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Abstract

Understanding how the dynamics in biological
and artificial neural networks implement the com-
putations required for a task is a salient open ques-
tion in machine learning and neuroscience. In
particular, computations requiring complex mem-
ory storage and retrieval pose a significant chal-
lenge for these networks to implement or learn.
Recently, a family of models described by neu-
ral ordinary differential equations (nODEs) has
emerged as powerful dynamical neural network
models capable of capturing complex dynamics.
Here, we extend nODEs by endowing them with
adaptive timescales using gating interactions. We
refer to these as gated neural ODEs (gnODEs).
Using a task that requires memory of continu-
ous quantities, we demonstrate the inductive bias
of the gnODEs to learn (approximate) continu-
ous attractors. We further show how reduced-
dimensional gnODEs retain their modeling power
while greatly improving interpretability, even al-
lowing explicit visualization of the structure of
learned attractors. We introduce a novel measure
of expressivity which probes the capacity of a
neural network to generate complex trajectories.
Using this measure, we explore how the phase-
space dimension of the nODEs and the complexity
of the function modeling the flow field contribute
to expressivity. We see that a more complex func-
tion for modeling the flow field allows a lower-
dimensional nODE to capture a given target dy-
namics. Finally, we demonstrate the benefit of
gating in nODEs on several real-world tasks.
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1. Introduction

How can the dynamical motifs exhibited by an artificial
or a biological network implement certain computations
required for a task? This is a long-standing question in
computational neuroscience and machine learning (Vyas
et al., 2020; Khona & Fiete, 2022). Recurrent neural net-
works (RNNs) have often been used to probe this ques-
tion (Mante et al., 2013; Vyas et al., 2020; Driscoll et al.,
2022), as they are flexible dynamical systems that can be
easily trained (Rumelhart et al., 1986) to perform compu-
tational tasks. RNNSs, particularly ones that incorporate
gating interactions (Hochreiter & Schmidhuber, 1997; Cho
etal., 2014), have been wildly successful in solving complex
real-world tasks (Jozefowicz et al., 2015).

While RNN models provide a link between dynamics and
computation, how their (typically) high-dimensional dy-
namics implement computation remains hard to interpret.
On this note, we may turn to neural ordinary differential
equations (nODEs), a class of dynamical models with a ve-
locity field parametrized by a deep neural network (DNN),
which can potentially implement more complex computa-
tions in lower dimensions than classical RNNs (Chen et al.,
2018; Kidger, 2022)." This increased complexity in lower
latent/phase-space dimensions subsequently helps in extract-
ing interpretable, effective low-dimensional dynamics that
may underlie a dataset or task (Kim et al., 2021; Sedler et al.,
2023).

Despite their promise, nODEs remain under-explored in
the following crucial aspects. Trainability: Can we im-
prove performance of nODEs by introducing gating interac-
tions (Hochreiter & Schmidhuber, 1997; Cho et al., 2014)
to tame gradients in dynamical systems? Expressivity:
How does the structure of the neural network modeling the
velocity flow field influence a nODE’s capacity to model
complex trajectories? Interpretability: Does the capability
of low-dimensional nODEs to model complex data improve
interpretability of the dynamical computation? We con-

'By classical RNNs, we mean the form of RNNs often consid-
ered in the neuroscience, physics and cognitive-science literature,
where the interaction between units are additive, and the interac-
tion strengths are represented by a matrix (McCulloch & Pitts,
1943; Sompolinsky et al., 1988; Elman, 1990; Vogels et al., 2005;
Sussillo & Abbott, 2009; Song et al., 2016; Yang et al., 2019).
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sider nODE:s interpretable if there exists a representation of
computation that we can identify in the low-dimensional dy-
namics (Sussillo & Barak, 2013; Mastrogiuseppe & Ostojic,
2018; Duncker et al., 2019). Below we summarize the main
insights of our exploration of these questions.

Main Contributions

* We leverage our understanding of gating interactions
to introduce the gated neural ODE (gnODE). We find
that gating endows nODEs with adaptive timescales,
and improves trainability of nODEs on tasks involv-
ing long timescales or rich representations (Section 2,
Appendix B).

* We introduce a novel measure of expressivity related
to the capacity of a neural network to store complex
dynamical trajectories. nODEs and gnODEs are more
expressive compared to RNNs in many parameter
regimes (Sections 5, 6.2, Appendices D, G).

* We demonstrate an inductive bias of gnODEs and other
gated networks to utilize marginally-stable fixed points
in a “flip-flop” task that requires storing continuous
memory. We further demonstrate the interpretability of
the gnODEs’ solutions, which organize the marginally-
stable fixed-points in an approximate continuous attrac-
tor (Section 6.1, Appendix F).

* We show the advantage of gating in nODEs on real-
world tasks (Sections 6.3-6.5, Appendix H).

* We propose a novel initialization scheme for nODEs
using dynamical mean-field theory (Section 4, Ap-
pendix A).

2. Gated Neural ODE
The gated neural ODE (gnODE) is described by

th=Gy(h,z) ® [-h + Fy(h,z)], M

where 7 is the time constant, h € RY is the hidden/latent
state vector, and z(t) € RP is the input vector. The ve-
locity vector field Fj : RY x RP? — RY and the gating
function G, : RN x RP? — RY are parameterized (via
# and ¢, respectively) by neural networks. While Fy and
G, in general can each be parametrized by any neural net-
work, in this work, we restrict Fy and G, to fully-connected
feedforward neural networks (FNN) Fy(h, z) = sl and
Gy(h,z) = st=, where

s' = ¢a(Wh + U,z + b)), )
st = g (W s™ b)), 3)
st =g (WS Tlsh T4 bl ) @)

with x € {h, z}. Here, Wt e RNewt1xNew - gle ¢ RNew
bt~ € RNet1, and Ny = N, = N is the phase-space
(or latent) dimension. ¢, € {Z,tanh} and ¢, = o, where
T is the identity function and o'(z) = [1 + e~*]". When
L, =1, ¢o = ¢. When L, > 1, we typically set ¢, to be
ReLU.

Without the leak term —h and the gating interaction (i.e.,
setting G,(h,x) = 1), this reverts to a form in which
nODE:s are typically studied (Chen et al., 2018): th =
Fy(h,z(t)).> We include the leak term —h in our formu-
lation because it allows us to initialize the weights of the
(gated or non-gated) nODE in either the stable or critical
regime. Without the leak term, we show that the nODE is al-
ways dynamically unstable for any initialization, except for
the zero initialization, and we expect this to hinder training
(Abarbanel et al. (2008); see Appendix A for details).

When we set L, = L, = 1, Equation (1) reduces to
a “minimal gated recurrent unit” (mGRU?; Collins et al.
(2017); Ravanelli et al. (2018)), which is a simplified ver-
sion of the popularly used gated recurrent unit (GRU; Cho
et al. (2014)). When in addition the gating interaction is
removed (G, (h, ) = 1), Equation (1) reduces to a widely
studied class of models known as “Elman” (or “vanilla”)
RNNs.# Can & Krishnamurthy (2021) and Krishnamurthy
et al. (2022) show that the mGRU exhibits a manifold of
marginally-stable fixed points in the limit of step-like gating
function o for a wide range of parameters. This property
is likely involved in shaping the inductive bias of gated
networks, since it is useful in tasks requiring memory of
continuous quantities (see Appendix B for an analysis of
Jacobian spectrums of networks assuming different archi-
tectures, gated or non-gated).

3. Related Work

Our work is closely related to neural controlled differential
equations (nCDEs), developed in Kidger et al. (2020), which
prescribes a principled way to include inputs with nODE:s:
Th = Fg(h) dflgt). An important distinction between nODE
and nCDE is that the nODE takes in input @(t), whereas
nCDE uses the time-derivative of the input de /dt. Because
the choice of the interpolation scheme used in nCDE also
determines how the derivative is estimated, which scheme
to use becomes critical (Morrill et al., 2021). nODE avoids
the complication of calculating the derivative, though it may
not be as general as the nCDE (Kidger et al., 2020).

’In Chen et al. (2018), 7 = 1 and x(t) = .

?Also known as UGRNN or Li-GRU.

‘rh = —h + W¢n(h) + Uz + b)) is also popular in
neuroscience models, where h can be interpreted as the internal
voltage of a neuron, and ¢, (h) as the output firing rate of the neu-
ron; W;?’ij is the synaptic strength between neuron j and neuron
¢ (Sompolinsky et al., 1988).
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The primary motivation for introducing gating is its robust
ability to generate long timescales and to address the explod-
ing and vanishing gradients problem (EVGP) (Hochreiter
& Schmidhuber, 1997; Pascanu et al., 2013; Cho et al.,
2014). Our work can be viewed as distilling the key el-
ements of gating from GRUs and LSTMs responsible for
long timescales and stable gradients, and incorporating them
in nCDE-inspired models. Future work could incorporate
these gating interactions more directly in nCDEs, with their
principled dealing of inputs and interpolation schemes.

Previous work explored improving the performance of
nODEs by augmenting extra dimensions to the phase
space (Dupont et al., 2019) or by regularizing nODE:s to en-
courage simpler dynamics (Kelly et al., 2020; Ghosh et al.,
2020; Finlay et al., 2020; Pal et al., 2021). Gating can be
applied in addition to these improvements, which we expect
will make gnODE more powerful. We also expect to see
that gating will be beneficial for related model classes, such
as neural stochastic differential equations (nSDEs) (Li et al.,
2020).

Notable recent works have used RNNs based on discretized
ODEs to deal with the EVGP, and achieve near state-of-
the-art performance on various tasks. An RNN based on
a system of coupled non-linear oscillators (coRNN) was
introduced in Rusch & Mishra (2020), and this was extended
to a Hamiltonian system with multiple (learned) time-scales
in Rusch & Mishra (2021). In particular, the presence of the
learned timescales was important for solving tasks with long
timescales (Rusch & Mishra, 2021). In Rusch et al. (2021),
the authors introduced an RNN based on gated ODEs — the
long expressive memory (LEM) — that makes the timescales
adaptive and effectively deals with the EVGP.

LEM in Rusch et al. (2021) is in fact a special case of mGRU
(i.e., Ly, = L, = 1in Equation (1)) where the second half of
the columns of W is constrained to be zero and W) is con-
strained to an anti-diagonal block matrix. Moreover, based
on our studies of the effects of gating, we suspect that the
strength of the LEM in tasks involving long memory might
partially stem from gating interactions (see Appendix B for
discussion). Given the strong inductive bias conferred by
gating on tasks requiring long memory, our work can also
be considered as extending the ODEs considered in Rusch
et al. (2021) to incorporate more flexible flow fields as in
nODEs and nCDEs. We include LEM in our experiments on
real-world datasets for comparison (see Sections 6.3-6.5).

Another line of work utilizes discretized ODEs in which all
or part of the dynamics evolves in a linear manner designed
to maximize memory of the input, and this linearly evolving
memory component interacts in a pointwise nonlinear way
with other parts of the system (Gu et al., 2022; Voelker
et al., 2019). This decomposition of the dynamics into
interacting linear and nonlinear components where the linear

component is designed to optimize memory capacity also
solves the EVGP. Moreover, the different layers in such
architectures benefit from having different timescales, which
are potentially learned. It would be interesting to see how
this linear-nonlinear decomposition interacts with adaptive
timescales from gating interaction, and whether this can lead
to architectures that capture richer, long-term dependencies
with fewer parameters.

