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Abstract
With the increased generality and advanced rea-
soning capabilities of AI systems, an increasing
number of AI evaluations are agentic evaluations:
evaluations involving complex tasks requiring en-
vironmental interaction, as opposed to knowledge-
based question-answer benchmarks. However, no
work has explored the methodological challenges
of agentic evaluations or the practices necessary
to ensure their validity, reliability, replicability,
and efficiency. In this (work-in-progress) paper,
we (1) define and formalize the agentic evaluation
paradigm; (2) survey and analyze methodologi-
cal problems in agentic evaluations; and (3) dis-
cuss the implications of agentic evaluations for
AI governance. Our hope is to improve the state
of agentic evaluations of AI systems, systematize
the methodological work in this domain, and con-
tribute to the establishment of a science of AI
evaluations.

1. Introduction
The latest generation of AI systems—popularly termed “AI
agents”—have demonstrated substantial advancements in
reasoning, long-horizon planning, and the ability to engage
with and act in complex environments using tools (Kwa
et al., 2025; Chan et al., 2023; Qin et al., 2023; Boiko et al.,
2023; Bengio et al., 2025). In addition to performing tasks
such as information retrieval (e.g., answering user ques-
tions), these systems are now often claimed to be able to
“independently accomplish tasks on your behalf” (OpenAI,
2025). As a result, the evaluation of these AI systems has
required new datasets and methodologies that move beyond
traditional knowledge-based question-answer (QA) evalua-
tions (e.g., Wei et al. 2025a; Starace et al. 2025; Wijk et al.
2024).

We call this new approach agentic evaluation, which we

*Equal contribution 1Harvard University, Cambridge, MA,
U.S. 2Independent. Correspondence to: Kevin Wei <kevin-
wei@acm.org>.

Workshop on Technical AI Governance (TAIG) at ICML 2025,
Vancouver, Canada. Copyright 2025 by the author(s).

view as a paradigm for AI evaluation that is distinct from
the evaluation of AI agents in general.1 Specifically, we
formalize the definition of agentic evaluation as the evalu-
ation of compound AI systems on environmental tasks. A
combination of complexity in compound AI systems as
well as the interactivity, task horizon, and large state and
action spaces of agentic evaluation tasks adds substantial
difficulty to agentic evaluation relative to multiple-choice
question-answer (MCQA) evaluations (Toner et al., 2024).
As a result of these same characteristics, agentic evaluations
bear similarities to but nevertheless present new challenges
in compared to evaluations in other contexts such as in re-
inforcement learning, in game-based settings, and in the
social sciences.

Agentic evaluations are of great interest to stakeholders
throughout the AI value chain. For the machine learning
(ML) research community, robust agentic evaluations can
measure progress in AI development. For policymakers,
agentic evaluations can help anticipate broader societal im-
pacts of AI such as labor disruption (Toner et al., 2024), and
they may be crucial components of regulatory documents
such as safety cases (Goemans et al., 2024).

Despite the importance of agentic evaluations, there has
been no comprehensive discussion of the methodological
challenges of this new paradigm. This review paper aims to
fill that gap in the literature by making three key contribu-
tions:

1. We formalize the agentic evaluation paradigm.

2. We survey and analyze methodological problems,
promising research directions, and related research
areas in agentic evaluations.

3. We discuss the importance of agentic evaluations to AI
governance and to the broader ML community.

2. Background
Prior work on AI agents and on agentic evaluation has fo-
cused primarily on the results of current datasets and on

1The definition of “AI agent” is highly contested in the litera-
ture, and we will generally avoid using this term throughout the
paper. See discussion in Appendix A.1.
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benchmarks available for evaluation (e.g., Chang et al.,
2024; Luo et al., 2025; Yehudai et al., 2025) but rarely
discusses the shortcomings of existing evaluation methods.
These reviews are also loosely scoped and often discuss
QA-based evaluations of AI systems.

This article examines agentic evaluation, which we define
as the evaluation of compound AI systems on environmental
tasks. We define “compound AI systems” as systems that
consist of at least one component in addition to a foundation
model instance, e.g., scaffolding, tools, data sources, other
model instances, etc.2 We define “environmental tasks” as
tasks that require interaction with an external environment,
are under-specified (and thus require reasoning or planning
to complete), are multi-step, and are quantitatively scoreable
by an external party (excluding the user).

Our view is that agentic evaluation is a paradigm for evalua-
tion and is limited to particular types of evaluation tasks on
particular systems rather than being defined purely as the
evaluation of what have been popularly termed “AI agents.”
This understanding of evaluation disambiguates the system
being evaluated from the evaluation tasks; unlike model-
only evaluations, evaluations of compound AI systems are
highly dependent on the system architecture and on the
components of the system other than the model.

Full definitions and a formal mathematical framework for
agentic evaluations are presented in Appendix A.

3. Methodological Challenges in Agentic
Evaluation of AI Systems

This section surveys and analyzes methodological chal-
lenges in agentic evaluations. We provide five high-level
classes of challenges, i.e., challenges in concept develop-
ment, system design, environmental interaction, scoring,
and analysis & documentation. Our scope is limited only
to those problems that are specific to or particularly salient
in the context of agentic evaluations (e.g., scoring agentic
evaluation outputs is difficult due to complex rubrics)—and
we avoid discussing problems with evaluations in general
(e.g., the cost of human grading is high). We focus on
methodological choices that have implications for the valid-
ity, reliability, replicability, and cost/efficiency of agentic
evaluations.

A selection of challenges are included in the main text of

2This definition is roughly in line with prior work such as Za-
haria et al., 2024; Lin et al., 2024a; Chen et al., 2024. Most systems
termed AI agents would qualify as compound AI systems, though
the converse is not true. Note also that our definition is based on
systems’ architecture rather than on systems’ (intended) functions
or capabilities, which is frequently the case with definitions of “AI
agent” (e.g., the ability to independently complete tasks OpenAI,
2025; Shavit et al., 2023; Zittrain, 2024; Kolt, 2025).

this workshop paper, with a fuller (work-in-progress) list
presented in Appendix B.

3.1. Challenges in Concept Development

Concept development refers to the refinement of the under-
lying idea of interest to be measured by an evaluation, as
well as the systematization of that idea into a well-scoped
definition and related metrics for measurement (Adcock &
Collier, 2001; Wallach et al., 2025).

How can performance in agentic evaluations be pre-
dicted, and when are non-agentic evaluations sufficient
to measure capabilities or risks? Due to extended task
horizons and difficulties in scoring, agentic evaluations can
be challenging and resource-intensive to design, implement,
and execute. Prior work has explored correlations (Schaef-
fer et al., 2025) and predictions (Zhou et al., 2025) between
different question-answer benchmarks , but no research has
examined whether these benchmarks or other metrics can
accurately predict performance on agentic evaluations. Un-
derstanding predictors of performance in agentic evaluations
may help evaluators identify the extent to which, relative to
non-agentic evaluations, agentic evaluations offer additional
information about compound AI system capabilities—and
in which circumstances this additional information justifies
their use.

How can evaluation concepts efficiently account for large
state and action spaces with diverse solution pathways?
Agentic evaluation tasks are characterized in part by the
large state and action space in which an AI system is located.
The proliferation of pathways to both task completion and
failure—due to the functionally unconstrained nature of
the state and action spaces—makes it important to measure
concepts that account for the entire process of attempting
the agentic evaluation task (see Pencharz et al., 2024; Yadav
et al., 2019). One possible solution is to measure multiple
concepts in a single evaluation, which (Wang et al., 2024)
has suggested in the fairness context. Designing evaluation
suites that measures the correct concepts of interest requires
additional research.

In safety evaluations, what (or to what extent do) proxy
tasks accurately reflect real-world risk? In the agentic
evaluation context, evaluators may not be able to directly
test for task completion of, e.g., a system’s ability to cre-
ate dangerous biological agents due to legal and ethical
concerns. Evaluators will need to rely on proxy tasks to
measure dangerous capabilities, and more clarity is needed
on the extent to which such proxies signal capabilities and
deployment behavior. Proxies in contexts that do not have
direct human analogues, such as AI control (Greenblatt
et al., 2024; Phuong et al., 2024), may be particularly diffi-
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cult to develop due to lack of precedents from other fields.
In addition, evaluations may need to be behind closed doors
or on isolated systems, which may affect the external va-
lidity of proxy tasks as well as present challenges around
verification.

3.2. Challenges in System Design

Challenges in system design are those that relate to the selec-
tion of, design of, and interactions between the components
of compound AI systems.

How should scaffolds be chosen? Scaffolds are code
built to connect a model to external tools or other model
instances; there is currently little consensus on scaffold best
practices, and there are a wide variety of scaffolding frame-
works available both commercially and through open source
providers (OpenAI, 2025; LangChain). Wijk et al. (2024),
for instance, conducted agentic evaluation across systems
using two different scaffolding frameworks. Many evalua-
tors create custom scaffolds for their evaluations, leading to
few large-scale comparisons of different scaffolds. Because
choice of scaffold can affect evaluation results, scaffolding
is important to reliable and robust agentic evaluations.

How does task performance scale with improved scaf-
folds? An open question is to what extent improved scaf-
folds will lead to improved performance. METR (2025a)
compared a simple agent scaffold and an “elicited agent”
with a propose-evaluate CoT cycle and found that model
performance improved with the “elicited agent.” There is a
challenge in evaluating whether improved performance due
to improved scaffolding represents a genuine improvement
in model capabilities, represents overfitting to a particular
set of tasks, or represents lowering the difficulty of those
tasks.

3.3. Challenges in Environmental Interactions

Challenges in environmental interactions relate to the design
and selection of tools and (test) environments in which
agentic evaluations occur.

How can the evaluation environment mimic the affor-
dances available in real-world settings? If the environ-
ment provides fewer affordances to the model than it will
have during real-world use, evaluation results may differ
from what systems can actually achieve in deployment set-
tings. For example, evaluations that do not provide internet
access or that use weak scaffolds may systematically under-
estimate the performance of the system when capabilities
are fully elicited by end users (see Appendix B.2.1).

