFRED in simulator, object distribution, and language patterns.

RFT Training Prompt. During reinforcement fine-tuning, we adopt a custom prompt format.
While still grounded in the same simulation environment, our RFT prompts include modifications in
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action representation and instruction phrasing. These differences help introduce broader data diversity
and encourage the model to learn a more generalizable planning policy.

Instruction

You are a home-operating robot. Given a task, you must use a set of actions to achieve the desired outcome.

The available action id and action names are: {}. Guidelines: {}

Now the human instruction is: Put the books on the desk.The action history: Step {}, action id {}, {}, env feedback: {}
YYou need to describe current visual state from the image, summarize interaction history and environment feedback,
and reason why the last action or plan failed and did not finish the task, output your new plan to achieve the goal
from current state. At the end, output the excutable plan with action ids(0 ~ {len(self.actions)-1}) from the available
actions.The output json format should be {'visual_state_description':str, ‘reasoning_and_reflection':str,
‘language_plan'str, 'executable_plan’List[{'action_id"int, 'action_name'str}...]}

@ Qwen2-VL-7B-Instruct QOurs

“reasoning": "{
\"visual_state_description\": \"The image shows a room with a bed, a
dresser, and a safe. The bed has a blanket and a teddy bear on it. The
dresser has a few items on it, including a book. The safe is closed and
located near the dresser.\"

\"reasoning_and_reflection\": \"The task is to put the books on the desk.
The first step is to find the books. The books are located on the dresser.
Next, pick up the books. The books are not inside a closed receptacle, so
the 'pick up' action is valid. Then, put down the books on the desk. The desk
is visible in the image, so the 'put down' action is valid. The final step is to
close the safe. The safe is closed, so the ‘close’ action is valid.\" ,

\"language_plan\': \'First, locate the books on the dresser. Once found,
pick up the books. Next, search for the desk and place the books on it.
Finally, find the safe and close it.\",

[

177, \"action_name
111, \"action_name\":
18, \"action_name\"
1_i 133, \"action_name
{\"action_id\": 48, \"action_name\

:\"find a Safe\"},
{\"action_id\": 136, \"action_name\": \"close the Safe\"}

The photo of
the room does
not show a
dresser or any
books

Although a safe
appears in the

scene,
no indication

that the task
is related to

the safe

“reasoning": "{
\"visual_state_description\": \"The image shows a room
with a bed, a nightstand, and a wall. There are no visible
books or desks in the image

\"reasoning_and_reflection\": \"The task is to put books on
a desk. However, there are no books or desks visible in the
image. This suggests that the books might be located
elsewhere in the room or not present atall.',

\"language_plan\": \'First, locate the books. Once found,
pick them up. Next, find the desk and place the books
onit\",

\"executable_plan!
{\"action_id\": 47, \"action_name\": \"find a Book\"},
{\"action_id\": 94, \"action_name\": \"pick up the

there is

47, \"action_name\": \"find a Book\"},

+ 94, \"action_name\": \"pick up the

{"action_id\": 49, \"action_name\": \"find a Desk\'},
{V'action_id\": 133, \'action_nameV": \'put down the
object in hand\"}

Figure 7: Case comparison (Our model vs Base model) in EB-ALFRED

Instruction

You are a home-operating robot. Given a task, you must use a set of actions to achieve the desired outcome.

