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ABSTRACT

Graph transformation that predicts graph transition from one mode to another is
an important and common problem. Despite much recent progress in developing
advanced graph transformation techniques, the fundamental assumption typically
required in machine-learning models that the testing and training data preserve
the same distribution does not always hold. As a result, domain generalization
graph transformation that predicts graphs not available in the training data is
under-explored, with multiple key challenges to be addressed including (1) the
extreme space complexity when training on all input-output mode combinations, (2)
difference of graph topologies between the input and the output modes, and (3) how
to generalize the model to target domains that are not in the training data. To fill
the gap, we propose a multi-input, multi-output, hypernetwork-based graph neural
network (MultiHyperGNN) that employs a encoder and a decoder to encode both
input and output modes and semi-supervised link prediction to enhance the graph
transformation task. Instead of training on all mode combinations, MultiHyperGNN
preserves a constant space and polynomial computational complexity with the
encoder and the decoder produced by two novel hypernetworks. Comprehensive
experiments show that MultiHyperGNN has a superior performance than competing
models in both prediction and domain generalization tasks.

1 INTRODUCTION

Graph is a ubiquitous data structure characterized by node attributes and the graph topology that
describe objects and their relationships. Many tasks on graphs ask for predicting a graph (i.e., graph
topology or node attributes) from another one. Applications of such graph transformation include
traffic forecasting between two time stamps based on traffic flow (Li et al., 2018; Yu et al., 2018), fraud
detection between transactional periods (Van Belle et al., 2022), and chemical reaction prediction
according to molecular structures (Guo et al., 2019).
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Figure 1: Graph transformation predicts gene expression of the output tissue from that of the input
tissue. The yellow and the blue networks are gene-gene networks in the input and the output tissues,
respectively. Node colors indicate various expression levels. We train the model on input-target tissue
pairs, whereas we generalize the model to unseen mode pairs or even unseen modes during testing.

Despite of a wide spectrum of applications, graph transformation still faces major issues such as
insufficient samples of graph pairs for training the model. For instance, as shown in Figure 1, if the
model is trained to predict gene-gene network on specific tissue pairs (e.g., from heart and blood
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to brain, from blood to muscle), but in testing process, one may want to generalize the model to
unseen tissue pairs (e.g., from heart to muscle) or even to tissues unavailable in the training data. If
so, the performance of the graph transformation model may deteriorate due to domain distribution
gaps (Quinonero-Candela et al., 2008). Therefore, it is imperative and crucial to improve the
generalization ability of graph transformation models to generalize the learned graph transformation
to other (unseen) graph transformations, namely domain generalization graph transformation.
Domain generalization graph transformation, nevertheless, is still under-explored by the machine-
learning community due to the following challenges: (1) High complexity in the training process.
To learn the distribution of graph (or mode) pairs in training data, we need to learn the model by
traversing on all combinations of input modes to predict all combinations of output modes. In this
case, the training complexity would be exponential if we train a single model for all possible input-
output mode combinations; (2) Graph transformation between topologically different modes. The
existing works regarding graph transformation predict node attributes conditioning on either the same
topology or the same set of nodes of input and output modes (Battaglia et al., 2016; Yu et al., 2018;
Guo et al., 2019). Performing graph transformation across modes with varying topologies, including
different edges and even varying graph sizes, is a difficult task. Main challenges include how to
learn the mapping between distinct topologies and how to incorporate the topology of each mode to
enhance the prediction task; (3) Learning graph transformation involving unseen domains and
lack of training data. Graph transformation usually requires both the source and target domains
to be visible and have adequate training data to train a sophisticated model. However, during the
prediction phase, we may be asked to predict a graph in an unseen target domain. Learning such
transformation mapping without any training data is an exceedingly challenging task.
To fill the gap, we propose a novel framework for domain generalization graph transformation via
a multi-input, multi-output hypernetwork-based graph neural networks (MultiHyperGNN). Our
contributions are summarized as follows:

• We propose a novel multi-input, multi-output framework of graph transformation for predicting node
attributes across multiple input and output modes. We introduced a novel framework leveraging a
multi-input, multi-output training strategy, significantly reducing the space complexity regarding
trainable parameters from exponential to constant during training.

• We develop an encoder and a decoder for graph transformation between topologically different
input and output modes, respectively. Additionally, our model conducts semi-supervised link
prediction to complete the output graph, facilitating generalization to all nodes in the output mode.

• We design two novel hypernetworks that produce the encoder and the decoder for domain general-
ization. Mode-specific meta information serves as the input to guide the hypernetwork to produce
the corresponding encoder or decoder, and generalize to unseen target domains.

• We conduct extensive experiments to demonstrate the effectiveness of MultiHyperGNN on three
real-world datasets. The results show that MultiHyperGNN is superior than competing models.

