
Disentangling Multi-instrument Music Audio for
Source-level Pitch and Timbre Manipulation

Yin-Jyun Luo1∗ Kin Wai Cheuk2 Woosung Choi2 Wei-Hsiang Liao2
Keisuke Toyama3 Toshimitsu Uesaka2 Koichi Saito2 Chieh-Hsin Lai2 Yuhta Takida2

Simon Dixon1 Yuki Mitsufuji2,3
1C4DM, Queen Mary University of London 2Sony AI 3Sony Group Corporation

yin-jyun.luo@qmul.ac.uk kinwai.cheuk@sony.com

Abstract

Disentangling pitch and timbre from the audio of a musical instrument involves en-
coding these two attributes as separate latent representations, allowing the synthesis
of instrument sounds with novel attribute combinations by manipulating one repre-
sentation independently of the other. Existing solutions have mostly focused on
single-instrument audio, excluding the cases where multiple sources of instruments
are presented. To fill the gap, we aim to disentangle multi-instrument mixtures by
extracting per-instrument representation that combines the pitch and timbre latent
variables. These latent variables construct a set of modular building blocks that is
used to condition a decoder to compose new mixtures. We first present a simple im-
plementation to verify the framework using structured and isolated chords. We then
scale up to a complex dataset of four-part chorales by a model that jointly learns the
latents and a diffusion transformer. Our evaluation identifies the key components
for the success of disentanglement and demonstrates the application of mixture
transformation based on source-level attribute manipulation. Audio samples are
available at https://yjlolo.github.io/dismix-audio-samples.

1 Introduction

Disentangled representation learning is concerned with learning semantically meaningful features
of observed data in a compact latent space [1]. Most of the existing work applies generative
frameworks such as variational autoencoders (VAEs) [26], which encodes data by associating factors
of variation with independent subspaces of the latent space and reconstructs the data given the
encoding [50, 6, 22, 18]. Manipulating a subspace while leaving the rest unchanged leads to sparse
variation of particular factors (to which the manipulated subspace corresponds) in the decoder
output [17], and thus facilitates applications such as controllable transformation of the original data.

The technique has been applied to music audio to disentangle representations of timbre (e.g., the
musical instrument played in a recording) and pitch (e.g., the melody played by the instrument) [33,
9, 49, 34, 48, 35, 11, 3, 54, 30, 55]. It allows for transferring the instrument (or melody) played in a
reference to a target instrument (or melody) provided by another example by swapping the timbre (or
pitch) representation, while preserving the melody (or instrument) originally played in the reference.

Despite its wide adoption for instrument attribute transfer, prior arts are limited in that the analysis
and synthesis of these attributes are only amenable to a single instrument at a time, thereby excluding
scenarios where multiple instruments are present in the audio. Although MSI-DIS [28] addresses
two-instrument mixtures, the model is designed to generate single-instrument outputs instead of
mixtures, preventing it from capturing the interdependence of constituent instruments.

∗This work was conducted during an internship at Sony AI.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://sublind.github.io/audio-samples/

(a) The framework (b) The graphical illustration

Figure 1: (a) The framework, DisMix, extracts for each ith source a source-level latent s(i) combin-
ing a timbre τ (i) and a pitch latent ν(i), given a query x

(i)
q and a mixture xm composed of Ns sources

of instruments. As the framework is not limited to accepting a fixed set of instruments, the timbre
of the query dictates the target instrument to extract from the mixture. A decoder, either a simple
autoencoder (AE) or a latent diffusion model (LDM), reconstructs the mixture given a set of Ns

source-level latents. (b) The graphical models of the generative process (top) and the inference
network (bottom). Diamond nodes denote deterministic mappings of their parent nodes.

To bridge the gap, we propose DisMix, a framework that disentangles a mixture of instruments and
composes new mixtures based on novel combinations of pitch and timbre representations. DisMix
represents each instrument by a source-level representation that combines a pitch and a timbre latent
variable. To encode these variables, the encoders are conditioned on a mixture and a set of queries.
The timbre of a query determines which instrument’s latents are extracted from the mixture. The pitch
and timbre latents are encoded in separate subspaces, allowing them to be independently manipulated
per instrument. A decoder then takes as input the manipulated set of source-level representations and
renders a new mixture consisting of sources whose pitch and timbre are dictated by the manipulation.

The pitch and timbre representations act as modular building blocks to construct the melody and
instrument of a source or an “audio object” [4]. The decoder assembles these objects in a way that
preserves their pitch and timbre. This is reminiscent of “object representation” [16] motivated by the
human ability to understand complex ideas in terms of reusable and primitive components [14].

