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1 Abstract001

Model selection for a given target task can be costly,002

as it may entail extensive annotation of the qual-003

ity of outputs of different models. We introduce004

DiffUse, an efficient method to make an informed005

decision between candidate text generation models006

based on preference annotations. DiffUse reduces007

the required amount of annotations, thus saving008

valuable time and resources in performing evalu-009

ation. DiffUse intelligently selects instances by010

clustering embeddings that represent the seman-011

tic differences between model outputs. Thus, it012

is able to identify a subset of examples that are013

more informative for preference decisions. Our014

method is model-agnostic, and can be applied to015

any text generation model. Moreover, we propose016

a practical iterative approach for dynamically deter-017

mining how many instances to annotate. In a series018

of experiments over hundreds of model pairs, we019

demonstrate that DiffUse can dramatically reduce020

the required number of annotations – by up to 75%021

– while maintaining high evaluation reliability.022

2 Introduction023

Model evaluation is a prerequisite for informed de-024

cisions – predominantly, choosing the right model025

for the task. As such, an essential requirement is026

the ability to compare models based on how well027

they perform.028

Comparing model performance generally re-029

quires some sort of oracle – a human annotator or030

LLM-based evaluator – that can judge model out-031

puts and prefer one output over another. However,032

depending on the nature of the oracle, such judg-033

ments can incur significant costs, particularly in034

terms of annotation budgets (Ein-Dor et al., 2020;035

van der Lee et al., 2019) and computational require-036

ments (Liang et al., 2022; Biderman et al., 2023;037

Perlitz et al., 2023). Specifically for text generation038

tasks, the oracle is burdened with making nuanced039

judgments of the quality of generated texts (Celiky- 040

ilmaz et al., 2020); often, this can only be done by 041

expert human annotators (van der Lee et al., 2021), 042

or possibly by powerful LLMs (e.g., GPT-4, Zheng 043

et al., 2023), both of which are costly to apply at 044

scale. Moreover, as the number of models and tasks 045

increases, conducting these evaluations becomes 046

prohibitively expensive (Perlitz et al., 2023). 047

Our goal is to address the costs associated with 048

evaluating model outputs in text generation, by 049

reducing the burden on the oracle. Specifically, 050

we focus on the use case of directly comparing 051

two candidate models, where the oracle is asked to 052

make preference judgements between the outputs 053

generated by the two models. Our focus is on 054

comparative judgments and not absolute scores, as 055

these are considered more reliable for evaluating 056

text generation (Callison-Burch et al., 2007; Sedoc 057

et al., 2019; Li et al., 2019; Liang et al., 2020). 058

In this work, we propose a method that substan- 059

tially reduces the number of examples that must 060

be annotated by the oracle, while yielding a more 061

reliable estimate of the preferred model for the task. 062

Our approach - DiffUse - selects pairs of model out- 063

puts that on the one hand are representative of the 064

space of differences between model behaviors on 065

a given task, and on the other hand are more infor- 066

mative, showing clearer preference. Specifically, 067

we calculate embedding vectors that represent the 068

semantic difference between the outputs of the two 069

models; then, by partitioning these embeddings 070

into clusters, we can intelligently select a diverse 071

informative subset of instances for annotation. 072

DiffUse is inherently generic and does not as- 073

sume anything about the models, tasks, or unla- 074

beled test data. Our results (§6) demonstrate its sta- 075

bility and effectiveness for different text generation 076

tasks, across hundreds of pairs of generative mod- 077

els, and across a broad range of annotation budgets. 078

We also propose an iterative real-world solution for 079

practitioners (§6.2), which enables making reliable 080
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and cost-efficient choices between candidate mod-081

els. We find this method to be better in all of our082

experiments, achieving a reduction in annotations083

of up to 75% compared to random sampling.084

Furthermore, we conduct a comprehensive anal-085

ysis (§7) of the components of our method. Our086

findings suggest that our method tends to select ex-087

amples from regions in the output-difference space088

that are dominated by the preferred model.089

3 Definitions and Problem Formulation090

In this work, we focus on comparative evaluation of091

models. Given two text generation models, we wish092

to evaluate which model is stronger with respect to093

a given generation task, based on preference labels094

of an oracle over the model outputs.095

For an input instance x and a pair of mod-096

els MA,MB with corresponding outputs yA,yB , a097

preference label ypref ∈ {MA,MB, T} indicates098

whether yA is better than yB (MA), worse than yB099

(MB) or similar to yB (T ).100

Test winning model The model for which the101

outputs over the test set Dtest are more frequently102

preferred by the oracle. Formally:103

Wtest =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

MA if PMA
test > P

MB
test

MB if PMA
test < P

MB
test

T if PMA
test = P

MB
test

104

where105

P
m
test =

1

∣Dtest∣
∑

(x,ypref)∈Dtest

1{ypref=m} (1)106

is the test winning probability of model m ∈107

{MA,MB}, and 1{ypref=m} is the indicator function108

that takes the value 1 if ypref = m and 0 otherwise.1109

Test winning distance The absolute difference110

between the test winning probabilities of the two111

models, ∣PMA
test − P

MB
test ∣.112

Problem formulation Calculating the test win-113

ning model requires preference labels for every114

point in the test set. However, this is often costly115

and impractical. Thus, our goal is to maximize the116

probability of identifying the test winning model,117

under a given annotation budget N , by wisely se-118

lecting only a subset of examples Dobserved
test ⊆ Dtest119

from the test set to be labeled by the oracle.120

1
P

m
test is itself an unbiased estimate of Pm, i.e., the (un-

known) winning probability over all possible input instances
from the same distribution.