How does performance generalize to tasks with novel
toolsets? While early evaluations of tool use tested

general-purpose LLMs on bespoke tool sets, the general
question is whether evaluation results for one toolset gen-
eralize to those for other toolsets—e.g., Qin et al. (2023)
evaluated a model on a different set of tools than it was
trained on. This question may grow in importance as the
third-party tool provider ecosystem grows, e.g., Anthropic’s
open-source Model Context Protocol (MCP) standard for
agentic tool use (Anthropic, 2024b).

How do evaluators avoid trivial solutions? If the eval-
uation environment provides too many affordances during
training, it may inflate scores beyond what we should expect
during real use. For example, in PAPERBENCH, the authors
ensure that systems are never allowed to view the origi-
nal codebases of papers they have been tasked to replicate
(Starace et al., 2025). More research is needed to develop
practices for monitoring and preventing trivial solutions.

3.4. Challenges in Scoring

Challenges in scoring relate to the assignment of grades
or scores to evaluation outputs, which could include both
environmental state changes or system-generated artifacts.

How can robust scoring rubrics be efficiently developed
across a spectrum of task complexity? Some evaluation
contexts lend themselves to simple verification, while other
contexts demand substantially more complex scoring. In
the latter contexts, evaluators have created detailed rubrics
via consultation with domain experts in what is often a
resource-intensive process (Pencharz et al., 2024; Starace
et al., 2025). In the context of non-agentic evaluations with
no gold-standard labels, these rubrics have been shown to
significantly affect final scores (Pathak et al., 2025; Hashemi
et al., 2024; Fan et al., 2024). This result is likely to hold in
the agentic evaluation context. Given the crucial role that
rubrics play in evaluation scoring and subsequent results,
additional research is needed to make rubric creation more
valid and efficient.

How can evaluation results assign partial credit and min-
imize mode effects from scoring scales? Mode effects
are errors in measurement due to particular measurement
instruments (e.g., the order of questions, or whether a survey
respondent answered a questionnaire via phone or online)
rather than due to true differences in the underlying met-
rics of interest (Wei et al., 2025b). The scale on which
model outputs are scored can create significant mode effects.
Historically, many evaluations adopted a binary pass-fail
scoring scale, which did not permit assignment of partial
credit. Most recently, Phuong et al. (2024) and Shah et al.
(2025) have suggested defining task milestones that would
permit capturing performance improvements at higher fi-
delity. Additional research is needed as to how to best set

3



Methodological Challenges in Agentic Evaluations

these milestones and to reduce mode effects from different
scoring choices.

How can autograders be validated and evaluated? Val-
idation and evaluation of of AI graders has been a topic
of increasing interest (Shankar et al., 2024; Guerdan et al.,
2025). The complexity of agentic evaluation makes valida-
tion more important: for instance, Pencharz et al. (2024)
developed a detailed step-by-step rubric for use with AI
graders and found a systematic failure in AI graders to be
biased towards leniency despite specific requirements in
the grading rubric. The increased state/action space and
possible subtasks may make validation a particularly thorny
challenge in agentic evaluations.

3.5. Challenges in Analysis & Documentation

Challenges in analysis relate to the interpretation of evalu-
ation results. Researchers have raised significant concerns
with respect to the lack of statistical rigor in foundation
model evaluations (e.g., Biderman & Scheirer, 2020), and
best practices for analysis remain undetermined (e.g., Miller,
2024; Bowyer et al., 2025).

How can evaluators account and correct for diverse
sources of statistical uncertainty? The complex and
long-horizon nature of agentic evaluation tasks introduces
many additional sources of bias and uncertainty as compared
to traditional MCQA evaluation settings. These sources
of uncertainty include: sampling error from the task space,
sampling error from small sample sizes, sampling error from
the grading process, construct error in the operationalization
of measurement constructs, and systematic error from space
of evaluation vs. performance tasks. No existing literature
has attempted to systematically catalog and measure the
effects of different sources of error, nor is it obvious how
evaluators can implement corrections either in study design
or post-hoc.

How can human baselines account for differences in
modes of interaction between humans and AI systems?
Preliminary evidence has suggested that AI systems are sub-
ject to mode effects, and that these mode effects are different
from those experienced by humans (Tjuatja et al., 2024).
These effects may affect the reliability and reproducibility
of agentic evaluations, in addition to the validity of compar-
isons to human baselines; additional research is needed to
quantify, control for, and correct for these effects.

How can evaluators measure and control for cost in
humans and in AI systems, and what are the proper
conversion rates between human and AI results? Cost
metrics in agentic evaluations such as dollar cost or time
are crucial for standardizing measurements across evalu-

ation results (Kapoor et al., 2024), as well as for making
comparisons between human baselines and AI results (Wei
et al., 2025b). For instance, Rein et al. (2025) and Wijk
et al. (2024) compare performance between human and AI
systems on software task given the same length of time.
However, the validity and units of comparisons have not
been rigorously explored. These comparisons are of signifi-
cant interest to downstream deployers/users, as well as to
economic policymakers, and more work will be needed to
build agentic evaluations that can predict AI’s labor impacts.

4. Agentic Evaluations and AI Governance
The rise and importance of agentic evaluations has signifi-
cant implications for AI governance frameworks, especially
frameworks created at a time when MCQA evaluations were
standard. Some implications are discussed below.

Evaluation validity & risk assurance. Because of the
large state and action spaces of environmental tasks, the
environmental validity of agentic evaluations may be partic-
ularly difficult to ensure. Standard benchmark approaches
may not adequately reflect risk or capability, so it will be im-
portant to set evidentiary standards and required assurance
levels for policies such as red lines or risk thresholds.

More complex supply chains. Agentic evaluations exam-
ine not just the underlying foundation model but also other
system components such as scaffolding and tools, making
the supply chain for compound AI systems more complex.
Although recent work has examined downstream model de-
velopers (Williams et al., 2025), AI governance researchers
may also wish to discuss the extent to which developers of
non-model system components as well as service providers
at the application layer should be regulated (see also Chan
et al., 2025). For instance, developers may increase marginal
risk by releasing, e.g., improved scaffolds or tools rather
than improved models themselves.

High cost of agentic evaluations. Agentic evaluation
tasks are complex and costly to develop, and benchmarks
such as MMLU with nearly 16000 questions may not be fea-
sible in agentic settings. The high cost is due to not just the
length of the tasks but also to the high context and domain
expertise required to develop meaningful agentic evaluation.
As a result, it may not always be feasible to expect private
actors to be willing to bear the costs or develop the required
expertise to develop high-quality agentic evaluations. There
may be more demand for publicly funded or built evaluation
organizations, datasets, tools, and testbeds.

Competitive dynamics of non-model components. Anal-
yses of competition in AI have centered on foundation model
or compute providers (e.g., (Hua & Belfield, 2021; Narecha-
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nia & Sitaraman, 2024)). Model and service providers may
compete around non-model components, e.g., by creating
platforms or industry-led standards such as A2A (Surapa-
neni et al., 2025) or MCP (Anthropic, 2024b). This shift
has been underexplored in the literature, and it may have
implications for safety (e.g., race dynamics) and antitrust.
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M. C., Shumar, O., Bacho, K., Recchia, G., Popescu, M.,
Shulga, N., Tanwie, N. M., Lux, T. C. H., Rank, B., Ni,
C., Brooks, M., Yakimchyk, A., Huanxu, Liu, Cavalleri,
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S., Arnaboldi, L., Thaman, K., Siddiqi, M. R., Saxena,
P., Gupta, H., Fruhauff, T., Sherman, G., Vincze, M., Us-
awasutsakorn, S., Ler, D., Radhakrishnan, A., Enyekwe,
I., Salauddin, S. M., Muzhen, J., Maksapetyan, A., Ross-
bach, V., Harjadi, C., Bahaloohoreh, M., Sparrow, C.,
Sidhu, J., Ali, S., Bian, S., Lai, J., Singer, E., Uro, J. L.,
Bateman, G., Sayed, M., Menshawy, A., Duclosel, D.,
Bezzi, D., Jain, Y., Aaron, A., Tiryakioglu, M., Siddh, S.,
Krenek, K., Shah, I. A., Jin, J., Creighton, S., Peskoff,
D., EL-Wasif, Z., V, R. P., Richmond, M., McGowan,
J., Patwardhan, T., Sun, H.-Y., Sun, T., Zubić, N., Sala,
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Methodological Challenges in Agentic Evaluations

A. Background
A.1. Defining Compound AI Systems

We are interested in evaluations of compound AI systems based on foundation models, or general-purpose AI models trained
on diverse data (Bommasani et al., 2022). In this context, “compound AI systems” are systems that consist of at least one
component in addition to a foundation model instance (Zaharia et al., 2024; Lin et al., 2024a; Chen et al., 2024). These
components could include:

• Scaffolding:3 code built to connect a model to external tools or other model instances. Emerging standards for
scaffolding include Anthropic’s Model Context Protocol (Anthropic, 2024b) and Google’s A2A (Surapaneni et al.,
2025).

• Tools: functions or instruments that enable a model to interact with an external environment. Examples of tools include
APIs or command line interfaces.

• Model instance(s): systems could include multiple foundation model instances. For example, a compound AI system
could consist of a base model (to generate outputs) as well as a smaller monitor model (to check the outputs of the
base model) (Baker et al., 2025). Compound AI systems composed of multiple interacting model instances are termed
multi-agent systems (Hammond et al., 2025).

• Advanced prompting techniques, such as chain-of-thought reasoning.

• Data sources such as those used in retrieval augmented generation (RAG).

This definition has multiple advantages for the purposes of discussions on agentic evaluations—in particular, although most
if not all AI agents would qualify as compound AI systems, not all compound AI systems are AI agents. Compound AI
systems are characterized by system architectures and components, whereas definitions of “AI agent” frequently focus on
systems’ (intended) functions or capabilities (e.g., the ability to independently complete tasks (OpenAI, 2025; Shavit et al.,
2023; Zittrain, 2024; Kolt, 2025)). Centering our discussion on compound AI systems allows us to focus on different parts
of the system and how they affect task performance. It also avoids definitional debates around the AI agent terminology and
prevents conflation of the term “AI agents” with philosophical or legal agency (Chan et al., 2023).

