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ABSTRACT

Real-world processes often contain intermediate state that can be modeled as an1

extremely sparse activation tensor. In this work, we analyze the identifiability2

of such sparse and local latent intermediate variables, which we call motifs. We3

prove our Motif Identifiability Theorem, stating that under certain assumptions it4

is possible to precisely identify these motifs exclusively by reducing end-to-end5

error. Additionally, we provide the SPARLING algorithm, which uses a new kind6

of informational bottleneck that enforces levels of activation sparsity unachievable7

using other techniques. We find that extreme sparsity is necessary to achieve good8

intermediate state modeling empirically. On our synthetic DIGITCIRCLE domain9

as well as the LATEX-OCR and AUDIOMNISTSEQUENCE domains, we are able10

to precisely localize the intermediate states up to feature permutation with > 90%11

accuracy, even though we only train end-to-end.12

1 INTRODUCTION13

A hallmark of deep learning is its ability to learn useful intermediate representations of data from14

end-to-end supervision via backpropagation. However, these representations are often opaque: val-15

ues in the intermediate vectors do not always map to semantically meaningful concepts. Concept16

bottlenecks (Koh et al. (2020)) have been proposed as a solution to this problem, labels for mean-17

ingful intermediate concepts help align signals in the intermediate layers with these concepts.18

Recent work in Genomics has demonstrated both the desirability and the feasibility of learning19

meaningful intermediate representations in the context of RNA splicing, a task where a function20

is learned to map RNA to a set of annotations identifying the boundary points between coding and21

non-coding regions. In Gupta et al. (2024), the authors attempt to identify the mechanism of splicing22

by breaking the end-to-end function into a motif identification function that maps the input RNA23

sequence to a set of annotations representing the binding sites of proteins (a “motif” being a nonzero24

entry in this intermediate activation tensor), and an aggregator function that maps these binding25

sites to the output boundary annotations. The paper showed that an approach similar to concept26

bottlenecks could reconstruct the desired mechanism when supplemented with an extreme sparsity27

constraint reflecting the extreme sparsity of the binding sites in the true biological mechanism.28

This raises an important theoretical question regarding the extent to which extreme sparsity alone,29

without additional intermediate annotations, can be used to identify an intermediate latent variable.30

In this work, we prove that under certain circumstances, extreme sparsity and end-to-end training31

alone are sufficient to identify an intermediate latent variable. Additionally, we provide and demon-32

strate an algorithm that is capable of such identification on three different domains.33

Example. Figure 1 shows a sample task we call DIGITCIRCLE and compares it to the splicing34

task. The input is a noisy image of a circle of digits, and the output is a list of the digits read35

counterclockwise starting from the smallest. The key question for this paper is whether it is possible36

to learn to recognize individual digits given only end-to-end data (paired examples of x and y∗).37

Contributions. We present three main contributions in this paper. First, we provide a proof of38

our Motif Identifiability Theorem: that sparse local latent variables are identifiable. We attempt to39

make as few assumptions as possible about the structure of the relationships between the inputs,40

motifs, and output, assuming only that the motif patches are separated and independent from each41

other and are relevant to computing the output. We do not make any further assumptions regarding42
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Figure 1: (a) Example of the DIGITCIRCLE domain, alongside (b) a cartoon of the splicing problem.
The input x is mapped by the ground truth g∗ function to the motif map m∗ of the positions of every
digit/protein binding sites, which is itself mapped by the ground truth h∗ function to the output
y∗, the sequence 072634/splice sites. Only x and y∗ are available during training; the goal is to
reconstruct g∗ and h∗. Note that in splicing, unlike DIGITCIRCLE, the motifs can overlap. The
M dots indicate the representation as described in Section 2, which is a one-hot encoding at each
location (on the figure, each color indicates a different plane of the image, hence the last dimension
being 10, for 10 digits).

the structure of the functions relating the motifs and the output (e.g., limited number of layers).43

Second, we describe the SPARLING algorithm, which allows for training models with an extreme44

sparsity constraint. We accomplish this via a layer that sets activations below some threshold equal45

to zero; this threshold is iteratively updated to achieve a target sparsity level (e.g., 99%). In order to46

address the unstable optimization landscape this produces at high sparsity values, our optimization47

algorithm anneals the target sparsity over time. Finally, we demonstrate several domains in which48

SPARLING can correctly identify the intermediate latent variable. These domains, while synthetic,49

demonstrate that the identifiability guarantee we proved is achievable in practice. In particular we50

present the highly synthetic DIGITCIRCLE domain as well as two more realistic domains: LATEX-51

OCR, in which we predict a LaTeX sequence from a noisy image of an algebraic expression, and52

AUDIOMNISTSEQUENCE, in which we predict a number from noisy audio of digits being spoken.53

Related work. We summarize the related work here, and provide a more detailed discussion in54

Appendix A. Most existing work on learning interpretable latent representations assume some prior55

knowledge about the representations, including both concept bottleneck models and the Genomics56

work mentioned above. The recently proposed “Language in a Bottle” technique (Yang et al. (2023))57

proposes to address this problem by using large language models (LLMs) to identify intermediate58

concepts; however, this is only applicable to certain domains. Finally, our theoretical work is con-59

nected to the statistical literature on identifiability, which asks whether the “true” parameters of60

a model can be recovered from data. Indeed, prior work has proposed algorithms that guarantee61

identification of latent variable models such as Hidden Markov Models (HMMs) (Yoon (2009)) and62

Probabilistic Context-Free Grammars (PCFGs) (Hsu et al. (2012)). While the problem is similar,63

we are interested in the deep learning setting where the latent concepts form the intermediate layer64

between two arbitrary models (presumably neural networks). Then, our theoretical results estab-65

lish assumptions on the models and data distributions under which we can guarantee recovery of66

the “true function”. This problem is similar to that of nonlinear Independent Component Analysis67

(ICA) (Hyvärinen et al. (2023); Khemakhem et al. (2020)), where the goal is identifying indepen-68

dent components mixed by some nonlinear function. However, we attempt to make much more69

limited assumptions of the “mixing function” and show that small end-to-end error is sufficient to70

imply recovery of the latent concepts. While our algorithm is not guaranteed to achieve small end-71

to-end error, this is a useful theorem as verifying low end-to-end error is trivial given a test set.72

Additionally, we find that in our experiments we do achieve low end-to-end error.73

2 PROBLEM FORMULATION74

We are interested in settings where intermediate activations represent latent variables corresponding75

to semantically meaningful concepts in the prediction problem. To this end, we consider the case76
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Figure 2: Two examples of inputs (images), outputs (sequences in titles), and our ĝ predictions
for seed=1 (colored dots) for DIGITCIRCLE, LATEX-OCR, and AUDIOMNISTSEQUENCE. For
LATEX-OCR, we provide the output twice, first as the sequence of commands generated by the
network and second as the translation of those commands into LaTeX. We place a dot for every
maximal motif, colored/labeled by the channel that it appears in (e.g., the 0th channel is A or #00,
1st is B or #01, etc.). Stars indicate sites where non-maximal motifs are present as well.

where the ground truth is represented as a function f∗ : X → Y composed f∗ = h∗ ◦ g∗ of two77

functions g∗ : X → M and h∗ : M → Y . We call the latent space M the motif space. We78

consider the task of training ĝ and ĥ to accurately model g∗ and h∗ using only end-to-end data79

D = {(x, f∗(x)) : x ∼ DX} (i.e., enforcing only that their composition f̂ = ĥ ◦ ĝ accurately80

models f∗)1. Importantly, we assume no access to data on M (in particular, which components of81

M are active for any particular input). Our goal is to establish the conditions under which this task82

is possible and to present an algorithm to derive ĝ and ĥ. Specifically, we focus on the case where83

g∗ and ĝ exhibit the properties of locality and sparsity as described below.84

We assume that elements of X ⊆ RI×[d] and M ⊆ {0, 1}I×[n] are tensors, where [d] = {1, ..., d},85

and where I = [D1]× . . .× [Dl] is a set of spatial indices (e.g., for a 2D image, D1 and D2 would86

be the height and width of the image, respectively), d is the number of input channels (e.g., 3 for an87

RGB image or 4 for ACGT in one-hot encoded RNA), and n is the number of kinds of motif (e.g.,88

for 10 for DIGITCIRCLE, with one for each digit, and 79 for splicing, with one for each protein89

type). In addition, Y is a discrete label space.90

Locality We define the set G of “local” motif models as a generalization of convolutional models.91

Specifically, we want to have a definition that roughly corresponds to models whose output at each92

point is defined by a fixed number of inputs whose indices are determined independently of the93

actual values of the input. This property is most obviously present in convolutional layers, but also94

exists in, e.g., graph convolutions. SPARLING relies on locality to treat different parts of the input95

as independent, alongside the INPUT-FACTORIZATION assumption we introduce later.96

Formally, we define the set G relative to some t ∈ N and “footprint function” p : I → It (in the case97

of a 2D convolution with kernel width w this would be a map from an index i in the output layer98

to the set of t = w2 indices in a square around i). We then say g ∈ G if there exists some “local99

version” of g: gl ∈ Rt×d → {0, 1}n such that g(x)[i, c] = gl(x[p(i)])[c]; i.e., the output in position100

i can be computed by collecting the inputs in the region p(i) and feeding them to a local function101

1We do not consider noise for the purposes of this paper. The result could be modified to handle IID
Bernoulli noise in the error function by replacing the end-to-end error with end-to-end error minus irreducible
error in the theorem statement.
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gl. For example, in the case of convolution, gl is the convolution kernel.2 We also define the “motif102

cell” p2(i) as the set of indicies i′ ∈ I whose footprints overlap that of i ∈ I:3103

p2(i) = {i′ ∈ I : p(i) ∩ p(i′) ̸= ∅}

and define ∆ such that for all i ∈ I , p2(i) ⊆ {i+ d : d ∈ ∆}, e.g., if g is a 2D convolutional model104

with kernel size (2r + 1, 2r + 1), then ∆ = {−2r, . . . , 2r}2. |∆| appears in our error bound.105

Sparsity Let the number of motifs for a channel c in a given activation pattern m = g(x) be106

#c(m) =
∑

i∈I 1(m[i, c] ̸= 0). We can then define the mean value of this over the dataset for a107

given motif function as #c(g) = Ex[#c(g(x))]. Let #(t) =
∑

c #c(t) for both elements of M and108

G. Let the density of a model be δ(g) = #(g)/|I × [n]| and δ∗ = δ(g∗). We refer to 1− δ(g) as the109

sparsity of g.110

3 MOTIF IDENTIFIABILITY THEOREM111

3.1 THEOREM STATEMENT112

We define Motif Identifiability as a property of a data distribution DX and mechanism g∗, h∗. In-113

tuitively, it says that for any estimate f̂ = ĥ ◦ ĝ of f∗, if f̂ has low end-to-end error, then ĝ must114

have low motif error (i.e., ĝ is a good estimate of g∗). In other words, if we are able to learn115

a model on (x, y∗) data that achieves good end-to-end error, then we can conclude that we have116

correctly estimated m∗ even if we do not have any data on m∗. Formally, if BINARIZATION, NON-117

OVERLAPPING, INPUT-FACTORIZATION, and α-MOTIF-IMPORTANCE (defined in Section 3.3)118

hold, then for some k = O
(

#2
max|∆|n2

#∗α2

)
, we have119

∀ĝ ∈ G . δ(ĝ) = δ∗ =⇒
(
∀ϵ > 0, E(ĥ ◦ ĝ) < ϵ =⇒ Em(ĝ) < kϵ

)
where E is end-to-end error and Em is motif error, as defined in Section 3.2.120

For simplicity, we describe our error metrics and assumptions as if n = 1, that is, there is only one121

channel. We provide multi-channel versions of these formally in Appendix B.122

3.2 ERROR METRICS123

We define error metrics for both end-to-end error and motif error in two ways: a mathematically124

simple definition for our proof, and a more intuitive definition for our empirical findings (see Sec-125

tion 5.1). We demonstrate that these are equivalent modulo a constant factor in Appendix E. For our126

proofs, we define end-to-end error as exact match: E(f̂) = Ex,y∗∼D[f̂(x) ̸= y∗].127

Defining the motif error metric, Em, is more complex. In particular, the definition of equivalence128

needs to account for ĝ placing the motifs at slightly different locations, or permuting the motif129

channels. Thus, we only check that the predicted point be within the motif cell of a given true motif.130

In this section, we assume there is only one channel, so there is no channel permutation problem,131

but in Appendix B.1, we handle channel permutations by taking a minimum over all possibilities.132

For our proofs, we define motif error using an intersection-over-union-inspired metric. For the133

“intersection” in this metric we use the number of true motif cells in g∗(x) covered by a unique134

motif in ĝ(x). To define this, we first define the function vm̂(i) to be the number of motifs in the135

motif cell surrounding i in m̂ = ĝ(x):136

vm̂(i) =
∑

i′∈p2(i)

1(m̂[i′] ̸= 0)

2Note: this notion of locality is more general than most, as p(i) do not need to be “near” each other in the
input space; however the NON-OVERLAPPING assumption implies that p(i) cannot simply be an arbitrary set.
We do not restrict ourselves to convolutional locality; our definition could apply to e.g., neighbors on graphs.