A naive baseline for estimating the test winning 121

model is to uniformly sample N test instances, la- 122

bel them, and compute the winning model over 123

these instances. 124

4 Method 125

Our algorithm, DiffUse, is simple and effective, 126

and relies solely on the outputs generated by the 127

models. The full flow is described in Figure 1. 128

We aim to represent examples in a manner that 129

captures the distribution of model mismatching be- 130

haviors, i.e., various types of differences between 131

model outputs. To this end, we first embed model 132

outputs into a semantic vector space (using off-the- 133

shelf methods). Subsequently, we generate differ- 134

ence vectors by subtracting the embeddings of one 135

model from the embeddings of the other, for each 136

example in the test set. Then, we cluster these dif- 137

ference vectors and select one representative from 138

each cluster to be labeled by the oracle. 139

Given the construction of the difference vectors, 140

we expect this vector space to largely carry infor- 141

mation about semantic differences, i.e., the nature 142

of disagreements between models. Choosing an 143

example from each cluster ensures that the set of 144

selected examples is representative of this space; 145

hence, these examples are expected to be informa- 146

tive for estimating which is the preferred model. 147

5 Experiments 148

5.1 The Data 149

Throughout our experiments, we utilize data from 150

the HELM benchmark (Liang et al., 2022, version 151

0.2.22). We rely on data from its core scenarios, 152

which encompass inputs, outputs, and scores for 153

various models, datasets, and tasks. 154

The scores in HELM are automated metrics that 155

compare model outputs to human reference an- 156

swers, and not direct preference annotations. We 157

chose this data due to its large scale, containing 158

multiple models with their inference results over 159

several well-defined generation tasks. The metric 160

scores in HELM serve as the ground-truth data, 161

such that the preference label of an example is the 162

model with a higher score for this example (or a tie 163

if scores are equal). For each scenario we report 164

results for several reference-based metrics, hence 165

simulating a range of different kinds of oracles. 166

2
https://crfm.stanford.edu/helm/v0.2.2/?group=

core_scenarios
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Figure 1: DiffUse flow. Our method consists of 5 steps: performing inference with the models on the test set,
encoding the generated outputs, performing pairwise subtraction, clustering the resulting vectors, and selecting
representatives for evaluation. A comprehensive description is provided in §4.

Our experimental setup includes 6 text genera-167

tion scenarios, with results of 666 unique pairs of168

models (paired comparisons of 37 different mod-169

els) for each scenario. The tasks we experimented170

with are summarization and question answering171

(i.e., the text generation tasks in HELM), as de-172

tailed in Appendix Table 1. As shown in Fig. 2, the173

winning distances between model pairs in HELM174

span a large range, but are often small; in other175

words, HELM showcases diverse behaviors but de-176

termining the winning model is usually not trivial.177
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Figure 2: Distribution of test winning distances (§3)
in HELM between pairs of generative models.

5.2 Example Selection Method178

As outlined above (§4), DiffUse consists of calcu-179

lating difference vectors that represent the model180

output behaviors, clustering them, and sampling181

examples based on the resulting clusters.182

Specifically, we use Sentence-BERT (Reimers183

and Gurevych, 2019) all-MiniLM-L6-v2 encoder to184

embed the outputs3, and subtract the resulting em-185

3
https://huggingface.co/sentence-transformers/

beddings to obtain difference vectors. For cluster- 186

ing the vectors, we opt for Hierarchical Agglomer- 187

ative Clustering (Müllner, 2011) with Ward link- 188

age4 and Euclidean distance. 189

For a given budget of N examples to be anno- 190

tated by the oracle, we select them by partitioning 191

the vectors into N clusters. Then, from each cluster 192

we select a single example, and specifically the one 193

whose embedding is closest (in cosine distance) to 194

the center of the cluster. 195

Note that while we found this setup to work 196

particularly well, opting for a different choice of 197

clustering algorithm, or for a different approach 198

of selecting examples given the clusters, does not 199

dramatically affect the results (§7.1). 200

5.3 Example Selection Experiments 201

Our main experiments examine the success rate of 202

an example selection method, defined as follows. 203

For a given dataset, a budget of size N , and a pair 204

of generative models, we use a selection method to 205

select N examples for annotation. This sample is 206

then annotated by the oracle, and used to determine 207

the sample winning model. An example selection 208

run is successful when the sample winning model 209

equals the test winning model. These binary results 210

are then aggregated across several random seeds 211

and across all generative model pairs to determine 212

the success rate of the example selection method. 213

DiffUse is compared to the baseline of random 214

selection, where the N examples are sampled i.i.d. 215

from the dataset. 216

To better estimate the robustness of the selection 217

methods, for each experimental run (seed) we sam- 218

ple a large subset of the full data (800 out of 1000 219

all-MiniLM-L6-v2
4
https://docs.scipy.org/doc/scipy/reference/

generated/scipy.cluster.hierarchy.linkage.html
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Figure 3: Comparing example selection methods. Success rates (± standard error) in identifying the best of two
competing generative models (listed in the plot title), in terms of their performance over CNN/DailyMail (using
Rouge-2 as the oracle).