2 RELATED WORKS

Graph transformation. Graph transformation maps graph from one mode to another. Existing
works either predict node attributes given fixed graph topology, such as Li et al. Li et al. (2018) in
traffic forecasting under fixed traffic network and Battaglia et al. Battaglia et al. (2016) in predicting
velocities of objects on subsequent time steps, or predict graph topology, such as Guo et al. Guo et al.
(2022) learning by the global and the local translation with graph convolution and deconvolution
layers. Others instead predict node attributes and graph topology simultaneously. Guo et al. Guo et al.
(2019) solved node-edge joint translation with a multi-block network. Lin et al. (Lin et al., 2020)
applied graph attention to the co-evolution of node and edge states. When predicting node attributes,
nevertheless, the assumption of fixed graph topology in both input and output modes may not always
hold. Graph transformation that can handle topologies of both modes is needed.
Domain generalization. Machine learning models typically assume identical distribution between
training and testing data. However, model generalization to unseen data is crucial in fields like
semantic segmentation (Gong et al., 2019; Dou et al., 2019), fault diagnosis (Zheng et al., 2020),
and natural language processing (Wang et al., 2020; Garg et al., 2021), among others (Du et al.,
2021; Qian et al., 2021). For instance, Du et al.Du et al. (2021) tackled temporal covariate shift in
time series using an RNN-based model, while Qian et al.(Qian et al., 2021) addressed sensor-based
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activity recognition by learning domain-invariant modules. Similarly, Gong et al.(Gong et al., 2019)
focused on domain generalization in image translation, Wang et al.(Wang et al., 2020) employed
meta-learning for zero-shot domain generalization in semantic parsing, and Chen et al. (Chen et al.,
2022) explored latent domain structure identification without domain labels, emphasizing the need
for expressive representation learning.
Hypernetworks. A hypernetwork is a neural network generating weights for another network (Ha
et al., 2017), with applications spanning image classification (Sun et al., 2017; Sendera et al., 2023),
editing (Alaluf et al., 2022), robotic control (Huang et al., 2021; Rezaei-Shoshtari et al., 2023), and
language models (Volk et al., 2022; Zhang et al., 2022). Notably, hypernetworks have been leveraged
for domain generalization. Qu et al.(Qu et al., 2022) enabled expert weight generation sharing meta-
knowledge, albeit with the training space complexity linear to the number of classifiers. Sendera et
al.(Sendera et al., 2023) introduced HyperShot for few-shot learning by feeding kernel-based support
representations to hypernetworks. Bai et al. Bai et al. (2022) employed hypernetworks for graph clas-
sifier generation using only timestamps for temporal domain generalization. Despite their widespread
use in domain generalization, hypernetwork research in generating GNNs is sparse. Therefore, we
introduce two novel hypernetworks to steer domain generalization in graph transformation tasks.

3 PROBLEM FORMULATION

Suppose we have N modes of graphs composed of p nodes: G = {G(1),G(2), ...,G(N)}, where each
mode contains graphs with the same topology. Specifically, suppose there are n independent samples
in the dataset, and for each sample i in the mode j, denote G

(j)
i = {A(j), X

(j)
i } ∈ G(j), where

A(j) ∈ Rpj×pj is the adjacency matrix of size pj ≤ p and X
(j)
i ∈ Rpj×d is the node attributes

with d features. Note that the graph of G(j) may not contain all p nodes in mode j, all other nodes
are disjointed with each other and with pj nodes in G(j). We further assume each mode j can be
characterized by its meta information m(j). For instance, the mode G(j) can be a specific human
tissue j that has the gene-gene expression network G

(j)
i for a patient i. There are p human genes

expressed in various human tissues but G(j)
i only contains pj of them. A detailed notation table is in

Appendix A.
Next, we formally formulate the task domain generalization graph transformation as below:
Definition 1 (Domain generalization graph transformation). Let S = {X × Y : X ∈ P(G),Y ∈
P(G − X )} be the source domain where we train the graph-transformation model f : X → Y ,
which predicts node attributes in Y from node attributes in X . P(·) is the power set excluding the
empty set. Domain generalization graph transformation learns the f so that the prediction error on
f : X T → YT is minimized, where X T × YT is the target domain s.t. X T × YT /∈ S.

Domain generalization graph transformation is exceptionally difficult due to the following challenges:
Challenge 1: High complexity in training process. For training the graph transformation f : X →
Y , where X × Y ∈ S, conventionally we need to train O(3N ) models to handle all possible mode
combinations in S, which is rather computationally intensive.
Challenge 2: Topological difference between input and output domains. When the input mode
and the output mode have different topologies, how to utilize topologies of both modes to jointly
contribute to graph transformation remains to be explored. An intuitive way is to employ two
graph encoders to respectively encode the graph topology of both modes, but how to form the
graph-transformation model on S with only two such encoders is still challenging.
Challenge 3: Generalization to unseen domains. Even if it is possible that we train the model on
all combinations of modes in S , how to learn the graph transformation that can efficiently predict the
graph in an unseen target domain is still challenging.

4 DOMAIN GENERALIZATION DEEP GRAPH TRANSFORMATION

4.1 OVERVIEW OF MULTIHYPERGNN

For the first challenge, instead of including exponentially many modes by separately training on
all their combinations, we collectively train all modes together to avoid the duplication of modes
and reduce the complexity (Figure 2). To address the heterogeneity of nodes and graph topology,
we propose an encoder-decoder framework in Section 4.2 (Figure 2 (A)). Moreover, each input
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mode requires an encoder while each output mode needs a decoder, which can be any type of
GNNs such as Graph Convolutional Network (GCN), Graph Isomorphism Network (GIN) and Graph
Attention Network (GAT). To learn the encoder and the decoder for unseen modes, we propose
to train two hypernetworks that respectively generate any encoder or decoder given mode-specific
meta information in Section 4.3 (Figure 2 (B)). Furthermore, we provide a theoretical assurance
that an ample amount of meta-information will result in improved generalization accuracy when
extrapolating to unexplored domains.

𝑓𝑒
1

𝑓𝑒
2

𝑓𝑒
𝑁

…
…

𝑓𝑑
1

𝑓𝑑
2

𝑓𝑑
𝑀

…
…

𝛽𝑒 𝛽𝑑

𝑚𝒳 𝑚𝒴

𝑓𝑒 𝑓𝑑

𝑓𝑑
1

𝑓𝑑
2

𝑓𝑑
𝑀

…
…

Link pred.

(A)

(B)

Link pred.

Link pred.

Figure 2: Overview of MultiHyperGNN for the graph transformation from N input to M output
modes. {f (j)

e }j∈X are encoders generated by the encoder hypernetwork βe. {f (k)
d }k∈Y are decoders

generated by the decoder hypernetwork βd. mX and mY are mode-specific meta information. "Link
pred." is semi-supervised link prediction. Blue dotted line is the flow of back-propagation.