3We use this notation because for convolutions with no max pooling, and ignoring the d axis, p2 = p ◦ p.
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We then define u(ĝ(x), g∗(x)) to be the number of motif cells in the true motif pattern g∗(x) that137

are covered by exactly one motif in the predicted motif pattern ĝ(x).138

u(m̂,m∗) =
∑
i∈I

1 (m∗[i] ̸= 0 ∧ vm̂(i) = 1)

We then take the expectation of u over the dataset to get our “intersection” value. For our139

“union” value, we take the maximum of the expected number of motifs produced by g∗ and ĝ:140

max(#(ĝ),#∗). The result is our metric141

Em(ĝ) = 1−
Ex∼D [

∑
c′ u(ĝ(x), g

∗(x))]

max(#(ĝ),#∗)

This metric is directionally correct under all circumstances, rewarding ĝ that produce motifs that142

overlap cells of g∗ with a lower error4.143

3.3 FORMAL ASSUMPTIONS144

We assume our data generation process is represented by a graphical model x ← m∗ → y∗; intu-145

itively, the motifs m∗ are sampled first, and then x and y∗ are sampled conditioned on m∗. This146

allows us to describe our assumptions as constraints on P (x|m∗) and P (y∗|m∗).147

At a high level, we assume motifs cannot appear near each other (NON-OVERLAPPING) and148

P (x|m∗) must be easily decomposed into factors in order to constrain the relationship between149

x and m∗, ensuring that x is a product of distributions describing the footprints of motifs (INPUT-150

FACTORIZATION). This is our main assumption, analogous to a Markovian assumption in a Hidden151

Markov Model. Next, α-MOTIF-IMPORTANCE describes the relationship between m∗ and y∗, as-152

serting that all motifs are important in some cases; in other words, h∗ cannot systematically ignore153

any motif or treat any two motifs as interchangeable. This assumption ensures the definition of “mo-154

tif” is restricted to concepts that are possible to learn from end-to-end data, analogous to a full-rank155

covariance assumption in Linear Regression.156

While these constraints may appear strict, they fit problems where g∗ identifies small local patterns157

in the input—e.g. motifs such as the individual digits in DIGITCIRCLE—that are all used at least158

sometimes by h∗. However, they do not fit the splicing domain (primarily NON-OVERLAPPING and159

INPUT-FACTORIZATION), necessitating the additional data used by Gupta et al. (2024).160

BINARIZATION We assume that ĝ is binary—i.e., ĝ(x)[i, c] ∈ {0, 1} at all positions.161

NON-OVERLAPPING We assume that motif cells cannot overlap in samples drawn from DX162

∀x ∈ X,Px(x) > 0 =⇒ ∀i, i′ ∈ g∗(x), i ̸= i′ =⇒ p2(i) ∩ p2(i′) = ∅

INPUT-FACTORIZATION We assert that probability Px(x) decomposes to independent distributions163

for each patch p(i) for which g∗(x)[i] ̸= 0 and a background probability covering all non-patch164

inputs. Formally, we define the probability of x given that it produces the motif pattern m as165

P [x|g∗(x) = m] =

(∏
i∈m

Pf (x[p(i)])

)
Pb (x[r(m)])

where i ∈ m if m[i] ̸= 0 and where Pf is a distribution over “foreground” parts of the input (those166

containing motifs) and Pb(x) is a distribution over “background” x, and we are taking a marginal167

x[r(m)], where r(m) = I × [d] \
⋃

i∈m p(i) is the set of all indices not in any motif footprint. We168

then represent P [x] =
∑

m∈M P [x|g∗(x) = m]Pm(m) where Pm(m) is our distribution over m.169

We also require that Pb be translationally invariant. Specifically, for all sets L ⊆ I and all offsets170

o ∈ Zl such that {i+ o : i ∈ L} ⊆ I , we have Pb(x[L]) = Pb(x[{i+ o : i ∈ L}]). That is, the joint171

distribution should be the same at each location regardless of translation. This property holds for all172

datasets created by clipping random components of larger datasets, e.g., clipping sequences of RNA173

from the genome or snippets of text from a book. See Appendix F.1 for a motivating counterexample.174

4If we assume NON-OVERLAPPING we also have that E(g∗) = 0
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α-MOTIF-IMPORTANCE We wish to assert that no motif can be ignored for the purposes of com-175

puting the output in almost all inputs. Our assumption is parameterized by α; motif importance176

with a higher α implies that motif errors will lead to end-to-end errors on a higher fraction of the177

input. This assumption has a particularly complex formulation to ensure its weakness, and should178

not generally be the reason this theorem does not apply to a domain.179

We begin by defining a perturbation function R(m1) that relates a motif m1 to a set m2 ∈ R(m1)180

which corresponds to m1 with a motif deleted.181

As a preliminary, we define STRONG-α-MOTIF-IMPORTANCE: here we require the existence of a182

pair m1,m2 where m2 ∈ R(m1), Pm(m1), Pm(m2) ≥ α, and h∗(m1) ̸= h∗(m2). In this scenario,183

a model ĝ that produces the same result on both m1 and m2 would produce the wrong answer on184

at least α of the dataset. Unfortunately, this assumption is far too strong to apply to any realistic185

domain since Pm(m1) and Pm(m2) will be very small as |M | is exponentially large.186

For α-MOTIF-IMPORTANCE we want to generalize the above notion such that the bound α applies187

to a set of m1 values. Unfortunately, this is not as simple as computing the probability of a set188

E ⊆ {m1 : ∃m2 ∈ R(m1), h
∗(m1) ̸= h∗(m2)}

as we need to establish not only properties of m1 ∈ E, and the corresponding m2, but also allow189

for the fact that multiple m1 might correspond to some m2 (e.g., many m1 that have a given motif190

at slightly different positions all correspond to the same m2 once that motif is deleted). To resolve191

this, we replace E with a probability distribution ψR(m2|m1) mapping m1 to a distribution over192

m2 ∈ M ∪ {⊥}, where the ⊥ represents no pairing. We assert that for this assumption to apply193

there must exist a ψR that is supported only on perturbations (m1,m2); formally:194

ψR(m2|m1) > 0 =⇒ h∗(m1) ̸= h∗(m2) ∧m2 ∈ R(m1)

We can then define a process qR(m2) =
∑

m1
Pm(m1)ψ(m2|m1), that is, sample m1 ∼ Pm then a195

perturbation m2 ∼ ψ(m2|m1). We assert that ∀m2 ∈ M, qR(m2) ≤ Pm(m2), that is, this process196

can never lead to more probability mass on m2 than the original distribution (see Appendix F.2 for197

a counterexample motivating this). Finally, we assert that
∑

m2∈M qR(m2) = 1− qR(⊥) ≥ α. 5198

Putting this all together, we have the following formal definition of α-MOTIF-IMPORTANCE: let199

R : M → 2M such that m2 ∈ R(m1) iff there exists i ∈ I such that m1 and m2 agree except that200

m1[i] ̸= 0 and m2[p2(i)] = 0. Then, we assume the existence of some ψR(m2|m1) such that201

• ∀m1,m2 ∈M,ψR(m2|m1) > 0 =⇒ h∗(m1) ̸= h∗(m2) ∧R(m1,m2)202

• ∀m2 ∈M, qR(m2) ≤ Pm(m2)203

•
∑

m2∈M qR(m2) ≥ α204

3.4 PROOF SKETCH205

We give a proof of this theorem in Appendix D. In short, we proceed by contrapositive, assuming206

high motif error. We then establish via a counting argument that since δ(ĝ) = δ∗, any motif error207

must either be due to false negatives or confusion (a channel of ĝ being used for two different208

motifs). In both cases, we then establish that this error must apply to some fraction of all motif209

sites (via INPUT-FACTORIZATION), then establish that this should lead to a perturbation described210

in α-MOTIF-IMPORTANCE with some proportional probability, and thus to end-to-end error.211

4 METHODS212

SPARLING trains models with Spatial Sparsity Layers using the Adaptive Sparsity Algorithm.213

5In practice, for all of our synthetic domains, we can prove α-MOTIF-IMPORTANCE for high α (above
0.5). The perturbation process involves selecting a motif at random and deleting it, then rejecting with some
probability (generally about 10%). This works because while several possible deletions on different m1 can
lead to the same m2, the m1s each have more degrees of freedom thus lower probability. This property will be
shared by any dataset which contains a high-probability subset with a roughly uniform distribution over number
of motifs, which is true for most datasets. The rejection outcome is necessary since spacing constraints mean
that e.g., not all 3-digit DIGITCIRCLE tasks are representable as a deletion of a 4-digit task.
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4.1 SPATIAL SPARSITY LAYER214

This layer is the last step in the computation of ĝ and enforces its sparsity. We define a spatial
sparsity layer to be a layer with a parameter t whose forward pass is computed

Sparset(z) = ReLU(z − t)
Importantly, t is treated as a constant in backpropagation and is thus not updated by gradient descent.215

Instead, we update t using an exponential moving average of the quantiles of batches6:216

tn = µtn−1 + (1− µ)q(zn, 1− δ),
where tn is the value of t on the nth iteration, zn is the nth batch of inputs to this layer, µ is217

the momentum (we use µ = 0.9), δ is the target density, and q : RB×d1×...×dk×n × R → Rn218

is the standard torch.quantile function. q is applied across all dimensions except the last:219

it produces a value for each channel that represents the threshold u for which the proportion of220

elements above u in the tensor at that channel is δ. We describe an alternative in Appendix J.3.221

Since tn is fit to the data distribution, we can treat this as a layer that enforces that ĝ has a sparsity of222

1− δ. Finally, we always include an affine batch normalization before this layer to increase training223

stability. We provide an analysis on the necessity of this addition in Appendix J.2.224

4.2 ADAPTIVE SPARSITY ALGORITHM225

Algorithm 1 Train Loop (f̂ ,D,M,B, dT , δupdate)

T0 ← 1
for t = 1 to . . . do

TRAINSTEP(f̂ ,DBt:B(t+1))
Tt ← Tt−1 −BdT
if bt modM = 0 then
At ← VALIDATE(f̂)
if At > Tt then
(f̂ .δ, Tt)← (f̂ .δ × δupdate, At)