scenario examples in HELM) and treat this subset220

as if it were the full test set.221

For each of the 6 HELM scenarios, we report re-222

sults across 666 unique model pairs, 10 runs (seeds)223

for each, and varying N between 5 and 200.224

6 Results225

We start by comparing the success rate of DiffUse226

to that of the random selection baseline.227

Figure 3 illustrates two such comparisons, each228

for a specific pair of models. As can be seen, suc-229

cess rates can vary greatly between cases where230

there is a relatively large performance difference be-231

tween the generative models (left panel) and those232

with a small performance difference (right panel).233

As for the latter, estimating the preferred model is234

harder and requires more annotated instances. Nat-235

urally, the model preference estimation becomes236

more accurate as the budget N increases and the237

preference decision relies on a larger set of exam-238

ples annotated with oracle preference.239

In the two cases presented in Fig. 3, DiffUse240

achieves higher success rates at identifying the bet-241

ter generative model, in comparison to random sam-242

pling. These results showcase that with DiffUse243

one can reach the correct decision with a smaller244

number of examples to be annotated by the oracle.245

To give a broader and quantitative picture,246

Figure 4 depicts the aggregated results for the247

CNN/DailyMail summarization data, averaged248

across all 666 model pairs. The plot demonstrates a249

clear advantage of our approach over random selec-250

tion, arriving at the correct decision more often and251

using fewer examples. Thus, using DiffUse there252

is a much lower risk of choosing the wrong model. 253

This pattern is quite consistent across the different 254

datasets tested, as can be seen in Appendix A.1. 255

Note that while DiffUse demonstrates a clear 256

advantage, its effect does vary across datasets, and 257

across “oracles” (in our case, different reference- 258

based metrics). 259

0 25 50 75 100 125 150 175 200
Number of annotated examples

70

75

80

85

90

Su
cc

es
s 

ra
te

 (%
)

CNN/DailyMail (rouge-2)

DiffUse
Random

Figure 4: Aggregated success rate over
CNN/DailyMail, across all 666 model pairs (×10
repetitions for each pair). DiffUse demonstrates a clear
advantage in correctly determining the stronger model,
based on a small number of oracle-annotated examples.

6.1 Estimated Winning Distance 260

Our focus is on making accurate preference choices 261

between models, i.e. choosing the better perform- 262

ing one, according to the oracle preferences. How- 263

ever, another facet of model evaluation is the size of 264

the performance gap between the two models (e.g., 265
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Algorithm 1: Iterative Selection Algorithm - Risk-based Threshold
Input: Two models {MA,MB}, dataset D, and oracle O
Parameters: Threshold p ∈ (0, 1), Minimum number of annotations n, Maximum budget N
Output: Winning model (or inconclusive)
Calculate the difference vectors V (D,MA,MB), as described in Section 4.
Cluster V into n clusters.
Choose representatives En = {e1, . . . , en}, one from each cluster.
Get the oracle tags Tn = O(En), and calculate the probability sfhypergeom(Tn) (see App. A.3)
Initialize k = n + 1, T = Tn

while sfhypergeom(T ) > p and ∣labeled examples∣ < N do
Find the next cluster c to be split (1 ≤ c < k), and split it.
Choose representatives Ek = {ek, ek+1}, one from each of two splits.
Get the oracle tags Tk = O(Ek).
k = k + 1, T = (Tn − {ec}) ∪ Tk

Return the winning model according to T .

model B won by 18% over model A). We define266

this performance gap, over the entire test set, as267

the test winning distance (§3). When using a small268

set of examples to estimate this performance gap,269

we obtain an estimated winning distance. Thus,270

an interesting question is what is the difference271

between the estimated and test winning distance.272

Figure 5 depicts this difference, for each exam-273

ple selection method, over a varying budget size.274

Random selection, being an unbiased estimator,275

naturally has an average deviation of zero from276

the test winning distance5. In contrast, the figure277

demonstrates that DiffUse provides an estimated278

winning distance that is biased toward the winning279

model. This bias, which is particularly large with280

small budgets, explains how the method is able281

to outperform random selection at binary prefer-282

ence choices - being biased on average towards283

the winner, there would also be fewer cases where284

the losing model is accidentally selected (note the285

lower bounds of the shaded areas in Fig. 5).286

6.2 Practical Iterative Selection Algorithm287

Accuracy in estimating the winning model can vary288

widely, depending on the budget size as well as the289

actual performance gap (Fig. 3). In a real-world290

scenario, however, users do not know in advance291

the size of the performance gap between the models292

they compare; moreover, after annotating some ex-293

amples with the oracle and estimating the winning294

model, users will not know whether the estimation295

is in fact correct.296

5This does not imply that a single estimation using random
selection is likely to be accurate; rather, that across many
estimations, the expected value of the difference is zero.
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Figure 5: Difference between the estimated and test
winning distance, aggregated across all model pairs
over XSum. Shaded areas denote standard error (av-
eraged across pairs). Clearly, DiffUse favors the test
winning model, giving a biased estimate in its favor.
The bias dissipates with additional annotations, converg-
ing to the true distance for the full set of examples.