Let j ∈ X be the j-th mode in X and k ∈ Y be the k-th mode in Y , where X ∈ P(G) and Y ∈
P(G − X ) as in Def. 1. As in Figure 2 (A), to predict X(k)

i , we use encoders (i.e., fe = {f (j)
e }j∈X )

and decoders (i.e., fd = {f (k)
d }k∈Y ) to encode the topology of both input and output modes:

X̂
(k)
i = f

(k)
d (A(k), σ1({f (j)

e (G
(j)
i ;β(j)

e )}j∈X ));β
(k)
d )), k ∈ Y (1)

Namely, to predict node attributes of any k ∈ Y from modes in X , we first encode topologies of
modes in X via f

(j)
e (G

(j)
i ;β

(j)
e ), j ∈ X . Then we aggregate embeddings of all these modes via the

pooling function σ1(·) and feed it with the graph topology A(k) into f
(k)
d to predict X(k)

i , where
k ∈ Y . To reduce the heavy complexity of the training process due to the exponential number of
choices of X × Y ∈ S (Def. 1) and generalize the mode to unseen domains, instead of training
separately for each X × Y , as shown in Figure 2 (B), we borrow two hypernetworks (i.e., βe and βd)
to produce all encoders and decoders with the corresponding mode-specific meta information:

β(j)
e = βe(m

(j); γe), j ∈ X ; β
(k)
d = βd(m

(k); γd), k ∈ Y, (2)

where γe and γd parameterize βe and βd, respectively, and are learned during training process.
Therefore, Eq. 1 is re-parameterized by γX→Y = {γe, γd}:

X̂
(k)
i = f

(k)
d (A(k), σ1({f (j)

e (G
(j)
i ;βe(m

(j); γe))}j∈X );βd(m
(k); γd)), k ∈ Y

= fγX→Y (A
(k), {G(j)

i ,m(j)}j∈X ; γX→Y), k ∈ Y, (3)

where fγX→Y = {f (k)
d ∗ {f (j)

e }j∈X }k∈Y : RN×p → RM×p formularizes the graph transformation
that predicts node attributes of M modes in Y from N modes in X .

As long as X̂(k)
i is predicted via Eq. 3, we mathematically formulate the first term of the learning

objective of MultiHyperGNN as follows:

L1(γe, γd) =

n∑
i=1

ℓ({X̂(k)
i }k∈Y , {X(k)

i }k∈Y) (4)

where ℓ(·) measures the prediction error of fγX→Y of each sample, such as mean squared error (MSE),
mean absolute error (MAE), etc. n is the total number of samples in training data.
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Since the size of the source domain S is O(3N ) (i.e., each of N modes can serve as source mode, target
mode or neither), leading to an exponential space complexity of O(3N ) with the space of trainable
parameters as {P({β(j)

e }j∈X ) × P({β(k)
d }k∈Y) : X ∈ P(G),Y ∈ P(G − X )}. MultihyperGNN

reduces the space complexity to O(1) even though it can process arbitrary combinations of input and
output modes during training.

4.2 GRAPH TRANSFORMATION ON TOPOLOGICALLY DIFFERENT DOMAINS

Traditional graph-transformation models encounter significant challenges when attempting to handle
modes with different graph topologies (i.e., A(j) ̸= A(k), pj ̸= pk). To address this issue, as shown in
Figure 2 (A), we propose GNN-based encoder f (j)

e and decoder f (k)
d that encode the graph of modes

j ∈ X and k ∈ Y , perform semi-supervised link prediction to complete the topology of the output
mode G(k) and enable the model to predict all p nodes. Let V(j) and V(k) be sets of nodes contained
in the graph of modes j and k, respectively, and |V(j)| = pj , |V(k)| = pk. Since pj ̸= pk, to match
the input dimension of f (j)

e and f
(k)
d , we expand G(j) and G(k) by the union of their nodes and obtain

G̃(j) and G̃(k) with node sets: Ṽ(j) = Ṽ(k) = V(j)
⋃
V(k), and |Ṽ(j)| = p̃j = |Ṽ(k)| = p̃k ≤ p.

Those newly added nodes are self-connected and are disjointed with other nodes.

Encoder. For the i-th sample, the encoder f (j)
e encodes the topology and node attributes of the mode

j into the latent embedding z
(j)
i ∈ Rl, where l is the hidden dimension:

z
(j)
i = f (j)

e (G̃
(j)
i ;β(j)

e ) = GNN(G̃
(j)
i ;β(j)

e ). (5)

Based on Eq. 2, the encoder f (j)
e is generated by the hypernetwork βe guided by the mode-specific

meta information m(j). Therefore, Eq. 5 becomes z
(j)
i = GNN(G̃

(j)
i ;βe(m

(j); γe)), where γe is
mode-invariant and parameterizes all encoders {f (j)

e }j∈X .

Decoder. Once {z(j)i }j∈X is obtained for all modes in X , we apply the decoder f (k)
d to decode

{z(j)i }j∈X and encode the topology Ã(k) of the output mode k ∈ Y to predict node attributes of Ṽ(k):

ˆ̃X
(k)
i = f

(k)
d (Ã(k), σ1({z(j)i }j∈X );β

(k)
d ) = MLP(GNN(Ã(k), σ1({z(j)i }j∈X );β

(k)
d,GNN);β

(k)
d,MLP), (6)

where the Multilayer Perceptron (MLP) serves as the prediction layer and β
(k)
d = {β(k)

d,GNN, β
(k)
d,MLP},

generated by the hypernetwork βd with mode-specific meta information m(k). Then Eq. 6 becomes:

ˆ̃X
(k)
i = MLP(GNN(Ã(k), σ1({z(j)i }j∈X );βd(m

(k); γd));βd(m
(k); γd)), (7)

where γd is model-invariant and parameterizes all target decoders {f (k)
d }k∈Y . We further define V as

the set of all nodes contained in G so that |V| = p. Since p ≥ p̃j = p̃k, now we have only predicted
node attributes of Ṽ(k), and the attributes of the remaining nodes V \ Ṽ(k) still need to be predicted.
Semi-supervised link prediction. We adopt the semi-supervised link prediction to complete the
topology Â(k) of the mode k using graph auto-encoder (Kipf & Welling, 2016) supervised by Ã(k):

h
(k)
i = GNN(Ã(k), ˆ̃X

(k)
i ;ϕ), Â(k) = Sigmoid(h(k)

i · (h(k)
i )T ) (8)