Our definition refocuses the unit of evaluation on the model instance, plus additional components that enable system
capabilities. In contrast, many existing evaluations view scaffolding as a component of the evaluation setup rather than
the model, the “toolbench model” of agentic evaluation where the foundation model is analogous to a craftsperson, while
the evaluation provides 1) the tools to accomplish a task and 2) the metrics with which to measure task success. This shift
in framing towards evaluation of the entire compound AI system rather than the foundation model alone better reflects
real-world deployments of AI systems.

Our definition of compound AI systems explicitly excludes AI systems trained purely from reinforcement learning (RL)
techniques, since these systems are normally not based on foundation models.4 This exclusion is because foundation
model evaluation—and by extension, evaluations of foundation model-based compound AI systems—have significant
methodological differences and complexities as compared to traditional RL evaluation. The primary difference is that RL
systems use evaluations as reward functions in a closed loop for optimization. In contrast, agentic evaluations are not
intended for direct feedback within the training loop. Foundation model systems can, of course, also be applied to traditional
RL settings such as games and robotics; we discuss some of these settings below, though work in this area is limited, and
our discussion applies to these settings without loss of generality.

3One preliminary question is whether a scaffold is conceptually part of the model to be evaluated, or an intrinsic part of the task itself.
In other words: do evaluators aim to benchmark the capabilities of 1) different base foundation models when plugged into a given scaffold
and task, or 2) different scaffolded AI systems (which may use the same base model) on a given task? Historically, many evaluators have
chosen the first option by building the scaffold into the evaluation suite. For example, AGENTBENCH (Liu et al., 2023) evaluation suite
includes a separate scaffold for each of eight environments, and the authors evaluated 27 LLMs based on API calls. On the other hand, the
second option allows evaluators can make use of existing tool affordances built into commercial AI systems. BROWSECOMP (Wei et al.,
2025a), for instance, measured how well OpenAI models used their built-in web browsing tools to answer challenging research questions,
while GAIA (Mialon et al., 2023) have a specific goal of evaluating the AI system as a unified whole. SWE-BENCH (Jimenez et al.,
2024) also considers each agent’s scaffold a part of its entry on the leaderboard.

4Compound AI systems based on foundation models trained partially with RL techniques remain in scope.
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A.2. Defining Environmental Tasks

Like AI agents, compound AI systems can also complete tasks. We limit our discussion in this article to evaluations of
compound AI systems’ capabilities to complete environmental tasks, as defined below.

“Environmental tasks” are defined as activities that are:

• Environmental: environmental tasks require an AI system to engage with an external setting, usually by using tools.

• Under-specified: environmental tasks are not fully specified by the user; rather, environmental tasks require AI systems
to engage in some level of independent reasoning or planning independent of the user (e.g., reasoning about how or
which tools to use, or more generally making inferences not explicitly provided by the user).

• Multi-step: environmental tasks require AI systems to take a sequence of actions. These actions, or subtasks, can be
separated by underlying models’ interactions with other system components (e.g., writing and executing a query to a
RAG database), with the user (e.g., asking for clarification), or with an external environment (e.g., making a tool call).5

• Scorable: environmental tasks are characterized by output quality or completion levels that can be systematically
quantified or scored by a third-party (other than the user); i.e., success or failure of a task is not purely dependent on
user opinion.6

In particular, environmental tasks can vary along any of the following dimensions:

• Single vs. multi-turn: a turn is one round of interaction between a user and an AI system. In some cases, a system may
be able to complete tasks in a single turn, provided that the user includes sufficient context during the initial interaction
or prompt; in other cases, a system may demand clarification from a user before proceeding with attempting task
completion. A number of challenges arise in evaluation when these tasks become multi-turn, e.g., due to difficulties
in quantifying the effects of subsequent turns on task completion or output quality. We will discuss many of these
difficulties in Section B.7

• Output category: environmental tasks may produce a variety of outputs. For instance, the output could be an artifact
provided to the user, or it could be a state changed produced in the external environment. Similarly, the output could be
closed-form (e.g., a multiple-choice answer) or open-ended (e.g., free-form text).

• Scoring scale: environmental tasks could be graded on different scales. For instance, some tasks may be graded solely
on task completion (binary scale), while others could be graded on output quality (e.g., Likert scale).

• Input/output modalities: environmental tasks could receive as input or produce as output data of any modality (e.g.,
text, video, audio, or other formats).

Some examples of tasks include software engineering, personal administration and time management, creation or grading of
educational materials, drug development, or research assistance. Environmental tasks can often be economically valuable or
be activities in which humans currently engage.

We exclude several related but distinct evaluation contexts from our discussion:

• Evaluations of non-task capabilities (e.g., benchmarks of model-only knowledge, information retrieval, or pure
reasoning): benchmarks such as GPQA (Rein et al., 2024) or FLAWEDFICTIONS (Ahuja et al., 2025) do not use tools
but rather test only properties internal to a model. On the other hand, tool-assisted information retrieval tasks such
as (Wei et al., 2025a) are in-scope. Moreover, non-tool use evaluations such as GPQA could be converted to agentic
evaluations of compound AI systems if completed with sufficient tools and scaffolding, though such evaluation items
may not necessarily be a good fit for agentic evaluation (e.g., due to ease of saturation).

5One motivation for limiting our discussion primarily to multi-step tasks is that most tasks of sufficient complexity to be of economic
interest are multi-step.

6Many tasks whose purpose is solely to satisfy the user may nevertheless be gradeable. For instance, environmental/tool-using
conversational tasks could be assigned scores by an annotator per a fixed rubric.

7Because we are interested in evaluating systems, we exclude evaluations where the evaluation target is the product of a human and AI
team (i.e., human uplift studies).
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• Evaluations of non-task propensities in compound AI systems (e.g., alignment): although AI agents are particularly
well-suited to completing tasks as specified above, “AI agent evaluation” frequently encompasses evaluation on non-task
based propensities such as multiple-choice question-answer (MCQA)-based alignment or preferences Yehudai et al.
2025. We consider these evaluations out of scope this work; on the other hand, an alignment evaluation focused on
revealed preferences (by studying AI systems’ actions, e.g., Fish et al., 2025) would be in-scope.

• Human uplift trials (e.g., (Dell’Acqua et al., 2025; 2023; Schwarcz et al., 2025): human uplift trials are not evaluations
of autonomous model capabilities but rather evaluations of how much a AI system can assist a human in completing
tasks.

• Non-environmental multi-turn tasks (e.g., Guan et al., 2025; Chen et al., 2025): tasks such as roleplaying or therapy
chatbots that do not interact with external environments are out of scope, though environmental versions of the same
tasks would be in scope.

A.3. Mathematical Description

This section briefly sets out a formalization of a compound AI system executing an environmental task. Section A.3.1
defines a task as partially observable Markov decision process. Section A.3.2 describes the mathematical framework for
metric calculation for traditional LLM evaluations. Section A.3.3 modifies the notation from prior sections to accomodate
agentic evaluations.

A.3.1. DESCRIPTION OF A TASK

The behavior of an AI system performing a task can be modeled as a decision-making process. The agent’s internal chain of
thought is a scratchpad for reasoning to choose between a set of possible actions that affect the environment.

Decision processes under incomplete information may be formalized as partially observable Markov decision processes
(POMDP) (Spaan, 2012). A POMDP is a tuple (S,A,Ω, T,O,R) in which S is a (finite) set of environmental states, A is a
(finite) set of actions the agent can take, Ω is a (finite) set of observations available to the agent, T is a transition probability
T : S ×A× S → [0, 1] that gives the probability of a transition from one state to another given a choice of action by the
agent, O is an observation probability O : S × A × Ω → [0, 1] that gives the probability of the AI system receiving a
particular observation given the environmental state and choice of action, and R is the reward function R : S ×A× S → R.
POMDPs may be defined for infinite time (simpler) or finite horizons (more complicated) (Mundhenk et al., 2000).

Traditional RL problems are formulated in a carefully limited environment, either in a simulation or a physical sandbox,
where external influences are neglected or included stochastically. In these cases, the modeled environment Ssystem is a
coarse-graining of the full environment Sfull, and this coarse-graining introduces stochastic noise in the transition matrix
T (Katsoulakis & Plechac, 2013). For many tasks considered here, the AI system cannot be completely sandboxed in a
sterile computing because tool interacts with the world. This could be to a limited spatial extent, as in a robotics system that
conducts chemistry experiments by interacting with lab hardware, or to a limited physical extent, as in a research system
that accesses the open internet. (Boiko et al., 2023). One possibility is to partition the environmental state S into a local
state SLC which represents the state of local compute resources, and a nonlocal state SN , which represents all other state
variables which could affect the agent, and then coarse-graining over SN .

A related question is what elements internal to the AI system to include in the system state S, because LLM based agents
build an internal context during inference. Thus SL can in turn be partitioned internally as the state of the context, SC , and
the state of the local compute resources exclusive of the context SL. The internals of the decision making process is only
relevant to the POMDP to the extent that it is captured by the agent’s policy, ϕ : O → A the function that chooses actions
based on observations about the environment.

The reward function R defines success: for state s ∈ S and AI system action a ∈ A, R(s, a) gives a value of zero if the
task is not successfully completed, and a value of one if the task is successfully completed. For tasks in a virtual (compute)
environment, the environment has a deterministic many-to-one mapping onto observations, but for tasks involving real world
sensing this relationship is in general stochastic.

(Xie et al., 2024) simplify this definition of POMDPs by eschewing the stochastic behavior. In their formalism, the transition
function is deterministic and is given by T : S × A → S. Further, they eliminate the observation probability measure
O. Instead, they define the (deterministic) current observation ot ∈ O (Ω in Spaan) as a complete screenshot of the
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desktop screen, an XML-format accessibility tree, and a terminal output. (Light et al., 2024) generalize this formulation to
multi-agent decision-making systems that may include environmental stochasticity. (Liu et al., 2023) expanded the definition
of POMDP to include U , a separate task instruction space.