Finally, in addition to addressing the EVGP, we show in
this work that gating introduces a powerful inductive bias
for integrator-like behavior (see Section 6.1). It achieves
this by forming a continuous manifold of marginally-stable
fixed points, commonly referred to as continuous attractors
(defined in Appendix C; for a review, see Chaudhuri & Fiete
(2016)). Our findings are closely related to previous work
which found that gated RNNs tend to utilize approximately
continuous attractors to perform low-dimensional synthetic
classification tasks, and natural language (e.g., sentiment)
classification (Aitken et al., 2021; Maheswaranathan et al.,
2019). Our work suggests that the phase-space structure of
the solution found by gradient descent is not only influenced
by the task, but also by inductive bias introduced by gating.

4. Critical Initialization for Neural ODEs

We propose a novel initialization scheme for nODEs in
this section, with derivations in Appendix A. Let W}fh be
initialized as

*2
Wilt ~ N (o i ) . )

When ¢, = ReLU, in the wide-network limit where N,, —
oo for all ¢5,, the nODE sits at the edge of chaos for the
choice o, = V21~1/L _this is the critical initialization. If
the input layer is also sent through the nonlinear activation
(i.e., WPlh — WP¢,(h) in Equation (2)) as in Schoenholz
et al. (2017); Doshi et al. (2021), the critical initialization
changes to the familiar ¢}, = V/2, which is equivalent to
Kaiming initialization (He et al., 2015).

5. Expressivity of a Neural Network

In order to compare architectures, it is useful to have a prin-
cipled measure of expressivity in the dynamical setting. The
metric we use is inspired by the Gardner capacity (Gardner,
1988; Engel & Van den Broeck, 2001), which measures the
ability of an architecture to interpolate a random dataset, i.e.,
to fit noise. The Gardner capacity is also closely linked to
the VC dimension (Abbaras et al., 2020; Engel & Van den
Broeck, 2001), and was extended to temporal sequences in
Bauer & Krey (1991); Taylor (1991); Bressloff & Taylor
(1992).

We now introduce the relevant concepts using a discrete-
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time RNN of the form h,; = Fy(h;), assuming for sim-
plicity that there is no input . The dataset we want to
fit is a random time series & = {&o,&1,&2, .., &1}, As-
suming &; are samples from some N-dimensional random
process, a perfect fit will require finding parameters 6
which satisfy the set of T equations &1 = Fp(&;) where
t=0,1,2,...,T — 1. The space of solutions 6 at a given
T will occupy a region of parameter space known as the
Gardner volume, which is a function of T'. The capacity is
determined by the critical sequence length T" at which the
Gardner volume vanishes.

The longer the sequence a network can “memorize”, the
higher will its capacity/expressivity be. In typical systems,
T scales with phase-space dimension N (see Appendix D
for a worked-out canonical example). We suggest that an
advantage of using an FNN Fj is that the capacity instead
scales with total number number of parameters, which need
not scale with phase-space dimension.

Based on this notion of expressivity, in Section 6.2, we train
nODEs with a variety of architectures Fy on samples of
an Ornstein-Uhlenbeck process. In our experiments, we
measure instead the mean squared error between trajectories
MSE(hy, &;).

The measure of expressivity we use here is motivated by
our primary interest in modeling complex dynamical traces.
A related approach taken recently can be found in Collins
et al. (2017), which measures capacity of RNNs by studying
their ability to map random static inputs to random static
outputs at some later time. Its resemblance to a simple copy
task (e.g., Graves et al. (2014)) suggests that the capacity
measure of Collins et al. (2017) can be considered a probe
of memory. By dealing with dynamical trajectories, our
approach seems more appropriate for quantifying expressiv-
ity of RNNs as their ability to model complex dynamical
trajectories.

6. Experimental Results

In our experiments, we use libraries in Julia’s (Bezanson
et al., 2017) SciML ecosystem, DifferentialEquations.jl and
DiffEqFlux.jl (Rackauckas & Nie, 2017; Rackauckas et al.,
2020), to implement all network models presented in the
experiment, and choose to discretize dynamics of these net-
works using the canonical forward Euler method (except for
the LEM, which is discretized with the forward-backward
Euler method, following Rusch et al. (2021)). We use the
“discretize-then-optimize” approach to obtain the gradient
of the loss with respect to the network parameters (for more
discussion on different choices of discretization and adjoint,
see Appendix E.3 and E.4). Whenever there are missing val-
ues in a dataset, we used natural cubic splines to interpolate
the missing values, following Kidger et al. (2020).

6.1. N-Bit Flip-Flop Task

We examine how a vanilla RNN, mGRU, GRU, nODE and
gnODE implement the “n-bit flip-flop task™ (Sussillo &
Barak, 2013). In the original n-bit flip-flop task (Sussillo
& Barak, 2013), the network is given a continuous stream
of inputs coming from n independent channels. In each
channel, a transient pulse of value either +1 or —1 is emitted
at random times. The network should continuously generate
n-dimensional outputs, where each dimension of the outputs
should maintain the value of the most recent pulse in each
channel (see Appendix F.1 for an illustration). Because each
output channel of the network should take one of two values,
the network should generate one of 2™ outputs at each time
point.

Consistent with previous findings (Sussillo & Barak, 2013),
when we trained our networks on the 3-bit flip-flop task,
we find that all networks we consider can reach validation
mean squared error (MSE) < 0.01 on the task, for a range
of different phase space dimensions N, with appropriate
hyperparameters. We also find that all networks use similar
strategies to solve the task, with each of the 23 stable fixed
points representing each output that the networks can take
(see Appendix F.1 for details).

Variable-Amplitude Flip-Flop Task We then modified
the task so that each pulse in each channel takes a real value
sampled uniformly from —1 to 1 (Figure 1A). We trained
our networks from one of 27 different combinations of hy-
perparameters (i.e., learning rates, rates of weight decay and
batch sizes; see Appendix F.2 for details). When we set
the phase-space dimension of our networks to be N = 6,
we find that gnODE successfully reached validation MSE
< 0.01 with appropriate hyperparameters, while for other
networks, all runs reached MSEs > 0.025 (Figure 1B). We
verified that the validation MSEs of our networks converged
after training (Figure 1C). This suggests that only gnODE
is able to solve the task accurately when the phase-space
dimension is low (i.e., N = 6).

In contrast, when the phase-space dimension is high (/N =
100), we find that the gnODE and GRU reached validation
MSE < 0.01 and the vanilla RNN and mGRU reached
validation MSE < 0.016 with appropriate hyperparameters
(Figure 1D). Thus, vanilla RNN, mGRU, GRU and gnODE
can solve the task in high phase-space dimensions.

Structure of Solutions: Fixed-Points and Marginal Sta-
bility Following Sussillo & Barak (2013), to examine how
these networks solve the task, we use Newton’s method
initialized from points in the trajectories taken by these
networks, and find solutions that reach ||h|| < 0.01 (see Ap-
pendix F.4 for details on the fixed-point finding algorithm).
For each 100-dimensional network that reached the mini-
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Figure 1. Networks assuming N = 6 (A-C) and N = 100 (D-E)
performing the variable-amplitude 3-bit flip-flop task. (A) An
example validation trial with inputs in each channel shown in
black, and the trained gnODE traces maintaining the previous
pulse value shown in colors. (B) For each network, we tried 27
different hyperparameter configurations. Each circle represents the
minimum validation MSE achieved during 600 epochs of training.
Circles with black edges represent the minimum out of the 27
configurations. (C) Validation loss traces as a function of epoch is
shown for the circles with black edges. Color codes are the same
as in (B). (D) Same as (B). (E) Each circle is the spectral abscissa
of the Jacobian evaluated at a detected fixed point. Bold horizontal
lines indicate medians.

mum validation MSE among the 27 different hyperparame-
ter configurations, we ran 10, 000 starting points to detect
fixed points, and computed the maximum real component of
the eigenvalues (i.e., spectral abscissa) of the numerical Ja-
cobian obtained from each of the detected fixed points. The
distribution of these spectral abscissas shows that the medi-
ans and the quartiles of the gated networks (mGRU, GRU,
gnODE) are closer to zero, compared to those of the vanilla
networks (vanilla RNN, nODE) (Figure 1E). This suggests
that we detected more (effectively) marginally-stable fixed
points for the gated networks compared to the vanilla net-
works. For the vanilla networks, we see that many of the
detected fixed points are stable (i.e., spectral abscissas are
much less than zero), in contrast to the gated networks. This
suggests that a vanilla RNN may be reaching its solution
using a combination of marginally-stable and stable fixed

points, while the gated networks mostly rely on marginally-
stable fixed points to reach their solutions. We obtained
similar results for networks assuming N = 6, although
for these networks, only gnODE reached validation MSE
< 0.01 (see Appendix E.5 for details).

Interpretability of gnODEs While analyses on the 100-
dimensional vanilla RNN, mGRU, GRU and gnODE trained
on the task can give useful insights, we found that when
we apply PCA on the trajectories taken by these networks,
we needed more than 10 principal components to reach
more than 0.9 variance explained, suggesting that the
high-dimensional networks do not necessarily favor low-
dimensional solutions in this setup (see Appendix F.3).
However, in principle, a dynamical system as simple as
the one taking up 3 dimensions, which has a cube filled
with marginally-stable fixed points, can solve this task. In-
deed, we find that when we set the phase-space dimension
of gnODE to be N = 3, it can still achieve validation MSE
< 0.01 with appropriate hyperparameters. We were not
able to achieve this low MSE for other networks, suggesting
gnODEs might be appropriate for studying the emergence
of interpretable solutions to the variable-amplitude flip-flop
task.

For simplicity, we turned to training a 2-dimensional gnODE
on the 2-bit flip-flop task and its variants and plot the 2
dimensional flow field such that the two axes describing
this space are projected onto the axes that correspond to the
outputs, Channel 1 and Channel 2. For the fixed-amplitude
task (where the pulse values can either be +1 or —1), we find
4 stable fixed points, and find that each input perturbation
moves the gnODE state from exactly one stable fixed point
to another (Figure 2A). We then trained a gnODE on a
variable-amplitude 2-bit flip-flop task where the pulses can
take values from —1 to 1. When we plot the flow field in
the output space, we see that the velocity of the flows are
close to zero, and this plane of fixed points roughly form a
square between —1 and 1. Input perturbations try to move
the gnODE state within the square, so that gnODE can hold
onto the memory of the inputs (Figure 2B). In summary,
the gnODE learns a continuous attractor in the shape of a
square, and is solving the variable-amplitude flip-flop task
in an intuitively appealing way, by simply integrating the
1mnput.