We found that applying an extreme sparsity requirement (very low δ) upon initial training of the226

network leads to the network getting stuck in a local minimum due to a lack of learning signal. To227

resolve this, we use a technique inspired by simulated annealing and reduce δ slowly over time.228

Annealing hyperparameters is a known technique (Sønderby et al. (2016), but we tie this annealing229

to validation accuracy (exact match between y∗ and f̂(x)) in order to be flexible to training schedule.230

As shown in Algorithm 1, we add a step to our training loop that checks validation accuracy At and231

reduces the density whenever it exceeds a target Tt, reducing Tt over time. Our experiments use232

evaluation frequency M = 2× 105, batch size B = 10, dT = 10−7, and δupdate = 0.75.233

5 EXPERIMENTS234

5.1 EXPERIMENTAL SETUP235

We describe our three new domains below. See Figure 2 for examples of each domain.236

DIGITCIRCLE domain. The input x is a 100 × 100 monochrome image with 3-6 unique digits237

placed in a rough circular pattern, with some noise being applied to the image both before and after238

the numbers are placed. The output y∗ is the sequence of digits in counterclockwise order, starting239

with the smallest number. The latent motifs layer m∗ is the position of each digit: which can be240

represented as a 100×100×10 tensor with 3-6 nonzero entries. Note that we have no access during241

training and validation to the concept of a digit as an image, nor to the concept of a digit’s position.242

LATEX-OCR domain. As a more realistic test, we take inspiration from Deng et al. (2016) and243

present the task of synthesizing LATEX code from images. This task is an OCR task like DIGIT-244

CIRCLE, but with variation in digit rendering (size, aliasing) and a more complex h∗.245

6For numerical stability, we accumulate batches such that |zn|δ ≥ 10C before running this update
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Figure 3: Motif Error, across three different metrics. Bar height depicts the mean across 9 seeds, in-
dividual dots represent seed, the error bar represents a 95% bootstrap CI. AUDIOMNISTSEQUENCE
has an FPE of exactly 0. High FNE on LATEX-OCR is due to fraction bars, parentheses, and plus
signs not being recognized in all cases since it is possible to infer the output without access to these.
For a comparison of our technique to less-sparse models, see Figure 4.

AUDIOMNISTSEQUENCE domain. In this domain, we synthesize short clips of audio representing246

sequences of 5-10 digits over a bed of noise. The task is to predict the sequence of characters247

spoken. Here, we test if motif models can generalize: we train and validate with AUDIOMNIST248

(Becker et al. (2018)) samples from Speakers 1-51 and test with samples from Speakers 52-60.249

Splicing domain. We also considered the splicing domain discussed in Gupta et al. (2024). Since250

it does not satisfy our assumptions from Section 3.3, SPARLING is not able to precisely identify the251

motifs, but does perform substantially better than random chance. See Appendix L for our results.252

Architecture and training. Our neural architecture is adapted from that of Deng et al. (2016).253

For DIGITCIRCLE, we make ĝ have a 17 × 17 overall window, by layering four residual units254

(He et al. (2016)), each containing two 3 × 3 convolutional layers. We then map to a 10-channel255

bottleneck where our Spatial Sparsity layer is placed. Our ĥ architecture is a max pooling, followed256

by a similar architecture to Deng et al. (2016). We keep the LSTM row-encoder, but replace the257

attention decoder with a column-based positional encoding followed by a Transformer (Vaswani258

et al. (2017)) whose encoder and decoder have 8 heads and 6 layers. Throughout, except in the259

bottleneck layer, we use a width of 512 for all units. For LATEX-OCR we use the same architecture260

but with 32 motifs (to account for the additional characters) and a 65 × 65 overall window (to261

account for the larger characters, though we find 33× 33 does not change the results substantially).262

For AUDIOMNISTSEQUENCE we process the audio via a spectrogram with a sample rate of 8000263

and 64 channels, use a 33-wide 1D resnet stack for ĝ and a transformer for ĥ. We generate training,264

validation, and test sets randomly. For efficiency, LATEX-OCR is looped on 107 training samples,265

the rest are infinite. We use a batch size of 10 and a learning rate of 10−5. Our validation and test266

sets both contain 104 examples. Details on computational usage are in Appendix M.267

Error Metrics For our empirical analysis, we use more granular error metrics, defining define end-268

to-end error as normalized edit distance:269

E2EE(f̂) = Ex,y∗∼D

[
EDITDISTANCE(y∗, f̂(x))

max(|y∗|, |f̂(x)|)

]
.

and disaggregating motif error’s false positives, false negatives, and mis-identified motifs into three270

separate metrics into False Positive (FPE), False Negative (FNE), and Confusion Error (CE) (con-271

fusion error occurs when multiple motif channels are confused, this is always zero if n = 1). Ap-272

pendix C.2 contains formal definitions of these metrics and Appendix E contains a proof that these273

metrics are bounded within a constant multiplicative factor of Em.274

5.2 RESULTS275

Motif error. We show our three metrics of motif error in Figure 3 for each of our models on each do-276

main. Motif errors for our model average below 10% for all our domains, except in the case of FNE277

on LATEX-OCR. The generally low motif errors, despite only training and validating end-to-end,278

demonstrate that our algorithm achieves Motif Identifiability on all three domains. This property279

even holds when generalizing to unseen samples in the AUDIOMNISTSEQUENCE experiment, pro-280

viding evidence that SPARLING is genuinely learning the motif features rather than memorizing. The281
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Figure 4: Motif and end-to-end error metrics versus δ. Note that the x axis is a reversed log-scale,
since the adaptive sparsity algorithm starts with high density and narrows it exponentially.

Figure 5: Retrained tends to perform as well as or slightly worse than Non-Sparse, making up most
of the gap from SPARLING. The apparent improvement from Non-Sparse to Retrained should not
be interpreted as real, the numerical difference is tiny and the sample accuracies overlap.

one case where our model has high error, FNE on LATEX-OCR, demonstrates the importance of the282

α-MOTIF-IMPORTANCE assumption: recognizing LATEX text in the space we generated does not283

require identification of fraction bars or all of ()+. For more details, see Figure 2 and Appendix G.284

Interestingly, this only affects the unimportant digits; this is because our proof is still (mostly7) valid285

if some motifs are never used: they can simply be treated as part of the background instead.286

Examples. Figure 2 shows a few examples for one of our models’ intermediate layers. As can be287

seen, all digits are appropriately identified by our intermediate layer, with very few dots (in these288

examples, none) falling away from a digit. Note that the activations are consistent from sample to289

sample—for example, in DIGITCIRCLE, motif C is used for digit 6 in both images.290

Necessity of Extreme Sparsity Figure 4 shows our error metrics plotted against the sparsity, with291

the x-axis reversed to show progression in training time as we anneal δ. As expected, as δ decreases,292

FPE decreases and FNE increases. More interestingly, we note a trade-off between E2EE and CE: as293

δ decreases, E2EE increases and CE decreases substantially. This demonstrates a trade-off between294

a more accurate overall model, which benefits from greater information present and a more accurate295

motif model, which benefits from a tighter entropy bound. Furthermore, CE is often substantially296

higher for even a 2-3× increase in δ, demonstrating the need for extreme sparsity. This validates the297

Motif Identification Theorem, which relies on δ(ĝ) = δ∗ to make its guarantees.298

End-to-End error As seen in Figure 5, SPARLING tends to produce higher end-to-end errors than299

a baseline Non-Sparse model. We theorize that this is because our constraint on the information300

flow requires the model to “commit” to a choice on whether or not a given site is a true motif. To301

verify this effect, we present the Retrained setting, in which we remove the bottleneck, freeze the302

motif model ĝ, and finetune ĥ on the training set until convergence. The Retrained setting tends303

to perform similarly to the Non-Sparse setting. We thus demonstrate that we are not degrading304

end-to-end performance unacceptably, even while substantially improving interpretability.305

7The INPUT-FACTORIZATION assumptions regarding Pb are broken instead, but these are less crucial.
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6 LIMITATIONS306

This work applies only to data distributions with the properties we describe in Section 3.3. In307

practice, the main limiting assumption is INPUT-FACTORIZATION, which requires that the dataset308

is composed of several small independent patches. While this applies to many problems, it does309

not apply to problems that identify properties of a single coherent subject, e.g., the classic image310

classification tasks MNIST (Deng (2012)) and ImageNet (Deng et al. (2009)).311

7 CONCLUSION312

We prove that Motif Identification is solvable under certain assumptions. Additionally, we demon-313

strate SPARLING, a practical algorithm to learn end-to-end models that have a sparse intermediate314

layer. Finally, we demonstrate that Motif Identifiability is not solely theoretical: SPARLING achieves315

interpretable and accurate motifs with zero direct supervision on the motifs across three domains.316
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A ADDITIONAL RELATED WORK453

Learning RNA/DNA motifs In Gupta et al. (2024) the authors introduce the concept of Sparse454

Adjusted Motifs. Specifically, they model the problem of splicing as a two stage process, in which455

first proteins bind the RNA sequence, and then cause the sequence to be spliced at certain points.456

Using end-to-end data of a sequence annotated with splicepoints, as well as baseline models of457

protein binding patterns in RNA, they are able to improve these models of protein binding. To458

accomplish this they use the baseline model to predict protein binding affinity, then apply SPARLING,459

a sparse layer, with a sparsity of 1 − 2δ. They then modify this with a neural network trained460

residually, allowing it to only influence nonzero sites, then apply another SPARLING layer with461

sparsity 1 − δ. In this work, we eschew the complexity off the Adjusted Motif model and instead462

consider the sparse layer by itself. In Tseng et al. (2024) and Liao et al. (2022), the authors learn463

motifs without intermediate supervision, but in these cases they heavily restrict the model class of464

the motif models, requiring them to be 1-layer convolutions.465

Concept bottleneck models. Previous work also learns models with intermediate features that466

correspond to known variables. Some techniques, such as Concept Bottleneck Models (Koh et al.467

(2020)) and Concept Embedding Models (Zarlenga et al. (2022)), involve additional supervision468

with existing feature labels. Other techniques, such as Cross-Model Scene Networks (Aytar et al.469

(2017)), use multiple datasets with the same intermediate representation. The Language in a Bottle470

technique (Yang et al. (2023)) uses LLMs to identify intermediate concepts; however this is only471

applicable to certain domains (e.g., asking an LLM to produce the protein binding motifs in an RNA472

sequence will result in it providing a list of motif finding tools, not motifs). In this work, we do not473

require the presence of additional datasets or annotations.474

Identifiability The problem of identifiability, in which the behavior of some component of a function475

is inferred via the behavior of the overall function, under some assumptions, is typically set up476

as an attempt to infer the values of specific parameters up to some isomorphism. In Hsu et al.477

(2012) the parameters are those of a PCFG expressing a distribution over sequences and the behavior478

of the function is the computation of a moment of this distribution (with infinite data). In Bona-479

Pellissier et al. (2023) the parameters are those of a multi layer ReLU network, identifiability is480

established with infinite data under several assumptions relating to the network as a piecewise linear481

function. Other work such as Zhong et al. (2017) focuses on strong convexity guarantees on the482

neighborhood of the true parameters, which is a far stronger claim as it leads to plausible inference483

algorithms; though the model class is restricted to 1 layer neural networks. In Ahuja et al. (2022),484

the result of sparse perturbations (perturbations of only some variables) to the latent variables is485

given, which enables identifiability; this differs from our α-MOTIF-IMPORTANCE in that we only486

assume the existence of perturbations that affect the observable output, rather than requiring access487

to these modified outputs as part of the dataset. In our case, we are attempting to infer the motif488

function ĝ rather than any particular parameter, also up to isomorphism. As a result, we make489

weaker architectural assumptions about ĝ and ĥ. However, the property we attempt to establish is490

stronger than identifiability with infinite data: we wish to show that the error in identification of491