The available action id and action names are: {}. Guidelines: {}

Now the human instruction is: Find a mug on the right counter and move it to the TV stand. The action history:
Step {}, action id {}, {}, env feedback: {}

You need to describe current visual state from the image, summarize interaction history and environment feedback,
and reason why the last action or plan failed and did not finish the task, output your new plan to achieve the goal
from current state. At the end, output the excutable plan with action ids(0 ~ {len(self.actions)-1}) from the available

actions.The output json format should be {'visual_state_description'str, 'reasoning_and_reflection':str,
t, ‘action_name'str}...]J}

‘language_plan':

tr, 'executable_plan':List[{'action_i

’ @ Qwen2-VL-7B-Instruct

The action differs from the
—— plan- Table 2's source is un-

"action_description”: "place at the table 2",
substantiated, and repeated

"action_description": "place at the TV stand",

empts in q

steps caused failure:
"reasoning”: "{
\"visual_state_description\": \'The robot is currently at the right counter in the

kitchen. There is a mug on the right counter, but the robot cannot pick it up
because it is not near the robot.\",

I
i

i

i

i

i

i

i

1 \"reasoning_and_reflection\": \'The last action failed because the robot cannot
! pick up an object that is not near it. To find the mug, the robot needs to navigate
! to the right counter and then pick it up.\",

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

\"language_plan\": \"The robot should first navigate to the right counter, then
pick up the mug, and finally move to the TV stand and place the mug there.\",

Vexecutable_plan\": [
{\"action_id\"
in the kitchen\

10, "action_name\": \"navigate to the right counter

44, \"action_name\": \"pick up the mug\"}
8, \"action_name avigate to the TV stan:
51, \"action_name\": \"place at the TV stand\'}

\"visual_state_description\": \"The image shows a table with various items
including a mug, a red cup, a sausage, a pair of scissors, and a small orange
container. A blue and white object is partially visible on the right side.\",

i

1 \"reasoning_and_reflection\": \"The last action involved navigating to the

1 right counter in the kitchen, which was successful as indicated by the

1 feedback. However, the task is to find a mug on the right counter and move it
' to the TV stand. Since the right counter is already visited, the next step is to

' identify the mug and pick it up.\",
i

i

i

i

i

i

i

i

i

i

\"language_plan\": \"The task is to find a mug on the right counter and move
itto the TV stand. The right counter has been navigated to, and the mug
needs to be picked up and placed on the TV stand.\",

\"executable_plan\
{\"action_id\
counter in the kitcher

action_id\

action_id\
action_id\

[

to the right

\": \"pick up the mug\"}
\"navigate to the TV sta
\"place at the TV stand

tion_name\

Figure 8: Case comparison (Our model vs Base model) in EB-Habitat
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Instruction

Examine a tv remote next to the light of a tall lamp

"reasoning": "{"visual_state_description": "The image shows a room with a wooden table,
a box on top of it, and a window with sunlight coming through. There is a tall lamp near
the window, but no TV remote is visible in the scene.", "reasoning_and_reflection": "The
task requires examining a TV remote under the light of a tall lamp. However, there is no
TV remote visible in the image. The lamp is present, but the TV remote is not. This
suggests that the TV remote might be out of view or not in the current scene.",
"language_plan": "First, locate the TV remote. Once found, pick it up. Next, find the tall
lamp and turn it on to examine the remote.", "executable_plan": [{"action_id": 68,
"action_name": "find a RemoteControl"}, {"action_id": 116, "action_name": "pick up the
RemoteControl"}, {"action_id": 27, "action_name": "find a FloorLamp"}, {"action_id": 153,
"action_name": "turn on the FloorLamp"}]}"

Action 1

"env_step": 1

"env_feedback": "Last action executed successfully."
"action_id": 68

"action_description": "find a RemoteControl"

Action 2

"env_step": 2

"env_feedback": "Last action executed successfully."
"action_id": 116

"action_description™: "pick up the RemoteControl"

Action 3

"env_step": 3

"env_feedback": "Last action executed successfully."”
"action_id": 27

"action_description": "find a FloorLamp"

Action 4

"env_step": 4

"env_feedback": "Last action executed successfully."
"action_id": 153

"action_description": "turn on the FloorLamp"

Task Success

Figure 9: Our model’s Full Trajectory execution in EB-ALFRED
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Instruction

Retrieve a apple and place it into the predetermined sofa.