The plane of fixed points show up not only for this particular
task but also for other tasks. Instead of varying the values
of the pulses from —1 to 1, we varied the values of the
pulses in Channel 1 from —2 to 2 and find a rectangular
attractor (Figure 2C). We also tried varying the statistics of
the pulses so that pulses in the two channels are no longer
independent, but appear at the same time, and the value
taken by the pulse in Channel 1, c;, and the value taken
by the pulse in Channel 2, co, satisfy 1 < \/c? + ¢35 < 2.
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Figure 2. Flow fields of gnODE with N = 2 performing four
different versions of the 2-bit flip-flop task. The input pulses
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We see a disk attractor with radius roughly of 2 in this
case. We do not see a hole between radius 0 and 1 because
crossing this region may be the fastest way from one state to
another, and we did not explicitly penalize the network for
crossing this region (Figure 2D). Consistent with the flow
field, we find that, even though the gnODE has not seen
any inputs with pulse values satisfying 0 < \/c% + 3 < 1
during training, when it is given inputs with pulse values
satisfying 0.5 < \/c? + ¢3 < 1, it generalizes well (MSE
= 0.005; see Appendix F.6 for details). However, when it
is given inputs with pulse values that are small (i.e., 0 <
\/ €3 + 2 < 0.5), it does tend to mistake them as having no
input at all, resulting in worse performance (MSE = 0.028).
When the gnODE is given inputs with pulse values 2 <
/2 + 2 < 4, it does not generalize (MSE = 0.490).

We do not plot the flow fields for other networks assuming
N = 2, as all of the 27 runs with different hyperparameter
configurations reached validation MSEs > 0.05 for vanilla
RNN, mGRU and GRU, and validation MSEs > 0.02 for
nODE (see Appendix F.6 for details).

These results together suggest that gnODEs might be flex-
ible enough to learn more general manifold geometries,
provided they are trained on an appropriate synthetic task.
Furthermore, the geometry of the low-dimensional represen-
tations found by gnODEs can directly inform their general-

ization capacities, thanks to their enhanced interpretability
(see Figure 9 in Appendix F.6 for flow fields of gnODE
trained on more variants of the 2-bit flip-flop task).

6.2. Measuring Practical Expressivity of Networks

We introduce a task to measure the practical expressivity of
aneural network. The task that the network has to perform is
to perfectly fit a finite number of samples from an Ornstein-
Uhlenbeck (OU) process,

Tovdz = Aoy zdt + xdt + ocoydw, (6)

where w is a Wiener process. As long as 7oy is sufficiently
smaller than S/d where S is the total length of the trajectory
and d is the distance between consecutive samples, we have
samples that are reasonably uncorrelated. In our analysis,
we set dim(z) = 30, 7oy = 1s, Aov = -1, z(t) = 1,
and ooy = 1, and sample at every 1s of this trajectory for
100s (therefore having a total of 100 samples). We train our
networks on a single trajectory of these 100 samples. For
the vanilla RNN, mGRU and GRU, we systematically vary
the phase-space dimension /N and 7 of the model. For the
nODE and gnODE, along with N and 7, we also vary the
number of hidden layers in Fj and the number of units /V,
in each hidden layer of Fj.

We generally see that, for all networks, when the model
T is closer to 7oy, we achieve lower training MSEs, con-
firming our intuition that networks perform best when their
timescales match correlation time of the data (Figure 3A-B).
We also confirmed that generally when we increase the num-
ber of units N, in each hidden layer, the networks become
more expressive. Figure 3C shows an example of this for
gnODEs assuming 7oy = 7 = 1s, and 1 hidden layer in Fjy
(see Appendix G for results with nODEs and for different
numbers of layers). The other side of this same coin is that
hidden layers can act as a bottleneck for expressivity. We
can see this in Figure 3C, where for large phase-space di-
mension, a small hidden layer can hurt expressivity. We also
see that for various regimes, gnODE can be more expressive
than other networks especially when [V is low (Figure 3E-F;
see Appendix G for analyses not highlighted in the main
text).

By changing the model 7 on a given dataset, we are effec-
tively changing the difficulty of the task that the networks
have to solve. Transients in the network will be relevant
on timescales that scale as ~ 7; therefore, for very large 7,
the velocity is suppressed and h evolves very slowly. This
places a greater burden on Fj to send small changes in the
phase space into effectively orthogonal vectors in the OU
time series. Therefore, we suspected that in the transient
regime, the complexity of Fy becomes more important for
fitting noise. Confirming our intuition, we see that as 7
increases, the performance gap between networks that have
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Figure 3. Practical expressivities of vanilla RNN, mGRU, GRU
and gnODE, and their dependence on network timescale. (B-
F) show means and standard deviations across 5 runs. (A) gn-
ODE with 1 hidden layer (N = N; = 316) assuming 7 €
{1s, 10s, 30s, 100s} fitting samples from the OU trajectory. (B)
Training MSEs of gnODE in (A). (C) Training MSEs of gnODE
with 1 hidden layer, assuming 7 = 1s. (D) N = 316 across all
networks, N1 = 1000 for nODE and gnODE. (E) 7 = 1s across
all networks, N; = 1000 for nODE and gnODE. (F) 7 = 30s
across all networks, N1 = 1000 for nODE and gnODE.

more complex Fjy (i.e., nODEs and gnODEs) and networks
with simpler Fy (i.e., RNNs, mGRUs and GRUs) becomes
larger (Figure 3D-F).

6.3. Latin Alphabet Character Trajectory Classification

In this task, networks of different architectures were trained
to classify 20 different Latin alphabet characters from
irregularly-sampled time series consisting of the « and y
positions of the pen tip and the force on the tip. This dataset
(“CharacterTrajectories™) is originally from the UEA time
series classification archive (Bagnall et al., 2018), and we
used the preprocessed data obtained from the Neural CDE
repository® (see Appendix H.2 and Kidger et al. (2020) for

Shttps://github.com/patrick-kidger/
NeuralCDE

details). We trained each network by performing a grid
search over the hyperparameter space to find the set of
hyperparameters that minimizes the validation loss (see
Appendix H.2 for details). We found that gating nODE
increases performance of nODE significantly. We show the
results for this relatively small dataset in Appendix H.2. See
Appendix H.2 also for discussion comparing our results to
those in Kidger et al. (2020).

6.4. Walker2D Kinematic Simulation Prediction

The networks were given the task of predicting the dynami-
cal evolution of the trajectories generated by the MuJoCo
physics engine kinematic simulations (Todorov et al., 2012).
The preprocessed data for this task were obtained from the
ODE-LSTM repository,® (see Appendix H.3 and Lechner
& Hasani (2020) for details). While Lechner & Hasani
(2020); Xia et al. (2021) did not choose to interpolate miss-
ing data with natural cubic splines, doing so helps with
performances of the networks as we show in Table 1A —
we generally see MSEs that are lower than those reported
in Lechner & Hasani (2020); Xia et al. (2021) (the lowest
reported MSE on this task is 0.883 + 0.014, with an ODE-
LSTM). Table 1A shows the test MSE of each network for
N = {32,100, 316} on the prediction task, with the hyper-
parameters that achieved the lowest MSE on the validation
dataset (see Appendix H.3 for details). While performance
on the task increases as IV increases for other architectures,
including nODE, we see that gnODE with low phase-space
dimensions (N = 32) can already capture the rich kine-
matic dynamics well. This suggests that gnODE may be a
good option to consider when we want to capture dynamics
in low phase-space dimensions and still retain expressivity
that allows the network to perform well.

6.5. Speech Commands Classification

We trained the networks on the fairly complicated task of
classifying ten spoken words, such as “Stop” and “Go”,
based on 1-second audio recordings of these words. The
dataset is originally from Warden (2018) and preprocessed
using the pipeline in the Neural CDE repository (see Ap-
pendix H.4 and Kidger et al. (2020) for details). Ta-
ble 1B shows the test accuracy of each network for N =
{32,100, 316} on the classification task, with the hyperpa-
rameters that achieved the highest accuracy on the validation
dataset (see Appendix H.4 for details). We observe that gn-
ODE generally performs better or competitively against
other architectures across different Ns.

Notice that nODE performance is around chance level for
this task when the model 7 is set to be small (7 = 0.006s).
Consistent with results in Section 6.2, we find that chang-

*https://github.com/mlech261/ode-1stms
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Table 1. Networks with N = {32,100, 316} performing (A) prediction on Walker2D kinematic simulations and (B) classification of

speech commands. The errorbars are mean = std across 5 runs.

(A) Walker2D Test MSE (B) SpeechCommands Test Accuracy (7 = 0.006s)

Model N =32 N =100 N =316 N =32 N =100 N =316
mGRU 1.676 +£0.052 1.138 £0.030 1.074+0.070 0.7724+0.009 0.809+0.018 0.830 4+ 0.011

GRU 1.363+0.028 0.850+£0.032 0.7724+0.028 0.786 = 0.004 0.819+0.004 0.830 &= 0.003
LSTM 1.295+0.021 0.865+0.009 0.919+0.006 0.7134+0.004 0.768£0.012 0.807 &+ 0.003

LEM  1.149+£0.016 0.709£0.009 0.699 £ 0.010 0.780+0.013 0.794 £0.007 0.834 +0.005
nODE  0.747 £0.043 0.707 £0.023 0.611 £0.015 0.112+0.008 0.140£0.012  0.103 £ 0.004
gnODE  0.552 + 0.019 0.588 + 0.003 0.604 + 0.007 0.781 +0.008 0.823 £ 0.006  0.844 + 0.002

7. Discussion

Table 2. Networks performing the classification of speech com-
mands with different model 7s.

Model 7 =0.062s 7 =0.621s
mGRU  0.796 +0.002 0.733 + 0.005
GRU  0.809 +0.006 0.743 + 0.008
LEM  0.7854+0.005 0.713 + 0.003
nODE  0.246 + 0.050 0.725 =+ 0.009
gnODE  0.790 + 0.018  0.762 + 0.005

Table 3. Networks performing the classification of speech com-
mands with different initialization schemes.

Model

Test Accuracy

nODE (critically initialized) 0.140 + 0.012
nODE (not critically initialized)  0.110 +0.010
gnODE (critically initialized) 0.815 £ 0.004
gnODE (not critically initialized) 0.795 £ 0.005

ing 7 can significantly influence the results of training. In
particular, while gated architectures (mGRU, GRU, LEM,
gnODE) appear more robust to changes in 7, increasing 7
notably improves nODE performance (Table 2). We also ob-
serve that the increased complexity in Fy of nODE/gnODE
becomes more useful as 7 is increased, consistent with Sec-
tion 6.2.

We additionally show some support that the critical initial-
ization for nODEs determined in Section 4 and Appendix A,
when used together with Fy(h, x) that has tanh as the final
nonlinearity, can enhance performance of a nODE and gn-
ODE (Table 3). In Table 3, the better performing one out
of the Glorot normal or Kaiming normal initialization was
used for “not critically initialized”, and the initialization
scheme in Section 4 was used for “critically initialized”.
Having tanh as the final nonlinearity is important, as this
gives the system a chaotic regime, which does not appear
to be the case for Fy(h, x) with only ReLU activations (see
Appendix A for details). For results with the CharacterTra-
jectories and Walker2D datasets, see Appendix H.5.