Contributions In summary: (i) We propose DisMix (Fig. 1a) as a framework to decompose a
multi-instrument mixture into a set of per-instrument pitch and timbre representations, and we
showcase its applications in mixture composition and editing by manipulating the representations in a
modular manner; (ii) We first demonstrate a simple implementation of DisMix as a proof of concept
(Section 4.1), and, by implementing a latent diffusion model (LDM) [42], scale up to a complex
dataset featuring four-part Bach Chorales played by a pool of 13 orchestral instruments (Section 4.2);
(iii) We propose to use a binarisation layer and verify it to be crucial for pitch-timbre disentanglement.
We also show that reconstructing a mixture by capturing interdependencies among the constituent
sources outperforms iterative single-source reconstruction in both disentanglement and audio quality.

2 Related Work

Pitch and Timbre Disentanglement While existing work focuses on single-instrument input [33,
11, 3, 54, 12, 49, 48, 9, 34, 9, 35, 30, 55, 36], some studies extract pitch and timbre information from
multi-instrument mixtures for tasks other than representation learning [20, 8, 7]. Closer to our work,
MSI-DIS [28] addresses the transcription, separation, and generation of individual sources from
mixtures. We build upon MSI-DIS but target the task of mixture composition and editing.

Object-Centric Representation Learning Object representations encode physical objects in a
visual scene using unique representations [16, 31, 46, 56, 57]. For audio, MusicSlots [15] and
AudioSlots [44] learn entangled representations of constituent sources from mixtures, while we
disentangle pitch and timbre of sources and tackle a more complex dataset with a conditional LDM.

3 DisMix: The Proposed Framework

Given xm, a mixture composed of Ns unique sources of musical instruments {x(i)
s }Ns

i=1, our goal is to
extract for each instrument a source-level latent s(i) that combines representations of timbre τ (i) and
pitch ν(i). These Ns source-level latents are used to condition a decoder to reconstruct the mixture.

2

We consider DisMix in Fig. 1a as a backbone framework that takes as input both a mixture and a set
of queries to extract the corresponding set of source-level latents. We present two implementations:
A simple autoencoder (AE) that serves as a proof of concept (Section 4.1) and an LDM (Section 4.2)
that scales to a complex dataset. They share a common structure for encoding the pitch and timbre
latents and differ in how they recover a mixture from a set of source-level latents.

Generative Process Fig. 1b (top) shows that the generative process samples xm conditioned on a set
of source-level representations S = {s(i)}Ns

i=1, where s(i) = fθs(τ
(i), ν(i)) is a deterministic function

of timbre and pitch. τ (i) is sampled from a prior N
(
0, I

)
, while ν(i) is conditionally sampled from a

distribution parameterised by its pitch annotation y(i). The joint distribution can be written as:

pθm(xm, {τ (i)}Ns
i=1, {ν

(i)}Ns
i=1|y

(i)) = pθm(xm|S)
∏Ns

i=1
pθν (ν

(i)|y(i))p(τ (i)), (1)

where ν(i) and τ (i) are sampled independently, whereby the pitch and timbre latents can act as
modular building blocks to compose a mixture, facilitating source-level pitch-timbre disentanglement
and manipulation demonstrated in Section 4.

We specify the networks and their parameters (i.e., θm, θs, and θν) for AE and LDM in Sections 4.1
and 4.2, respectively. Note that Fig. 1a omits the conditional prior pθν (ν

(i)|y(i)) and we investigate
the effect of the prior for the AE while excluding it from the LDM for simplicity.

Learning DisMix is by introducing an inference network (Section 3.1) to approximate posteriors over
the latent variables that are otherwise intractable, and by maximising a lower bound to the marginal
likelihood p(xm|{y(i)}Ns

i=1) [26]. The training objective is described in Section 3.2.

3.1 Inference Network

Our inference network in Fig. 1b (bottom) extracts the timbre and the pitch latent variable given both
a mixture and a query, motivated by the query-based source separation framework [28, 27, 52]. A
query x

(i)
q shares the timbre characteristics with a constituent source x

(i)
s (unseen during evaluation)

of the mixture – both are played by the same instrument, regardless of pitch. We assume that the
instrument identities of the constituent sources are known and the queries are available.

Each mixture xm is paired with a set of Ns queries randomly sampled from the dataset. We extract
the features em = Eϕm

(xm) and e
(i)
q = Eϕq

(x
(i)
q), where Eϕm

(·) and Eϕq
(·) are neural networks.

We let e(i)m,q := {em, e
(i)
q } to avoid clutter for the rest of the section.