"reasoning": "{"visual_state_description": "The image shows a living room with a gray
sofa, a coffee table, a staircase, and a blue object resembling a person. The apple is
not visible in the image.", "reasoning_and_reflection": "The task is to retrieve an apple
and place it on the sofa. However, the apple is not visible in the image. This suggests
that the apple might be located elsewhere in the house, possibly in the kitchen or
another room. The current plan should involve navigating to the kitchen to find the apple
and then placing it on the sofa.", "language_plan": "The task is to find an apple and
place it on the sofa. Since the apple is not visible in the current room, the robot should
navigate to the kitchen to search for the apple.", "executable_plan": [{"action_id": 10,
"action_name": "navigate to the right counter in the kitchen"}, {"action_id": 33,
"action_name": "pick up the apple"}, {"action_id": 12, "action_name": "navigate to the
sofa"}, {"action_id": 56, "action_name": "place at the sofa"}|}"

Action 1

"env_step": 1

"env_feedback": "Last action executed successfully."”
"action_id": 10

"action_description": "navigate to the right counter in the kitchen"

Action 2

"env_step": 2

"env_feedback": "Last action executed successfully and you are holding apple.”
"action_id": 33

"action_description": "pick up the apple"

Action 3

"env_step": 3

"env_feedback": "Last action executed successfully."”
"action_id": 12

"action_description": "navigate to the sofa"

Action 4

"env_step”: 4

"env_feedback": "Last action executed successfully and you are holding nothing."
"action_id": 56

"action_description": "place at the sofa"

Task Success

Figure 10: Our model’s Full Trajectory execution example 1 in EB-Habitat
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Instruction

Move a ball to the sofa.

Replanning

Replanning

"reasoning": "{"visual_state_description": "The image shows a living room with a sofa, a TV
stand, and a table. A ball is located on the floor near the TV stand.",
"reasoning_and_reflection": "The task is to move a ball from the floor to the sofa. The ball is
clearly visible on the floor near the TV stand. The next step is to pick up the ball and then
place it on the sofa.", "language_plan": "The plan is to first navigate to the ball, pick it up, and
then place it on the sofa.", "executable_plan": [{"action_id": 8, "action_name": "navigate to the
ball"}, {"action_id": 16, "action_name": "pick up the ball"}, {"action_id": 12, "action_name":
"navigate to the sofa"}, {"action_id": 56, "action_name": "place at the sofa"}|}"

Action 1

"env_step": 1

"env_feedback": "Last action executed successfully.”
"action_id": 8

"action_description": "navigate to the TV stand"

Action 2

"env_step": 2

"env_feedback": "Last action is invalid. Robot cannot pick any object that is not near the
robot. Navigate to other place to find the object.”

"action_id": 16

"action_description": "pick up the ball"

"reasoning": "{"visual_state_description": "The image shows a room with a plant in a pot on
the floor, a sofa, and a table with some items on it. The ball is located on the floor next to the
plant.", "reasoning_and_reflection": "The previous action was to navigate to the TV stand, but
the ball was not found there. The ball is now visible on the floor next to the plant. The robot
needs to pick up the ball and move it to the sofa.", "language_plan": "The robot should
navigate to the ball, pick it up, and then move to the sofa to place the ball there.",
"executable_plan": [{"action_id": 8, "action_name": "navigate to the TV stand"}, {"action_id":
16, "action_name": "pick up the ball"}, {"action_id": 12, "action_name": "navigate to the sofa"},
{"action_id": 56, "action_name": "place at the sofa"}]}"

Action 3

"env_step": 3

"env_feedback": "Last action executed successfully."
"action_id": 8

"action_description": "navigate to the TV stand"

Action 4

"env_step": 4

"env_feedback": "Last action is invalid. Robot cannot pick any object that is not near the
robot. Navigate to other place to find the object."