We introduced gated neural ordinary differential equations
(gnODEs), a novel nODE architecture which utilizes a gat-
ing interaction to dynamically and adaptively modulate the
timescale. A synthetic n-bit flip-flop task (cf. Sussillo &
Barak (2013)) was used to demonstrate the inductive bias of
the gnODE:s to learn continuous attractors. We also showed
that, compared to other architectures, the gnODE can learn
this task with a lower phase-space dimension. This allows
us to inspect the nature of the solution learned in an intuitive
and interpretable manner. We also formulated a principled
measure of expressivity for RNNs/nODEs based on their
ability to fit random trajectories. We used this measure to
investigate how the phase-space dimension and the com-
plexity of the velocity field interact to shape the overall
expressivity. We saw that when the phase-space dimension
is low, the gnODE can be more expressive compared to the
other architectures tested. Lastly, even though gating results
in more parameters and slower per-iteration update of the
network state, we empirically showed that a gated network
(whether it be a gated RNN or a gated nODE) can signifi-
cantly improve performance compared to a vanilla network,
both on carefully designed synthetic tasks and real-world
tasks.

While we do not claim that each unit in a gnODE can cor-
respond to a biological neuron, there is evidence that bio-
logical neural networks utilize several of the mechanisms
that are found in the gnODE. First, gating appears to be a
generally observed phenomenon in biological neural net-
works. For example, a gnODE can, similar to an LEM, be
mapped onto a network of Hodgkin-Huxley neurons where
gating corresponds to voltage-gated ion channels (Rusch
et al., 2021). In another example, negative-derivative feed-
back in an E-I balanced network can be viewed as a form of
gating which dynamically changes the time constant (Lim
& Goldman, 2013). Furthermore, it is known that a gating
mechanism allows a network to robustly form continuous
attractors (Can & Krishnamurthy, 2021), which is thought
to be prevalent in biological neural networks (Khona & Fi-
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ete, 2022). Second, recent experiments show that neural
population activities across a large number of brain regions
and species can be described by a low-dimensional dynam-
ical system (Churchland et al., 2012; Harvey et al., 2012;
Mante et al., 2013; Kaufman et al., 2014; Nieh et al., 2021).
However, our work shows that high-dimensional networks
do not necessarily favor a low-dimensional solution to a
low-dimensional task.

Among the networks that we considered in this work, gn-
ODE is the only network that both uses a gating mechanism
and is capable of learning complex dynamics even in low
phase-space dimensions, consistent with the previous lit-
erature on how biological neural networks work. These
features make gnODE a powerful model for probing the
connection between computation and dynamics in artificial
and biological neural networks.
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A. Critical Initialization for Neural ODEs
In this Appendix, we will determine the critical initialization for neural ODEs. First, we define the model as

h=—h+ Fy(h,x) @)

where the function Fy is a multi-layer perceptron (MLP) network defined according to the equations

Fy(h,z) ¥ a® ®)

at =Wh(a") + b, for (=1,..L—1, )

al =Wh+Ux +b°, (10)

Wt e RNevixNe gt c RNew1 - gf ¢ RN heRY, xcRP. (11)

This is equivalent to the feedforward neural networks (FNN) defined in the main text under the identification s* = a’ and

s = ¢(a’) for¢ = 1,..., L — 1. We have also separated W from U, because they should be scaled differently.

Jacobian A useful quantity in studying the dynamics and assessing stability is the instantaneous Jacobian D. This will be
related to the input-output Jacobian 7 of the MLP, where

7y = T = (W W @ LW @) (12)

]

Using this, the instantaneous Jacobian of the nODE is

Dy; = —6i; + T (13)

A.1. Mean-Field Theory
Initialization and Mean-Field Scaling We consider two choices of scaling which lead to a mean-field theory, each
informed by popular initialization schemes in machine learning. The first is the Kaiming scaling of the weights:

0.2

WfJ ~N (O, N’f’) ,  Kaiming scaling (14)
¢

with Ng = Ny = N being the dimension of the phase space in which h lives. We also naturally would like U;; ~
N (0,02 /D), in order for the input to not be unnecessarily suppressed by Ny. This is only a problem if N and D are
significantly mismatched.

Alternatively, we can take inspiration from the popular Glorot initialization and use

2

o
,——=—— ], Glorot scalin (15)
N¢+ Nyega ) &

Wi~ N (0
The mean-field theory then requires taking Ny — oo (including Np) while keeping their ratios fixed.
Defining the aspect ratio

ayy1 = Nop1 /Ny, (16)

we will develop the results below assuming the following initialization scheme
o2
W) ~ N <0, ‘) . ol =02 /(14 ). (17)
Ny

Keeping oy makes this equivalent to Glorot scaling, whereas setting all oy = 0 recovers Kaiming scaling.

By keeping o, unspecified, we have actually introduced more flexibility to what is typically understood by these initialization
schemes. In fact, what is usually called Kaiming/Glorot initialization has o, = V2. We will keep to this convention, and
refer to Kaiming/Glorot scaling when o, is not explicitly fixed.
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Correlation Functions in MFT The dynamical mean-field theory (DMFT) for the nODE follows the logic presented in
many previous works, see e.g., Crisanti & Sompolinsky (2018); Helias & Dahmen (2020). Proceeding via the Martin-Siggia-
Rose statistical field theory, in the saddle-point approximation, valid for large IV, h is described by a Gaussian process with
zero mean and covariance determined by the self-consistent DMFT equation

(0 + 1)(0p + 1)Ch(t,t") = Cr(t, 1), (18)
where we have chosen the convention to represent correlation functions

Cult,t) = (5 S hsOm( ) Crlt.t) = (3 FOF(E ), 19)

and the averages are taken over the random parameters.

In order to find a self-consistent solution, we need to express C'r as a function of C},. This can be accomplished by appealing
to well-known results in the literature on the neural network Gaussian process (NNGP) kernel for the MLP defined by Fjy
(see e.g., Williams (1996); Lee et al. (2017)). To get the desired correlation function, or kernel, we define a hidden layer
kernel function

KAt 1) = < L i alf(t>a€(t')> (20)
9 N/ 7 (3 ?

T =1

which satisfies the recurrence relation
2

1 n_ Oy / 2 / 2
K (t,t)_ 1+alch(t7t)+Jucm(t3t)+0b7 (2D
2
KAy = —Tw o (R4t 2 2
(7 ) 1+04£+10¢( (ﬂ ))+Jba (22)
2
41 _ Tw ¢ 2
KA 0) = 17— Cy(K(10) + 07, 23)
Cr(t,t") = KE(t,t). (24)
where
. KUt t) Kt
Ké(t>t/) = ( Ké((t’ t)) K@((t/ t/)) ) . (25)
Here, we have defined the correlators
~ d2X 1, Tg—1
Cy(K) = /7Ae*5 K> (g T 26
» (K) ordet & P(w1)Y(2) (26)
Cy(K) = / ot g (2)? 27
v 2K '

Asympotic Stability Let us consider the divergence of trajectories. The usual trick is to take two replicas with different
initial conditions but identical weights (Derrida & Pomeau, 1986; Schuecker et al., 2018). This will change the DMFT in
the following way

(0 + 1)(0p + 1)CRE(t, 1)) = CE (1, 1), (28)
with a,b = 1, 2. Here, the RHS is obtained from the recurrence relations
Kbt t) = iC;;b(t, ')+ o7, (29)
1+ a7
Kbt ¢) = 20— fiﬂ Cy [Kfv“b(t,t’)} + 03, (30)
Ce(t,t') = KLt (e, t). (31)
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We assume a steady state which is time-translation invariance, so the correlation functions depend only on the difference
7 = |t — t|. Then, expanding around the replica symmetric solution C}2(7) = Cj,(7) + €Q(7)e*T will give the eigenvalue
equation for @

(A+1)?-82) Q= x(1Q, (32)
where we have used
oCr . 0'721] ~L—1 0_721} -1 0121)
aC2(r) ~ 1+4ag Cor (K gy Cor B X 2 (33)
= xr(7). (34)

Here, we have defined the susceptibility x,(¢,t") which satisfies its own recurrence relation (suppressing the time arguments)

2 2

g, ~ g,
- _w o, (Kl) 7 = w 35
Xet1 T ag, Xe; X1 T+ o (35

The susceptibility at unequal times is typically not studied in the FNN setting (Schoenholz et al., 2017; Doshi et al., 2021).
Usually, the equal-time susceptibility x(0) is sufficient, since it characterizes the behavior of gradients. The object which
appears here x (7) is tantamount to studying the overlaps of the gradient of the FNN output for two different inputs. However,
if we are instead interested in fixed points, we have quite simply

(A +1)* = x.(0). (36)

The susceptibility which appears here (0) is precisely the object typically studied for FNN. So, if we use the intuition from
feedforward networks and initialize at criticality, we will find a marginally stable fixed point in the nODE.

Fixed-Point Jacobian Radius Proceeding, we wish to determine the edge of stability for fixed-points. To do so, we must
first use the MFT to find fixed points according to the self-consistent equation

C, =Kt (37)
In the large [V limit, the spectral of the Jacobian D depends only on the distribution of h, and thus on C,. Furthermore,

since it is uniformly shifted by the identity, the spectral radius of 7, which we denote p(7), is enough to determine stability.
One can show that the squared spectral radius p(J) is given by

<1troj> (38)

— 2LH1+0¢4 <H Cy (K >=><L(0). (39)

{=1

p(J)?

Since the correlation functions that appear depend only on the distribution of h, and thus only on C},, once the MFT
fixed-point equation is solved, the solution can be plugged into this expression for the spectral radius to determine stability.

Note also that the squared spectral radius is equal to the static susceptibility defined above, as it must. A common set
up will have Ny = Ny = N, while all hidden layers have the same dimension Ny = ... = Ny_; = H. Then defining
a = (H/N,0) and 8 = (1, 0) for (Glorot, Kaiming), we get

2L

(o

In Figure 4 we compute the critical curve in the o, — 0}, plane along which p(J) = 1. We show how this curve changes
with increasing depth. For concreteness, we choose Kaiming scaling and ¢(z) = tanh(xz) activation.

With biases exactly zero, the zero fixed point typically determines the edge of chaos. The spectral radius for the zero FP is

s o0
=T+ p) 21 +a)?

(41)
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Figure 4. To obtain these curves, we used ¢(z) = tanh(z). This shows the critical curve separating stability from chaos as a function of
bias and weight variances. The different curves correspond to MLP functions of differing depth. We used Kaiming scaling such that
a = B = 0. For a fixed depth L, the region below the plotted curve is chaotic, whereas the region above the plotted curve is stable.

Explicit Solutions for ReLU Networks (¢ = ReLU) If the MLP utilizes only the ReLU activation, there does not appear
to be a chaotic phase. When tanh is applied as the final nonlinearity for Fy, the system has a chaotic regime. The suggested
initializations in Equations (56, 57) are valid for both Fy with and without the final nonlinearity tanh.