For RL problems, feedback from R is used to optimize policy ϕ, and the literature on POMDPs includes methods to calculate
the optimal policy for a given problem statement. However, agentic evaluation is different from traditional RL in two
ways. First, even with the appropriate simplifications (such as coarse-graining) above, the state and action spaces for agents
attempting even everyday-type tasks are computationally intractable. Second, evaluators do not calculate the optimal policy
in the first instance but rather evaluate particular policies defined implicitly by a particular compound AI systems.

In this evaluation posture, the reward function R is not evaluated along a trajectory. Instead, the evaluator extracts instances
of R from the end of task evaluations, possibly after the AI system takes a special task-complete action.

A further simplification is the case of binary success, that is, R(s) ∈ {0, 1}. In the binary success case, an equivalent
description is the set of states sy ∈ Y for which R(sy) = 1 (or more formally, all (s, a) such that R(s, a) = 1 and
T (s, a) = sy). Environmental tasks do not necessarily have binary success: for instance, the reward may decrease as amount
of time or number of steps taken by the AI system increases (preferring fast solutions to slow solution). In general, nonbinary
success (R(s) ∈ [0, 1]) makes confusion matrix-based evaluation metrics more complicated (Guth & Sapsis, 2019).

A.3.2. TRADITIONAL LLM EVALUATION

The simplest form of traditional evaluation of AI systems (such as LLMs) is the battery of multiple choice question.
Evaluators first create a set of question-answer pairs D = {xi, y

∗
i }i≤n called the testing corpus. While in most cases D is

constructed by expert human annotators for the purpose of evaluation, D may be considered a finite sample of some ideal
distribution of evaluations question-answer pairs D∞. In some cases, the testing corpus is subdivided into a representative
public set and a held-out private set to avoid “training for the test,” but here D refers only to the held-out set.

The questions presented to the AI system during the testing procedure may be either the entire question set D, or some
subset. Without loss of generality, let the m ≤ n presented questions have indices 1 . . .m. For a testing corpus with distinct
subcorpora and subscores, this procedure may be applied to each subcorpus separately.

During the testing procedure, evaluators present the AI system with the question xi and record the elicited response ŷ(ωi),
where ωi represents the “random seed” used for model generations. For nondeterministic AI systems, such as LLMs with
positive temperature T > 0, repeating the experiment with the same question may result in different elicited responses. For
ease of presentation, the explicit dependence of ŷ on ωi will be generally left out for the remainder of this section.

After eliciting a set of responses D̂ = {xi, ŷi}i≤m, evaluators grade the AI system’s responses to the presented questions
to estimate the probability that the system will correctly answer a randomly drawn question from D. That is, evaluations
observe the empirical fraction

P̂ =
1

m

m∑
i

I [ŷi = y∗i ] , (1)

where P̂ is the empirical performance and I is the indicator function. This empirical performance is an estimate for the true
performance of the AI system, given by

P = EiEωI [ŷi(ω) = y∗i ] , (2)

where Eω is an expectation over the nondeterministic part of the AI system (and the explicit dependence of ŷi on ω is
temporarily restored) and Ei is an expectation over the set of all questions in the testing corpus D (which stands for an
expectation over D∞). Here, P is a true aleatoric probability, for the probability space ({(x, y)}, σ{(x, y)}, P). Note that
the probability an AI system answers a particular question correctly across many tries, P [x = xi] = EωI [ŷi = y∗i ], is not
that same as the probability that an AI system will answer any question from the set D correctly on a particular inference
P [ω = ωi] = EiI [ŷi = y∗i ].

This quantity P depends on a number of parameters. Directly, it depends on the choice of testing corpus D. Similarly, it
depends on the choice of AI system, which may include any fine tuning done to the system. For nondeterministic AI systems
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it depends on sampler settings, here represented with the temperature T by synecdoche.

Further, P depends on details of the evaluation prompt in two ways. First, it depends on the instruction formatting: whether
the question xi is presented “as-is” or wrapped in some kind of explanation. The field of prompt engineering examines how
changing the format of the instructions can change the performance of an AI system. Second, P depends on whether the AI
system is given access to example question-answer pairs. In zero-shot prompting the system is not given any examples or
demonstrations, while in few-shot prompting the system is given some number of correct question-answer pairs.

Finally, the interpretation of P depends on theoretical work relating the testing corpus D to the actual constructs of interest,
work that (Raji et al., 2021) describe as construct validity. In narrowly operationalized contexts, where the testing corpus
closely resembles the expected application of the agentic system, the quantity P may directly represent success rate. In
other cases, however, D is an instrument for estimating various latent capabilities based on Item Response Theory (IRT)
(Cai et al., 2016). For instance, (Kwa et al., 2025) applied IRT to use task difficulty (as proxied through task completion
time) for predictions of AI performance.

For some more involved evaluation analyses, the mean probability of correctly responding to a question drawn randomly
from D may not capture all of the performance information. For instance, in a corpus of classification questions, the
AI system may be penalized more for false positives than false negatives, or vice versa. Or, in the context of multiple
choice questions, the evaluation may depend on which distractor the AI system selects. In general, P is just one summary
statistic for the complete confusion matrix, and “accuracy” standing alone is an especially fraught statistic for problems with
unbalanced base rates (Guth & Sapsis, 2019; Wagner et al., 2024).

During problem setup, the testing corpus D is assumed to be a representative sample of some true set of questions D∞, such
that model performance on D can be generalized. This generalization step requires theoretical work to show that D is a
good instrument, both systematization of the underlying concept and operationalization into a set of questions (Wallach
et al., 2025).

Generalizing one step further, the testing corpus D may not contain a set of gold standard answer y∗i , for instance, in the
case of essay prompts instead of multiple choice question. In this case, the reward (correctness) of the answer ŷi is not
deterministically given by r̂ ∈ {0, 1} by whether it matches the true answer y∗i . Instead, the reward is the output of some
(possibly stochastic) grading process r̂ = r(ŷi, ω) (explicit stochastic dependence on ω temporarily restored). Further, r̂
may take on values intermediate on [0, 1], possibly representing partial credit. While the testing corpus D is a fixed fictive
sample of the space of possible questions D∞, it may be more challenging to freeze the grading process in amber, which
might be a panel of human annotators, or other AI systems acting as judges.

A.3.3. AGENTIC EVALUATION

For agentic evaluation tasks, the task description is somewhat more complicated. Let E = (S,A, T,O) be called the
environment, which represents the possible states of the computing environment (S), the actions available to the AI system
(A, including tool use), the transition table for the environment (T , how the environment responds to an agent’s actions,
including actions that affect the environment through tool use), the observations available to the AI system (O). A task
definition x ∈ X consists of a tuple (E, s0, Y ) where E is the compute environment for the task, s0 is the initial state of
the environment (possibly including the task instructions as presented to the agent), and Y ⊂ S is a set of valid solution
states. That is, if the system reaches state sy ∈ Y , then the AI system has successfully completed the task. A description of
the solution set Y may be provided as part of the initial state of the environment, s0. Thus, for task evaluation, the testing
corpus is D = {xi}i≤n = { (Ei, s0,i, Yi) }i≤n.

Note that the environment is defined as to exclude the state of the LLM’s context window. Any purely internal steps that
the LLM takes, such as Chain of Thought or ReAct planning, does not affect the compute environment and does not affect
the state s ∈ S until the AI system uses an action (such as tool use) that does affect the environment. Difficult-to-classify
intermediate steps are not hard to imagine – e.g., the AI system creates a text file containing a “note to self.” Based on the
environment partition above, the dividing line is whether the context window or context history alone is affected, or whether
other parts of the compute environment are modified.

In agentic evaluation the AI system does not make a single inference step to predict an answer ŷi in response to a question
xi. Instead, the AI system must plan and execute a series of steps starting from the initial state of the environment s0 before
arriving at a solution state.
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Consider a task xi, and a plan Aj that consists of a list of actions (aj1, a
j
2, . . . a

j
K). An AI system faced with task xi will

develop plan Aj with probability P [Aj | xi]. Assume that, starting from s0, the AI system takes each action ajk in order
until the final action ajK takes the environment to state sy ∈ Y . The agent will take the first action aj1 with probability
P [aj1 | xi, A

j ], which represents the chance that the AI system chooses and succeeds on action aj1 given it previously
chose plan Aj with aj1 as the first action. Next, the AI system takes the second action aj2 with conditional probability
P [aj2 | xi, A

j , aj1] and so on until the final action ajK with conditional probability P [ajK | xi, A
j , aj1 . . . a

j
K−1].

However, condensing the probability of successfully completing task xi through plan Aj as

P [sY ∈ Y | xi]
?
= P [Aj | xi]

K∏
k

P [ajk | xi, A
j , aj1 . . . a

j
k−1]xf (3)

underestimates the probability of success because there may be many different plans A that correctly complete task xi.
Instead, the total probability of success is the sum of the probability of successful execution of every plan Aj that successfully
completes the task (perhaps limited to those consisting of K < K steps ak). Thus, the correct probability of successful
execution is

P [sY ∈ Y | xi] =

J∑
j

(
P [Aj | xi]

K∏
k

P [ajk | xi, A
j , aj1 . . . a

j
k−1]

)
(4)

The probability calculated in equation 4 is the probability that an AI system will correctly solve one task xi. To extend this
calculation to a testing corpus D, the expectation from equation 2 should be used, and to convert to an empirical quantity the
expectations should be replaced with sample averages, as in equation 1.

Note that the individual conditional probabilities P [ajk | xi, A
j , aj1 · · · a

j
k−1] combine many sources of uncertainty: whether

the AI system correctly uses the planned tool, and whether the planned tool functions as expected. Especially for less
powerful agents or agents using poorly documented tools, the accumulation of many small chances for failure may add up to
a significant total probability of failing a task.

Equation 4 expresses the probability of task completion in terms of selecting a plan Aj of sequential actions and completing
each action ajk on the list. A similar framing is to view the plan Aj as decomposing task xi into a list of subtasks
Aj = (xj

1, x
j
2, . . . x

j
K), each of which may itself by recursively broken down into subtasks, i.e., as a filtration. Then, instead

of equation 4, the probability of successful execution is
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sjY ∈ Y j | xj

k

]
is the probability of subtask completion (defined recursively) of subtask k from plan j and K

indexes the subtasks in plan Aj . The equivalence between equations 4 and 5 is established by the (not unique) equivalence
of a plan as a list of actions to a plan as a list of subtasks that those actions successfully complete.