Thus, in order to reduce oracle effort in prac- 297

tice, there is a need for an approach that deter- 298

mines the minimal budget required, and provides 299

some approximation of the reliability of the win- 300

ning model selection. To this end, we propose 301

an iterative method for selecting examples. In 302

this approach, the number of examples sent to the 303

oracle is increased gradually, until a predefined 304

reliability-oriented threshold is met. Hierarchical 305

clustering naturally lends itself to an iterative so- 306

lution: suppose we have clustered the difference 307

vectors into k clusters, and the oracle has annotated 308

the k selected examples, yet we suspect that the 309

preference estimation is not sufficiently reliable. 310
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Figure 6: Iterative selection results (Algorithm 1; with p = 0.2, n = 5, and N = 200), comparing DiffUse to
random sampling. Results are aggregated across 666 model pairs. The left panel depicts the mean number of
examples annotated by the oracle before reaching the stopping criterion. The right panel depicts the proportion
of outcomes of the iterative selection experiments – i.e., was a winning model determined, and was this decision
correct – aggregated across all datasets. See also App. Table 2, 3.

In this case, we can now cluster the vectors into311

k + 1 clusters; this will further partition one of312

the previous clusters, providing two new examples313

to be labeled by the oracle6. With each partition-314

ing step, the amount of information increases, and315

this procedure is repeated until reaching the thresh-316

old/stopping criterion.317

The full iterative selection flow is described in318

Algorithm 1. For the stopping criterion, we propose319

a reliability threshold based on the hypergeometric320

distribution (for details, see App. A.3). The thresh-321

old is a heuristic that approximates the level of risk,322

where a threshold of 0.1, for example, loosely cor-323

responds to a likelihood of up to 10% of choosing324

the wrong model. The threshold is set in advance,325

and reflects a preferred point on a trade-off: be-326

tween the user’s tolerance for error, and the amount327

of examples the oracle will need to annotate.328

Results for the iterative algorithm are shown in329

Figure 6. Clearly, DiffUse provides a significant330

advantage over random selection, increasing the331

likelihood of successfully determining the winner332

(right panel), while significantly reducing the num-333

ber of examples sent to the oracle (left panel).334

Note that the number of annotations in practice335

varies widely, and is linked to the performance gap336

between the models. For instance, in the Closed-337

Book version of NaturalQuestions, a large number338

of examples is annotated, and the outcome is usu-339

6Partitioning a cluster means selecting two new examples,
in addition to the one originally annotated for the cluster; we
discard the original example (ec in Alg. 1) from the preference
decision, as it is presumed to be less informative at this point.

ally inconclusive (left panel of Fig. 6, App. Tab. 2); 340

the reason for this is that the test winning distances 341

in this dataset are quite small (cf. Fig. 2), making 342

it difficult to conclusively determine the winner. 343

7 Analysis 344

7.1 Method Parameters 345

Next, we examine 3 components in the flow of Dif- 346

fUse (Fig. 1): the representations of examples, the 347

clustering algorithm and the cluster representa- 348

tive selection. 349

Our method relies on difference vectors (i.e., 350

subtraction of output embeddings) to represent ex- 351

amples. A naive alternative would be to cluster 352

the embeddings of inputs, akin to some methods 353

in active learning (Zhang et al., 2022). However, 354

we find that this approach does not consistently 355

outperform random sampling (App. Figure 14). 356

In contrast, we find that the choices of cluster- 357

ing algorithm and representative selection are less 358

significant, and performance differences are not 359

dramatic (Appendix A.4). Note that all configura- 360

tions significantly outperform the random baseline. 361

7.2 Which examples are selected? 362

As shown above, the success of our method hinges 363

on the use of output difference vectors. Next, we 364

perform several analyses to better understand how 365

clustering these vectors enables selecting examples 366

that are informative for the oracle. 367

The difference vectors represent variance in the 368

outputs, and thus in the models’ behavior for a 369

6



given task. Assuming an ideal semantic encoder,370

highly distinct outputs should yield difference vec-371

tors with high norms, signifying pronounced dis-372

similarities. Conversely, similar outputs would re-373

sult in lower norms, indicating subtle differences.374

7.2.1 Cluster Sizes and Difference Norms375

In distance-based clustering, vectors with smaller376

norms have a higher tendency to be clustered to-377

gether. This is nicely demonstrated in Figure 7,378

which depicts an example two-dimensional projec-379

tion of difference vectors for a pair of models. The380

projection reveals a densely populated region close381

to zero, corresponding to cases where the model382

outputs show more subtle differences.383

Figure 7: Example 2-D projection. A t-SNE (van der
Maaten and Hinton, 2008) projection of the difference
vectors from a randomly selected pair of models in
XSum. The observed behavior, where most vectors are
centered around zero, and the distribution is sparser
away from it, is consistent across model pairs.

Figure 8 illustrates the relation between the sizes384

of clusters and the average norm of difference vec-385

tors within the cluster. Evidently, clustering the386

difference vectors tends to result in a small number387

of large clusters, which have a low average norm388

(bottom-right area of Fig. 8), alongside a large num-389

ber of small clusters with higher norm values. Of-390

ten, over half of the vectors are assigned to a single391

cluster with small norms. As DiffUse selects one392

example from each cluster, the sub-population of393

examples with small difference norms is under-394

represented in the set of selected examples.395

Figure 9 directly depicts the norm size distribu-396

tion of the selected examples. Again, we see that397

DiffUse is biased toward high-norm instances.398

7.2.2 Norms and Winning Model399

We have demonstrated that our method over-400

represents difference vectors with a higher norm.401
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Figure 8: Cluster size vs. average vector norm. Hi-
erarchical clustering results of the difference vectors,
partitioning XSum into 50 clusters. Each point repre-
sents a single cluster; in total, the plot depicts ∼ 33K
points (666 model pairs × 50 clusters per pair). The
x-axis reflects the percentage of all examples that are in
the cluster (i.e., indication of cluster size), and the y-axis
is the average vector norm within the cluster. Results are
characterized by a few very large clusters with a small
average norm (bottom right); this pattern is consistent
across different numbers of clusters (App. Fig. 15).