We will make use of the integral identities for one-point functions

2 ] > dh 2 1
:/Dx ([\/Rm) =K, C’¢/(K):/O me*ﬁ =5 (42)

and for two-point functions, setting x = (1, 2), and assuming a time-translation invariant kernel

. (K, K,
K_<KT K())’ K; < Ko (43)
we have
*° dxyd -
/ / — wwze‘%"”{ >, (44)
0 2w det
1 2 K 1
K (14 Ztan ! | ——— —\/K2 - K2 45
1 <+7ran ( Kg—Kz>>+27r 0~ 8&s 42
dz1d - 1 2 K,
C¢/ _ / T10T2 ef%xTK 1x’: 214 2 tan? (46)
0 2m det 4 & K§ — K2

(47)

Fixed-Points We begin by analyzing the time-independent fixed points.The fixed-point can be determined exactly using
the recurrence relations. Define the coefficients

b=o}p. (48)
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Then we can compute the kernel for the ReLU MLP via the recurrence relations

K' =2a,C), + JZC’@; (49)
K = aK'+b, ¢=1,2,..,.L—2 (50)
o2 1
Kf= 2 —K' 14 51
1+a?2 + oD
1 — a2
= alagf2 (2alCh + aﬁCx) + a1 1 2__ph+b. (52)
—az
The dynamical fixed-point of the nODE is determined by Cj, = K which implies
1 L—2 2 1 - a2L_2
Cp = W aray “0,Cy +a; 1_721) +b|. (53)
Therefore, a fixed point exists for
2a%ak? < 1. (54)

Note that since the LHS here is precisely equal to the squared spectral radius, if a fixed point exists, then it must also be
stable.

Criticality will correspond to the spectral radius of the input-output Jacobian being precisely equal to unity. The resulting
equation can be solved for ¢, and yields

o, =1+ a)l/L\/Qlfl/L(l + B)1=2/L_ Critical init. (55)

Specifying for the two popular initialization schemes discussed above gives

ol = V21-1/L Kaiming scaling (56)
o, =21732L (1 4 a)l/L ,  Glorot scaling (57)

Comparing these to the traditional choices for these initializations, we find that Kaiming initialization with ¢, = V2 will
place the network in the unstable regime. Conversely, Glorot initialization with o}, = /2 will initialize the network in the
stable regime.

A trivial corollary of our analysis thus far is that a randomly initialized nODE without a leak term is always unstable, since
the condition for stability in this setting is p(J) = 0, which implies a critical o, = 0.

B. Common Features of Gating Across Architectures

Following Krishnamurthy et al. (2022), we did an analysis on the empirical Jacobian spectrum of LEM (Rusch et al., 2021)
with gating and without gating, and compared them to those of mGRU (L;, = 1, L, = 1) and gnODE (L, =3,L, = 1)
(Figure 5). To generate the plots in Figure 5, we set ¢, = tanh, initialized Wi‘;— according to Equation (14) and similarly
initialized W0 .. with:

z,1]

g

2
W2, ~N <0, N) (58)

where 7 = 1s, and N = 1000. We discretized the network dynamics with the forward Euler method with At = 1s for
mGRU and gnODE, and discretized LEM with the forward-backward Euler method with At = 1s (following exactly
Equation (3) in Rusch et al. (2021)). To ensure that the dynamics reached steady-state, we ran the solvers up until 1000s,
and evaluated the eigenvalues of the numerical Jacobian of the approximate steady-state. We found that the spectrums of the
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Figure 5. All non-gating weights (W) set to Kaiming normal with overall scale o, = 1.5. All gating weights (W) set to Kaiming
normal with overall scale o, = 0 (i.e., no gating, top row) and o, = 5 (bottom row).

networks we get are roughly similar when we discretize the dynamics with the Tsitouras 5/4 Runge-Kutta method, except
for the spectrums of the LEM, which had shapes similar to those of the mGRU.

When the LEM does not have gating (Figure 5, top right), we see that, compared to a mGRU or a gnODE without gating
(Figure 5, top left and middle), the special anti-diagonal block structure of W lets the LEM stay close to criticality. This
may partially be due to the fact that the LEM without gates can be mapped to a Hamiltonian dynamical system. However,
when we add gating to LEM (as presented in Rusch et al. (2021); Figure 5, bottom right), it nullifies the effect from the
special anti-diagonal block structure, and we see a robust “pinching” of the Jacobian spectrum leading to eigenvalues
clustering near zero and thus long timescales/stable gradients, which is ubiquitous for the gated networks (gnODE, mGRU,
LEM,; Figure 5, bottom row). This pinching results in long-lived modes, contributing to all of these gated networks’ ability
to learn long time dependencies.

C. Definition of a Continuous Attractor

We use the terminology “continuous attractor” in the main text, which is very common in neuroscience, but possibly less
known in the broader dynamical systems and machine learning communities. In this Appendix, we give a precise definition
and attempt to establish a connection between continuous attractors and center manifold theory (Carr, 1981).

By a continuous attractor, we mean a connected manifold of fixed points. More precisely, a first order ODE & = f(z) for
x € R", is said to have a continuous attractor S if the following conditions hold:

1. S C R™is a d—dimensional manifold (usually with a boundary of dimension d — 1) embedded in the full phase space,
d<n.

2.Vzx e S, f(z) =0.

3. Defining the Jacobian D(x) = (0f/0z)(x), and the spectral abscissa (or largest real part of the spectrum) n(D f(z)),
then for z € S, the spectral abscissa n(D(z)) = 0.

Unlike limit cycles or chaotic attractors, the dynamics is stationary on the continuous attractor S, since by definition
2 = f(x) = 0 by Item 2. Another almost trivial consequence of the items above are that S is an invariant manifold of
the dynamics, since for any initial condition z(0) € S, z(t) € S for all ¢t > 0. Indeed, z(¢) = z(0)! Item 3 ensures that
perturbations off the manifold S will decay back toward the manifold, implying it is an attractive manifold.

We now want to argue that given Items 1 — 3 above, S is also a center manifold. Let us now consider the tangent space
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around a point zy € S. This will be spanned by the d zero mode eigenvectors t;? of the Jacobian:
Zpijt;? =0, k=1,...d (59)

In other words, we have that f(z + et¥) = 0 for k = 1, ..., d. Let us consider a decomposition of the displacements from x(:

T =x9+ Z ukt + Z ykn (60)

k=d+1

Here we use the fact that nonzero modes n* will be normal to the manifold. Now we have new global coordinates which
align with the tangent space (uy) and transverse space (yi). However, in these coordinates, the constraint for the attractor
manifold S becomes

fu,y(u)) = 0. (61)

We now seek to determine y(0) and ¢’ (0). By construction, y(0) = 0. Taking derivatives of the implicit equation for .S gives

afi(u, C Oy
ﬂ#?}j(?ﬁ):z i (9 /Ouy) ZD” <tk—|— > 3 Uk F):o. (62)

j d+1

Since Dt* = 0, this implies

n

Z ay’“’ ZDH n = (63)

d+1

Since Dn* # 0 by construction, we must have that d,,, yx» = 0, which is what we wanted to show. Therefore, the attractor
manifold S is an invariant manifold that is parameterized by a function y(u) which satisfies y(0) = Dy(0) = 0. According
to Carr (1981), this means S is also a center manifold.

D. Gardner Volume for Trajectory Fitting Capacity

In this section, we derive the capacity of a spherical perceptron to store a random time series by mapping the problem to
Gardner’s original calculation (Gardner, 1988). This result also appears in Bauer & Krey (1991); Taylor (1991); Bressloff &
Taylor (1992), which studied storage capacity for time-delay RNNs. Previous work has also studied storage capacity for
temporal sequences in RNNs with Hebb rule structured connectivity (Sompolinsky & Kanter, 1986; Nadal, 1988).

We start by setting up the problem in more generality. In the main text, we pursued a definition of expressivity that involved
fitting a random time series. The ability to fit such noise is intimately connected to storage capacity of a perceptron.

Consider a discrete-time nODE (or a generalized RNN)
hiy1 = Fy(hy), (64)
with which we want to fit a random time series

& ={%.&,8, .. &1} (65)

where &, are i.i.d. random variables. A perfect fit will require a set of parameters 6 that satisfy the set of 7" equations

§t+1 :F9<§t)7 t:O71a27“'7T_1 (66)
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We will now try to find the volume in parameter space which can satisfy this equation. A similar question was asked in
Brunel (2016), which was interested in the structure of solutions which store the optimal length sequence.

We allow for an error € in the fit, and we want to find all § which satisfy these constraints. There are different formulations
depending on the activation functions. In general, for smooth activation functions, we can define an indicator function

T-1
X(€) = [T © &1 — Fol&) + €) © (=Eri1 + Fo(&r) + ) - (67)
=0

If the weights are such that the trajectory of the nODE follows &; within some margin ¢, then y = 1; otherwise, x = 0. Itis
also necessary to insert some sort of regularizer, so that the volume in 6 space does not explode. This will have the effect of
replacing the measure df — djiy with a regularized measure that converges, and which we assume is normalized [ duy = 1.
With these ingredients, the volume in the space of parameters is given by

V= / dpio \(£). (68)

Specifying this setup to the spherical perceptron considered by Gardner, we use F'(§) = sign (N —1/2 ¢ ) , with parameters
J, and binary patterns £! € {—1,+1}. This is the set-up analyzed in Bauer & Krey (1991); Taylor (1991); Bressloff &
Taylor (1992), where it was also demonstrated that the calculation ends up being identical to the Gardner calculation. For
convenience, we show here how the temporal sequence storage problem can be mapped to the storage of fixed-point storage.

Due to the threshold activation, the indicator function can be written
T—1
x@=T[e| N2> e —e). (69)
t=0 i.j

The total volume will be given by

VZ%/HdHiX(E)a dp; = [[ drjo | Y J5 =N, Z:/Hd“’" (70)

Jlii Jlii

After expressing the Heaviside step function using its Fourier representation, the expression for the volume can be seen to
factorize into a product

V=[]V (71)
where the volume V; is calculated over all entries in a fixed row ¢ of the connectivity matrix J:

T-1
1 ) _
V= fdﬂ'/dm/ H dridiexp | iz | Ay — N 1/2 Z {f“Jijf; + € , (72)
’ t=0 jli#i

In order to calculate the disorder (pattern) average of log V;, it is necessary to introduce replicas and calculate (V;") and
subsequently take n — 0. The replicated volume is written

n
1
V= H 7 /du?dmfd/\f exp [ izd [ Ao — N7V/2 Z £f+1ij§; +e (73)
a=1""1 ilii
Averaging over random patterns will introduce into the integral the term proportional to
T-1
H H cos (N‘l/2 Zx?JZ) (74)

t=0 jj#i
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This is the point where we can make the mapping directly onto Gardner’s calculation. Notice that after disorder averaging,
the integrand factorizes into a product of terms at different times. This is identical to the factorization for different fixed-point
patterns in Gardner (1988). This demonstrates that the equivalence between the volumes for fixed-point storage and temporal
sequence storage is non-perturbative, and valid for any /N. Technically, Taylor (1991); Bressloff & Taylor (1992) demonstrate
the equivalence in the large N setting. Thus, the calculation proceeds as in the original work, but with the the total trajectory
length T' + 1 replacing the number of patterns p. This yields the critical capacity as a. = T'//N = 2. In other words, the
maximal length of a trajectory scales as T ~ 2N.