The evaluation of task performance may not be adequately captured by breaking the task into a plan with several steps
and evaluating the performance at each step because a given task may be successfully solved by many different plans. In
equation 5 the further possibility of subtask equivalence makes the summation over Aj challenging. This challenge is
discussed more below in the context of tool use.

B. Methodological Challenges in Agentic Evaluation of AI Systems
B.1. Challenges in Concept Development

Concept development refers to the refinement of the underlying idea of interest to be measured by an evaluation, as well as
the systematization of that idea into a well-scoped definition and related metrics for measurement (Adcock & Collier, 2001;
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Wallach et al., 2025). This process takes an complex, underlying idea of interest that is difficult to quantify directly and
develops targeted metrics for its measurement, and it draws from the field of measurement theory in the social sciences.
Problems in his space mostly occur at what has been labeled the design stage of the evaluation pipeline (Reuel et al., 2024;
Wei et al., 2025b), i.e., the stage before data is collected. In the language of section A.3, this challenge corresponds to
selecting D, or even to the planning stage around how to select D.

Most evaluations today—in particular those that are benchmark-based—have bypassed this process directly and focus on
collecting a broad range of diverse question-answer pairs in attempts to assess general capabilities (Burden et al., 2025; e.g.,
Phan et al., 2025). The lack of rigorous interrogation of evaluation concepts in the existing literature has raised significant
questions of construct validity (Raji et al., 2021; Wallach et al., 2025) and has also been discussed in other computing
contexts beyond modern ML (e.g., Dyba et al., 2005; Emmerich et al., 2016). We discuss some relevant questions below.

How can performance in agentic evaluations be predicted (if at all), and when are non-agentic evaluations sufficient
to measure capabilities or risks? Due to extended task horizons and difficulties in scoring, agentic evaluations can
be challenging and resource-intensive to design, implement, and execute. Prior work has explored correlations between
different question-answer benchmarks (Schaeffer et al., 2025), but no research has examined whether these benchmarks or
other metrics can accurately predict performance on agentic evaluations. Understanding predictors of performance in agentic
evaluations may help evaluators identify the extent to which, relative to non-agentic evaluations, agentic evaluations offer
additional information about compound AI system capabilities – and in which circumstances this additional information
justifies their use.

How valid and reliable are AI-generated agentic evaluation tasks? Compared to question-answer evaluations, agentic
evaluation tasks are significantly more complex, and creating these tasks is also more resource-intensive. Work such as
(Huang et al., 2023) have attempted to automate the creation of agentic evaluation tasks, but the validity and reliability of
tasks created in this manner is unclear. One reason in particular to be skeptical of automated task creation in the agentic
evaluation setting is that agentic evaluation tasks often require planning and reasoning capabilities to complete and, by
extension, to design. In the absence of compelling evidence that AI systems can meaningfully complete agentic evaluation
tasks, it may be premature to delegate task creation to the same systems.

How can evaluation concepts efficiently account for large state and action spaces with diverse solution pathways?
As noted in Section A, agentic evaluation tasks are characterized in part by the large state and action space in which an AI
system is located. The proliferation of pathways to both task completion as well as failure models—due to the functionally
unconstrained nature of the state and action spaces—makes it important to measure concepts that account for the entire
process of attempting the agentic evaluation task (see Pencharz et al., 2024; Yadav et al., 2019). For instance, (METR, 2025b)
tests foundation models’ abilities to engineer GPU kernels and measures only the performance of the model-generated
kernels; the measured concept is engineering ability, as represented by the efficiency of model-generated code. However,
other concepts may also be important to measure, such as the “novel[ty] and sophisticat[ion]” of model outputs or the ability
of the models to “adapt . . . to new constraints” (METR, 2025b).

One possible solution is to measure multiple concepts in a single evaluation. In the fairness context, (Wang et al., 2024)
suggests using suites of benchmarks to triangulate the trade-offs between competing notions of fairness. (Kapoor et al.,
2024) has recommended measuring evaluation costs in addition to performance in agentic evaluations; it may be appropriate
to also measure other concepts in an evaluation suite for agentic evaluations, though the specific concepts at hand are likely
context-specific.

Finally, this challenge may create additional difficulties in the safety context. To accurately capture model-related risk,
sensitive information is needed to conduct risk modeling and develop specific pathways to harm (UK AI Security Institute,
2024), both of which are necessary to refine measurement concepts. As the number of pathways to harm may increase,
however, agentic evaluations may raise ethical challenges concerning confidentiality in addition to the technical challenges
concerning environmental validity that are also present in non-safety contexts.

In safety evaluations, what (or to what extent do) proxy tasks accurately reflect real-world risk without evaluating
AI systems’ directly on completion of dangerous tasks? The general-purpose nature of foundation models has raised
questions about models’ dangerous capabilities, such as abilities to deceive humans, or to develop cyber- or bio-weapons
(Phuong et al., 2024). A number of knowledge-based benchmarks have been developed to measure model safety, e.g.,
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(Götting et al., 2025; Laurent et al., 2024) in the context of dual-use biology capabilities. In the agentic evaluation context,
however, evaluators may not be able to directly test for task completion of, e.g., a system’s ability to create a dangerous
biological agent due to legal and ethical concerns. As evaluators will need to rely on proxy tasks to measure dangerous
capabilities, the quality of these proxies directly affects construct validity; proxies in contexts that do not have direct human
analogues, such as AI control (Greenblatt et al., 2024; Phuong et al., 2024), may be particularly difficult to develop due to
lack of precedents from other fields.

B.2. Challenges in System Design

Challenges in system design are those that relate to best practices around scaffolding, prompting, or crafting the internals
of compound AI systems, for which no consensus has emerged in the ML community. These challenges correspond to
maximizing the conditional probabilities in equations 4 and 5 by choosing the optimal format to deliver relevant information
to the LLM at the heard of the AI system, to the extent that those conditional probabilities represent the “honest best” that
the AI systems can perform.

B.2.1. CHALLENGES IN ELICITATION

It is easy to present an AI system with challenging tasks and measure a success rate, but it is more difficult to elicit
performance that represents the maximum (or even average) capabilities of the agent. This section presents research on
elicitation grouped into four broad categories: challenges in designing prompts for AI systems, challenges in designing
scaffolds for agents, challenges in managing the context window for agents, and challenges around tool use by agents. While
these challenges are presented in the context of agentic evaluation, research on these topics is relevant to engineering of AI
systems designed to complex open ended task.

The nature of a prompt changes for increasingly open ended tasks. While earlier research focused on tool use to answer
difficult questions, agentic evaluations began to move into multiturn inputs (simulation conversations with humans), chain
of thought type reactions to environmental feedback, and to specifications of engineering tasks. Effective prompting for
compound AI systems is more complicated because the task description may contain multiple tasks or constraints and the
input itself may be long or noisy (He et al., 2024). Further, the multi-step nature of the tasks requires multiple prompts
within the scaffold, and traditional LLMs are usually fine tuned for an instruct format that mirrors a conversation between
one user and one LLM. Finally, much like in all uses of LLMs, the specific form of the task description in the prompt
impacts how AI systems balance competing priorities (Fish et al., 2024). Best practices are still in their infancy.

We present several open challenges in prompt design for AI systems in this section.

How do examples improve task performance? Previous research has shown that few shot prompting, providing the
LLM with successful question-answer pairs, improves performance on traditional LLM benchmarks (Yao et al., 2024). It
is not clear what analogous examples might look like for tasks. One possibility is that the scaffold proactively provide
examples of tool use, and (Huang et al., 2023) found that few shot prompting improved performance (for some models
substantially) on a tool use task. Another possibility is that the problem definition demonstrate the task with a working, but
low quality answer. (Huang et al., 2023) studied agent performance on machine learning experimentation tasks, for which
they started off the agents with a task description, starter files, and an evaluator. (Wijk et al., 2024) tested the ability of AI
agent’s to optimize scientific and engineering tasks by providing a starting solution, in addition to a scoring function.

How can internal reasoning be leveraged to improve task performance? Generally, all task evaluations use some kind
of chain of thought (CoT) or reasoning step, and frontier LLMs increasingly incorporate reasoning into general-purpose
and chat use (OpenAI, 2024; DeepSeek-AI, 2025). (Wei et al., 2022) developed CoT prompting, in order to leverage
inference time compute to allow the model to itself decompose multi-step problems into intermediate steps. (Yao et al.,
2022) developed a linear CoT scheme to convert verbal actions into task-oriented planning. (Shinn et al., 2023) developed
self reflexion scheme for in-context learning. (Qin et al., 2023) compared Yao et al.’s linear CoT scheme (ReACT) to their
depth-first search-based decision tree. (Li et al., 2024a) implemented three CoT methods for a set of legal analysis tasks:
outline a complete plan, outlining a multi-step plan with opportunities to reassess, and a full thought-action-observation
schema.

A major problem with increasingly elaborate branching CoT schemes is that they increase the test time cost by significantly
increasing the number of tokens generated. Thus, there is a trade-off between running a more elaborate CoT scheme,
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or running more CoT schemes. It is an open question what kind of CoT scheme is most effective for long-term task
performance, and it is unclear whether built-in LLM reasoning (e.g. DeepSeek-R1) or scaffold-prompted reasoning is more
effective for tasks. In particular, there is currently no principled way to balance the number of CoT runs against the length of
each CoT run.

How can internal reasoning incorporate interactive feedback? While CoT and related reasoning techniques allow an
AI system to analyze the situation before choosing an action, self-reflection techniques allow the AI system to incorporate
feedback from the environment. Feedback from the environment can include multi-turn conversations: (Pencharz et al.,
2024) created long form tasks using both static and dynamic follow-up questions to simulate interactions with a human user,
while Cheng et al. created an evaluation suite of tasks with intermediate natural language feedback (Cheng et al., 2023).