"action_id": 16

"action_description": "pick up the ball"

"reasoning": "{"visual_state_description": "The image shows a room with a plant in a pot, a
blue and white object, a book, and a red and green object on the floor. The ball is not visible in
the image.", "reasoning_and_reflection": "The previous attempts to pick up the ball were
unsuccessful due to the robot being too far away from the ball. The ball is likely located on the
floor, but the robot has not yet navigated to the correct position to pick it up. The current plan
should involve navigating to the floor to find and pick up the ball.", "language_plan": "The robot
needs to navigate to the floor to find the ball and then pick it up.", "executable_plan":
[{"action_id": 6, "action_name": "navigate to the floor"}, {"action_id": 16, "action_name": "pick
up the ball"}|}"

Figure 11: Our model’s Full Trajectory execution example 2 (part 1) in EB-Habitat
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Replanning

Action 5

"env_step": 5

"env_feedback": "Last action executed successfully."
"action_id": 6

"action_description": "navigate to the table 1"

Action 6

"env_step": 6

"env_feedback": "Last action executed successfully and you are holding ball."
"action_id": 16

"action_description": "pick up the ball"

"reasoning": "{"visual_state_description": "The robot is currently standing in front of the table
1, holding a ball. The ball is located on the table 1, along with a toy airplane, a cup, a bowl,
and a lemon. The sofa is visible in the background.", "reasoning_and_reflection": "The robot
has already picked up the ball from the table 1. The next step is to navigate to the sofa and
place the ball there. The previous attempts to pick up the ball were successful, but the robot
needs to move to the sofa to complete the task.", "language_plan": "The robot needs to
navigate to the sofa and place the ball there.", "executable_plan": [{"action_id": 12,

"action_name": "navigate to the sofa"}, {"action_id": 56, "action_name": "place at the sofa"}]}"

Action 7

"env_step": 7

"env_feedback": "Last action executed successfully."
"action_id": 12

"action_description": "navigate to the sofa"

Action 8

"env_step™ 8

"env_feedback": "Last action executed successfully and you are holding nothing."
"action_id": 56

"action_description™: "place at the sofa"

Task Success

Figure 12: Our model’s Full Trajectory execution example 2 (part 2) in EB-Habitat
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EB-ALFRED prompt

"<image>## You are a robot operating in a home. Given a task,
you must accomplish the task using a defined set of actions
to achieve the desired outcome.

## Action Descriptions and Validity Rulesx Find: Parameterized
by the name of the receptacle to navigate to. So long as the
object is present in the scene, this skill is always valid
« Pick up: Parameterized by the name of the object to pick.
Only valid if the robot is close to the object, not holding

another object, and the object is not inside a closed
receptacle.* Put down: Parameterized by the name of the
object to put down to a nearby receptacle. Only valid if the
robot is holding an object. x Drop: Parameterized by the
name of the object to put down. It is different from Put
down action, as this does not guarantee the held object will
be put into a specified receptacle. *x Open: Parameterized
by the name of the receptacle to open. Only valid if the
receptacle is closed and the robot is close to the
receptacle. * Close: Parameterized by the name of the
receptacle to close. Only valid if the receptacle is open
and the robot is close to the receptacle. x Turn on:
Parameterized by the name of the object to turn on. Only
valid if the object is turned off and the robot is close to
the object. » Turn off: Parameterized by the name of the
object to turn off. Only valid if the object is turned on
and the robot is close to the object. » Slice: Parameterized
by the name of the object to slice. Only valid if the
object is sliceable and the robot is close to the object.