E. Experiment Details
E.1. Code

All of the networks presented in this work (vanilla RNN, mGRU, GRU, LSTM, LEM, nODE and gnODE) are implemented
with our Julia (Bezanson et al., 2017) package, RNNTools.jl. This package is based on Flux.jl, DifferentialEquations.jl and
DiffEqFlux.jl (Innes, 2018; Rackauckas & Nie, 2017; Rackauckas et al., 2020).

E.2. Gating Architecture

We let the gating function G, (h, z) to be o(W2h + U, x + b?) (i.e., L, = 1) for Sections 6.1-6.4 in the main text. We
default to this architecture unless otherwise noted. For Section 6.5, we assumed that L., = 2. Anecdotally, architectures
with L, = 2 appears to perform better than architectures with L, = 1.

E.3. Choice of Discretization

In our experiments, we choose to discretize our networks (vanilla RNN, mGRU, GRU, LSTM, nODE and gnODE) using
the canonical forward Euler method, and the LEM with the forward-backward Euler method in Rusch et al. (2021) (we
also present results for LEM discretized with the forward Euler method in the corresponding Sections in the Appendix).
While the optimal choice of discretization method may depend on the problem, we find that the simple Euler solver can
achieve strong performance while taking less training time than an adaptive solver in our experiments. Often, the number
of function evaluations (NFEs) in a nODE can become extremely large during training for adaptive schemes, and several
regularization methods have been introduced to reduce NFEs (Kelly et al., 2020; Ghosh et al., 2020; Finlay et al., 2020; Pal
et al., 2021). On the other hand, we can control the NFEs explicitly by changing the timestep At in a fixed-timestep solver,
such as the Euler method. While the Euler method does not have guarantees on the growth of error, it may in fact allow
representing more functions compared to adaptive methods that provide such guarantees, precisely because of the errors
from the discretization (Dupont et al., 2019). We do not lose the benefit of being able to train nODEs on irregularly-sampled
time series when we use the Euler solver. For the n-bit flip-flop task in Section 6.1, changing the Euler method (used for
presenting results in the main text) to the Tsitouras 5/4 Runge-Kutta method did not make a significant qualitative difference.
For fitting our networks to the OU trajectory in Section 6.2, having an explicit control over the NFEs is crucial for a fair
comparison, and the Euler solver was the natural choice. We also see that Euler discretization was sufficient to achieve good
performances on the tasks in Section 6.3 and Section 6.4, which involve irregularly-sampled trajectories. For Section 6.3,
it is interesting to see that our Euler-discretized mGRU and GRU show accuracies that are higher than the accuracies of
GRU-ODEs (De Brouwer et al., 2019; Jordan et al., 2021) (which use a modern adaptive solver) reported in Kidger et al.
(2020). This suggests that the Euler discretization (which does not necessarily assume 7 = A¢ = 1) can be a fast, practical
alternative to adaptive methods.

E.4. Choice of Adjoint

For all networks we consider, we backpropagate through the operations of the solver—that is, we use the “discretize-then-
optimize” approach, as is standard in training an RNN, instead of using the “optimize-then-discretize” approach used in
Chen et al. (2018) to train nODEs. A few studies show that the former produces more accurate gradients than the latter and
can yield better performances (Gholami et al., 2019; Onken & Ruthotto, 2020).
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F. N-Bit Flip-Flop Task

For all versions of the n-bit flip-flop task in this section, the total length of each trial was 1s, binned into 10ms bins. Thus
each trial had 100 time-bins. The width of each pulse was set to be 20ms. 600 trials were generated total, where 500 trials
were used for training and the remaining 100 trials were used for validation.

Networks considered in this section (vanilla RNN, mGRU, GRU, nODE and gnODE) were initialized with Glorot uniform
initialization (Glorot & Bengio, 2010) with zero bias. 7 = 0.01s in all of the networks. We used AdamW (Loshchilov &
Hutter, 2019) for training.

F.1. Fixed-Amplitude 3-Bit Flip-Flop Task

This is the version of the task that was originally introduced in Sussillo & Barak (2013). For this task, we determined the
total number of pulses (summed across n channels) on each trial by sampling a number &k from the Poisson distribution with
mean 12. We then randomly chose % indices from 1 to 100 without replacement. These k indices were the indices at which
the pulses occur. For each of the % indices, we randomly chose which one of the n channels the pulse will occur. Then for
the channel where the pulse appears, we chose either +1 or —1 randomly as the value to be taken by the pulse (Figure 6A).

We trained our networks on 500 trials of this task for 200 epochs. The initial states of the networks were not learned, and
were initialized with hg ~ N(0,X), where 3 = NLHI was the variance. For vanilla RNN, mGRU, GRU, we varied
the phase-space dimension N = {6, 12,18}, where for each N, we used the learning rate = 1072, rate of weight
decay )\, = 107! and the batch size B = 100. For nODE and gnODE, we similarly varied N = {6, 12, 18}, and used
n = 1073, w = 107! and B = 100. For nODE and gnODE, F had 3 hidden layers with 100 units each layer (i.e.,
L =4 and H = 100). We logged the validation MSE traces of mGRU, GRU and gnODE of N = 6 over 200 epochs (or
200 x (500/100) = 1000 iterations), and found that mGRU, GRU and gnODE all achieved validation MSEs < 0.01 at least
at some point over the 200 epochs. Similarly, we logged the validation MSE traces of vanilla RNN and nODE of N = 6.
These networks reached minimum validation MSEs of 0.033 and 0.016, respectively, over the 200 epochs. All networks
reached minimum validation MSEs < 0.01 during 200 epochs when N = {12, 18} (Figure 6B). For further analyses of
the trained networks (e.g., performing PCA over the trajectories taken by the networks, and finding the fixed points of the
networks), we used the set of parameters that achieved the minimum validation MSEs over the 200 epochs. All networks,
when the reached minimum validation MSE was < 0.01, used similar strategies for this task — the networks created 8 stable
fixed points to solve the task, where each of the 8 stable fixed points represented each output that the networks should take
(Figure 6C for vanilla RNN; other networks not shown). For details on how the fixed points were found, see Section F.4.

F.2. Variable-Amplitude 3-Bit Flip-Flop Task

We determined when the pulses occur and in what channel the pulses occur in the same way as Section F.1. Then for
the channel where the pulse appears, we drew a sample m from U[—1, 1] and let m be the value to be taken by the pulse
(Figure 1A in main text).

To ensure fair comparisons across different networks (vanilla RNN, mGRU, GRU, nODE and gnODE), for each network,
we ran 3 x 3 x 3 = 27 different configurations of (1, w, B), where n = {107%,1073,1072}, w = {1073,1072, 107!}
and B = {10, 50, 100}. For each network and each configuration, we trained for 600 epochs, and determined the set of
parameters that gives the minimum validation MSE over the 600 epochs. Each circle in Figure 1B is the minimum validation
MSE achieved over 600 epochs for a single configuration, with a total of 27 circles for each network. For nODE and gnODE,
F had 3 hidden layers with 100 units each layer (i.e., L = 4 and H = 100). We let N to be either 6 (Figure 1A—C) or 100
(Figure 1D-E).

F.3. Principal Components of High-Dimensional Network Trajectories

We found that when we apply PCA on the trajectories taken by the 100-dimensional vanilla RNN, mGRU, GRU and
gnODE (which were the networks that successfully trained on the variable-amplitude flip-flop task), we needed more than
10 principal components to reach more than 0.9 variance explained (Figure 7A) for all successfully trained networks. We
further tested whether the same is true for networks trained with ¢, regularization. We ran the same training pipeline as
Section F.2, with the addition of 4 more configurations for the regression coefficient A, = {107°,1074,1073,1072}.
Therefore, each network was trained with 108 different configurations of (7, w, B, Arg). Adding ¢, regularization to training
appears to hurt performance of the vanilla RNN (Figure 7B) as the best performing one no longer reaches validation MSE

22



Trainability, Expressivity and Interpretability in Gated Neural ODEs

A C

Example traces

dim(h) = 6 dim(h) = 12
1.2 —— RNN

0 1000 0 1000 0 1000
# of iterations # of iterations # of iterations

Figure 6. Networks performing the original fixed-amplitude 3-bit flip-flop task (Sussillo & Barak, 2013). (A) An example validation trial
with inputs in each channel shown in black, and the trained vanilla RNN traces maintaining the previous pulse value shown in colors.
(B) Validation loss traces as a function of the number of iterations. (C) The first 3 principal components of the vanilla RNN (N = 18)
trajectories and fixed points. Cyan indicates stable fixed point. Magenta indicates unstable fixed point.

(excluding the regularization term) < 0.016. The minimum validation MSE was > 0.04. Similarly, none of the validation
MSEs for mGRU, GRU and gnODE were < 0.01. However, two configurations for gnODE and seven configurations for
GRU were < 0.02 (Figure 7B). When we did PCA on the trajectories taken by each of the best performing networks, we
found that we needed more than 7 PCs to achieve more than 0.9 variance explained, for networks that successfully train on
the task (i.e., achieving validation MSE < 0.02; Figure 7C). For six other GRU configurations that achieved validation MSE
< 0.02, results were similar. However, for the other gnODE configuration that achieved validation MSE < 0.02, we found
that almost all of the variance in the trajectories can be explained by the first three PCs.

F.4. Fixed-Point Finder

The finder should find some h which satisfies k &~ 0. To find such h, we define some function f such that b = f (h). In
the case of a nODE, for example, f(h) = (1/7) - (—h + Fj;(h,(t))), where we assume that (¢) = 0, and 6 is the set
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Figure 7. Networks assuming /N = 100 performing the variable-amplitude 3-bit flip-flop task. (A) Variance of the network trajectories
explained by the principal components, when the networks are trained without regularization. (B) Validation MSEs of 108 different
hyperparameter configurations. (C) Variance of the network trajectories explained by the principal components, when the networks are
trained with /5 regularization (corresponding to the circles with black edges in B).
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Figure 8. Networks assuming N = 6 performing the variable-amplitude 3-bit flip-flop task. Each circle is the spectral abscissa of the
Jacobian evaluated at a detected fixed point. Bold horizontal lines indicate medians.

of trained parameters of the nODE. We used Newton’s method (implemented in Julia’s NLsolve.jl package; Mogensen &
Riseth (2018)) to find the root of the nonlinear function f(h). From a starting point, we ran the method for 100 iterations,
and terminated whenever || f(h)|| < 0.01. Choosing what starting point to use can be important, especially when N is large.
Following Sussillo & Barak (2013), we used points in the trajectories taken by the network in the validation trials as the
starting points of the finder. We detected fixed points by running the finder 10, 000 times, each with 10, 000 different starting
points. Once we detect some h that satisfies ||| < 0.01, we checked whether each element h; for all i € {1,2,..., N}
satisfy 2¢g < h; < 27 to ensure that the detected fixed (or slow) point is not too far from the trajectories taken by the network.
Here, ¢ = min, (min;(y;)) where y is one of the points in the trajectories taken by the network in the validation trials.
Similarly, » = max, (max;(y;)).