Then we compute the Binary Cross Entropy (BCE) between Ã(k) and Â(k) as the second term of the
learning objective:

L2(ϕ) =
∑
k∈Y

BCE(Ã(k), Â(k)) = −
∑
k∈Y

pk∑
s=1

pk∑
t=1

{Ã(k)
st log Â

(k)
st + (1− Ã

(k)
st ) log(1− Â

(k)
st )} (9)

Once Eq. 8 is trained and ϕ̂ is learned, we perform link prediction and update Ã(k) as follows:

h̄
(k)
i = GNN(Ā(k), X̄

(j→k)
i ; ϕ̂), Ã(k) ← Sigmoid(h̄(k) · (h̄(k))T ), (10)

where Ā(k) is the diagonal block matrix with Ã(k) and the identity matrix I ∈ R(p−p̃k)×(p−p̃k) as
diagonal blocks. Since the node attributes of Ṽ(k) has been predicted in Eq. 7, we only need to impute
the attributes of V \ Ṽ(k) with the corresponding attributes of modes in X as the input of GNN(·).
Therefore, X̄(j→k)

i = [ ˆ̃X
(k)
i , σ2({X(j)

i [p̃k :]}j∈X )] is the concatenation of previously predicted
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attributes ˆ̃X(k) (Eq. 7) and the aggregated attributes of V \ Ṽ(k) in modes j ∈ X via the pooling
function σ2(·). σ2(·) is the mean pooling function across modes in X in implementation.

Once Ã(k) is updated by Eq. 10, we apply the decoder again in Eq. 7 to predict attributes of V \ Ṽ(k):
ˆ̄X
(k)
i = MLP(GNN(Ã(k), X̄

(j→k)
i ;βd(m

(k); γd));βd(m
(k); γd))[p̃k :], (11)

Finally, the predicted node attributes in k ∈ Y are X̂
(k)
i = [ ˆ̃X

(k)
i , ˆ̄X

(k)
i ].

4.3 DOMAIN GENERALIZATION VIA HYPERNETWORKS

In this section, we propose the encoder hypernetwork (βe in Figure 2 (B)), the decoder hypernetwork
(βd in Figure 2 (B)), and the algorithm to learn them. The characteristics and similarity among
input and output modes is captured by meta information mX = {m(j)}j∈X and mY = {m(k)}j∈Y ,
respectively, which guide the encoder and the decoder hypernetwork (βe and βd, respectively)
to produce mode-specific encoders (i.e., {f (j)

e }j∈X ) and decoders (i.e., {f (k)
d }k∈Y ). The formal

definition of meta information is in Def. 2.
Definition 2 (Meta information). Meta information of mode k is mk s.t. p(G(k)|m(k)) > p(G(k)).

When generalizing to unseen target domains, βe and βd can produce encoders and decoders of unseen
modes given their meta information.

Algorithm 1: Algorithm of learning phase
Input: {G̃(j),m(j)}j∈X : topology, node attributes and meta information of source modes
Input: {Ã(k),m(k)}k∈Y : topology and meta information of target modes
Input: Initialized parameters γe, γd and ϕ

Output: {X̂(k)
i }k∈Y , i=1,2,...,n

1 while Converge do
2 for k ∈ Y do
3 Compute attributes ˆ̃X

(k)
i of G̃(k) via Eq. 7 for each sample i in mode k

4 Assemble Ā(k) and X̄j→k
i as in Eq. 10

5 Perform link prediction and update Ã(k) via Eq. 10

6 Compute attributes of the remaining nodes ˆ̄X
(k)
i in V \ Ṽ(k) via Eq. 11

7 Concatenate predicted attributes of all nodes: X̂(k)
i = [ ˆ̃X

(k)
i , ˆ̄X

(k)
i ]

8 Compute L1(γe, γd) via Eq. 4, L2(ϕ) via Eq. 9 and L via Eq. 12
9 Update γe, γd and ϕ by stochastic gradient descent on L

Learing phase. In the training process, we learn parameters γe, γd of the encoder hypernetwork βe
and the decoder hypernetwork βd, respectively, on the source domain S = {X ×Y : X ∈ P(G),Y ∈
P(G − X )}. Specifically, we minimize the learning objective L of MultiHyperGNN:

L = L1(γe, γd) + ρ · L2(ϕ), (12)

where L1 and L2 are obtained from Eq. 4 and Eq. 9, respectively, ρ is the hyperparameter, and ϕ is
another trainable paratemer for semi-supervised link prediction. In implementation, βe and βd are
approximated by MLPs. The learning phase is also depicted in Algorithm 1.
The number of combinations for the input and output modes scales exponentially (i.e., O(3N )),
traditionally leading to O(3N ) of computational complexity in each training epoch. By contrast, our
proposed model in Algorithm 1 only needs to train on input-output mode pairs (e.g., input mode to
output mode) so that we have only O(N2) such pairs to iterate in each training epoch. Therefore, the
computational complexity is reduced from exponential O(3N ) to polynomial O(N2).
Generalization phase. Once γ̂e, γ̂d are learned as parameters of βe and βd, respectively, we
generalize the model to the unseen target domain T = X T ×YT by guiding βe and βd with the meta
information of unseen modes {m(j)}j∈XT and {m(k)}k∈YT . Following Eq. 1 and Eq. 3, we have:

β(j)
e = βe(m

(j); γ̂e), j ∈ X T , β
(k)
d = βd(m

(k); γ̂d), k ∈ YT

X̂
(k)
i = f

(k)
d (A(k), σ({f (j)

e (G
(j)
i ;β(j)

e )}j∈YT );β
(k)
d ), k ∈ YT (13)

We theoretically prove that in the generalization phase our model can generalize to T given sufficient
mode-specific meta information.