## The available action id (0 ~ 207) and action names are: {
ALFRED ACTION LIST}

## Task Execution Example: {IN-CONTEXT TASK EXAMPLE}

## Guidelines 1. x+Output Planx*: Avoid generating empty plan.
Each plan should include no more than 20 actions. 2. %%
Visibility*x: Always locate a visible object by the ’find’
action before interacting with it. 3. xxAction Guidelinesxx:

Make sure match the action name and its corresponding
action id in the output.newline Avoid performing actions
that do not meet the defined validity criteria. For instance
, if you want to put object in a receptacle, use ’'put down’

rather than ’'drop’ actions. 4. **xPrevent Repeating Action
Sequencesx**: Do not repeatedly execute the same action or
sequence of actions. Try to modify the action sequence

because previous actions do not lead to success. 5. #*x
Multiple Instancesx*x: There may be multiple instances of the
same object, distinguished by an index following their
names, e.g., Cabinet_2, Cabinet_3. You can explore these
instances if you do not find the desired object in the
current receptacle. 6. *x*Reflection on History and Feedback
*%: Use interaction history and feedback from the
environment to refine and improve your current plan. If the
last action is invalid, reflect on the reason, such as not
adhering to action rules or missing preliminary actions, and
adjust your plan accordingly.

## Now the human instruction is: Rinse off a ladle and move it
to the table. You are supposed to output in json. You need
to describe current visual state from the image, output your

reasoning steps and plan. At the end, output the action id
(0 ~ 207) from the available actions to excute."
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EB-Habitat prompt

<image>##You are a robot operating in a home. Given a task,
you must accomplish the task using a defined set of actions
to achieve the desired outcome.

## Action Descriptions and Validity Rules: % Navigation:
Parameterized by the name of the receptacle to navigate to.
So long as the receptacle is present in the scene, this
skill is always valid. % Pick: Parameterized by the name of
the object to pick. Only valid if the robot is close to the
object, not holding another object, and the object is not
inside a closed receptacle. x Place: Parameterized by the
name of the receptacle to place the object on. Only valid if

the robot is close to the receptacle and is holding an
object. x Open: Parameterized by the name of the receptacle
to open. Only valid if the receptacle is closed and the
robot is close to the receptacle. % Close: Parameterized by
the name of the receptacle to close. Only valid if the
receptacle is open and the robot is close to the receptacle.

## The available action id (0 ~ 69) and action names are:{
HABITAT ACTION LIST}

## Task Execution Example:{IN-CONTEXT TASK EXAMPLE}

## Guidelines 1. xxOutput Planxx: Avoid generating empty plan.
Each plan should include no more than 20 actions. 2. *x*
Visibility*x: If an object is not currently visible, use the
\"Navigation\" action to locate it or its receptacle before
attempting other operations. 3. *xAction Validityxx: Make
sure match the action name and its corresponding action id
in the output. Avoid performing actions that do not meet the
defined validity criteria. 4. xxPrevent Repeating Action
Sequencesx*x*: Do not repeatedly execute the same action or
sequence of actions. Try to modify the action sequence
because previous actions do not lead to success. 5. %%
Multiple Instancesx*+*: There may be multiple instances of the
same object, distinguished by an index following their
names, e.g., cabinet 2, cabinet 3. You can explore these
instances if you do not find the desired object in the
current receptacle. 6. **Reflection on History and Feedback
*%: Use interaction history and feedback from the
environment to refine and enhance your current strategies
and actions. If the last action is invalid, reflect on the
reason, such as not adhering to action rules or missing
preliminary actions, and adjust your plan accordingly.

## Now the human instruction is: Move one of the pear items to
the indicated sofa. You are supposed to output in json. You
need to describe current visual state from the image,

output your reasoning steps and plan. At the end, output the
action id (0 ~ 69) from the available actions to excute."
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Our RFT prompt

You are a robot operating in a home. Given a task, you must
accomplish the task using a defined set of actions to
achieve the desired outcome.