This leads to the question of how this tendency 402

relates to model preference. 403

Figure 10 depicts the relation between the norm 404

of difference vectors and estimation of the test win- 405

ning model. As can be seen, the preference label 406

of instances with higher difference norms is more 407

likely to align with the test winning model. This is 408

in line with the winner-bias shown in Fig. 5. 409

A possible explanation for this observation is 410

that larger semantic differences between the mod- 411

els’ outputs are expected to be associated with 412

larger quality gaps; meanwhile, the chances that 413

the weaker model will beat the stronger model’s 414

output by a large margin are low. Thus, the lower 415

the difference norm, the higher the probability of 416

the preference label to be “erroneous”, namely for 417

the weaker model to be preferred by the oracle. 418

Given that high-norm pairs are informative, a 419

simple approach would be to forgo clustering, and 420

simply select the instances with the highest norm 421

for annotation. However, this results in inferior 422

performance (App. A.5), likely due to low diversity 423

and representativeness of the selected subset. 424

To sum, clustering difference vectors over- 425

represents output pairs with a large difference norm 426

(§7.2.1). These, in turn, are more strongly associ- 427

ated with the winner (§7.2.2). Thus, our analyses 428

7
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Figure 9: Norms of selected examples. The histograms
depict the norm of difference vectors for the output
pairs selected for annotation (across all NarrativeQA
selection runs). Compared to random sampling, DiffUse
selects examples with higher vector norms.

illustrate how DiffUse is able to correctly determine429

the test winning model using fewer annotations.430

8 Related Work431

In light of the soaring costs of language model eval-432

uation, even when using automatic metrics, some433

recent works (Perlitz et al., 2023; Maynez et al.,434

2023) have studied the effects of reducing the size435

of evaluation sets – via random sampling – on the436

reliable ranking of models.437

Other prior works have examined methods of in-438

telligently selecting subsets of examples for evalua-439

tion, aiming to find sets of examples that are more440

informative than randomly sampled instances.441

Rodriguez et al. (2021); Vania et al. (2021) look442

at selecting examples for evaluating new models,443

given fully-annotated question answering data for444

an existing set of models. Several works have445

addressed label-efficient assessment in the context446

of classifier performance. Katariya et al. (2012)447

propose a label-efficient algorithm to gain better448

accuracy estimates of classifiers, by selecting ex-449

amples to label based on stratified sampling. Ji450

et al. (2021) suggest an active Bayesian approach451

that uses inferred uncertainty to guide selection of452

instances. Kossen et al. (2021) propose methods453

based on a stochastic acquisition process, to avoid454

unwanted and highly problematic biases involved455

in active selection of test set examples. Ha et al.456

(2021) suggest an iterative method that utilizes a457

surrogate model to estimate the metrics of interest458

over the unlabeled test set, and labels examples that459

lead to maximal uncertainty reduction of the metric460
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Figure 10: Norms and preference estimation. The plot
depicts the success rate at estimating the test winning
model, based on sub-populations with varying vector
norms. For each model pair, the difference vectors were
partitioned based on their norm sizes into 50 equal-count
bins, and each bin of instances was used to estimate the
test winning model. The plot presents an aggregation
across all model pairs over NarrativeQA.