Definition 3 (Generalization error). Suppose X(k)
i = fγ̂X→Y (A

(k), {G(j)
i ,m(j)}j∈XT ; γ̂X→Y) + ϵi

following Eq. 3, where k ∈ YT and γ̂X→Y is estimated during training process on S. We define
∥ϵi∥22 as the generalization error of sample i.
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Definition 4 (Sufficient meta information). We define m(j) and m(k) as the sufficient meta infor-
mation of the prediction fγX→Y if j ∈ X , k ∈ Y , m(j) belongs to the space M that is a bijective
mapping of the space of sufficient statistic of G(j), and m(k) = argmaxm p(G(k)|G(j),m).

In practice, according to Def. 2, p(G(k)|m(k)) =
∫
p(G(k)|G(j),m(k))p(G(j))dG(j) =

Ep(G(j))[p(G(k)|G(j),m(k))] ≈ p(G(k)|G(j),m(k)). Therefore, based on Def. 4, pursuing sufficient
meta information is approximately aligned with identifying the most mode-representative one.

Theorem 1. For the mode j ∈ X T and the mode k ∈ YT , X T × YT ∈ T , m(j) and m(k) are
sufficient meta information of j and k, compute X̂(k)

i following Eq. 3 using G(j), A(k), m(j) and m(k)

and calculate the generalization error ∥ϵi∥22 as in Def. 3. Then compute {X̂(k)′

i }k∈YT following
Eq. 3 using the same input but with ∀m(j′), j′ ∈ X , ∀m(k′), k′ ∈ Y and X × Y ∈ S as the input
of βe and βd. This leads to the generalization error ∥ϵ′i∥22. Assume ϵi in Def. 3 has a Gaussian
distribution ϵi ∼ N (0,Σ), then we have ∥ϵi∥22 ≤ ∥ϵ′i∥22.

The proof of the above theory is in Appendix B. An ample amount of meta-information will result in
reduced generalization error.

5 EXPERIMENTS

This section reports the results of experimental analysis with implementation details and complexity
analysis in Appendix C and Appendix D, respectively.

5.1 DATASET

We evaluate on three real-world datasets: (1) Genes: Utilizing gene expression data from the public
dataset Genotype-Tissue Expression Consortium (Lonsdale et al., 2013), we focus on five tissues:
whole blood (WB), lung (L), muscle skeletal (MS), sun-exposed (LG), and not-sun-exposed skin
(S). The gene-gene network is formed via weighted correlation network analysis (Langfelder &
Horvath, 2008) with expression values as node attributes. Meta-information comprises tissue type,
location, structure, function, and cell types; (2) Climate: Derived from the Goddard Earth Observing
System Composition Forecasting (2019-2021), air temperature data for US state capitals is segmented
into four daily modes: early morning (0:00AM-6:00AM), late morning (6:00AM-12:00PM), after-
noon (12:00PM-18:00PM), and night (18:00PM-0:00AM). Cities represent graph nodes with air
temperature as node attributes, connected based on high Pearson Correlation of temperatures. Time
period indicators and timestamps serve as meta-information; (3) Traffic: Employing the PEMS08
dataset, we assess domain generalization in San Bernardino traffic data (July-August 2016), with 170
detectors across eight roads. Meta-information is encoded as one-hot vectors for speed, occupancy,
and flow, with all measures min-max normalized. Dataset details are provided in Appendix E.

5.2 EVALUATION METRICS

We evaluate the model performance both quantitatively and qualitatively. For quantitative evaluation,
we measure prediction accuracy based on MSE and Pearson Correlation Coefficients (PCC). To
evaluate the efficiency, we theoretically analyze the space complexity of MultiHyperGNN and other
models. For qualitative evaluation, we visualize the distribution between predicted and ground-truth
node attributes in unseen modes during the testing process.

5.3 COMPETING MODELS AND ABLATION STUDIES

We employ five competing models: (1) ED-GNN. We modify MultiHyperGNN to a naive encoder-
decoder-based model by directly training the encoder and the decoder for each mode combination. A
single model is trained for all mode combinations; (2) Multi-Head Model (MHM) (Vandenhende
et al., 2021). We modify ED-GNN into a multi-task learning framework by simultaneously training
multiple decoders with the same encoder. This model can only be used for prediction instead
of domain generalization since each decoder deals with a specific output mode; (3) Interaction
Networks (IN) (Battaglia et al., 2016). IN models interactions and dynamics of nodes in the graph
for node-level graph transformation. Particularly, IN uses only fixed graph topology from the
input mode; (4) Explore-to-Extrapolate Risk Minimization (EERM) (Wu et al., 2022). EERM
employs q context explorers that undergo adversarial training to maximize the variance of risks
across multiple virtual environments. This enables the model to extrapolate from a single observed
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Table 1: Evaluation on prediction accuracy.
Model Genes-L Genes-LG Genes-S T-Afternoon T-Night

MSE PCC MSE PCC MSE PCC MSE PCC MSE PCC
ED-GNN 1.9810 0.6072 2.1289 0.5795 2.1925 0.5764 59.3010 0.4539 84.0824 0.4187

MHM 2.0126 0.5913 2.0153 0.5312 2.0384 0.5816 61.2798 0.4300 69.8599 0.4207
IN 2.0182 0.6026 2.2019 0.5683 2.1304 0.5377 60.8755 0.4650 71.0456 0.4210

EERM 1.8624 0.6493 1.9035 0.6325 2.1187 0.5931 84.0604 0.4259 83.2518 0.4101
DRAIN 1.9798 0.6132 1.9969 0.6009 2.2100 0.5741 91.4561 0.3987 104.3200 0.4085