## Action Descriptions and Validity Rules x GotoLocation:
Parameterized by the name of the target location or
receptacle to navigate to. Always valid so long as the
target exists in the scene. x PickupObject: Parameterized by

the name of the object to pick up. Valid only if the robot
is close to the object, is not holding anything, and the
object is accessible. * PutObject: Parameterized by the name

of the receptacle or surface where the held object will be
placed. Valid only if the robot is holding an object. =
ToggleObject: Parameterized by the name of the object whose
state can be toggled (e.g., lamp, faucet). Valid only if the

robot is close to the object. % CoolObject: Parameterized
by the name of the object to cool. Requires the robot to be
holding the object and near a cooling appliance such as a
fridge. * SliceObject: Parameterized by the name of the
object to slice. Requires that the object is slice-able and
the robot holds an appropriate cutting tool. x CleanObject:
Parameterized by the name of the object to clean. Requires
the robot to be near a water source and the object supports
cleaning. * HeatObject: Parameterized by the name of the
object to heat. Requires the robot to be holding the object
and near a heating appliance such as a microwave or stove.

## The available action id (0 ~ 224) and action names are: {OUR
REFT ACTION LIST}

## Guidelines 1. x+Output Planx*: Avoid generating empty plan.
Each plan should include no more than 20 actions. 2. %%
Visibilityx*: Always locate a visible object by the ’'goto’
action before interacting with it. 3. xxAction Guidelinesxx*:

Make sure the action name and its corresponding action id
match in the output. Avoid performing actions that do not
meet the defined validity criteria. 4. **xPrevent Repeating
Action Sequencesx*: Do not repeatedly execute the same
action or sequence of actions. 5. *xMultiple Instancesxx:
There may be multiple instances of the same object,
distinguished by an index following their names, e.g.,
Cabinet_2. 6. x*Reflection on History and Feedbackxx: Use
interaction history and feedback from the environment to
refine and improve your current plan.

## Expected JSON output format‘‘json {\"reasoning_and_

reflection\": \"<string>\", \"visual_state_description\":
\"<string>\", \"language_plan\": \"<string>\", \"executable
_plan\": [ {\"action_id\": <int>, \"action_name\": \"<string
>\"} ]}\\\

## Now the human instruction is: put a towel into a garbage can
The history actions are: [{HISTORY LIST}] newlineConsidering
the above interaction history and the current image state,
to achieve the human instruction.newlineYou are supposed to
output in json. You need to describe current visual state
from the image, output your reasoning steps and plan. You
shuold think carefully and output the comprehensive thought
process in ’reasoning_and_reflection’ part. At the end,
output the action id (0 ~ 224) from the available actions to
execute."
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Part of EB-ALFRED Action list

action id 1: find a Potato, action id 2:
id 3: find a Ottoman, action id 4: fin
action id 5: find a Candle, action id
id 7: find a Pan, action id 8: find a
find a HandTowel, action id 10: find a
id 11: find a BaseballBat, action id 1
action id 13: find a Kettle, action id
action id 15: find a StoveBurner, acti

action id 17: find a Toilet, action i
DiningTable, action id 19: find a Spoo
a TissueBox, action id 21: find a Shel
a Apple, action id 23: find a TennisRa
find a SoapBar, action id 25: find a C
find a Plunger, action id 27: find a F
28: find a ToiletPaperHanger, action i
CoffeeTable, action id 30: find a Spat
find a Plate, action id 32: find a Bed

Glassbottle, action id 34: find a Kni

a Tomato, action id 36: find a Butter

39: find a CounterTop, action id 40: £
action id 41: find a WateringCan, acti
action id 43: find a ArmChair, action
action id 45: find KeyChain, action

action id 47: find Pen, action id 48
action id 49: find Desk, action id 5
action id 51: find Drawer, action id
action id 53: find Bread, action id