ĝ is bounded by a multiple of the end-to-end error. While this does not immediately lead to an492

inference algorithm, it implies that any inference algorithm that preserves our sparsity constraint493

while achieving low error will be a valid algorithm for identifying the true g∗.494

Neural Input Attribution. SPARLING is useful for identifying the relevant parts of an input. One495

existing technique that accomplishes this goal is saliency mapping (Simonyan et al. (2013); Sel-496

varaju et al. (2016)), which uses gradient techniques to find which parts of the input affect the output497
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most. Another technique, analyzing the attention weights of an attention layer (Mnih et al. (2014)),498

only works with a single layer of attention and does not necessarily produce valid or complete ex-499

planations (Serrano & Smith (2019)). Additionally, Amortized Explanation Techniques produce a500

subset of features that form a ”local explanation,” i.e., features sufficient to produce a prediction501

(Jethani et al. (2021)). The main benefit a sparse annotation provides over these techniques is un-502

conditional independence: when using sparsity, you have the ability to make the claim “region x[r]503

of the input is not relevant to the output prediction, regardless of the rest of the input x[r̄]”. This504

is a direct result of sparsity and locality and is unavailable when using saliency or attention tech-505

niques which inherently condition on the values you provide for x[r̄]. Techniques such as Sparse506

Explanation Values (Sun et al. (2024)) do not have this guarantee, and so while they apply to a wider507

variety of model structures, they can thus only reason about local perturbations, providing local508

explanations of changes in behavior.509

Disentangled representations. Disentangled representations are ones where different components510

of the representation encode independent attributes of the underlying data (Desjardins et al. (2012);511

Higgins et al. (2016)). Locatello et al. (2019) suggests there are no universal solutions to this prob-512

lem, and all attempts require some prior about the kinds of representations being disentangled. We513

focus here on a prior regarding sparsity and locality.514

Informational bottleneck. Other work also constrains the information content of the interme-515

diate representation in a neural network. Strategies include constraining the dimension of the516

representation—e.g., PCA and autoencoders with low-dimensional representations Bourlard &517

Kamp (1988), or adding noise—e.g., variational autoencoders Kingma & Welling (2014). How-518

ever, these approaches often encourage entangling features to communicate them through a smaller519

number of channels, and as such do not always learn interpretable representations of an intermediate520

state.521

Sparse activations. Note that this notion of sparsity differs from sparse parameters Tibshirani522

(1996); Scardapane et al. (2017); Frankle & Carbin (2018); Ma et al. (2019); Lemhadri et al. (2021);523

Lachapelle et al. (2023), sparse causal graphs Moran et al. (2021); Lachapelle et al. (2022); Enouen524

& Liu (2022); Ren et al. (2024), and sparse jacobians Zheng et al. (2022); Brady et al. (2023);525

instead this line of work attempts to constrain the information content of an intermediate representa-526

tion by encouraging sparse activations—i.e., each component of the representation is zero for most527

inputs. Sparse parameters serve different objectives and require different strategies to be used effec-528

tively. As sparse parameters only provide interpretability for single or two-layer models, they are529

generally used for efficiency in larger models. In terms of imposing sparsity, different techniques530

must again be used as sparse activation patterns depend on the input, so occasional pruning—e.g.,531

Frankle & Carbin (2018)—is insufficient. Strategies for achieving sparse activations include impos-532

ing an L1 penalty on the representation or a penalty on the KL divergence between the representa-533

tion’s distribution and a low-probability Bernoulli distribution Jiang et al. (2015). However, these534

techniques typically only achieve 50%-90% sparsity, whereas SPARLING can achieve > 99.9%. We535

directly compare with these in Appendix J.1. Additionally, Bizopoulos & Koutsouris (2020) uses a536

quantile-based activation limit equivalent to both of our ablations (see Appendix J.2) combined, but537

in the simpler context of linear ĥ and ĝ models. Similarly, Xu et al. (2024) provides an identifiabil-538

ity result given sparse activations, but in the context of an affine model, whereas we allow arbitrary539

nonlinearity.540

B MULTIPLE CHANNELS541

We have to modify several definitions to handle the case of multiple channels. However, none of542

these changes modify the fundamental character of the theorem. Our provided proof (Appendix D)543

is for the more general case.544

One useful definition is that of the set of true motifs: we define ωc(m) to be a set of indices545

corresponding to motif of channel c: ωc(m) = {i ∈ I : ∃c,m[i, c] ̸= 0}, we have that546

i ∈ m ⇐⇒ ∃c, i ∈ ωc(m).547

14



Under review as a conference paper at ICLR 2024

B.1 MOTIF ERROR548

Since there are multiple channels, and there is no way for ĝ to know a priori what the appropriate549

assignment of motif to channel is, the predicted motifs models should be deemed equivalent to the550

ground truth model —which is known when we test—if there exists a channel assignment for which551

they are equivalent.552

We follow a similar metric to the one described in Section 3.2 except channel-specific and then553

minimized over all assignments τ : [n]→ [n] of channels of ĝ to channels in g∗:8.554

Our definition of v is modified by identifying a channel555

vm̂(i, c′) =
∑

i′∈p2(i)

1(m̂[i, c′] ̸= 0)

We then modify u to be the number of motif cells of channel c in the true motif pattern g∗(x) that556

are uniquely covered by a motif of channel c′.557

u(m̂,m∗, c′, c) =
∑
i∈I

1 (m∗[i, c] ̸= 0 ∧ vm̂(i, c′) = 1 ∧ ∀c′′ ̸= c′, vm̂(i, c′′) = 0)

We then take the sum of this over all channels c′ of ĝ and corresponding channels τ(c′) of g∗, and558

then take an expectation over the dataset to get our “intersection” value, the expected number of true559

motif cells covered by a unique predicted motif of the corresponding channel.560

Ex∼D

[∑
c′

u(ĝ(x), g∗(x), c′, τ(c′))

]
Our union value is unchanged, leading to the metric:561

Em(ĝ) = min
τ

(
1−

Ex∼D [
∑

c′ u(ĝ(x), g
∗(x), c′, τ(c′))]

max(#(ĝ),#∗)

)
B.2 INPUT-FACTORIZATION ASSUMPTION562

We slightly modify our assumption to563

P [x|g∗(x) = m] =

 ∏
c∈[n],i∈ωc(m)

Pc(x[p(i)])

Pb (x[r(m)])

which is identical except that Pf is replaced by a Pc, which is distinct for each channel.564

B.3 α-MOTIF-IMPORTANCE ASSUMPTION565

Adding more channels means we need to consider multiple perturbation functions. Specifically,566

we consider two classes of perturbation functions R(m1) that relate pairs of motif patterns, those567

where m2 ∈ R(m1) correspond to m1 with motif of a particular channel c1 deleted, and those568

where m2 ∈ R(m1) corresponds to m1 with a particular motif of channel c1 mutated into a motif569

of channel c2.570

One additional subtlety is that we also require flexibility to shifts in the perturbed motif’s position,571

ensuring that the precise positions of motifs are not determined by the rest of the motifs, precluding572

a situation where, e.g., motifs are aligned to a grid, and the learned ĝ “sneaks through” information573

about a motif’s channel via off-grid positioning. Note that this means α-MOTIF-IMPORTANCE is574

tied to locality and in particular only makes sense when g∗ is local within ∆ as defined in Section 2.575

Our formal definition then is overR, a set of perturbation relations defined as follows:576

8We do not require τ to be a permutation, as in practice we might want to allow extra channels in case
we do not know the exFor our proofs, we define motif error using an intersection-over-union-inspired metricact
number. In this case, the metric will only provide a good score if a real g∗ motif is split up among channels of ĝ,
but not if a single channel c′ of ĝ corresponds to multiple channels of g∗, which would be a loss of information
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• For all d1 ∈ ∆ and c1 let there be some R ∈ R such that m2 ∈ R(m1) if and only if there577

exists some i ∈ I such that m1 and m2 agree everywhere except that m1[i + d1][c1] ̸= 0578

and m2[p2(i)] = 0579

• For all d1, d2 ∈ ∆ and c1 ̸= c2 let there be some R ∈ R such that m2 ∈ R(m1) if580

and only if there exists some i ∈ I such that m1 and m2 agree everywhere except that581

m1[i+ d1][c1] ̸= 0 and m2[i+ d2][c2] ̸= 0582

Then for each R ∈ R we assert the existence of some ψR such that our properties hold.583

C EVALUATION METRIC DETAILS584

C.1 PRELIMINARIES585

We now define our FPM and MM motif sets, along with the C function.586

Predicted motifs. For a given predicted motif tensor m̂, we define P (m̂) = {(i, c′) : m̂[i, c′] > 0}587

to be the set of motifs predicted in m̂, where i ∈ I, c ∈ [n]. Typically, we are interested in the set of588

motifs P (ĝ(x)) for our estimated motif model ĝ.589

Footprint identification. Let C : I ×M → I ∪ {⊥} be a function that identifies the motif cell that
a given index is within, or ⊥ otherwise:

C(i′,m∗) = i ⇐⇒ i′ ∈ p2(i)
By NON-OVERLAPPING, this is always unique, but we can extend the definition to be coherent
otherwise by giving it flexibility to choose an arbitrary such i:

(C(i′,m∗) = i ⇐= i′ ∈ p2(i)) ∧ (C(i′,m∗) = ⊥ ⇐⇒ ∀i, i′ ̸∈ p2(i))

False Positive Motifs. We now have the ability to define our first class of motifs: false positive590

motifs. These are predicted motifs that do not correspond to any real motifs:591

FPM(m̂,m∗) = {(i′, c′) ∈ P (m̂) : C(i′,m∗) = ⊥}.
We denote the remaining motifs by592

P1(m̂,m
∗) = P (m̂) \ FPM(m̂,m∗).

Maximal Motifs First, we need to define the set of all predicted motifs that cover the same footprint593

as a given predicted motif. We do so via the Am̂,m∗ function, which takes a given predicted motif594

(assumed to overlap some footprint) and returns all others covering the same footprint:595

Am̂,m∗(i′, c) = {(i′′, c′) ∈ P (m̂) : C(i′′,m∗) = C(i′,m∗)}
Now we can define maximal motifs are predicted motifs that are maximal in the footprint they cover:596

MM(m̂,m∗) = {t ∈ P1(m̂,m
∗) : m̂[t] = max

t′∈Am̂,m∗ (t)
m̂[t′]}

We can also define non-maximal motifs are predicted motifs that are non-maximal in the footprint597

they cover:598

NMM(m̂,m∗) = {t ∈ P1(m̂,m
∗) : m̂[t] ̸= max

t′∈Am̂,m∗ (t)
m̂[t′]}

However, we ignore non-maximal motifs entirely for the purposes of our analysis, under the reason-599

ing that these are trivially removable in practice.600

C.2 MOTIF ERROR METRIC601

We then define three motif error metrics that we use empirically in evaluating our learned ĝ models.602

First, the false positive error (FPE) is the percentage of motifs that are false positive motifs.603

FPED(ĝ) =
Ex∼D[|FPM(ĝ(x), g∗(x))|]

Ex∼D[|P (ĝ(x))|]
.
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Second, the false negative error (FNE) is the percentage of true sites that are not covered by any604

motif.605

FNED(ĝ) =
Ex∼D[|{(i, c) ∈ P (g∗(x)) : ∄(i′, c′) ∈ P (ĝ(x)) : i′ ∈ p2(i)}|]

Ex∼D[|P (g∗(x))|]
.