We also explored a different criterion to identify fixed points that are near the latent trajectories — whenever the identified
fixed point is less than 1 in Euclidean distance from any of the points actually traversed by the networks, we include the
fixed point in the plot. Even for this criterion, we still saw a result similar to what was presented in Figure 1E.

F.5. Stability of Fixed Points

Figure 1E suggests that the vanilla RNN (/V = 100) may be reaching its solution using a combination of marginally-stable
and stable fixed points, while the gated networks (mGRU, GRU and gnODE) mostly rely on marginally-stable fixed points.

We further projected the 100-dimensional fixed points of the vanilla RNN to the 3-dimensional PC space and found that the
unstable fixed points are scattered around the stable fixed points, suggesting that the unstable fixed points may be facilitating
the network to fall into one of the stable or marginally stable fixed points.

We did a similar analysis for networks assuming N = 6 and find similar results (Figure 8). The medians and quartiles of the
plotted circles in Figure 1E of the main text and those of Figure 8 are provided in Table 4.

Table 4. We compute the spectral abscissa max(Re [A(D)]) at a numerically-detected fixed point. We provide below the medians and
quartiles of the distribution of max(Re [A(D)]).

(a) N = 100 b)N =6
Model Median Quartiles Model Median Quartiles
RNN 2.587 [—1.969, 6.360] RNN 2.750 [—0.768,4.703]
mGRU  —0.472 [-0.473,—0.470] mGRU  0.004 [0.002, 0.009]
GRU  —0.033 [-0.474,0.070] GRU 0.005 [0.001, 0.023]
nODE 4.988 [—1.627,9.453] nODE 2.626  [—2.030,13.151]
gnODE  0.842 [—0.461, 1.698] gnODE  0.002 [0.002,0.003]

F.6. The Family of 2-Bit Flip-Flop Tasks
F.6.1. 4 STABLE FIXED POINTS

We determined when the pulses occur and in what channel the pulses occur in the same way as Section F.1, except that now
n = 2. We trained the gnODE for 200 epochs with 27 different hyperparameter configurations, similar to Section F.2. The
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initial state of the gnODE was learned — the initial state was assumed to be an affine transformation of the input at the first
time-bin. The gnODE’s Fj had 2 hidden layers with 316 units each layer (i.e., L = 3 and H = 316). For Figure 2A, we
used the gnODE that reached the lowest validation MSE (3.203e-8) among the 27 different runs.

F.6.2. SQUARE ATTRACTOR

We determined when the pulses occur and in what channel the pulses occur in the same way as Section F.2, except that now
n = 2 (Figure 9A). We trained all networks (vanilla RNN, mGRU, GRU, nODE and gnODE) for 200 epochs, each with 27
different hyperparameter configurations, similar to Section F.2 (Figure 9B). The initial states of the networks were learned —
the initial state was assumed to be an affine transformation of the input at the first time-bin. For nODE and gnODE, F} had
2 hidden layers with 316 units each layer (i.e., L = 3 and H = 316). For Figure 2B, we used the gnODE that reached the
lowest validation MSE (0.008) among the 27 different configurations.
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Figure 9. Networks assuming N = 2 performing the square 2-bit flip-flop task (Section F.6.2). (A) An example validation trial with
inputs in each channel shown in black, and the trained gnODE traces maintaining the previous pulse value shown in colors. (B) For each
network, we tried 27 different hyperparameter configurations. Each circle represents the minimum validation MSE achieved during 200
epochs of training. Circles with black edges represent the minimum out of the 27 configurations.

F.6.3. RECTANGLE ATTRACTOR

We determined when the pulses occur and in what channel the pulses occur in the same way as Section F.6.2, except that
the pulse value for Channel 1 was drawn from U[—2, 2], while the pulse value for Channel 2 was drawn from U[—1, 1]
(Figure 10A). For Figure 2C, we used the gnODE that reached the lowest validation MSE (0.0137) among the 27 different
configurations. Architecture used for gnODE for this task was the same as the one used in Section F.6.2.

F.6.4. DISK ATTRACTOR

We determined the total number of pulses (summed across n channels) on each trial by sampling a number & from the
Poisson distribution with mean 6. We then randomly chose £ indices from 1 to 100 without replacement. These k indices
were the indices at which the pulses occur. For each of the k indices, we drew random samples c1, co, ..., ¢, wWhich satisfy
1< \/ c? + c2 + ...+ ¢ < 2, where ¢; is the pulse value in Channel i. Thus the input pulses in n channels appear at the
same time. For Figure 2D, we used the gnODE that reached the lowest validation MSE (1.910e-4) among the 27 different
configurations. Architecture used for gnODE for this task was the same as the one used in Section F.6.2.

F.6.5. RING ATTRACTOR

We determined when the pulses occur in a way similar to Section F.6.5. However, k£ was drawn from the Poisson distribution
with mean 12, not 6. Also, the constraint that ¢y, co, ..., ¢, had to satisfy was \/cf + c% .o+ =2

We trained the gnODE for 200 epochs with 27 different hyperparameter configurations on this task. Architecture used for
gnODE for this task was the same as the one used in Section F.6.2. Figure 11 shows the flow fields of gnODE trained on this
task. Figure 11A shows the flow field of gnODE when we let the initial state that the network should take (in the output
space) be (0,0) (validation MSE: 8.345e-5). We see a structure that is similar to what we see when we train the gnODE
on the disk 2-bit flip-flop task (Section F.6.4). When we instead let the initial state that the network should take be (2, 0),
we see a more ring-like structure near (2, 0) (Figure 11B; validation MSE: 0.007). We also tried changing the initial state
of gnODE from (0, 0) to (1.5,0) for the gnODE trained on the disk 2-bit flip-flop task (Section F.6.4), but did not see a
significant qualitative difference.
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Figure 10. The gnODE assuming N = 2 performing the rectangle and the disk 2-bit flip-flop task. (A) An example validation trial on the

rectangle task with inputs in each channel shown in black, and the trained gnODE traces maintaining the previous pulse value shown in
colors. (B) Same as (A) but for the disk task.
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Figure 11. Flow fields of gnODE with N = 2 performing the ring 2-bit flip-flop task. (A) The initial state of gnODE is set to be (0, 0).
(B) The initial state of gnODE is set to be (2, 0).

F.7. How are Continuous Attractors Generated in these tasks?

When we evaluated the gate output G, (h, ) (with L, = 1) and —h + Fy(h, x) on several points inside the attractor, the
norm of —h + Fy(h, x) was generally closer to 0 than the norm of the gate output. Thus, after training, it may be possible
for gnODE to do the tasks without the gate. However, this does not mean that gates do not help with training/performance.

For the points evaluated, we found that each component of the gate had values ~ 0.1, and this helps —h + Fy(h, x) become
even closer to zero.

G. Fitting an Ornstein-Uhlenbeck Trajectory

The task that the network has to perform is to perfectly fit a finite number of samples from an Ornstein-Uhlenbeck (OU)
process,

Toudz = Aoyzdt + xdt + coydw, (75)

where w is a Wiener process. In our analysis, we set dim(z) = 30, Toy = 1s, Aoy = —1, z(t) = 1, and ooy = 1, and
generate a single trajectory from this process for 100s using the SOSRI method’ and sample at every 1s of this trajectory.
This gives us a total of 100 samples from this OU process. We trained our networks on a single trajectory of these 100
samples in a single batch, using AdamW (Loshchilov & Hutter, 2019). We trained vanilla RNN, mGRU, GRU, nODE and
gnODE on this task. The network weights were initialized with Glorot normal initialization (Glorot & Bengio, 2010), and
biases were initialized with a zero-mean Gaussian with variance 10~°. The networks received = () = 1 as their inputs.
Note that dim(z) = dim(z) = 30. The initial states of the networks were learned — the initial state was assumed to be an
affine transformation of the input at the first time-bin. For the vanilla RNN, mGRU and GRU, we systematically varied the
phase-space dimension /N and 7 of the model. For the nODE and gnODE, we set L. = 1, and varied the number of hidden
layers L = Lj, in Fy and the number of units /N, in each hidden layer of Fy, along with IV and 7. We assumed that the
number of units /Vy is the same across the hidden layers (i.e., H = N1 = ... = Np_).

To ensure we are using the appropriate learning rate and the rate of weight decay, we trained each network with 9 different
combinations of the learning rate and the rate of weight decay, and picked the best model out of the 9 that reached the lowest
training loss anytime during the 2000 epochs of training. The training MSE values plotted in Figure 3 of the main text

"This is the default SDE solver in the DifferentialEquations.jl package in Julia (Rackauckas & Nie, 2017).
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consider only the lowest training losses out of the 9. With the learning rates and rates of weight decay determined, we ran
the experiment 5 times with different random seeds. We chose the learning rate from one of 104, 1073 and 10~2, and the
rate of weight decay from 1073, 10~2 and 10~ 1.

We see that for all networks, when the model 7 is closer to Tory = 1, we generally achieve lower training MSEs (Figure 3D

and Figure 12). This confirms our intuition that networks perform best when their timescales match correlation time of the
data.
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Figure 12. (A) Vanilla RNN assuming 7 € {1s, 10s, 30s, 100s} fitting samples from the OU trajetory. (B) mGRU. (C) GRU. (D) nODE
with 1 hidden layer (H = N; = 316).

We also see that, for nODE and gnODE, when we increase the number of units H in each hidden layer, the networks become
more expressive (Figure 3C and Figure 13). When model 7 = 1s, nODEs tend to be more expressive than vanilla RNNs
when the phase-space dimension is low, but we see that as we increase the phase-space dimension, RNNs become more
expressive (Figure 13A—B). However, as we increase model 7, nODEs become consistently more expressive than RNNs
when [ is sufficiently large (Figure 13C-D and Figure 14A—C). We find that gnODEs are consistently more expressive than
GRUs across different model 7°’s (7 € {1s, 10s, 30s, 100s}) and different numbers of phase-space dimensions N (Figure 3C
and Figure 13E and Figure 14A—C). This confirms our intuition that increasing 7 is equivalent to effectively increasing the

difficulty of the task that the networks have to solve, and that, because h evolves very slowly for very large 7, this places a
greater burden on Fjp.
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Figure 13. Increasing the number of units H in each hidden layer of Fj increases practical expressivity of networks. (A) Training MSEs
of nODE with 1 hidden layer (i.e., L = 2), assuming 7 = 1s. (B) Training MSEs of nODE with 2 hidden layers (i.e., L = 3), assuming

7 = 1s. (C) Training MSEs of nODE with L = 2 and 7 = 30s. (D) Training MSEs of nODE with L = 3 and 7 = 30s. (E) Training
MSEs of gnODE with L = 3 and 7 = 1s.