estimation. With a similar spirit to our work, Vivek 461

et al. (2023) find anchor examples in classifica- 462

tion datasets that represent how confident different 463

models are over those input examples. 464

Our work differs from these prior efforts in that 465

we tailor our approach to the nature of text genera- 466

tion, do not assume a “train set” of model annota- 467

tions, and focus on making an informed preference 468

decision between two candidate models. 469

9 Discussion 470

We have demonstrated that our method, DiffUse, 471

provides significant cost savings in model selec- 472

tion. Using a dynamic algorithm such as the one 473

proposed here (§6.2), practitioners can reduce the 474

number of oracle judgements while maintaining 475

high evaluation reliability. 476

Here we examined the problem of selecting be- 477

tween a pair of candidate models. We leave to 478

future work the scenario of picking from a larger 479

set of candidates. This may entail adapting our 480

method to a multi-model scenario, or combining 481

our pairwise approach with an efficient method 482

for limiting the number of pairwise comparisons 483

(e.g., Mohankumar and Khapra, 2022). 484

While the current work deals with model selec- 485

tion, our approach of modeling differences between 486

outputs can potentially be applicable for other pur- 487

poses as well. This can include qualitative assess- 488

ment of model behaviours, collection of preference 489

data for training reward models, and more. 490

8



Limitations491

As our approach relies on obtaining representations492

of model outputs, it incurs the non-trivial computa-493

tional cost of performing inference over the set of494

examples to be clustered, in the range of hundreds495

of examples. Thus, our method is only suited for496

the (very common) scenario where the cost of ap-497

plying the oracle is significantly greater than the498

cost of performing inference on a somewhat larger499

set of examples. This is the case for example when500

the oracle is a paid API or a human annotator.501

As noted in §6.1, DiffUse is a biased approach502

that tends to over-represent subpopulations of the503

of examples. Here we show empirically – across504

model pairs and across datasets – that this method505

provides significant and consistent gains in relation506

to random selection. However, as also mentioned in507

App. A.3, for a given attempt at model comparison508

there is no theoretical or statistical guarantee of the509

probability of making the correct choice.510

Our study is motivated by the fact that obtaining511

a large amount of quality or preference judgments512

for a target generation task and candidate models is513

prohibitively expensive. Ironically, this also means514

it is not trivial to obtain large-scale annotated data515

that can be used for evaluating the accuracy of516

our oracle minimization approach (existing multi-517

model datasets, e.g. for RLHF, often do not have518

a well-defined notion of target tasks). Hence, here519

we rely on reference-based metrics in HELM to520

simulate different types of oracles. This is a limita-521

tion of this work as we do not directly demonstrate522

our method on real-world preference oracles.523

References524

Stella Biderman, USVSN Sai Prashanth, Lintang525
Sutawika, Hailey Schoelkopf, Quentin Anthony,526
Shivanshu Purohit, and Edward Raf. 2023. Emer-527
gent and predictable memorization in large language528
models. arXiv:2304.11158.529

Chris Callison-Burch, Cameron Fordyce, Philipp Koehn,530
Christof Monz, and Josh Schroeder. 2007. (meta-)531
evaluation of machine translation. In Proceedings of532
the Second Workshop on Statistical Machine Transla-533
tion, pages 136–158, Prague, Czech Republic. Asso-534
ciation for Computational Linguistics.535

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.536
2020. Evaluation of text generation: A survey.537
arXiv:2006.14799.538

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-539
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-540
moyer. 2018. QuAC: Question answering in context.541

In Proceedings of the 2018 Conference on Empiri- 542
cal Methods in Natural Language Processing, pages 543
2174–2184, Brussels, Belgium. Association for Com- 544
putational Linguistics. 545

Liat Ein-Dor, Eyal Shnarch, Lena Dankin, Alon Halfon, 546
Benjamin Sznajder, Ariel Gera, Carlos Alzate, Mar- 547
tin Gleize, Leshem Choshen, Yufang Hou, et al. 2020. 548
Corpus wide argument mining—a working solution. 549
In Proceedings of the AAAI Conference on Artificial 550
Intelligence, volume 34, pages 7683–7691. 551

Huong Ha, Sunil Gupta, Santu Rana, and Svetha 552
Venkatesh. 2021. ALT-MAS: A data-efficient frame- 553
work for active testing of machine learning algo- 554
rithms. arXiv:2104.04999. 555

Disi Ji, Robert L. Logan, Padhraic Smyth, and Mark 556
Steyvers. 2021. Active bayesian assessment of black- 557
box classifiers. Proceedings of the AAAI Conference 558
on Artificial Intelligence, 35(9):7935–7944. 559

Namit Katariya, Arun Iyer, and Sunita Sarawagi. 2012. 560
Active evaluation of classifiers on large datasets. In 561
2012 IEEE 12th International Conference on Data 562
Mining, pages 329–338. 563
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A Appendix706