Finally, the confusion error (CE) is defined as follows: (i) rearrange ĝ’s channels to best align them606

with g∗, (ii) compute the percentage of maximal motifs in footprint of a true motif that do not607

correspond to the true motif’s channel:608

CED(ĝ) = min
τ :[n]→[n]

Ex∼D[|confτ (ĝ(x), g∗(x))|]
Ex∼D[|MM(ĝ(x), g∗(x))|]

,

confτ (m̂,m
∗) represents the motifs that do not match ground truth under rearrangement τ609

confτ (m̂,m
∗) = {t ∈ MM(m̂,m∗) : ¬matτ (t, C(t,m

∗))}|

and matτ (t, t
∗) is a function that checks whether the two motif index tuples match under channel610

rearrangement τ .611

A low FPE/FNE implies that the model is identifying relevant portions of the input, while a low CE612

implies that the model classifies these components as motifs correctly.613

D PROOF OF MOTIF IDENTIFIABILITY THEOREM614

The following is a formal proof of the Motif Identifiability Theorem. The term #∗
max is used in this615

proof to denote maxc #
∗
c616

D.1 PROOF SKETCH617

We proceed by contrapositive, starting with the assumption that Em(ĝ) ≥ kϵ and then proving that618

E(ĥ◦ ĝ) ≥ ϵ. We first demonstrate (Lemma D.2.1) that high motif error implies either a high number619

of false negatives for some channel c (true motif cells that have no coverage by ĝ) or simultaneously620

a low number of false positives and some channels c1, c2 such that there is some high number of cells621

of both that are covered by the same channel c′ of ĝ. This theorem is proven by a simple counting622

argument, relying only on the fact that δ(ĝ) = δ∗. We then prove in each of the two resulting cases623

that the property holds for some fraction of motif cells in general, using INPUT-FACTORIZATION and624

NON-OVERLAPPING. We then apply α-MOTIF-IMPORTANCE to each case, demonstrating that ĝ625

does not distinguish different inputs (this argument uses BINARIZATION) that must lead to different626

values of y∗ = h∗(g∗(x)). Since ĝ cannot distinguish these inputs, neither can ĥ◦ ĝ, and thus in one627

of the two cases error must arise. Thus, in both cases, we conclude that E(ĥ ◦ ĝ) ≥ ϵ.628

D.2 LEMMAS629

D.2.1 SOURCES OF MOTIF ERROR DICHOTOMY630

First, we define a few quantities, representing the number of times a true cell is covered negatively,631

covered once, or covered multiple times.632

FNg(c) = Ex,m∗

 ∑
i∈ωc(m∗)

1(vĝ(x)(i) = 0)


COg(c, c

′) = Ex,m∗

 ∑
i∈ωc(m∗)

1
(
vĝ(x)(i) = 1 ∧ vĝ(x)(i, c′) = 1

)
CMg(c) = Ex,m∗

 ∑
i∈ωc(m∗)

1
(
vĝ(x)(i) > 1

)
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We also define the quantity633

FPg = Ex,m∗ [FPg(x)]

where
FPg(x) =

∑
c′

∑
i∈I\

⋂
c ωc(m∗)

1(ĝ(x)[i, c′] = 1)

The claim we wish to establish is634

∀ĥ ∈M → Y, ĝ ∈ G, δ(ĝ) = δ∗ ∧ Em(ĝ) ≥ kϵ
=⇒ (∃c,FNg(c) ≥ β1)

∨ (∃c1, c2, c′,min(COg(c1, c
′),COg(c2, c

′)) ≥ β2) ∧ (FPg ≤ nβ1)

For
β2 =

#∗kϵ

2n(n− 1)

and
β1 =

αβ2
4#max|∆|

We proceed by contrapositive, assuming that (∀c,FNg(c) < β1) and635

(∀c1, c2, c′,min(COg(c1, c
′),COg(c2, c

′)) < β2) ∨ (FPg > nβ1) both hold. Note that this636

proof relies on none of our assumptions and is just about counting the outputs of ĝ.637

Bounding CM and FP First, we bound CM and FP. Specifically, we establish that638

∑
c,c′

COg(c, c
′) =

∑
c

Ex,m∗

 ∑
i∈ωc(m∗)

∑
c′

1
(
vĝ(x)(i) = 1 ∧ vĝ(x)(i, c′) = 1

)
=
∑
c

Ex,m∗

 ∑
i∈ωc(m∗)

1(vĝ(x)(i) = 1)


∑
c,c′

COg(c, c
′) + 2

∑
c

CMg(c) =
∑
c

Ex,m∗

 ∑
i∈ωc(m∗)

1(vĝ(x)(i) = 1) + 2 · 1
(
vĝ(x)(i) > 1

)
≤
∑
c

Ex,m∗

 ∑
i∈ωc(m∗)

vĝ(x)(i)


=
∑
c

Ex,m∗

[∑
i∈I

ĝ(x)[i, c]

]
− FPg

= #(ĝ)− FPg

FPg +
∑
c,c′

COg(c, c
′) + 2

∑
c

CMg(c) ≤ #∗

∑
c

FNg(c) +
∑
c,c′

COg(c, c
′) +

∑
c

CMg(c) =
∑
c

Ex,m∗

 ∑
i∈ωc(m∗)

1


= #∗∑

c

FNg(c) +
∑
c,c′

COg(c, c
′) +

∑
c

CMg(c) ≥ FPg +
∑
c,c′

COg(c, c
′) + 2

∑
c

CMg(c)∑
c

FNg(c) ≥ FPg +
∑
c

CMg(c)

And thus we have a bound on CM and FP in terms of FN. Note that this means we can eliminate the639

FPg > nβ1 disjunction from our premises as we now know that FPg ≤
∑

c FNg(c) ≤ nβ1.640
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Low FN implies high CO From above we have∑
c

FNg(c) +
∑
c,c′

COg(c, c
′) +

∑
c

CMg(c) = #∗

From this and the previous result it is clear that

2
∑
c

FNg(c) +
∑
c,c′

COg(c, c
′) ≥ #∗

We then can state ∑
c,c′

COg(c, c
′) ≥ #∗ − 2

∑
c

FNg(c)

High CO implies low Em We now define the following function π : [n] → [n] assigning the
“proper channel” of a given channel of ĝ as

π(c′) = argmax
c
COg(c, c

′)

Assume that ∀c1, c2, c′,min(COg(c1, c
′),COg(c2, c

′)) ≤ β2. We then have that

∀c ̸= π(c′),COg(c, c
′) ≤ min(COg(c, c

′),COg(π(c
′), c′)) ≤ β2

Finally, we have that ∑
c,c′

COg(c, c
′) ≤ n(n− 1)β2 +

∑
c′

COg(π(c
′), c′)

We then express641 ∑
c′

COg(π(c
′), c′) ≤

∑
c

∑
c′|π(c′)=c

COg(c, c
′)

=
∑
c

∑
c′|π(c′)=c

Ex,m∗

 ∑
i∈ωc(m∗)

1
(
vĝ(x)(i) = 1 ∧ vĝ(x)(i, c′) = 1

)
≤ #∗ −#∗Em(ĝ)

where the last step is viable as max(#∗,#(ĝ)) = #∗ as δ(ĝ) = δ∗ We thus have that∑
c,c′

COg(c, c
′) ≤ n(n− 1)β2 +#∗ −#∗Em(ĝ)

and therefore
#∗Em(ĝ) ≤ n(n− 1)β2 +#∗ −

∑
c,c′

COg(c, c
′)

Final proof We can then add the assumption ∀c,FN(c) ≤ β1. This means that∑
c,c′

COg(c, c
′) ≥ #∗ − 2nβ1

Putting this together with the above, we have

#∗Em(ĝ) ≤ n(n−1)β2+2nβ1 ≤ n(n−1)β2+nβ2 = (n(n−1)+n)β2 ≤ 2n(n−1)β2 = #∗kϵ

Thus ending our proof642

D.2.2 COROLLARY: MOTIF ERROR AT ALL POSITIONS643

We define the extended footprint of a cell as a function ϕ : I → 2I×[d] mapping a location to the set644

of locations in the input whose output is in p2(i)645

ϕ(i) = {i′′ : ∃i′ ∈ p2(i), i′′ ∈ p(i′)}
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Now, we establish that motif error in some percentage of positions implies a consistent probability646

of motif error every time the motif shows up, regardless of skeleton. First, define P̃c,i to be a647

distribution over regions of size ϕ(i) defined as648

P̃c,i(η) = P [x[ϕ(i)] = η|g∗(x)[i, c] ̸= 0]

We can use INPUT-FACTORIZATION to break this down as (letting o be the relative position of i649

within η650

P̃c,i(η) = P [x[ϕ(i)] = η|g∗(x)[i, c] ̸= 0]

= Pc[η[p(i)− o]]Pb[x[ϕ(i) \ p(i)] = η[(ϕ(i) \ p(i))− o]]

We implicitly use NON-OVERLAPPING when we assume that ϕ(i) \ p(i) is entirely over the back-651

ground. The specific property here is that ϕ(i) ∩ p(i′) = ∅ for all i, i′ ∈ m∗, i′ ̸= i. This follows652

from NON-OVERLAPPING as we have that653

ϕ(i) ∩ p(i′) ̸= ∅ ⇐⇒ ∃i′′, i′′ ∈ ϕ(i) ∩ p(i′)
⇐⇒ ∃i′′, i′′ ∈ ϕ(i) ∧ i′′ ∈ p(i′)
⇐⇒ ∃i′′, (∃j ∈ p2(i), i′′ ∈ p(j)) ∧ i′′ ∈ p(i′)
⇐⇒ ∃j, j ∈ p2(i) ∧ ∃i′′, i′′ ∈ p(j) ∧ i′′ ∈ p(i′)
⇐⇒ ∃j, j ∈ p2(i) ∧ (p(j) ∩ p(i′)) ̸= ∅
⇐⇒ ∃j, j ∈ p2(i) ∧ j ∈ p2(i′)
⇐⇒ p2(i) ∩ p2(i′) ̸= ∅

Which is the exact condition given in NON-OVERLAPPING.654

Note that this is no longer in any way dependent on i due to the translational invariance of Pb.655

Therefore, we have that P̃c,i(η) = P̃c(η), and this is consistent at all locations that c appears,656

regardless of the skeleton.657

We also define q : 2n ×∆→ 2∆×[n] be be a function that takes a vector u and offset d and returns658

the map q(u, d) such that q(u, d)[d] = u ∧ ∀d′ ̸= d, q(u, d)[d′] = 0. Let Q(u) = {q(u, d) : d ∈ ∆}659

Claim The claim we wish to establish is660

∀ĥ ∈M → Y, ĝ ∈ G, δ(ĝ) = δ∗ ∧ Em(ĝ) ≥ kϵ

=⇒
(
∃c, P

[
ĝ(η) = 0|η ∼ P̃c

]
≥ β1

#max

)
∨ ( (

∃c1, c2, c′, min
c∈{c1,c2}

P
[
ĝ(η) ∈ Q(ec′)|η ∼ P̃c

]
≥ β2

#max

)
∧
(FPg ≤ nβ1)

)
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False negative case We now start with the assumption that FNĝ(c) ≥ β. We have that661

FNg(c) = Ex,m∗

 ∑
i∈ωc(m∗)

1(vĝ(x)(i) = 0)


=
∑
m

Ex,m∗

 ∑
i∈ωc(m∗)

1(vĝ(x)(i) = 0)|g∗(x) = m

Pm(m)

=
∑
m

∑
i∈m

Ex,m∗
[
1(vĝ(x)(i) = 0)|g∗(x) = m

]
Pm(m)

=
∑
m

∑
i∈m

P
[
1(vĝ(x)(i) = 0)|g∗(x) = m

]
Pm(m)

=
∑
m

∑
i∈m

P
[
ĝ(η) = 0|η ∼ P̃c

]
Pm(m)