action id 55: find Lettuce, action i

(ORI RO

find a ToiletPaper, action id 59: find
id 60: find a Fork, action id 61: find
find a Egg, action id 63: find a DeskL
find a Ladle, action id 65: find a Win
find a Pencil, action id 67: find a L
find a RemoteControl, action id 69: fi
action id 70: find a DishSponge, actio
action id 72: find a SaltShaker, actio
PepperShaker, action id 74: find a Pil
find a Bathtub, action id 76: find a S
77: find a Statue, action id 78: find
79: find a Sink, action id 80: pick up
id 81: pick up the Potato, action id 8
action id 83: pick up the Pen, action
Candle, action id 85: pick up the CD,
the Pan, action id 87: pick up the Wat
up the Newspaper, action id 89: pick
action id 90: pick up the SprayBottle,
the BaseballBat, action id 92: pick u
93: pick up the CellPhone, action id
action id 95: pick up the Lettuce, act
CreditCard, action id 97: pick up the
pick up the AlarmClock, action id 99:
action id 100: pick up the ToiletPaper

find a Faucet, action

d a CoffeeMachine,

6: find a CD, action

Watch, action id 9:
SprayBottle, action

2: find a CellPhone,
14: find a Mug,

on id 16: find a Bowl,

d 18: find a

n, action id 20: find
f, action id 22: find

cket, action id 24:

loth, action id 26:

loorLamp, action id

d 29: find a

ula, action id 31:

, action id 33: find a
fe, action id 35: find

Knife, action id 37:

find a Dresser, action id 38: find a Microwave, action id

ind a GarbageCan,

on id 42: find a Vase,
id 44: find a Safe,

id 46: find a Pot,

: find a Cabinet,

0: find a Newspaper,
52: find a Sofa,

54: find a Book,

d 56: find a

CreditCard, action id 57: find a AlarmClock, action id 58:

a SideTable, action
a Box, action id 62:
amp, action id 64:
eBottle, action id 66:
aptop, action id 68:
nd a BasketBall,
n id 71: find a Cup,
n id 73: find a
low, action id 75:
oapBottle, action id
a Fridge, action id
the KeyChain, action
2: pick up the Pot,
id 84: pick up the
action id 86: pick up
ch, action id 88: pick
up the HandTowel,
action id 91: pick up
p the Bread, action id
94: pick up the Book,
ion id 96: pick up the
Mug, action id 98:
pick up the Kettle,
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EB-Habitat Action list

action id 0: navigate to the cabinet 7, action id 1: navigate
to the cabinet 6, action id 2: navigate to the cabinet 5,
action id 3: navigate to the cabinet 4, action id 4:
navigate to the refrigerator push point, action id 5:
navigate to the chair 1, action id 6: navigate to the table
1, action id 7: navigate to the table 2, action id 8:
navigate to the TV stand, action id 9: navigate to the sink
in the kitchen, action id 10: navigate to the right counter
in the kitchen, action id 11: navigate to the left counter
in the kitchen, action id 12: navigate to the sofa, action
id 13: navigate to the refrigerator, action id 14: navigate
to the left drawer of the kitchen counter, action id 15:
navigate to the right drawer of the kitchen counter, action
id 16: pick up the ball, action id 17: pick up the clamp,
action id 18: pick up the hammer, action id 19: pick up the
screwdriver, action id 20: pick up the padlock, action id
21: pick up the scissors, action id 22: pick up the block,
action id 23: pick up the drill, action id 24: pick up the
spatula, action id 25: pick up the knife, action id 26: pick
up the spoon, action id 27: pick up the plate, action id
28: pick up the sponge, action id 29: pick up the cleanser,
action id 30: pick up the plum, action id 31: pick up the
pear, action id 32: pick up the peach, action id 33: pick up
the apple, action id 34: pick up the lemon, action id 35:
pick up the can, action id 36: pick up the box, action id
37: pick up the banana, action id 38: pick up the strawberry
, action id 39: pick up the lego, action id 40: pick up the
rubriks cube, action id 41: pick up the book, action id 42:
pick up the bowl, action id 43: pick up the cup, action id
44: pick up the mug, action id 45: pick up the orange,
action id 46: pick up the 1lid, action id 47: pick up the toy
airplane, action id 48: pick up the wrench, action id 49:
place at the chair 1, action id 50: place at the table 1,
action id 51: place at the table 2, action id 52: place at
the TV stand, action id 53: place at the sink in the kitchen
, action id 54: place at the right counter in the kitchen,
action id 55: place at the left counter in the kitchen,
action id 56: place at the sofa, action id 57: place at the
refrigerator, action id 58: place at the left drawer of the
kitchen counter, action id 59: place at the right drawer of
the kitchen counter, action id 60: open the refrigerator,
action id 61: close the refrigerator, action id 62: open the
cabinet 7, action id 63: open the cabinet 6, action id 64:
open the cabinet 5, action id 65: open the cabinet 4, action
id 66: close the cabinet 7, action id 67: close the cabinet
6, action id 68: close the cabinet 5, action id 69: close
the cabinet 4
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Part of Our RFT Action list