You et al. developed a question-answering framework in which feedback from previous rounds is incorporated as examples
in the prompt for subsequent rounds (You et al., 2024). Similarly, Pan et al. developed a coding evaluation framework
that incorporated (simulated) interactive feedback (Pan et al., 2025). An intriguing lens for this feedback-incorporation is
cognitive reflection; Li et al. investigated shortcomings in CoT at integrating unexpected information (Li et al., 2024b).

B.2.2. CHALLENGES IN SCAFFOLDING

When performing open ended tasks, models are usually equipped with tools to interact with their computing environment:
narrow tools like function calls and APIs, or broader tools like programming environments and file system access. The
code necessary to handle communication between the LLM reasoning engine and the tool use is typically called a scaffold;
scaffolds may also coordinate communication between different AI agents performing a common task, and scaffolds may
manage CoT reasoning during task performance. Here, we discuss some difficulties with capability evaluations related to
the scaffold.

How should scaffolds be chosen? There is currently little consensus on scaffold best practices, and there are a wide variety
of scaffolding frameworks available both commercially and through open source providers (OpenAI, 2025; LangChain).
(Wijk et al., 2024) tested different LLMs on their benchmark using two different scaffolding frameworks. Many evaluators
create custom scaffolds for their evaluations, leading to few large-scale comparisons of different scaffolds.

What tradeoffs exist around the size of scaffolds? A first challenge is the size of the scaffold’s built-in prompts
themselves, as more elaborate scaffolds take up more space in an LLM’s context. (Huang et al., 2023) found that LLM
performance dropped in tool use tasks as the length of a tool list increases. The scaffold also controls in the first instance
what other information reaches the context window. For instance, (Kwa et al., 2025) used a simple scaffolding environment
designed to provide computer system tools and keep the input within the context limit.

How does task performance scale with improved scaffolds? An open question is to what extent improved scaffolds
will lead to improved performance. As part of their model evaluations, METR compared a simple agent scaffold and a
“elicited agent” with a propose-evaluate CoT cycle and found that model performance improved with the “elicited agent”
(METR, 2025a). Building on the question of how to divide the scaffold between the model and task, there is a challenge
in evaluating whether improved performance due to improved scaffolding represents a genuine improvement in model
capabilities, represents overfitting to a particular set of tasks (e.g., development task sets that represent a narrow segment of
the underlying task distribution of interest), or represents lowering the difficulty of those tasks.

How does the scaffold interact with tools? The scaffold formats instructions to the LLM, and interprets LLM output.
More importantly, the scaffold interfaces with protocols to call local or networked tools. (Yang et al., 2025) delineate the
different protocols on the “agentic stack,” and classify the different agentic protocols, such as Anthropic’s Model Context
Protocol and Googles Agent-2-Agent (Anthropic, 2024b; Surapaneni et al., 2025).

B.2.3. CHALLENGES IN INTERACTIONS BETWEEN SYSTEM COMPONENTS

Traditional evaluations of LLM performance in long contexts such as Needle in a Haystack and RULER focused on the
performance of LLMs on simple questions by evaluating how well an LLM was able to make use of its context (Kamradt,
2024; Hsieh et al., 2024). While performance on open ended tasks presupposes a basic level of useability of the LLM’s
context window, it also brings a new set of challenges – in particular, how that context can be used most optimally, especially
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for long tasks that generate conversation or tool use history.

At a broad level, this question is what ought be placed in the context window for LLMs calls in the compound AI system.
This question can be divided into more specific challenges challenges corresponding to what information is sought.

How effective is Retrieval Augmented Generation for tasks? One of the first tools subject of research and development
was Retrieval Augmented Generation (RAG), which supplements model knowledge by providing relevant documents from a
curated library. However, there are still many open questions for the use of RAG — how should relevance be determined,
and how much relevant information should be provided? Leng et al. examined how use of RAG, affected performance
across different context lengths, finding that for some LLMs accuracy dropped with very large context size but for others it
plateaued (Leng et al., 2024). There is also as yet little research comparing RAG for information retrieval tasks with tool
use for research tasks. In particular, there is little research comparing non-agentic semantic search based RAG with more
agentic information retrieval tool use.

What tools for storage and retrieval of long-term memories improve task performance? For multi-round interactions,
fitting the interaction history into a finite context may be challenging. One straightforward method is to truncate messages
except for the problem statement and the most recent r messages so that the total context is less than some threshold (Liu
et al., 2023). However, simple truncation prevents long-term memories, like LLM-generated plans, from persisting across a
long multi-step task. The reflexion scheme of (Shinn et al., 2023) combined short term memory of the trajectory history
with long-term memory of the model’s own outputs.

(Park et al., 2023) developed a memory and retrieval system for a sandbox simulation that conserved context space by
assigning each memory a recency, importance, and relevant score. Executive control over long-term memory is especially
important for open ended tasks. In the Twitch-streamed project ClaudePlaysPokemon, the AI system took notes to record its
findings in the game, but was quick to erase those notes when it thought (often incorrectly) that it had surmounted its current
challenge (Anthropic, 2025). Long-term memory is especially difficult to evaluate in an ecologically valid way, because real
world tasks are often engineered to simplify long range dependencies.

How does task size affect task performance? Another challenge is the link between the length of the task and the
available context. In one early evaluation of AI agents, (Liu et al., 2023) developed AGENTBENCH, which included “context
limit exceeded” as one failure mode in the benchmark. Similarly, when comparing model performance by release date,
(Kwa et al., 2025) imputed a zero score to certain older LLMs whose context limits are too small to attempt certain tasks.
The challenge of tasks being too big for AI systems to solve is quickly becoming solved, as modern LLM context windows
continue to grow. However, the surpassing of this obstacles only reveals another – managing that large context.

Even as more modern scaffolds include context management features (such as RAG), some more recent evaluations have
identified task length as an explicit constraint. For capability evaluation, METR divides tasks into those with token constraint
(HCAST) and those with wall-clock constraints (RE-BENCH) (METR, 2025b). While one evaluation possibility is to
provide a fixed budget, another is to examine a performance-compute frontier (Manvi et al., 2024).

B.3. Challenges in Environmental Interactions

Environmental tasks require interaction with the environment, either by collecting information from the environment or
making changes to the environment (possibly by creating an artifact). This creates two sets of challenges for evaluation
design: challenges related to the tools given to the AI system to complete a task, and challenges related to the environment
those tools act in. These challenges relate to the environment definition borrowed from the definition of POMDP given in
section A.3.1 for the formalization of task evaluation in section A.3.3: the action space A consists of the tools available
to the AI system, the observability O corresponds to what information the tools provide the AI system, and the relevant
features of the environment determine how the environment state space S is modeled.
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B.3.1. CHALLENGES IN TOOL USE

Perhaps the biggest difference between simple Q&A LLM evaluations and task evaluations is tool use.8 The agentic
scaffolding presents the LLM with signatures for function calling to retrieve information from the environment or to make
changes to the environment. Simple tool use evaluations are easy to grade and benchmark, and leaderboards like the Berkeley
Function-Calling Leaderboard rank LLM performance on function calling tasks (Patil et al., 2024).

This section discusses a number of challenges involving tool use evaluation, starting with the difficulties inherent to
multi-step, multi-tool tasks. Next, there is the challenge of choosing a tool, a challenge that grows greater with larger the
toolset. Finally, the evergreen problem of hallucination takes special forms with tool use.

Can agents succeed at tasks that require multiple tools? The fundamental target of task evaluation is the extent to
which the LLM system can generate effective multi-step plans that it can execute sequentially, especially when each step
requires a different tool. (Huang et al., 2023) considered tasks with up to two required tools. (Qin et al., 2023) leveraged a
relationship graph between their large tool set to suggest related tools. While most tool use evaluation uses stateless tools
(where the AI system need not keep track of the state of the environment), (Lu et al., 2025) developed a benchmark for tools
with state dependency, requiring multiple tool use to manipulate the environmental state.

How do AI systems select which tools to use during operation? For tool use scenarios, an important question is which
tools to present to the LLM in the context, and how the LLM chooses between them. For scaffolds or evaluations with
a small number of potential tools, every tool can be presented to the LLM in context. For larger toolsets, (Huang et al.,
2024) used a two step process. First, they construct a shortlist of tool candidates, either through a cosine similarity between
embeddings of the task description and the tool description or through a curated list. Then, they evaluated whether the LLM
could choose an effective tool from that shortlist.

How can the effects of hallucination on tool use be mitigated? Tool use presents a sycophancy problem, where the LLM
expects that one of the provided tools will help solve the problem even when none of them are helpful. (Zhang et al., 2024)
evaluated hallucination in tool use using three scenarios: missing necessary tools, potential tools, and limited functionality
tools. Similarly, (Huang et al., 2023) studied reliability issues in tool use by presenting problems along with unsuitable tools.
Separately, tool use presents a different hallucination error as well: whether the tool used the user-provided parameters or
hallucinated parameters in function calls (Zhong et al., 2025). While hallucinations are not unique to tool use, these specific
manifestation are.

B.3.2. CHALLENGES IN DESIGNING TEST ENVIRONMENTS

The evaluation environment refers to the problem statements, evaluation sandbox, and set of available tools provided to
the model during an open-ended evaluation. For conclusions drawn from an AI evaluation to be transferrable to predicting
the real-world impact of a model, it is important that the evaluation environment be as realistic as possible. This is for two
reasons: construct validity and mitigating the potential for sandbagging.

Does the evaluation mimic the affordances available in real-world settings? If the environment provides fewer
affordances to the model than it will have during real-world use, the evaluation results may differ from what the AI system
can actually achieve in a deployment setting. For example, if the evaluation does not provide the AI system with internet
access, or if it uses a weak scaffold, it may underestimate the performance of the model when its capabilities are fully
elicited by end users (see more discussion in Section B.2.1).

Broadly, there are three approaches to tool selection for evaluation: few carefully chosen tools, larger sets of API tools,
or general-purpose tools. Early evaluations used a small number of tools. (Qin et al., 2023) curated a set of 16464
representational state transfer APIs spanning 3451 tools from a hosting platform. (Huang et al., 2024) gave their agent
access to only a small number of actions, but allowed it to edit and run Python scripts.