= P
[
ĝ(η) = 0|η ∼ P̃c

]∑
m

∑
i∈m

Pm(m)

= P
[
ĝ(η) = 0|η ∼ P̃c

]
E

[∑
i∈m

1

]
= P

[
ĝ(η) = 0|η ∼ P̃c

]
#c

and thus we can conclude that P
[
ĝ(η) = 0|η ∼ P̃c

]
≥ β1

#c
≥ β1

#max
.662

Confusion Case663

In this case, we have two properties, first that we have some c1 and c2 such that

COg(c1, c
′) ≥ β2 ∧ COg(c2, c

′) ≥ β2
and the second that

FPg ≤ β1
First, we use a similar argument to the previous case to establish that664

COg(c, c
′) = Ex,m∗

 ∑
i∈ωc(m∗)

1(vĝ(x)(i) = 1 ∧ vĝ(x)(i, c′) = 1)


=
∑
m

Ex,m∗

 ∑
i∈ωc(m∗)

1(vĝ(x)(i) = 1 ∧ vĝ(x)(i, c′) = 1|g∗(x) = m

Pm(m)

=
∑
m

∑
i∈m

Ex,m∗
[
1(vĝ(x)(i) = 1 ∧ vĝ(x)(i, c′) = 1|g∗(x) = m

]
Pm(m)

=
∑
m

∑
i∈m

P
[
1(vĝ(x)(i) = 1 ∧ vĝ(x)(i, c′) = 1)|g∗(x) = m

]
Pm(m)

=
∑
m

∑
i∈m

P
[
ĝ(η) ∈ Q(ec′)|η ∼ P̃c

]
Pm(m)

= P
[
ĝ(η) ∈ Q(ec′)|η ∼ P̃c

]∑
m

∑
i∈m

Pm(m)

= P
[
ĝ(η) ∈ Q(ec′)|η ∼ P̃c

]
E

[∑
i∈m

1

]
= P

[
ĝ(η) ∈ Q(ec′)|η ∼ P̃c

]
#c

and thus we can conclude that P
[
ĝ(η) ∈ Q(ec′)|η ∼ P̃c

]
≥ β2

#c
≥ β2

#max
for c ∈ {c1, c2}.665
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D.2.3 LEMMA: INDISTINGUISHABLE LOCAL-TO-GLOBAL666

Statement: given a pairing scheme ψ, a predicate ζ : RI×[d] → B, some κ > 0, and that for all
ψ(m2|m1) > 0 that are an i-OFF-BY-ONE PAIR and for all xR ∈ RI×[d]\ϕ(i) we can assume

P [ζ(x)|m1, xR] + P [ζ(x)|m2, xR] ≥ κ

we can prove that

P [ζ(x)] ≥ 1

2
ακ

We begin by multiplying by P [xR|m1] = P [xR|m2] (these are equal because m1 and m2 agree667

outside of ϕ(i))668

P [ζ(x)|m1, xR]P [xR|m1] + P [ζ(x)|m2, xR]P [xR|m2] ≥ κP [xR|m1]

P [ζ(x), xR|m1] + P [ζ(x), xR|m2] ≥ κP [xR|m1]

and integrating669 ∫
P [ζ(x), xR|m1]dxR +

∫
P [ζ(x), xR|m2]dxR ≥ κ

∫
P [xR|m1]dxR

P [ζ(x)|m1] + P [ζ(x)|m2] ≥ κ

We then multiply both sides by ψ(m2|m1)Pm(m1) and sum:670 ∑
m1,m2∈M

ψ(m2|m1)Pm(m1)(P [ζ(x)|m1] + P [ζ(x)|m2]) ≥
∑

m1,m2∈M

ψ(m2|m1)Pm(m1)κ

We have that671

LHS =
∑

m1,m2∈M

ψ(m2|m1)Pm(m1)(P [ζ(x)|m1] + P [ζ(x)|m2])

=
∑

m1,m2∈M

ψ(m2|m1)Pm(m1)P [ζ(x)|m1] +
∑

m1,m2∈M

ψ(m2|m1)Pm(m1)P [ζ(x)|m2]

=
∑

m2∈M

ψ(m2|m1)P [ζ(x)] +
∑

m2∈M

q(m2)P [ζ(x)|m2]

≤ P [ζ(x)] +
∑

m2∈M

Pm(m2)P [ζ(x)|m2]

≤ P [ζ(x)] + P [ζ(x)]

P [ζ(x)] ≥ 1

2
LHS

RHS =
∑

m1,m2∈M

ψ(m2|m1)Pm(m1)κ

=
∑

m2∈M

q(m2)κ

≥ ακ

and therefore, we have that

P [ζ(x)] ≥ 1

2
κα

which completes our proof.672

D.2.4 LEMMA: FALSE NEGATIVES673

Given some ĝ, κ < 1
2 such that

P [ĝ(η1) = 0|η1 ∼ P̃c] ≥ κ
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we have that for all ĥ,

E(ĥ ◦ ĝ) ≥ 1

2
ακ

We now proceed with our proof. Let ψ be the pairing scheme corresponding to v1 = ec and v2 = 0,674

and d1 = d2 = 0. Fix any m1,m2, i such that ψ(m2|m1) > 0 being an i-OFF-BY-ONE PAIR and675

xR ∈ RI×[d]\ϕ(i). We can now see that676

P [f̂(x) ̸= y∗|m1, xR] ≥ P [f̂(x) ̸= y∗, ĝ(ϕ(i)) = 0|m1, xR]

= P [f̂(x) ̸= y∗|ĝ(ϕ(i)) = 0,m1, xR]P [ĝ(ϕ(i)) = 0|m1, xR]

= P [f̂(x) ̸= y∗|ĝ(ϕ(i)) = 0,m1, xR]P [ĝ(η1) = 0|η1 ∼ P̃c]

≥ P [f̂(x) ̸= y∗|ĝ(ϕ(i)) = 0,m1, xR]κ

Once we know xR and that ĝ(ϕ(i)) = 0, we know that f̂(x) is entirely dependent on xR and not on
x[p(i)] because we have access via ĝ(ϕ(i)) to all values of ĝ(x) that are influenced by x[p(i)]. As
such, we can replace f̂(x) with λ(xR). Thus, we have

P [f̂(x) ̸= y∗|m1, xR] ≥ P [λ(xR) ̸= y∗|m1, xR]κ

By the translational property of Pb we know that P [ĝ(η1) = 0|η1 ∼ Pb] is a definable, fixed,
quantity, and applies to any random variable ηi = x[ϕ(i)]. We thus have that P [ĝ(η1) = 0|η1 ∼
Pb] ≥ 1− nδ as otherwise ĝ would not be capable of having a density of δ on the whole image. We
can safely assume nδ < 1

2 since otherwise the NON-OVERLAPPING would be violated, since the
minimum size of a motif cell is 3 (1-dimensional, radius 1). Thus we can assume that

P [ĝ(η1) = 0|η1 ∼ Pb] ≥
1

2
≥ κ

and thus have the same property

P [f̂(x) ̸= y∗|m2, xR] ≥ P [λ(xR) ̸= y∗|m2, xR]κ

We have that h∗(m1) ̸= h∗(m2). We can then proceed677

P [f̂(x) ̸= y∗|m1, xR] + P [f̂(x) ̸= y∗|m2, xR] ≥ κ(P [λ(xR) ̸= y∗|m1, xR] + P [λ(xR) ̸= y∗|m2, xR])

≥ κ(P [λ(xR) ̸= h∗(m1)|m1, xR] + P [λ(xR) ̸= h∗(m2)|m2, xR])

= κ(1(λ(xR) ̸= h∗(m1)) + 1(λ(xR) ̸= h∗(m2))

≥ κ(1(λ(xR) ̸= h∗(m1) ∨ λ(xR) ̸= h∗(m2))

= κ

As such, we can now apply Lemma D.2.3 to get the statement

P [f̂(x) ̸= y∗] ≥ 1

2
κα

which completes our proof678

D.2.5 LEMMA: CONFUSION679

Given c1, c2, and c′, κ, and some ĝ such that

P [ĝ(η1) ∈ Q(ec′)|η1 ∼ P̃c1 ] ≥ κ ∧ P [ĝ(η2) ∈ Q(ec′)|η2 ∼ P̃c2 ] ≥ κ

we have that for all ĥ
E[f̂(x) ̸= y∗ ∨ FPg(x) > 0] ≥ ακ

2|∆|
We now proceed with our proof.680

We proceed as in the proof of Lemma D.2.4, with a few variations. Consider the pairing scheme681

ψ corresponding to v1 = ec1 and v2 = ec2 , and d1 = − argmaxd P [ĝ(η1) = q(u, d)|η1 ∼ P̃v1 ]682

and d2 = − argmaxd P [ĝ(η2) = q(u, d)|η2 ∼ P̃v2 ]. We have that P [ĝ(η1) = q(u,−d1)|η1 ∼683

P̃v1 ], P [ĝ(η2) = q(u,−d2)|η2 ∼ P̃v2 ] ≥ κ/|∆|. Let κ′ = κ/|∆|684
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Let (m1,m2) be an i-OFF-BY-ONE PAIR such that ψ(m2|m1) > 0. Fix xR ∈ RI×[d]\ϕ(i). Consider

P [f̂(x) ̸= y∗ ∨ FPg(x) > 0|m1, xR] + P [f̂(x) ̸= y∗ ∨ FPg(x) > 0|m2, xR]

We have that h∗(m1) ̸= h∗(m2). We also know that

P [f̂(x) ̸= y∗ ∨ FPg(x) > 0|m1, xR] ≥ P [f̂(x) ̸= h∗(m1) ∨ FPg(x) > 0|m1, xR]

We can then analyze685

P [f̂(x) ̸= h∗(m1) ∨ FPg(x) > 0|m1, xR] ≥ P [f̂(x) ̸= h∗(m1) ∨ FPg(x) > 0, ĝ(x[ϕ(i− d1)]) = q(u, 0)|m1, xR]

= P [f̂(x) ̸= h∗(m1) ∨ FPg(x) > 0|m1, xR, x[ϕ(i− d1)] = q(u, 0)]P [x[ϕ(i− d1)] = q(u, 0)|m1]

≥ P [f̂(x) ̸= h∗(m1) ∨ FPg(x) > 0|m1, xR, ĝ(x[ϕ(i− d1)]) = q(u, 0)]κ′

where the last step comes from the fact that m1 has its motif at i + d1, and therefore, ĝ should
activate at i. Finally, if we define λ(xR) to be the value ĥ(m̂) takes when m̂[i′] = ĝ(x[ϕ(i′)]) for all
i′ in a motif cell of m∗ other than i and 0 otherwise, we have that

f̂(x) ̸= λ(xR) =⇒ FPg(x) > 0

because if it is equal to any other value, that indicates that ĝ is sending some values through non-
motif cell channels. We thus have that

f̂(x) ̸= h∗(m1) ∨ FPg(x) > 0 ⇐⇒ λ(xR) ̸= h∗(m1) ∨ FPg(x) > 0

Thus, we have that

P [f̂(x) ̸= h∗(m1) ∨ FPg(x) > 0|m1, xR] ≥ κ′P [λ(xR) ̸= h∗(m1) ∨ FPg(x) > 0|m1, xR]

and by an identical argument

P [f̂(x) ̸= h∗(m2) ∨ FPg(x) > 0|m2, xR] ≥ κ′P [λ(xR) ̸= h∗(m2) ∨ FPg(x) > 0|m2, xR]