HyperGNN-1 2.7566 0.2574 2.8543 0.2494 2.8863 0.2501 129.6152 0.3566 101.0478 0.4095
HyperGNN-2 2.9383 0.2654 3.0230 0.2565 3.0467 0.2574 280.5912 0.3557 400.0514 0.3125
HyperGNN 1.9720 0.6144 2.2040 0.5700 2.1930 0.5799 69.3157 0.4405 70.0319 0.4299

MultiHyperGNN-MLP 2.8958 0.2608 3.4251 0.2736 3.6073 0.2814 104.0525 0.3764 81.9324 0.4122
MultiHyperGNN-S 2.0023 0.6492 2.2420 0.6018 2.2723 0.6153 89.1604 0.4027 75.6518 0.4151

MultiHyperGNN-GCN 1.8023 0.6511 1.9426 0.6340 1.9539 0.6337 89.1321 0.4395 68.7137 0.4216
MultiHyperGNN-GIN 1.7101 0.6654 1.8913 0.6450 1.9046 0.6455 43.5142 0.5155 49.0168 0.4878
MultiHyperGNN-GAT 1.7695 0.6583 1.9107 0.6347 1.8951 0.6470 54.2913 0.4937 60.1922 0.4561

Table 2: Evaluation on domain-generalization accuracy.
Model Genes-L Genes-LG Genes-S Traffic-Flow Traffic-Speed

MSE PCC MSE PCC MSE PCC MSE PCC MSE PCC
ED-GNN 2.2387 0.4752 2.0573 0.5229 2.0425 0.5511 1.3070 0.5316 1.2108 0.5566

IN 2.1017 0.5312 2.1539 0.5249 2.3746 0.4795 1.0914 0.5961 1.1679 0.6019
EERM 2.2148 0.5193 2.3536 0.4583 2.5792 0.4669 1.2127 0.5663 1.2015 0.5690
DRAIN 2.8155 0.5123 3.2461 0.4016 3.2777 0.4230 1.1195 0.5906 1.1698 0.5919

HyperGNN-1 3.7586 0.2359 3.3152 0.2614 3.3011 0.2537 1.2055 0.5438 1.2017 0.5788
HyperGNN-2 3.1516 0.2338 3.3064 0.2572 3.5869 0.2629 1.1984 0.5526 1.2911 0.5209
HyperGNN 1.9025 0.6003 2.0471 0.6427 1.9913 0.6236 1.0698 0.6002 1.0980 0.6125

MultiHyperGNN-MLP 3.0812 0.2150 3.1519 0.2963 3.6322 0.3049 1.1518 0.5834 1.2080 0.5857
MultiHyperGNN-GCN 1.8513 0.6495 2.0086 0.6410 1.9965 0.6127 1.0615 0.6164 1.1330 0.6087
MultiHyperGNN-GIN 1.8005 0.6600 1.9852 0.6479 1.9031 0.6471 0.9055 0.6312 1.0418 0.6309
MultiHyperGNN-GAT 1.8069 0.6562 2.0123 0.6455 1.8921 0.6425 0.9946 0.6253 1.1011 0.6102

environment; (4) DRAIN (Bai et al., 2022). DRAIN utilizes recurrent graph generation to generate
dynamic graph-structured neural networks using hypernetworks trained on various time points. This
framework can capture the temporal drift of both model parameters and data distributions to make
future predictions. Additionally, we modify MultiHyperGNN to evaluate four different aspects: (1)
HyperGNN. HyperGNN is a simpler version of MultiHyperGNN by predicting multiple output
modes from one single input mode. In this case, only βd is trained; (2) HyperGNN-1. To explore
if a single MLP prediction layer can predict for all output modes, we will not produce MLP layers
but only produce GAT layers by hypernetwork; (3) HyperGNN-2. In our experimental setting the
meta information is composed of mode types (one-hot vector) and other mode-related features. For
HyperGNN-2, we reduce the meta information by only feeding the mode type to hypernetworks;
(4) MultiHyperGNN-S. Graph transformation from multiple input modes is expected to power the
prediction by aggregating from these input modes. To validate this assumption, during the testing
process of MultiHyperGNN, we will not use only a single input mode as the input data.

5.4 QUANTITATIVE EVALUATION

Evaluating prediction accuracy. On the Genes dataset, we train MultiHyperGNN to predict
gene expression in various tissues using data from whole blood and muscle skeletal. For testing
MultiHyperGNN-S, we use only whole blood data. HyperGNN and its variants are trained similarly
but with whole blood as the sole input. EERM and DRAIN are also trained from a single mode. In the
Climate dataset, we train MultiHyperGNN using early and late morning air temperatures to predict
afternoon and night temperatures. HyperGNN and its variants, EERM, and DRAIN are trained from
late morning data only. ED-GNN and IN are trained on all input-output mode combinations, while
MHM follows the same training strategy as HyperGNN.
As shown in Table 1, MultiHyperGNN achieves superior performance on both datasets. The MSE of
MultiHyperGNN-GIN is 0.1262 (6.43%) smaller than the second best model, EERM, by average. The
PCC of MultiHyperGNN-GIN is 0.0270 (4.32%) higher than the second best model, EERM, by aver-
age. This is expected since MultiHyperGNN involves two input modes so that it is more expressive
than EERM. HyperGNN, MultiHyperGNN-S and other competing models have comparable results
since they all predict from a single input mode. Compared with HyperGNN, the performance of
HyperGNN-1 is worse, indicating that a mode-specific prediction layer is still needed. In addition, the
deployment of MultiHyperGNN hinges upon the accessibility of mode-specific meta-information. As
evidenced in Table 1 and Table 2, the utilization of HyperGNN-2, which condenses meta-information
to only the mode type, results in suboptimal prediction accuracy across almost all settings.
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Evaluating domain generalization. We evaluate MultiHyperGNN and other models regarding
domain generalization using Genes and Traffic dataset. To evaluate the generalization ability on
a specific output mode (e.g., Genes-L or Traffic-Flow), each time we train the model to predict
another modes (e.g., Genes-LG, Genes-S or Traffic-Speed) using data of whole blood and muscle
skeletal in Genes or occupancy in Traffic as input modes. During testing time, we apply the trained
model to the output mode (e.g., Genes-L or Traffic-Flow) and calculate the prediction accuracy.