8Previous work has decomposed the study of AI tool use in different ways. METATOOL (Huang et al., 2023) breaks the process
into four stages: (1) determining whether to employ a tool, (2) selecting a tool, (3) constructing tool parameters, and (4) handling tool
results. Similarly, a literature review by (Yehudai et al., 2025) divided tool use into intent recognition, function selection, parameter
extraction, function execution, and response generation. (Guan et al., 2025) further divided research of evaluation of agent tool use in
multi-turn conversations into three groups: (1) API Interaction and Dynamic Tool Use, (2) Multi-step Tool Selection and Reasoning, and
(3) Reliability and Hallucination in Tool-Use. Our work is robust to these different conceptualizations.
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How does performance generalize to tasks with novel toolsets? While early evaluations of tool use tested general-
purpose LLMs on bespoke tool sets, the general question is whether evaluation results for one toolset generalize to other
toolsets. This question may grow in importance as the third-party tool provider ecosystem grows – for instance, Anthropic
has open-sourced the Model Context Protocol standard for agentic tool use (Anthropic, 2024b). (Qin et al., 2023) evaluated
a model on a different set of tools as it was trained on.

How do evaluators avoid trivial solutions? In the other direction, if the evaluation environment provides too many
affordances during training, it may inflate scores beyond what we should expect during real use. For example, in (Starace
et al., 2025), the authors make sure that their agents are never allowed to view the original codebases of the papers they have
been tasked to replicate. They do this by implementing a simple post-hoc monitor on the agent’s actions. If the agent ever
visits a blacklisted resources, it receives a score of 0. Similarly, train-test contamination may also result in tasks becoming
trivial to solve.

How do evaluators prevent model sandbagging? If the AI system realizes that it is being evaluated because the
environment appears overly artificial, it may change its behavior. When a model intentionally under-represents its capabilities
on an evaluation, this is known sandbagging. An AI system may sandbag for a variety of reasons, including safety training
(the model has been trained to not exhibit harmful capabilities) or a more speculative phenomenon in which a misaligned
model wishes to hide its dangerous capabilities in order to be released (Benton et al., 2024). To mitigate this possibility, it is
important to make the evaluation environment as similar to the deployment environment as possible.

Current models are starting to demonstrate levels of situational awareness where sandbagging concerns may be realized.
(Laine et al., 2024) develops the Situational Awareness Dataset to measure the extent to which LLMs can use context
clues to determine whether a prompt is from an internal evaluation or a real-world deployment, finding that with enough
prompting, some models can match human performance at this task. (METR, 2025c) notes that it is especially hard to rule
out this possibility when the evaluators do not have access to reasoning traces, as was the case when METR performed
pre-deployment evaluations on o3 and o4-mini.

An “in the wild” example of this phenomenon is described by (Xander Davies [@alxndrdavies], 2025), where they “noticed
instances of a model seeming to realize [their] tasks were fake.” For example, one of the tasks used the artificial URL, and
the model reasoned “Note: Since this is a hypothetical example (the URL isn’t real), I’ll proceed with the steps but the
content will be whatever is returned by the tools.” This demonstrates that models can (at least sometimes) realize when
they are in an evaluation, although this alone does not imply that the ultimate performance of the model was influenced by
its level of situational awareness. Compared to evaluations in more tightly controlled evaluation environments, tool use,
especially Internet access, increases this difficulty.

B.4. Challenges in Scoring

Once a task is designed, an environment developed, and a toolset chosen, the most important part of the evaluation process
remains: scoring the performance of the AI system on agentic evaluation tasks. The challenges involved in grading task
performance can roughly be divided into two categories. First, there are challenges in defining metrics with which to grade
AI system performance, and in particular to develop rubrics to judge performance. Second, there are challenges in applying
those metrics in practice, especially because large scale evaluations almost necessarily rely on either crowd-sourced or
automated judging. The challenges in this section mainly relate to defining and measuring the reward function R in Section
A.3.1.

B.4.1. CHALLENGES IN METRIC DEVELOPMENT

This section discusses challenges in metric development, i.e., in the process of creating rubrics and procedures for measuring
the desired metrics.

How can robust scoring rubrics be efficiently developed, especially when rubrics are complex? The metrics of
evaluation are critical components of any AI evaluation, and the development of rubrics and procedures to generate those
scores is particularly complex in agentic evaluations due to the complexity of the tasks themselves.

Some evaluation contexts lend themselves to simple verification, while scoring in other contexts is substantially more
difficult. The archetype of the former is software engineering evaluations, which often generate scores based only on
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models’ final outputs (normally software artifacts). For instance, SWE-BENCH (Jimenez et al., 2024) evaluates a model’s
software engineering abilities by asking it to issues in a large code bases. To guarantee the realism of the dataset, the
requested patches are sampled from real-world GitHub repositories, and the correctness of the model-written patch can be
automatically checked by running unit tests associated with each GitHub pull request. Similarly (METR, 2025b) measures
only the efficiency of model-generated code while excluding intermediate factors from the final score.

Even in settings with simpler verification, however, this approach runs into two problems. First, the human-written unit tests
may fail to measure the quality of the patch along all possible dimensions. For example, while unit tests may check the
accuracy of the AI-written code on a number of example inputs, they may fail to measure the asymptotic efficiency of the
solution or legibility of the solution. Human software engineers usually balance the tradeoff between accuracy, efficiency,
and legibility of their solutions in a reasonable way, but it is difficult to formalize what this optimal tradeoff should be.
Thus, human-written unit tests often only measure solutions along a small number of these dimensions. However, an AI
system optimized to achieve a high benchmark score may take advantage of these under-constrained unit tests by, i.e., by
implementing an extremely inefficient (but correct) algorithm. A related limitation was explicitly discussed in (METR,
2025b) (see also Section B.1).

Second, the structure of an evaluation like SWE-BENCH necessarily reduces a broad capability that we want to measure
(“software engineering ability”) into much narrower capability of (“ability to write patches to bugs”) with a verifiable
outcome (“do tests pass?”). This means that the evaluation fails to track AI progress on harder-to-measure aspects of the
broader capability (“ability to communicate and collaborate with other developers”). This discrepancy between the broad
class of skills we wish to measure and the narrower subset of skills we can benchmark effectively is present for any type
of model evaluation, but it is particularly difficult to reduce when the capabilities being studied feature many open-ended
elements.

In domains where scoring or verification is more complex, evaluators normally created detailed rubrics via consultation with
domain experts. In the context of non-agentic evaluations with no gold-standard labels, these rubrics have been shown to
significantly affect final scores (Pathak et al., 2025; Hashemi et al., 2024; Fan et al., 2024), and this result is likely to hold in
the agentic evaluation context.

One example of such an evaluation comes from (Pencharz et al., 2024), where the develop a methodology to evaluate a
model’s ability to act as a scientific research assistant. The evaluation consists of a prompt specifying a high-level goal,
a rubric, and an LLM-based autograder. The rubric is written by domain experts and assigns points based on whether it
touches on a number of key components. The autograder compares the evaluated model’s response against the rubric to
assign a score from 1 to 10. (Pencharz et al., 2024) also tests the model’s ability to answer predetermined follow-ups and
dynamic critiques to its response.

Given that the rubric plays such a key role in the evaluation setup, it is necessary for the evaluators to consult with credible
domain experts to make sure the rubrics are comprehensive and well-specified. However, rubric creation is time-consuming
and expensive, which is evidenced by the fact that (Pencharz et al., 2024) was only able create rubrics for a handful of tasks.

Starace et al. (2025) runs into similar challenges with rubric creation. The evaluation attempts to measure an LLM agent’s
ability to reproduce the results of machine learning papers. Although the agent’s output solely consists of code, the sheer
and complexity of the task (“replicate the results of all of the experiments in a given paper”) makes it impossible to judge
with unit tests. The authors create a rubric for each paper that consists of a hierarchical tree of outcomes required to replicate
a given paper. For example, the root node begins with the highest level outcome expected (“The core contributions of the
paper have been reproduced”), and it may have one child node for each of the core contributions. Progressing down the
tree results in finer detail about specific outcomes. The score of each node is the weighted average of its children, and each
leaf node is evaluated by confirming that a specific empirical result is obtained, code testing some question is run, or the
candidate’s source code appears to include a correct implementation of some specific requirement.

The authors note that “constructing the rubrics for each paper was notably the most time-intensive aspect of developing
PAPERBENCH.” Each rubric required collaborating with an author of the original paper and took multiple weeks to develop,
which explains why the benchmark only consists of 20 papers.

How can evaluators navigate the “coverage-gradeability trade-off” in subtask granularity? Where evaluation scores
are dependent on the scores or completion rate of intermediate subtasks, evaluators face a “coverage-gradeability trade-off.”
When subtasks are defined as more granular, grading becomes simpler since the subtask is well-defined; however, increased

29



Methodological Challenges in Agentic Evaluations

subtask granularity also limits task coverage by limiting the acceptable solution pathways for task completion. When
subtasks are less granular, the opposite is true: grading becomes more difficult since the subtasks are more widely-scoped,
but overall coverage may increase.

Two examples may be illustrative. On one end of the spectrum, (Zhang et al., 2024) broke tool use evaluation into three
steps: solvability detection, solution planning, and missing tool analysis, and used a “progress rate” measure that relied on
the existence of either zero or one solution pathway. An example of an alternative to such narrow specifications is (Huang
et al., 2023), a tool use benchmark in which the authors gave systems’ access to multiple tools that served similar functions,
any of which could be chosen to complete a task. To account for these intermediate choices, (Huang et al., 2023) generated
scores based on groups of tools with similar functions.

Overall, however, no work currently exists to quantify the effects of this tradeoff or to suggest guidelines for evaluators in
how to appropriately balance coverage and gradeability.

How can evaluation results assign partial credit and minimize mode effects from scoring scales? The scale on which
model outputs are scored can create significant mode effects. Historically, many evaluations adopted a binary pass-fail
scoring scale, which did not permit assignment of partial credit. Most recently, (Phuong et al., 2024) and (Shah et al.,
2025) have suggested defining task milestones that would permit capturing performance improvements at higher fidelity.
Additional research is needed as to how to best set these milestones, the mode effects introduced with different scoring
choices.