We now proceed by cases. Either λ(xR) ̸= h∗(m1), in which case

P [λ(xR) ̸= h∗(m1) ∨ FPg(x) > 0|m1, xR] = 1

or f̂(x) = h∗(m1) and thus λ(xR) ̸= h∗(m2) and thus

P [λ(xR) ̸= h∗(m2) ∨ FPg(x) > 0|m2, xR] = 1

In either case, we have

P [f̂(x) ̸= y∗ ∨ FPg(x) > 0|m1, xR] + P [f̂(x) ̸= y∗ ∨ FPg(x) > 0|m2, xR] ≥ κ′

Applying Lemma D.2.3 to this statement, we get that we have

P [f̂(x) ̸= y∗ ∨ FPg(x) > 0] ≥ 1

2
κ′α

completing our proof686

D.3 MAIN PROOF687

The statement is reproduced below:688

∀ĝ ∈ G . δ(ĝ) = δ∗ =⇒
(
∀ϵ > 0, E(ĥ ◦ ĝ) < ϵ =⇒ Em(ĝ) < kϵ

)
Let

k =
16#2

max|∆|n(n− 1)

#∗α2

and then fix ĝ such that δ(ĝ) = δ∗ and ϵ > 0. Assume towards contradiction that the statement689

E(ĥ ◦ ĝ) < ϵ =⇒ Em(ĝ) < kϵ is false. We then have E(ĥ ◦ ĝ) < ϵ and Em(ĝ) ≥ kϵ. Using690

Corrolary D.2.2 we have two cases.691
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D.3.1 FALSE NEGATIVE CASE692

We have that there is some c for which

P
[
ĝ(η) = 0|η ∼ P̃c

]
≥ β1

#max

Applying Lemma D.2.4, we have that

E(ĥ ◦ ĝ) ≥ 1

2
α

β1
#max

=
α2β2

8#2
max|∆|

=
α2#∗kϵ

16#2
max|∆|n(n− 1)

= ϵ

which is a contradiction with E(ĥ ◦ ĝ) < ϵ.693

D.3.2 CONFUSION CASE694

We have that there exist some c1, c2, c′ such that

min
c∈{c1,c2}

P
[
ĝ(η) ∈ Q(ec′)|η ∼ P̃c

]
≥ β2

#max

and also,
FPg ≤ nβ1

Applying Lemma D.2.5, we have that

E[f̂(x) ̸= y∗ ∨ FPg(x)] ≥
1

2
α

β2
|∆|#max

We also know that
E[FPg(x)] ≤ β1

and therefore

E(f̂) ≥ 1

2
α

β2
|∆|#max

− β1 =
1

4
α

β2
|∆|#max

=
1

8
α

#∗kϵ

n(n− 1)|∆|#max
=

2#maxϵ

α
> ϵ

which is a contradiction with E(ĥ ◦ ĝ) < ϵ, thus completing our proof.695

E MOTIF ERROR EQUIVALENCE696

In this section, we prove that our proof’s error metric is only ever off by a constant factor from our697

empirical error metrics.698

E.1 FORMAL STATEMENT699

For all ĝ ∈ G such that δ(ĝ) = δ∗,700

Em(ĝ) ≤ ϵ =⇒ FNE(ĝ) ≤ ϵ ∧ FPE(ĝ) ≤ ϵ ∧ CE(ĝ) ≤ 2ϵ

Em(ĝ) ≤ ϵ ⇐= FNE(ĝ) ≤ 1

4
ϵ ∧ CE(ĝ) ≤ 1

2
ϵ

E.2 CORRESPONDENCE WITH QUANTITIES FROM LEMMA D.2.1701

First, note that702

#∗Em(ĝ) = min
τ

#∗ −
∑
c

∑
c′|c=τ(c′)

COg(c, c
′)
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Then, note that703

FNE(ĝ) =
∑

c FNg(c)

#∗

FPE(ĝ) =
FPg

#(ĝ)

by inspection. The case of CE is more complicated, due to the presence of MM. Inspecting the704

denominator, we have705

|MM(m̂,m∗)|+ |NMM(m̂,m∗)| = |P (m̂)| − |FPM(m̂,m∗)|
and therefore706

E[|MM(ĝ(x), g∗(x))|] + E[|NMM(ĝ(x), g∗(x))|] = #(ĝ)(1− FPE(ĝ))

Additionally, we can note that if we assume there are no ties in the max computation (or alterna-707

tively, they are broken in some systematic way rather than leading to duplicates), we know that708

|MM(m̂,m∗)| = |{(i, c) ∈ P (g∗(x)) : ∃(i′, c′) ∈ P (ĝ(x)) : i′ ∈ p2(i)}|
and thus709

E[|MM(ĝ(x), g∗(x))|] = #∗(1− FNE(ĝ))

Letting Q(m̂,m∗) = {(i, c) ∈ P (g∗(x)) : ∃(i′, c′) ∈ P (ĝ(x)) : i′ ∈ p2(i)} we can break this down710

into a dichotomy711

Q(m̂,m∗) = Q1(m̂,m
∗) ⊔Q2(m̂,m

∗)

where712

Q1(m̂,m
∗) = {(i, c) ∈ P (g∗(x)) : ∃!(i′, c′) ∈ P (ĝ(x)) : i′ ∈ p2(i)}

Q2(m̂,m
∗) = {(i, c) ∈ P (g∗(x)) : ∃(i′1, c′1) ̸= (i′2, c

′
2) ∈ P (ĝ(x)) : i′1, i′2 ∈ p2(i)}

We have that713

E[|Q2(ĝ(x), g
∗(x))|] =

∑
c

CMg(c)

Finally, we can see that714

|confτ (m̂,m∗)| =
∑

(i,c)∈Q

|{(i′, c′) ∈ confτ (m̂,m
∗) : i′ ∈ p2(i)}|

= λτ (m̂,m
∗)|Q2(m̂,m

∗)|+
∑

(i,c)∈Q1

|{(i′, c′) ∈ confτ (m̂,m
∗) : i′ ∈ p2(i)}|

= λτ (m̂,m
∗)|Q2(m̂,m

∗)|+
∑

(i,c)∈Q1

1(∃c′, τ(c′) = c ∧ vm(i) = 1 ∧ vm(i, c′) ̸= 1)

= λτ (m̂,m
∗)|Q2(m̂,m

∗)|+
∑

(i,c)∈Q1

∑
c′|τ(c′)=c

1(vm(i) = 1 ∧ vm(i, c′) = 1)

E[|confτ (ĝ(x), g∗(x))|] = λτ
∑
c

CMg(c) +
∑
c

∑
c′|τ(c′)=c

COg(c, c
′)

= λτ
∑
c

CMg(c) +
∑
c,c′

COg(c, c
′)−

∑
c

∑
c′|τ(c′)=c

COg(c, c
′)

= λτ
∑
c

CMg(c) + #∗ −
∑
c

FNg(c)−
∑
c

CMg(c)−
∑
c

∑
c′|τ(c′)=c

COg(c, c
′)

where λτ (m̂,m∗) and λτ are some constants in [0, 1].715

Since (minxA(x)) + (minxB(x)) ≤ minx(A(x) + B(x)) ≤ (minxA(x)) + (maxxB(x)), we716

have that717

min
τ

E[|confτ (ĝ(x), g∗(x))|] = #∗Em(ĝ) + λ1
∑
c

CMg(c)−
∑
c

FNg(c)−
∑
c

CMg(c)
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for some λ1 ∈ [0, 1] and thus718

min
τ

E[|confτ (ĝ(x), g∗(x))|] = #∗Em(ĝ)− λ2
∑
c

CMg(c)−
∑
c

FNg(c)

= #∗Em(ĝ)− λ3
∑
c

FNg(c)−
∑
c

FNg(c)

= #∗Em(ĝ)− (1 + λ3)FNE(ĝ)#∗

for some λ2 ∈ [0, 1], and since λ3 = λ2
∑

c CMg(c)∑
c FNg(c)

≤ λ2, we have λ3 ∈ [0, 1]. We thus have that719

CE(ĝ) = #∗ Em(ĝ)− (1 + λ3)FNE(ĝ)#∗

#∗(1− FNE(ĝ))

=
Em(ĝ)− (1 + λ3)FNE(ĝ)

1− FNE(ĝ)

E.3 MAIN PROOF720

Forward direction Assume Em(ĝ) ≤ ϵ. We have that721

• We proceed by using the quantities from above, bounding FNE.722

FNE(ĝ) =
∑

c FNg(c)

#∗

=
#∗Em(ĝ)− λ2

∑
c CMg(c)−minτ E[|confτ (ĝ(x), g∗(x))|]

#∗

≤ Em(ĝ)

≤ ϵ
• Since we know from Section D.2.1 that FPg ≤

∑
c FNg(c) we have723

FPE(ĝ) =
FPg

#∗

≤
∑

c FNg(c)

#∗

≤ ϵ

• If ϵ ≥ 1
2 then clearly CE(ĝ) ≤ 1 = 2ϵ. If ϵ < 1

2 we have that 1− FNE(ĝ) > 1
2 and thus724

CE(ĝ) =
Em(ĝ)− (1 + λ3)FNE(ĝ)

1− FNE(ĝ)
≤ 2(Em(ĝ)− (1 + λ3)FNE(ĝ))
≤ 2Em(ĝ)

≤ 2ϵ

as desired725

Backward Direction Assume that CE(ĝ) ≤ 1
2ϵ and FNE(ĝ) ≤ 1

4ϵ. We then have that726

Em = CE(ĝ)(1− FNE(ĝ)) + (1 + λ3)FNE(ĝ)
≤ CE(ĝ) + 2FNE(ĝ)
≤ ϵ

F COUNTEREXAMPLES FOR LESS INTUITIVE ASSUMPTIONS727

F.1 TRANSLATIONAL INVARIANCE OF BACKGROUND DISTRIBUTION728

We assume that Pb is translationally invariant. For an example of what happens if this assumption729

is broken, consider a version of DIGITCIRCLE where one digit always appears on the left side of730
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Figure 6: Counterexample motivating the q(m2) ≤ Pm(m2) requirement

the image, and is not read as part of the output y∗. While one might think this would lead to the731

possibility of high motif error without high end-to-end error, the locality of ĝ ensures that the motif732

is predicted correctly despite not being used, as ĝ does not “know” that the motif will not be useful.733

However, if Pb were not translationally invariant, it would be possible for e.g., the background to be734

systematically darker on the left side of the image, with the motif prediction being slightly off center735

to take this into account and not report the motif if it is in the darker region. This would not affect736

end-to-end error but would affect motif error.737

F.2 NO INCREASE IN PROBABILITY MASS FOR PERTURBATIONS738

To demonstrate the necessity of the q(m2) ≤ Pm(m2) requirement, consider the domain shown in739

Figure 6, which has exactly M = {m1,m2} with m1 having 1 − ι probability (depicted is ι =740

0.01%). Clearly, this domain trivially satisfies NON-OVERLAPPING and INPUT-FACTORIZATION741

as there is only one motif. Additionally, if we let ψ(m2|m1) = 1 and ψ(⊥|m2) = 1, we have that ψ742

clearly satisfies the support requirement and since q(m2) = 1− ι, we have that
∑

m q(m) = 1− ι743

so this domain satisfies the α-MOTIF-IMPORTANCE assumption with α = 1− ι. However, we have744

that we can set ĝ(x) = 0 and ĥ(x) = "A", giving E(ĥ ◦ ĝ) = ι and Em(ĝ) = 1. This clearly breaks745

our proof since we can make ι arbitrarily small while not changing α much as it converges to 1.746

G CONFUSION747

Figure 7 depicts appropriately permuted confusion matrices for each domain. Our model generally748

assigns each true motif to a channel or set of channels in the sparse layer. The main exception is that749

in LATEX-OCR, the fraction bar is never recognized, and () are only sometimes recognized. In750

other seeds, + exhibits similar behavior to ().751

H SPARSITY AS AN INFORMATION BOUND752

H.1 CONNECTION TO INFORMATION BOUND753

Sparsity induces an information bound by limiting the amount of information in the interme-754

diate representation. Specifically, if we let X be a random variable for the input, and M =755

g∗(X ) be the motif layer, we have that we can bound the mutual information between inputs756

and motifs as I(X ,M) ≤ H(M), where H(·) is entropy. Thus, to bound mutual infor-757

mation, it is sufficient to bound H(M). We first can break it into per-channel components:758

H(M) ≤
∑

i,cH(M[i, c]),Then, let δi,c denote the density of channel c at position i, and759

η ≥ H(M[i, c]|M[i, c] ̸= 0) be a bound on the amount of entropy in each nonzero activation760

(see Appendix H.2). Then we apply the chain rule to get H(M[i, c]) ≤ H(B(δi,c)) + ηδi,c where761

B(·) is the Bernoulli distribution. Thus, H(M) ≤
∑

i,cH(B(δi,c)) + Snηδ,where S is the size of762

the image in pixels and n is the number of channels, and δ is defined as in section 2. Finally, using763

Jensen’s inequality (as H(B(t)) is concave):764

I(X ,M) ≤ H(M) ≤ Sn(H(B(δ)) + ηδ).