Figure 3: Density plot of gene ex-
pression in lung, sun-exposed and
not-sun-exposed skin in testing data.

As per Table 2, MultiHyperGNNs shows consistently bet-
ter performance compared with other models. Notably,
MultiHyperGNN-GIN exhibits an average MSE of 0.0840,
which is 4.24% lower than the second-best model, HyperGNN,
with an average MSE of 1.9803. MultiHyperGNN-GIN has
the PCC 0.0295 (4.74%) higher by average than the second
model, HyperGNN, which has the PCC of 0.6222 by aver-
age. In the experiment predicting highway traffic flow and
speed, MultiHyperGNN-GIN surpasses the second-best model
by 7.62% and 1.97% on average in MSE and PCC, respectively,
for domain generalization. The better performance of Multi-
HyperGNN results from the fact that MultiHyperGNN predicts
from multiple input modes, which is more expressive than HyperGNN that only achieves single-input,
multi-output mode prediction. The superior performance of MultiHyperGNN and HyperGNN com-
pared with other models results from the meta information that guides hypernetworks to generalize
the model to unseen domains.

5.5 QUALITATIVE EVALUATION

We visualize the distribution of node attributes in different modes of Genes. As shown in Figure 5.4,
in the testing data the distribution of sun-exposed skin is similar to the not-sun-exposed skin. This
is reasonable since both are skin tissues and they share similar meta information. By contrast, lung
is different from skin, so that its distribution is different from two skin tissues. This also confirms
the necessity to design the model to handle mode similarities. We also visualize via density plots
the alignment of the distribution of predicted values with the ground-truth distribution in unseen
testing data (Figure 4) corresponding to the results in Table 2. Based on the results in Figure 4, in all
three human tissues, MultiHyperGNN achieves roughly the same distribution with the ground-truth
distribution of the testing data, which is much better than other competing models. This is aligned
with the superior prediction accuracy in domain generation of MultiHyperGNN as shown in Table 2.

(A) (B) (C)

Figure 4: Density plots to visualize the distribution of predicted and ground-truth gene expression in
testing data, including density plot for (A) lung, (B) sun-exposed skin and (C) not-sun-exposed skin.

6 CONCLUSION

In this paper, we address challenges in domain generalization deep graph transformation. Firstly, we
pinpoint three challenges in domain generalization graph generalization, followed by introducing
MultiHyperGNN with an encoder and decoder to encode graph topologies in input and output
modes. Two novel hypernetworks are designed to generate the encoder and decoder, steered by
mode-specific meta-information for domain generalization. Experiments demonstrate superior
performance of MultiHyperGNN over competing models. Future work includes investigating key
meta-information components to optimize model performance. Code for result reproduction is
provided in the supplemental materials.
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7 ETHICAL STATEMENT

We develop our method from publicly available GTEx and PEMS08 datasets. Climite dataset is
curated from public Goddard Earth Observing System Composition Forecasting (2019-2021). Note
that for gene expression data in GTEx, we only access public normalized gene expression of the
dataset without any private information of samples. The model is only able to predict normalized
cross-tissue gene expression, not the true expression.
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A NOTATION TABLE

A detailed notation table is in Table 3.

B PROOF OF THEOREM 1

Consider the situation that we train fγX→Y (Eq. 3), parameterized by γX→Y , on S s.t. X × Y ∈ S.
Without loss of generalization, in the target domain, we consider predicting node attributes in mode
k from mode j, where j ∈ X T and k ∈ YT . First of all, we explain that solving the following
conditional likelihood is equivalent to minimizing generalization error:

m∗ = argmax
m

p(G(k)|G(j),m), j ∈ X T , k ∈ YT , (14)

where m = (m(j)′ ,m(k)′) and m∗ = (m(j)∗,m(k)∗), G(j) = {G(j)
1 , G

(j)
2 , ..., G

(j)
n } and G(k) =

{G(k)
1 , G

(k)
2 , ..., G

(k)
n }. Then, we prove that m∗ that satisfies Eq. 14 should be sufficient meta

information of mode j ∈ X T and k ∈ YT .

B.1 SOLVING EQUATION 14 IS EQUIVALENT TO MINIMIZING GENERALIZATION ERROR

Since X
(k)
i = fγ̂X→Y (A

(k), {G(j)
i ,m(j)}j∈XT ,m(k); γ̂X→Y) + ϵi = X̂

(k)
i + ϵi where γ̂X→Y is

learned and fixed, considering m = {m(j)′ ,m(k)′} as the random variable, we have X̂
(k)
i −X

(k)
i =

ϵi ∼ N (0,Σ). As a result, take a logarithm of p(G(k)|G(j),m), we have:

log p(G(k)|G(j),m) = log p({X(k)
i }ni=1, A

(k)|{G(j)
i }ni=1,m) =

= log p({X(k)
i }ni=1|A(k), {G(j)

i }ni=1,m)

+ log p(A(k)|{G(j)
i }ni=1,m) (15)

Since A(k) is known, then maximizing Eq. 14 is equivalent to maximizing the first term of the above
equation. Given n independent samples in the dataset:

m∗ = argmaxm log p({X(k)
i }ni=1|A(k), {G(j)

i }ni=1,m)

= argmaxm − 1
2

∑n
i=1(X̂

(k)
i −X

(k)
i )TΣ−1(X̂

(k)
i −X

(k)
i ) + C, (16)

where C is a constant. As the covariance matrix Σ is positive semidefinite, the above objective is
equivalent to minimizing the generalization error ∥ϵi∥22 = ∥X̂(k)

i −X
(k)
i ∥22.