A.1 Full Results707

Results for the 6 text generation scenarios (datasets)708

in HELM, with 3 different metrics for each sce-709

nario, are presented in Figure 11.710

A.2 Computational Budget711

Our example selection results (e.g., in Figures 11-712

14) consist of ∼ 1.6 million selection runs, for713

every selection method: 6 scenarios × 666 model714

pairs × 40 annotation budgets (between 5 − 200)715

× 10 repetitions (seeds).716

The HELM raw data already includes the model717

inference outputs as well as the preference judge-718

ments (metric scores) of the different models. Thus,719

the computational costs of performing these exper-720

iments consist mainly of the semantic encoding of721

the model outputs, as well as clustering of the rep-722

resentation vectors. The semantic encoding, using723

S-BERT (1000 examples per scenario × 37 models724

in HELM) took a few minutes per scenario on a725

single GPU; most of the computational cost con-726

sisted of a large number of clustering runs, which727

were performed in parallel on 16 CPU cores.728

A.3 Iterative Selection Threshold729

As described in §6.2 and Algorithm 1, we propose730

an iterative algorithm for annotating examples by731

the oracle and choosing the winning model.732

We opt for a reliability-oriented stopping crite-733

rion that is based on the hypergeometric distribu-734

tion. This distribution describes the probability of735

‘success’ when sampling without replacement, and736

is parameterized by a population size N , sample737

size n, number of successes in the population K738

and number of successes in the sample k.739

Specifically, we look at the hypergeometric dis-740

tribution survival function, sfhypergeom(k − 1),741

which describes the probability of getting k or more742

successes by chance. In a model comparison sce-743

nario, n corresponds to the number of examples744

annotated by the oracle, and k to the number of745

votes received by the winning model within this set.746

We define the null hypothesis as one where the win-747

ning model is the winner in 50% of the instances in748

the full test set, i.e., where K = N/2. Using this749

value for K, The result sf(k−1) thus reflects how750

likely or unlikely it is to get a value of k or higher751

given a ground-truth 50% win rate.752

For instance, say we select examples out of a753

pool of 500 unlabeled examples. The oracle is754

given a total of 10 examples to label, and deter- 755

mines that model A was the winner in 8 of them: 756

sf(k−1, N,K, n) = sf(7, 500, 250, 10) = 0.0529 757

Thus, in this example – given the null hypothesis 758

and assuming a hypergeometric distribution – there 759

is only a ≈ 5% probability of getting such a high 760

win rate – or a higher one – by chance. In other 761

words, a situation where model A is the winner in 762

just 50% of the full test set, and an 8/10 result was 763

obtained, is relatively unlikely. A situation where 764

model A is the winner in under 50% of the test set 765

is even less likely. This means that the user can be 766

fairly confident that the correct winner was chosen. 767

Thus, when applying the iterative algorithm, the 768

user sets an acceptable risk level – say, 10% – in 769

advance; at each iteration, sf is calculated using 770

the current values of n and k; if the value of sf is 771

lower than the risk level, the result is considered 772

sufficiently reliable; if not, the sample size n is 773

increased and additional examples are labeled. 774

Note that we use this probability-based threshold 775

merely as a heuristic, or proxy, for the real proba- 776

bility. In practice, the assumptions of the hypergeo- 777

metric distribution are violated in our case. Most 778

importantly, this distribution describes random se- 779

lection, whereas DiffUse is non-random, and in fact 780

has a distinct bias towards selecting certain kinds 781

of examples (§6.1, §7). Moreover, even for random 782

selection, the approach does not precisely match 783

the model comparison setting; for instance, if there 784

is a large number of examples where there is a tie 785

between the two models, a null hypothesis of a 50% 786

win-rate is in fact overly conservative. Thus, while 787

the threshold chosen by the user serves as a good 788

proxy for the estimated error rate, and is thus suit- 789

able as a stopping criterion, it does not guarantee 790

the actual error rate value. In our empirical experi- 791

ments, for all datasets the error rate was lower than 792

the chosen risk threshold (cf. Tables 2,3). 793

When opting for higher risk thresholds, there 794

is a large impact to the initial number of labeled 795

examples, because wins that are based on a very 796

small sample (e.g., 3 out of 3) are avoided, even 797

though they may meet the risk threshold. 798

A.4 Clustering Methods and Representative 799

Selection 800

We conducted selection experiments employing 801

various clustering algorithms. We found that the 802

majority of these algorithms produced results that 803

exceeded those of random sampling. 804
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Task Scenario Description

Question Answering
NarrativeQA The NarrativeQA benchmark for reading comprehension

over narratives (Kočiský et al., 2018)
NaturalQuestions
(closed-book)

The NaturalQuestions (Kwiatkowski et al., 2019) bench-
mark for question answering based on naturally-occurring
queries through Google Search. The input does not include
the Wikipedia page with the answer.

NaturalQuestions
(open-book)

The NaturalQuestions (Kwiatkowski et al., 2019) bench-
mark for question answering based on naturally-occurring
queries through Google Search. The input includes the
Wikipedia page with the answer.

QuAC (Ques-
tion Answering
in Context)

The QuAC benchmark for question answering in the context
of dialogues (Choi et al., 2018).

Summarization
XSUM The XSUM benchmark for text summarization of BBC

news articles (Narayan et al., 2018)
CNN/DailyMail The CNN/DailyMail benchmark for text summarization

(Nallapati et al., 2016).

Table 1: The HELM scenarios we used for our experiments, which include short and long text output tasks.

# Annotations ↓ Error (%) ↓ Success (%) ↑ Inconclusive (%) ↓ Average Distance Avg. Dist. Avg. Dist. Avg. Dist.
Dataset Method (Error) ↓ (Success) (Inconcl.) ↓

CNN/DailyMail DiffUse 15.90 11.97 86.50 1.53 0.27 0.06 0.30 0.09
Random 22.47 16.77 80.32 2.91 0.27 0.10 0.31 0.07

NarrativeQA DiffUse 28.77 4.20 89.64 6.16 0.31 0.06 0.34 0.05
Random 118.69 0.72 43.03 56.25 0.31 0.11 0.55 0.13

NaturalQuestions Closed-book DiffUse 189.05 0.20 6.40 93.41 0.15 0.12 0.32 0.13
Random 191.74 0.11 4.37 95.53 0.15 0.10 0.32 0.14

NaturalQuestions Open-book DiffUse 85.25 0.93 62.81 36.26 0.20 0.03 0.28 0.06
Random 160.97 0.17 21.79 78.05 0.20 0.15 0.44 0.13

QuAC DiffUse 86.91 7.75 58.24 34.01 0.15 0.07 0.20 0.08
Random 128.93 4.37 35.93 59.70 0.15 0.09 0.25 0.10

XSum DiffUse 44.25 6.86 79.38 13.75 0.30 0.09 0.35 0.08
Random 59.39 6.05 72.45 21.50 0.30 0.10 0.37 0.09

Table 2: Iterative selection results (p = 0.2). The table depicts the results of applying iterative selection
(Algorithm 1; with p = 0.2, n = 5, and N = 200), comparing DiffUse to random sampling. Results are aggregated
across 666 model pairs. The table details the amount of annotations performed before reaching the stopping criterion,
and the outcomes of the selection experiments (Success/Error/Inconclusive). In addition, it details the average
winning distance (§3) between model pairs, broken down by the experiment outcomes. ↓: Lower is better.
Where the experiment result is inconclusive or the wrong winning model is chosen, the performance gap between
models is quite small; Thus, even where the user is unable to correctly determine the better-performing model, the
cost of this failure is relatively limited.
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Figure 11: Full results. Plots depict success rates of model preference estimation, aggregated over 666 unique
model pairs. Each panel depicts a different combination of dataset and "oracle" (reference-based evaluation metric).
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# Annotations ↓ Error (%) ↓ Success (%) ↑ Inconclusive (%) ↓ Average Distance Avg. Dist. Avg. Dist. Avg. Dist.
Dataset Method (Error) ↓ (Success) (Inconcl.) ↓