Lastly, we did not observe that increasing the number of hidden layers in Fy significantly increases expressivity of nODE
and gnODE (Figure 15). This is perhaps related to the observation that for regression problems, width matters much more
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Figure 14. (A) N = 10 across all networks. nODE and gnODE has Fp with 1 hidden layer, where H = N; = 1000. (B) N = 32 across
all networks. nODE and gnODE has Fp with 1 hidden layer, where H = N; = 1000. (C) N = 100 across all networks. nODE and
gnODE has Fy with 1 hidden layer, where H = N; = 1000.

than depth (Radhakrishnan et al., 2022).
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Figure 15. Increasing the number of hidden layers in Fp does not significantly increase practical expressivity of networks. (A) nODE with
H = 1000, assuming 7 = 1s. Mint indicates nODE with 1 hidden layer (H = N; = 1000), and pink indicates nODE with 2 hidden
layers (H = N1 = N> = 1000). (B) nODE with H = 1000, assuming 7 = 3s. (C) nODE with H = 1000, assuming 7 = 10s. (D)
nODE with H = 1000, assuming 7 = 100s. (E) gnODE with H = 1000, assuming 7 = 1s. (F) gnODE with H = 1000, assuming
7 = 3s. (G) gnODE with H = 1000, assuming 7 = 10s. (H) gnODE with H = 1000, assuming 7 = 100s.

H. Real-World Tasks
H.1. Network Initializations

For mGRUs, GRUs, LSTMs and LEMs, we applied either the Kaiming or the Glorot normal initialization. Both of these
initializations should already give criticality. For nODEs and gnODE:s, the standard Kaiming or Glorot initialization do
not give criticality. Whenever we applied either the Glorot or Kaiming normal initialization to these networks, the final
nonlinearity ¢, of Fy was set to be Z. Whenever we applied the critical initialization in Appendix A, ¢, was set to be
tanh. We found that, for all of the real-world datasets we consider (Sections 6.3—-6.5), having no tanh degrades performance,
consistent with the observation in Kidger et al. (2020). We suspect that this is due to the fact that a nODE which does not
have does not tanh as its final nonlinearity does not have a chaotic phase (Appendix A).

H.2. Latin Alphabet Character Trajectory Classification

We trained mGRU, GRU, LSTM, LEM, nODE and gnODE on the task of classifying 20 different Latin alphabets based
on the pen-tip trajectories and forces applied to the tip. This dataset had 2858 trials total (2000 trials for training, 429
trials for validation and 429 trials for testing), with each trial being a time-series with 182 time-bins. The time-series was
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4-dimensional, with the first dimension being the time stamp, the second being the x position of the pen, the third being
the y position, and the fourth being the pen tip force. We took the preprocessed data as is from the Neural CDE repository.
Further details on the dataset and the preprocessing step can be found in the repository and Kidger et al. (2020). We used the
“30% dropped” dataset (30%, because 30% of the samples in the trajectories were randomly dropped to make the time-series
irregularly-sampled) to determine the best set of hyperparameters for each network (using grid search), and used the same
set of hyperparameters for the “50% dropped” and “70% dropped” datasets.

We assumed each time-bin in the data is 1s-long (thus each trial is 182s long), and set 7 = At = 1s. We trained our
networks for the total of 1300 epochs, where we first trained only the first 14 time-bins for 100 epochs, and then the first 28
time-bins for the next 100 epochs, until we reached 182 time-bins. This method of “iteratively growing the fit” is sometimes
used to train a RNN (Hafner, 2017) or a nODE (Rackauckas et al., 2020). The initial states of the networks were also learned
— the initial state was assumed to be an affine transformation of the input at the first time-bin. We determined the set of
network parameters that achieves the lowest validation loss over the 1300 epochs, and used this validation loss (the cross
entropy loss for this classification task) as the measure of performance to determine the best set of hyperparameters. We
performed a grid search over the learning rate n € {10~4,1073, 1072}, rate of weight decay \,, € {1073,1072,1071},
initialization scheme (Glorot normal, Kaiming normal or the critical initialization proposed in Section 4 and Appendix A;
biases were always initialized with a zero-mean Gaussian with variance 10~%), phase-space dimension N € {32,100, 316}.
For nODE and gnODE and the number of units H € {100, 316, 1000} in each hidden layer of F was searched additionally.
We only considered FNNs with 2 hidden layers for Fy (i.e., L, = 3). For gnODE, we only considered L, = 1.

The batch size B was set to be 32 for all networks, following the suggestion in Kidger et al. (2020). With the hyperparameters
that achieved the minimum validation loss, we trained the networks 5 times with different random seeds, and evaluated the
test losses from those 5 runs. Table 5 shows the means and standard deviations of each networks’ test accuracies for the
“30% dropped”, “50% dropped” and “70% dropped” datasets.

We see that the gated networks (mGRU, GRU, LSTM, LEM, gnODE) achieve accuracies similar to that of nCDE reported
in Kidger et al. (2020). The gated networks’ accuracies are also higher compared to the non-gated network (i.e., nODE).
Lastly, we see that mGRU, with fewer parameters, performed similarly to a GRU, confirming that the functional roles of the
update and reset gates are similar and the reset gate can be taken out (Krishnamurthy et al., 2022). Similar observations have
been made in Ravanelli et al. (2018).

Table 5. Test accuracy for classification of Latin alphabet character trajectories (mean =+ std, error bars computed from training the
networks 5 times with different random seeds).

Model Test Accuracy

Name  30% dropped  50% dropped  70% dropped
mGRU  0.987 4+ 0.005 0.987 + 0.001 0.983 + 0.002

GRU 0.990 £ 0.001  0.990 +0.004 0.987 + 0.003
LSTM 0.990 +0.002 0.990 £ 0.004 0.990 +£ 0.002
LEM  0.990 £0.004 0.991 +0.004 0.987 £ 0.001
nODE  0.924 £ 0.095 0.807 £0.247 0.898 £ 0.089
gnODE  0.987 +0.002 0.987 £0.004 0.986 + 0.003

H.3. Walker2D Kinematic Simulation Prediction

In this experiment, the networks (mGRU, GRU, LSTM, LEM, nODE and gnODE) were given the task of predicting what
the future dynamics should be given data samples up until the current time-point in time series generated from the MuJoCo
physics engine kinematic simulations (Todorov et al., 2012).

This dataset had 12, 893 trials total (9684 trials for training, 1272 trials for validation and 1937 trials for testing), with each
trial being a time-series with 84 time-bins. The time-series was 17-dimensional. We took the preprocessed data as is from
the ODE-LSTM repository, where 10% of the samples were dropped along the trajectories, and 1% of all actions were
overwritten by random actions (Lechner & Hasani, 2020). Further details on the dataset and the preprocessing step can be
found in the repository and Lechner & Hasani (2020).

We assumed each time-bin in the data is 1s-long (thus each trial is 84s long), and set 7 = At = 1s. Our networks received the
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17-dimensional time-series, along with an extra dimension specifying the time stamp as input, and emitted their predictions
of what the 17-dimensional state will be on the very next time-step. We trained our networks for the total of 700 epochs,
where we first trained only the first 14 time-bins for 100 epochs, and then the first 28 time-bins for the next 100 epochs, until
we reach 84 time-bins. When we train the full 84 time-bins, we train for 200 epochs instead of 100 epochs, thus making the
total 700 epochs. The initial states of the networks were learned — the initial state was assumed to be an affine transformation
of the input at the first time-bin. We determined the set of network parameters that achieves the lowest validation loss
over the 700 epochs, and used this validation loss (the MSE loss for this prediction task) as the measure of performance to
determine the best set of hyperparameters. We performed the same hyperparameter grid search as in Section H.2. The batch
size B was set to be 256 for all networks, following the suggestion in Lechner & Hasani (2020). With the hyperparameters
that achieved the minimum validation loss, we trained the networks 5 times with different random seeds, and evaluated the
test losses from those 5 runs.

H.4. Speech Commands Classification

We trained mGRU, GRU, LSTM, LEM, nODE and gnODE on the task of classifying ten spoken words, such as “Stop” and
“Go”, based on one-second audio recordings of these words. The dataset is originally from Warden (2018) and preprocessed
using the pipeline in the Neural CDE repository (Kidger et al., 2020). There are total 34, 975 time series (70% training, 15%
validation, and 15% test data), where each time series has 20 channels of 161 regularly-sampled data points. Further details
on the dataset and the preprocessing step can be found in the repository and Kidger et al. (2020).

Section 6.2 showed that networks perform best when the timescales 7 assumed by the networks match correlation time
of the data. To further probe this effect, we varied 7 from {0.006s, 0.062s,0.621s}. We trained our networks for the
total of 300 epochs on the entire time series. The initial states of the networks were also learned — the initial state was
assumed to be an affine transformation of the input at the first time-bin. We determined the set of network parameters
that achieves the lowest validation loss over the 300 epochs, and used this validation loss (the cross entropy loss for this
classification task) as the measure of performance to determine the best set of hyperparameters. We performed a grid
search over the learning rate n € {10~4,1073, 1072}, rate of weight decay \,, € {1073,1072, 101} and the phase-space
dimension N € {32,100, 316,1000}. For nODE and gnODE, we additionally searched over N;, = {1000, 3500}. We only
considered FNNs with 1 hidden layer where L;, = 2. For gnODE, using G, with L, = 2 generally gave better performance
than using G, with L, = 1. When L, = 2, N, was set to be 1000.

We initialized nODE and gnODE with Glorot normal, Kaiming normal and the critical initialization proposed in Section 4
and Appendix A, and reported the best performing ones. Biases were always initialized with a zero-mean Gaussian with
variance 1076).

The batch size B was set to be 256 for all networks. With the hyperparameters that achieved the minimum validation loss,
we trained the networks 5 times with different random seeds, and evaluated the test losses from those 5 runs.

H.S5. Experimental Results on Critical Initialization

In Appendix A, we showed that using either Glorot or Kaiming normal initialization scheme gives nODE or gnODE that are
not critical. Therefore, we determined the critical initialization and experimentally tested whether this new scheme improves
performances of gnODE. Table 6 below, together with Table 3 in the main text, show some support that critical initialization
can enhance performance of gnODE. These results are obtained from going through the hyperparameter search described in
Appendix H.2-H 4.

Table 6. gnODE performing CharacterTrajectories and Walker2D with different initialization schemes. NC = not critically initialized, C =
critically initialized.

Model CharacterTrajectories Test Accuracy Walker2D Test MSE
30% dropped  50% dropped ~ 70% dropped

gnODE (NC) 0.984+0.005 0.981+0.003 0.986 & 0.003 0.552 £ 0.019
gnODE (C)  0.987+0.002 0.987 +£0.004 0.986 = 0.005 0.588 £ 0.003
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H.6. LEM Performance on Real-World Tasks

Our results with LEM on the real-world tasks suggest that the performance of an LEM is similar to an mGRU or a GRU (see
Appendix B for a possible explanation). In Rusch et al. (2021), At in LEM is treated as a hyperparameter, while At for
other models is taken to be equal to 1. For fairer comparisons, At could have been equal across all models. Our experiment
in Section 6.2, and particularly Figure 3D-F makes exactly the point that if we change 7 (which is effectively the same
as changing At in Rusch et al. (2021)), we are effectively giving the models different problems to solve, with different
timescales. In our experiments, we set 7 to be the same across all models compared. Rusch & Mishra (2020) discusses
training At, and it would be interesting if making 7 trainable in our models leads to improvements in performance, though
this would be beyond the scope of this work.
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