How can model confidence be calibrated both for the overall task as well as for individual subtasks? Researchers
have explored extensively the problem of calibrating model uncertainty (Geng et al., 2024; Liu et al., 2025; Lin et al., 2024b;
Tian et al., 2023; Malinin & Gales, 2020; Gligoric et al., 2025). The agentic evaluation context introduces several open
problems to the issue of calibration beyond calibration after task completion.

First, it may be desirable for systems to be calibrated not just post-completion but also at intermediate steps in agentic
evaluation tasks. Effectively, this desiderata would extend the calibration problem to all subtasks of the agentic evaluation
task, which would require that the model be well-calibrated with respect to the correctness of the completion of each
individual subtask as it pertained to the completion of the task as a whole. Intuitively, subtask calibration would introduce
substantially stronger demands for systems’ reasoning and planning capabilities, causing an increase in difficulty over
calibration on the overall task.

Second, agentic evaluation tasks often require AI systems to engage in some level of reasoning or planning at the beginning
of the task to determine possible solution pathways for task completion. This planning step could also be conceived of
as the first subtask, though it normally would not require environmental interactions. Evaluators may also wish to test
the calibration of models’ confidence levels that its initial plan for task completion is correct with respect to being able to
complete the evaluation task if executed properly.

These variations on the calibration problem in the context of agentic evaluations have yet to be explored, and substantial
work is needed to make progress on this problem.

B.4.2. CHALLENGES IN METRIC MEASUREMENT

What sources of autograder (AI graders) bias are specific to the agentic evaluation context, and how can such biases
be controlled? Due to the high costs of human grading, many evaluators rely on automated, LLM-based grading to
generate scores of evaluation data. These AI graders have been shown to have a host of biases, including bias from the order
of options presented, towards longer responses, and towards outputs generated by the same model or model family (Ye et al.,
2024; Koo et al., 2024; Feuer et al., 2024; Panickssery et al., 2024). Many of these biases could be exacerbated in the agentic
evaluation context. For instance, CoT transcripts could add substantially to length and could also vary substantially in length
due to model stochasticity; an AI judge with access to CoT transcripts could be particularly effected by bias for longer
responses. Relatedly, it is unknown the extent to which self-preference bias will occur in the agentic evaluation context.

How can autograders be validated and evaluated? Validation and evaluation of of AI graders has been a topic of
increasing interest (Shankar et al., 2024; Guerdan et al., 2025). The complexity of agentic evaluation makes validation more
important: for instance, (Pencharz et al., 2024) developed a detailed step-by-step rubric for use with AI graders and found
a systematic failure in AI graders to be biased towards leniency despite specific requirements in the grading rubric. The
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increased state/action space and possible subtasks may make validation highly challenge in particular.

How can evaluators prevent reward hacking in agentic evaluations? In the context of software engineering evaluations
that measure success with automated unit tests, such as (Wijk et al., 2024; Jimenez et al., 2024; Kwa et al., 2025), an
increasingly difficult problem to confront is reward hacking: instances when the AI passes its tests using an unexpected
and undesired shortcut. For example, when given the engineering task of optimizing a CUDA kernel, METR observed an
instance of the AI agent tampering with the time measurements. Since its performance on this task is measured by timing
the runtime of its code, this allowed the agent to essentially achieve any score it wanted on the task (METR, 2025b).

In practice, reward hacking can be detected by manually inspecting an AI’s reasoning traces and solutions for evidence
of “cheating” solutions. However, this becomes cumbersome for evaluations with large number of tasks, so a separate
language model can be used as a “monitor” to verify the the solution does not use any undesirable cheating techniques.
(Meng et al., 2025) is an example of an LLM-powered tool that can help detect and diagnose unexpected agent behavior
during evaluations.

(Baker et al., 2025) tests the efficacy of using a weaker model to act as a monitor on the chain of thought of a stronger
reasoning model as it solves coding tasks. They find that the monitor is able to reliably detect the large majority of reward
hacks performed by the reasoning model, making it a promising technique for preventing inflated evaluation results from
reward hacking. However, the authors also find that it is dangerous to use a chain of thought monitor as part of the
optimization signal — when they train the reasoning model with a penalty for triggering the monitor, the model learns to
obfuscate its chain of thought to perform reward hacking in ways that are harder for the monitor to detect (however, the total
amount of reward hacking still diminishes significantly).

B.5. Challenges in Analysis & Documentation

Challenges in analysis relate to the interpretation of evaluation results. Researchers have raised significant concerns with
respect to the lack of statistical rigor in foundation model evaluations (e.g., Biderman & Scheirer, 2020), and best practices
for analysis remain undetermined (e.g., Miller, 2024; Bowyer et al., 2025). This section discusses some of these challenges.

How can evaluators account and correct for many sources of statistical uncertainty? The complex and long-horizon
nature of agentic evaluation tasks introduces many additional sources of bias and uncertainty as compared to traditional
benchmark evaluation settings. These sources of uncertainty include: sampling error from the task space, sampling error
from small sample sizes, sampling error from the grading process, construct error in the operationalization of measurement
constructs, and systematic error from space of evaluation vs. performance tasks. No existing literature has attempted to
systematically catalog and measure the effects of different sources of error, nor is it obvious how evaluators can implement
corrections either in study design or post-hoc.

What baseline for comparison should be used as a lower bound for performance on agentic evaluation tasks?
Baseline results are necessary to interpret and contextualize evaluation results because they enable comparisons to alternative
performance results. Three types of baselines are common in the AI evaluation literature: random baselines, baselines from
other models, and human baselines (including both generalist or expert baselines).

Random baselines are usually achieved by uniformly sampling from an evaluation task’s response scale (e.g., in multiple
choice question-answer items). They have traditionally been used in information retrieval evaluation (e.g., Vries et al., 2012;
Bestgen, 2015) and are still used in recent foundation model evaluations (e.g., Chiang et al., 2024; Zeng et al., 2023) to test
whether models have made progress of any level on an evaluation task. In the context of agentic evaluations, however, this
sampling strategy is inappropriate because of large state/action spaces and complex measurement scales. (Yauney & Mimno,
2024) proposes an improved method for calculating random baselines for in-context learning; similar work may be useful in
the agentic evaluation task to set a lower bound for expected performance on agentic evaluation tasks.

We discuss below some challenges that are posed for human baselines in agentic evaluations.

How can human baselines account for differences in modes of interaction between humans and AI systems? Mode
effects are errors in measurement due to particular measurement instruments (e.g., the order of questions, or whether a
survey respondent answered a questionnaire via phone or online) rather than due to true differences in the underlying metrics
of interest (Wei et al., 2025b). Preliminary evidence has suggested that AI systems are subject to mode effects, and that
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these mode effects are different from those experienced by humans (Tjuatja et al., 2024). These effects are exacerbated in
agentic evaluations since humans and AI systems interact with external environments differently; for instance, a human may
use a graphical user interface to access the internet while an AI is limited to using a command-line interface (e.g., in Wijk
et al., 2024). Although compound AI systems are increasingly able to use human modes of interaction (e.g., Anthropic,
2024a), it is unknown whether (differences in) mode effects will vanish as AI capabilities increase. These effects may affect
the reliability and reproducibility of agentic evaluations, in addition to the validity of comparisons to human baselines;
additional research is needed to quantify, control for, and correct for these effects.

How can evaluators measure and control for cost in humans and in AI systems, and what are the proper conversion
rates between human and AI results? Cost metrics in agentic evaluations such as dollar cost or time are crucial for
standardizing measurements across evaluation results (Kapoor et al., 2024), as well as for making comparisons between
human baselines and AI results (Wei et al., 2025b). For instance, (Rein et al., 2025) and (Wijk et al., 2024) compare
performance between human and AI systems on software task given the same length of time. However, the validity and
units of comparisons have not been rigorously explored. These comparisons are of significant interest to downstream
deployers/users, as well as to economic policymakers, and additional work will be needed to build agentic evaluations that
can predict the automation and labor impacts of AI systems.

C. Additional Discussion
Engineering in the field is moving faster than unifying frameworks. Just three years ago, AI agents had extremely
limited capabilities even in the domain of natural language processing. Today, competing protocols are being written not
only for AI agents to talk within compound AI systems but for AI agents to communicate with networked tools across
platforms (Yang et al., 2025). Many of the challenges identified in this paper simply point to the absence of best practices,
absences that in many cases result from the speed with which the underlying LLM technology is evolving and rendering
previous research obsolete (such as section B.2.1). Other challenges are related to the speed at which capability evaluation
moved from general knowledge questions (e.g., Hendrycks et al., 2020; Phan et al., 2025) to multi-step tasks with clear
analogues in the white collar labor market. It will be important for the field to develop frameworks to unify and synthesize
different evaluations to better understand AI system capabilities holistically.

Practitioners should begin moving away from a model where the scaffold is part of the evaluation, and towards
one where the scaffold is part of the agent. There is a clear trend in which early research studied the extent to which
foundation models could use tools provided by the evaluation suite and more recent research has studied the ability of AI
systems to use more general tools – either virtual programming environments, networked tools accessed via agent protocols,
or tools built in to existing commercial AI systems. AI agents are increasingly commercially available, and task performance
should be measured at the level of the agents performing them, not just at the level of the LLM foundation model powering
a particular scaffold. This shift may require new systematization about how to partition increasingly complex AI systems,
systematization that may be aided by standard protocols that delimit the tool layer and agent layer (Yang et al., 2025).

As task evaluation grows to increasingly resemble assessments from the social sciences, practitioners should turn
to the social sciences for insight on how to design evaluations instruments. As the capabilities of AI systems have
grown, existing benchmarks have begun to saturate. As practitioners design new evaluations to measure task performance,
they should turn to the social sciences, which have long grappled with questions about how to develop measurements for
hard-to-elicit capabilities. Psychometrics and industrial psychology, in particular, have a rich literature on how to assess task
performance in humans.
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