CNN/DailyMail DiffUse 34.54 7.13 86.44 6.43 0.27 0.05 0.30 0.07
Random 51.98 8.65 79.32 12.03 0.27 0.07 0.32 0.07

NarrativeQA DiffUse 47.80 1.35 84.53 14.11 0.31 0.05 0.36 0.05
Random 132.75 0.05 37.69 62.27 0.31 0.05 0.59 0.14

NaturalQuestions Closed-book DiffUse 195.37 0.00 3.30 96.70 0.15 NaN 0.37 0.14
Random 197.35 0.00 1.65 98.35 0.15 NaN 0.40 0.14

NaturalQuestions Open-book DiffUse 111.02 0.23 52.87 46.91 0.20 0.02 0.30 0.07
Random 172.34 0.02 16.71 83.27 0.20 0.05 0.49 0.14

QuAC DiffUse 129.20 2.96 43.26 53.78 0.15 0.06 0.23 0.09
Random 158.26 1.14 25.11 73.75 0.15 0.08 0.29 0.11

XSum DiffUse 71.18 2.16 73.21 24.62 0.30 0.07 0.37 0.08
Random 88.84 2.09 63.90 34.01 0.30 0.08 0.41 0.10

Table 3: Iterative selection results (p = 0.1). The table depicts the results of applying iterative selection
(Algorithm 1; with p = 0.1, n = 5, and N = 200), comparing DiffUse to random sampling. Results are aggregated
across 666 model pairs. The table details the amount of annotations performed before reaching the stopping criterion,
and the outcomes of the selection experiments (Success/Error/Inconclusive). In addition, it details the average
winning distance (§3) between model pairs, broken down by the experiment outcomes. ↓: Lower is better.
Where the experiment result is inconclusive or the wrong winning model is chosen, the performance gap between
models is quite small; Thus, even where the user is unable to correctly determine the better-performing model, the
cost of this failure is relatively limited.

Below, we provide details regarding the cluster-805

ing methods we explored:806

1. Hierarchical Clustering807

(a) Euclidean Distance: Hierarchical clus-808

tering with Euclidean distance measures809

dissimilarity between data points based810

on their spatial coordinates. It facilitates811

cluster creation by iteratively merging812

data points to minimize within-cluster813

variance.814

(b) Cosine Distance: Hierarchical cluster-815

ing using cosine distance measures simi-816

larity between data points via the cosine817

of the angle between vectors. Cosine dis-818

tances were employed during the merg-819

ing process.820

2. K-Means Clustering: K-Means clustering821

partitions data into ’k’ clusters by iteratively822

assigning data points to the nearest cluster cen-823

ter and updating centers based on the mean of824

assigned points. Our approach incorporated825

“greedy k-means++” for centroid initialization,826

leveraging an empirical probability distribu-827

tion of points’ contributions to overall inertia.828

The model preference success rates for different829

clustering algorithms, selecting a single represen-830

tative from each cluster based on distance to the831

cluster center, are shown in Figure 12.832

We also explored various methods for selecting833

a representative from each cluster. These meth-834

ods encompassed random selection, choosing the835

example nearest to the centroid (employing either 836

Euclidean or cosine distances), and selecting the 837

example with the maximum norm. As seen in Fig- 838

ure 13, the choice of representatives did not signifi- 839

cantly impact the outcomes. 840

Here we focus on clustering algorithms as the 841

approach for sampling from the vector distribution. 842

However, other selection approaches, such as core- 843

set (Sener and Savarese, 2018) or IDDS (Tsvigun 844

et al., 2022), may also prove effective. 845

A.5 Norm of Difference Vectors 846

We explored the norm of the difference vectors as 847

a signal for selecting examples. While we exper- 848

imented with various binning scenarios, the best 849

outcomes were obtained by directly selecting the 850

vectors with the maximal norm. However, even 851

this approach proved inconsistent across datasets 852

and tasks, as demonstrated in Fig. 16. This is not 853

surprising; selecting by norm alone can result in 854

outliers, and may not be representative of the space 855

of difference vectors. 856
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Figure 12: Comparing clustering algorithms. Plots depict success rates of model preference estimation, aggregated
over 666 unique model pairs. Each panel depicts a different dataset. For all clustering methods, a single example –
closest in cosine distance to the cluster center – is selected from each cluster.
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Figure 13: Comparing representative selection methods. Plots depict success rates of model preference estimation,
aggregated over 666 unique model pairs. Each panel depicts a different dataset. For all non-random methods,
hierarchical clustering with Ward linkage was used to partition the difference vectors; the plots compare approaches
for selecting a single representative from each cluster.
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Figure 14: Input-based clustering results. Plots depict success rates of model preference estimation, aggregated
over 666 unique model pairs. Each panel depicts a different dataset.
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Figure 15: Cluster size vs. average vector norm. The plot describes the results of hierarchical clustering of the
difference vectors, for the XSum dataset when partitioning into different numbers of clusters. Each point represents
a single cluster; in total, each panel depicts between 6.7K and 67K points (666 model pairs × the number of clusters
per pair). The x-axis reflects the percentage of all examples that are in the cluster, and the y-axis is the average
vector norm within the cluster. The results are characterized by very large clusters with a small average norm
(bottom right of the plots).
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Figure 16: Max-norm baseline results. Plots depict success rates of model preference estimation, aggregated over
666 unique model pairs. Each panel depicts a different dataset.
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