B.2 THE SUFFICIENT META INFORMATION OF j ∈ X T AND k ∈ YT SATISFIES EQUATION 14

Based on the Bayes’ theorem, we have p(G(j),G(k)|,m(j)′ ,m(k)′) = p(G(k)|G(j),m(j)′) ·
p(G(j)|m(j)′). If m(j)′ and m(k)′ are sufficient meta information m(j) and m(k). Therefore,
p(G(j)|m(j)′) = 1 so that we have p(G(j),G(k)|,m(j)′ ,m(k)′) = p(G(k)|G(j),m(j)′). Also, we
have m(k) = argmaxm p(G(k)|G(j),m), equivalently, p(G(j),G(k)|,m(j)′ ,m(k)′) is maximized by
m(k). In conclusion, the sufficient meta information of j ∈ X T and k ∈ YT satisfies Eq. 14.

C COMPLEXITY ANALYSIS

We compare MultiHyperGNN with other models by the theoretical space complexity analysis. To train
a predictive mapping that covers all mode combinations in S, ED-GNN, MHM and IN have O(3N )
encoders and decoders in total that need to be trained, leading to O(3N ) space complexity. EERM
requires to train q generators whereas DRAIN only needs a hypernetwork to produces classifiers
at each time point. Therefore, EERM and DRAIN have the space complexity of O(p) and O(1),
respectively. To train MultiHyperGNN, instead, we only need to train two hypernetworks, whose
space complexity is O(1) which is much smaller than competing models except DRAIN.
Regarding computational complexity, similar to space complexity, ED-GNN, MHM and IN have
O(3N ) mode combinations to iterate in each training epoch. The computational complexity of EERN
and DRAIN is linear to the number of generators and the number of combinations of time points,
which are usually much larger than N2. MultiHyperGNN only needs to train on different input-output
mode pairs so that we have only O(N2) such pairs to iterate in each training epoch, achieving a
polynomial computational complexity.
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Table 3: Table for notations
Notation Description

N Total number of modes in the dataset
G(j) Graph of the mode j

G
(j)
i Graph of sample i in the mode j

A(j) Adjacency matrix of mode j

X
(j)
i Node attributes of sample i in the mode j
X Set of input modes
Y Set of output modes
S Source domain
X T Set of input modes in the target domain
YT Set of output modes in the target domain
T Target domain
f Graph transformation function

f
(j)
e Encoder to encode graph of mode j, parameterized by β

(j)
e

f
(k)
d Decoder to decoder graph of mode k, parameterized by β

(k)
d

βe Encoder hypernetwork to produce {f (j)
e }j∈X , parameterized by γe

βd Decoder hypernetwork to produce {f (k)
d }k∈Y , parameterized by γd

m(j) Meta information of mode j

D IMPLEMENTATION DETAILS

All experiments are conducted by Python 3.9 on the 64-bit machine with an NVIDIA GPU, NVIDIA
GeForce RTX 3090. In practice we use six-layer MLPs with the hidden dimension as 7200 to model
γe and γd. The source encoder and the target decoder contain two-layer GNNs (with four heads if
GATs) and the hidden dimension of 256. The prediction layer is composed of five-layer MLPs with
the hidden dimension of 512.

E STATISTICS OF DATASETS IN EXPERIMENTS

Genes. We use gene expression data collected and curated by the Genotype-Tissue Expression (GTEx)
Consortium (Lonsdale et al., 2013). Specifically, processed gene expression data derived from bulk
RNA-seq experiments on five tissues, whole blood (WB), lung (L), muscle skeletal (MS), sun-exposed
skin (lower leg, LG), not-sun-exposed skin (suprapubic, S) are used. For quality control purpose, we
first remove samples with no data in any of the five tissues types. Then we remove genes with low
expression level (total number of mapped reads less than 2 across all samples). For the remaining
data, for each tissue, we perform weighted correlation network analysis (WGCNA) (Langfelder &
Horvath, 2008) with the cutoff ρ on the correlation coefficients to construct the co-expression network
with the expression value as the node attribute. The meta information that characterizes these five
tissues includes tissue type (lung, muscle, skin), location (trunk, leg, arm), structure (dense, rigid,
spongy), function (movement, protection, gas exchange) and cell types (alveoli and bronchioles,
cylindrical muscle fibers, epithelial cells).
Climate. We use the Goddard Earth Observing System Composition Forecasting (GEOS-CF) hourly
historical meteorological data1 across the contiguous United States from 2019-2021. The GEOS-CF
meteorological data is assimilated from a variety of conventional and satellite-driven data sources.
The detailed assimilation approaches can be found at the website2. We further calculate the surface
air temperature (T) for each state capital by averaging data from all the GEOS-CF pixels that fall
within a given capital city plus a 10 km buffer region. Specifically, we split 24 hours of a day into four
time periods as four modes: early morning (0:00AM-6:00AM), late morning (6:00AM-12:00PM),
afternoon (12:00PM-18:00PM) and night (18:00PM-0:00AM), and calculate the mean value of the
air temperature in each period. To construct the network in each domain, we use cities as graph

1https://gmao.gsfc.nasa.gov/weather_prediction/GEOS-CF/
2https://ntrs.nasa.gov/citations/20120011955
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Table 4: Statistics of employed datasets, Genes and Climate (|D| is the number of domains contained
in the dataset; p is the number of nodes; |E|avg is the average number of edges of the graph in the
dataset by domain; n is the number of samples in each dataset).

Model Genes Climate Traffic
|D| 5 4 4
p 2,398 48 170

|E|avg 28477/1174/1020/7463/272 293/266/336/272 227/227/227/227/227
n 205 1,095 17,833

nodes and air temperature in each city as the node attribute. Then in each time period, we calculate
the correlation of the air temperature between two cities within three years. If the correlation is
greater than ρ then there is an edge connecting two cities on the graph. We use the time period
indicator (four-element, one-hot vector to indicate early morning, late morning, afternoon and night)
and various time stamps when the data is collected as the meta information.
The statistics of these two datasets are in Table 4. The data is split as 80% training, 10% testing, and
10% validation.
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