action id 1: goto apple, action id 2: goto armchair, action id
3: goto baseballbat, action id 4: goto basketball, action id
5: goto bathtubbasin, action id 6: goto bed, action id 7:

goto bowl, action id 8: goto box, action id 9: goto bread,
action id 10: goto butterknife, action id 11: goto cabinet,
action id 12: goto candle, action id 13: goto cart, action
id 14: goto cellphone, action id 15: goto cloth, action id
16: goto coffeemachine, action id 17: goto coffeetable,
action id 18: goto countertop, action id 19: goto creditcard
, action id 20: goto cup, action id 21: goto desk, action id
22: goto desklamp, action id 23: goto diningtable, action
id 24: goto dishsponge, action id 25: goto drawer, action id
26: goto dresser, action id 27: goto egg, action id 28:
goto floorlamp, action id 29: goto fork, action id 30: goto
fridge, action id 31: goto garbagecan, action id 32: goto
handtowelholder, action id 33: goto keychain, action id 34:
goto knife, action id 35: goto laptop, action id 36: goto
lettuce, action id 37: goto microwave, action id 38: goto
mug, action id 39: goto newspaper, action id 40: goto
ottoman, action id 41: goto pan, action id 42: goto pen,
action id 43: goto pencil, action id 44: goto plate, action
id 45: goto plunger, action id 46: goto pot, action id 47:
goto potato, action id 48: goto remotecontrol, action id 49:
goto safe, action id 50: goto shelf, action id 51: goto
sidetable, action id 52: goto sinkbasin, action id 53: goto
soapbar, action id 54: goto soapbottle, action id 55: goto
sofa, action id 56: goto spatula, action id 57: goto spoon,
action id 58: goto statue, action id 59: goto stoveburner,
action id 60: goto tennisracket, action id 61: goto
tissuebox, action id 62: goto toilet, action id 63: goto
toiletpaper, action id 64: goto toiletpaperhanger, action id
65: goto tomato, action id 66: goto vase, action id 67:
goto watch, action id 68: goto wateringcan, action id 69:
pickup alarmclock, action id 70: pickup apple, action id 71:
pickup baseballbat, action id 72: pickup basketball, action
id 73: pickup book, action id 74: pickup bowl, action id
75: pickup box, action id 76: pickup bread, action id 77:
pickup butterknife, action id 78: pickup candle, action id
79: pickup cd, action id 80: pickup cellphone, action id 81:
pickup cloth, action id 82: pickup creditcard, action id
83: pickup cup, action id 84: pickup dishsponge, action id
85: pickup egg, action id 86: pickup fork, action id 87:
pickup glassbottle, action id 88: pickup handtowel, action
id 89: pickup kettle, action id 90: pickup keychain, action
id 91: pickup knife, action id 92: pickup ladle, action id
93: pickup laptop, action id 94: pickup lettuce, action id
95: pickup mug, action id 96: pickup newspaper, action id
97: pickup pan, action id 98: pickup pen, action id 99:
pickup pencil, action id 100: pickup peppershaker,
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