Since the computed bound is a monotonic function in δ, where as δ → 0, the bound approaches765

0, we can see that a sparsity bound can be used as an informational bottleneck for any information766

bound of a user’s choosing.767
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Figure 7: Confusion Matrix of 10k unseen samples computed for seed=1 across all domains. Each
row represents a true motif being recognized and column represents a channel in the model’s motif
output. False positive and false negative motifs are placed into the none rows and columns, respec-
tively. Each row is labeled by the percentage of motifs falling into the row, and each row’s cells
are then normalized to add to 1. We then permute to align along the diagonal. For LATEX-OCR,
we use more channels than there are symbol types so we merge channels together for display and
analysis.

Figure 8: Increase in error when binning. Each series represents a different bin count, as annotated
in the legend. Density is log-scaled and reversed to indicate training progress. MT is the model
tracked in the rest of the paper, ST is the model as defined in Appendix J.3

H.2 ENTROPY UPPER BOUND768

To compute our entropy upper bound, we must first compute η, as defined in Section H.1. To769

compute this, we bin the nonzero activations into 2k bins by quantile. We set η to be the smallest770

value of k that does not substantially affect the accuracy of the model (we consider 0.1% to be a771

reasonable threshold for this purpose). Figure 8 shows the result of this experiment, averaged across772

9 seeds. The general downward trend in error caused by binning as density decreases demonstrates773
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Figure 9: Model error versus FPE and CE, at 1.1× the minimum sparsity. All are log-scaled to
highlight the low-error region. Each dot represents a single model training seed.

that reducing the number of motifs reduces the importance of the precise magnitudes. For the774

purposes of entropy bounding, we can use η = log(16) = 4b.775

I PREDICTING MOTIF ERROR.776

Figure 9 shows the relationship between the motif errors and the overall end-to-end error for DIGIT-777

CIRCLE. There is no relationship for FPE, but there is a positive relationship for CE, implying that a778

strategy where one trains several models and then chooses the one with the best validation error is a779

good way to reduce CE and thereby improve motif quality. This provides further evidence for Motif780

Identifiability (though the primary evidence for this remains that this model is able to achieve low781

FPE and CE in general, as training itself focuses on reducing end-to-end error via the loss function).782

While this may seem to contradict the result in Section 5.2, it in fact does not. Within a single model,783

tightening the density has inverse effects on end-to-end error and CE, but separately, some models784

are in general more or less accurate.785

J COMPARISONS BETWEEN SPARLING AND OTHER TECHNIQUES FOR786

SPARSITY787

In this section we compare to alternatives of the SPARLING model. For all comparisons, we keep788

the model architecture fixed and only modify the Sparse layer.789

J.1 BASELINES790

We consider two other approaches to ensuring the creation of sparse motifs, both taking the form of791

auxiliary regularization losses. In both cases, we vary loss weight to analyze how that affects error792

and sparsity. First, we consider L1 loss. In our implementation, we use an affine batch normalization793

layer followed by a ReLU. The output of the ReLU is then used in an auxiliary L1 loss9. This794

approach is discussed in Jiang et al. (2015). We also consider using KL-divergence loss as in Jiang795

et al. (2015). The approach is to apply a sigmoid, then compute a KL-divergence between the796

Bernoulli implied by the mean activation of the sigmoid and a target sparsity value (we use 99.995%797

to perform a direct comparison). While this usually is done across the training data Ng (2011), we798

instead enforce the loss across all positions and channels, but per-batch (the mean sparsity should799

be similar in each batch). Our other modification, in order to induce true sparsity, is to, after the800

sigmoid layer (where the loss is computed), subtract 0.5 and apply a ReLU layer.801

9This approach parameterizes the same model class as SPARLING; both act as a ReLU in a forward pass
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L1 SPARLING
λ = 0.1 λ = 1 λ = 2 λ = 5 λ = 10 MT

FPE [%] 99.99 99.90 91.25 95.99 97.63 1.48 [0.07-4.23]
FNE [%] 0.00 0.00 58.09 73.12 84.51 0.42 [0.25-0.67]
CE [%] 50.34 47.84 45.65 50.85 33.82 1.16 [0.03-3.39]
E2EE [%] 0.68 2.85 70.31 75.00 73.20 0.74 [0.47-1.15]
Density [%] 37 4.7 0.023 0.032 0.028 0.005

Table 1: Results of L1 experiment on DIGITCIRCLE. As L1 increases, the density decreases, but
end-to-end error becomes> 50%, and CE/FPE never improve to the level of SPARLING. SPARLING
is able to keep error low while achieving lower density than L1 with any λ value we tried.

Figure 10: SPARLING using MT (as in the main figures) vs ST

Table 1 shows the results of using L1 as a method for encouraging sparsity. There are two weight802

regimes, where when λ ≤ 1, we end up with high density (relative to the theoretical minimum) but803

low error, and when λ ≥ 2, we end up with high-error model. Even in the latter case, theL1 loss does804

not consistently push density down to the level of SPARLING, suggesting it might be insufficiently805

strong as a learning signal. In our experiments, the KL-divergence was unable to achieve a density806

below 0.1%, even when we used a loss weight as high as λ = 105 and 3 × 106 steps (much more807

than was necessary for convergence of the L1 model). Thus, we conclude that it is unsuitable for808

encouraging the kind of sparsity we are interested in.809

J.2 ABLATIONS810

We consider two ablations: First, is the batch normalization we place before our sparse layer nec-811

essary? Second, is the adaptive sparsity algorithm we use necessary? These ablations are only812

evaluated on DIGITCIRCLE as it is the domain where simpler techniques would work best.813

We find that including a batch normalization before the sparsity layer is crucial. Without a batch814

normalization layer, over 9 runs, the best model gets an E2EE of 71%, in essence, it is not able to815

learn the task at all. Additionally, annealing (Algorithm 1) is clearly necessary: when started with816

the annealing algorithm’s final and penultimate δ values, the model converged to E2EE values of817

68% and 71% respectively.818

J.3 SINGLE THRESHOLD819

In this section, we consider a variation to the quantile function. We call this the single threshold (ST)
sparsity approach, as opposed to the multiple thresholds (MT) technique described in Section 4.1,
where we take the quantile across the entire input (batch axis, dimensional axes, channel axis). In
this case, the channels can have differing resulting densities that average together to the target δ.
More precisely, we use the quantile function qST : RB×d1×...×dk×n × R → R, implemented such
that

p ≈ 1

BSC

∑
b,i,c

1(z[b, i, c] ≤ qST(z, p)).
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As seen in Figure 10, ST performs substantially worse in terms of CE and E2EE, while performing820

better with respect to FPE. Without the constraint that the motifs have equivalent density across821

each channel, some motifs are being used to represent multiple digits, which substantially increases822

confusion error, but also reduces false positives. In general, the MT model is superior as it has823

reasonable FPE and substantially lower CE/E2EE.824

K COMPARISON TO DIRECTLY LEARNING THE MOTIFS825

SPARLING [mean] DIRECT [mean] Ratio [of means]

DigitCircle 1.24 0.01 0.01
LaTeX-OCR 6.55 0.12 0.02
LaTeX-OCR [without +()] 2.96 0.10 0.03
AudioMNISTSequence/train 5.41 0.61 0.11
AudioMNISTSequence/test 8.01 4.28 0.53

Table 2: Error [%] and ratios between errors. All are computed as a mean across 9 seeds

The purpose of SPARLING is to be able to learn intermediate state without having to have access to826

any training data on the intermediate state. In this section, we analyze how well it does at this goal,827

by comparing it to DIRECT, a setting where we train and evaluate on the intermediate state directly.828

Specifically, we construct datasets for each task of single motifs and train and test models on these829

datasets, then also test SPARLING on these datasets.830

In the case of DIGITCIRCLE and LATEX-OCR, DIRECT is a trivial task as there is no distributional831

shift in the motif samples used to train and evaluate the model – effectively, DIRECT is tested on the832

training set. Thus, DIRECT gets ∼0% error.833

However, on the AUDIOMNISTSEQUENCE task, the DIRECT has non-negligible error, with 0.61%834

error on the training sample distribution but a much higher 4.28% error on the testing sample distri-835

bution. Meanwhile, SPARLING increases substantially less, from 5.41% to 8.01%. This is because836

the error in SPARLING comes from two sources: the underlying uncertainty in prediction it shares837

with the DIRECT technique, and epistemic uncertainty related to the problem of identifying motifs838

from end-to-end data. This latter error evidently does not scale linearly with the difficulty of the839

underlying task.840

L SPLICING DOMAIN841

We also consider the original splicing domain, hypothesizing that on a domain that does not satisfy842

our assumptions in Section 3.3, SPARLING will not perform well but can perform better than chance.843

To keep things simple, we use the Jaganathan et al. (2019) architecture as the ĥ model and a simple844

convolutional stack identical to the adjustment model from Gupta et al. (2024) as the ĝ model. To845

ensure our experiment is picking up on a real signal, we will exclude the local splice site motifs846

(LSSI sites) from the set of true motifs for the purposes of analysis, as these sites can be found847

trivially from the end-to-end data, instead, we only evaluate on the other protein binding sites.848

SPARLING achieves reasonable end-to-end performance, but does not perform as well as the other849

three domains on motif prediction (see Figure 11). However, we find that it consistently outperforms850

a random chance baseline in the most important error metric, CE—indicating that it is correctly851

classifying motifs. The other error metrics are more mixed, while it outperforms the baseline in852

FPE, it underperforms it in FNE suggesting that the model is producing duplicate activations, which853

leads to insufficient coverage of the motifs. Overall, this is consistent with our hypothesis that while854

Motif Identifiability is only possible given certain assumptions, SPARLING is capable of picking up855

some signal even when these assumptions are not met.856
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Figure 11: Results on the splicing domain. Results are presented per error metric for both 4 runs of
SPARLING and 95% CI of a boostrap mean of 10 runs of a matched randomized baseline.

M COMPUTE USAGE857

All our experiments were performed on NVIDIA GeForce GTX 1080 Ti (12GiB VRAM) or Quadro858

RTX 5000 (16GiB VRAM) GPUs. On average, DIGITCIRCLE experiments took 4 hours each to859

train, LATEX-OCR experiments took 14 days each to train, and AUDIOMNISTSEQUENCE experi-860

ments took 5 days to train. In total, we used about 350 GPU days of compute for the experiments861

reported in the body of the paper, 250 GPU days for the experiments referenced in footnotes/the862

appendix, and 200 GPU days of compute for exploratory experiments that were not referenced.863
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