Pitch Encoder As shown in Fig. 1b, we propose that the pitch and timbre encoders take a
common factorised form: qϕu

(U|xm, {x(i)
q }Ns

i=1) =
∏Ns

i=1 qϕu
(u(i)|e(i)m,q), where u ∈ {ν, τ} and

U ∈ {{ν(i)}Ns
i=1, {τ (i)}

Ns
i=1}. Given e

(i)
m,q , the pitch and timbre latents of the ith source are encoded in-

dependently of each other and of other sources. To promote disentanglement, we apply a binarisation
layer [10, 13] to constrain the pitch latent and prevent it from capturing excessive information.

As shown in Fig. 1a, we extract the pitch latent by steps of transcription, binarisation, and translation:

Transc. ŷ(i) = Eϕν (e
(i)
m,q); Binarise ŷ

(i)
bin = 1{Sigmoid(ŷ(i))>h}; Translate ν̂(i) = fϕν (ŷ

(i)
bin). (2)

Both Eϕν (·) and fϕν (·) are neural networks. 1{·} is the indicator function that defines the binarisation
layer SB and h ∼ U(0,1) is a threshold sampled for each training step and is fixed at 0.5 during
the evaluation. The straight-through estimator [2] is used to bypass the non-differentiable operator.
Altogether, we define the pitch encoder as follows:

qϕν (ν
(i)|e(i)m,q) := δ(ν(i) − fϕν (ŷ

(i)
bin)), (3)

where δ(·) is the Dirac delta function and ν(i) deterministically takes the value of ν̂(i) in Eq. (2).

Timbre Encoder The timbre encoder parameterises the mean and variance of a Gaussian posterior:

qϕτ
(τ (i)) = N (τ (i);µϕτ

(e(i)m,q), σ
2
ϕτ
(e(i)m,q)I), (4)

where qϕτ
(τ (i)) := qϕτ

(τ (i)|e(i)m,q). The timbre latent is sampled from the Gaussian by reparame-
terisation trick [26], i.e., τ (i) = µϕτ (·) + ϵσϕτ (·), where ϵ ∼ N

(
0, I

)
. We let p(τ (i)) = N

(
0, I

)
to constrain the information capacity of the timbre latent through the Kullback–Leibler divergence
(KLD) in LELBO (5).

3

3.2 Training Objectives

Evidence Lower Bound We maximise LELBO, an evidence lower bound (ELBO) to the marginal
log-likelihood log p(xm|{y(i)}Ns

i=1) (we provide the derivation in Appendix A):

E∏
i qϕτ (τ

(i))

[
log pθm(xm|S)

]︸ ︷︷ ︸
mixture reconstruction

+
∑

i
log pθν (ν̂

(i)|y(i))︸ ︷︷ ︸
pitch prior

−DKL

(
qϕτ (τ

(i))∥p(τ (i))
)︸ ︷︷ ︸

timbre prior

, (5)

where ν̂(i) = fϕν
(ŷ

(i)
bin), S = {s(i)}Ns

i=1, and s(i) = fθs(τ
(i), ν̂(i)) as described previously. We specify

θm, θs, and θν in Sections 4.1 and 4.2. We also have access to individual sources during training,
so we add to LELBO the sum of source-wise likelihood terms

∑Ns

i=1 Eqϕτ (τ
(i))

[
log pθm(x

(i)
s |s(i))

]
.

Note that we reuse the decoder with the parameters θm for source reconstruction. Again, we exclude
the pitch prior, associated with the second term in LELBO (5), from the LDM (Section 4.2) for
simplicity, and report its effect on disentanglement for the AE in Appendix C.1.

Pitch Supervision To enhance the disentanglement, we also minimise a binary cross entropy loss
BCE(ŷ(i), y(i)) where y(i) is the pitch annotation of the ith source. We explore relaxing the model
by excluding this term from the LDM and report the results in Table 2.

Barlow Twins We minimise a simplified Barlow Twins loss [58] to enhance the correlation
between the query and the timbre latent for them sharing the timbre characteristics: LBT =∑Ns

i=1

∑Dτ

d=1(1 − Cdd(e(i)q , τ (i)))2, where C is a cross-correlation matrix, and both e
(i)
q and τ (i)

share the same dimensionality Dτ . Empirically, LBT counteracts the over-regularisation effect of the
timbre prior and promotes a discriminative timbre space, as shown in Fig. 5.

In summary, we maximise LDisMix = LELBO−LBCE−LBT and do not find it necessary to explicitly
weigh each loss term. Next, we describe the implementations and results of the AE and the LDM.

4 Experiments and Results

4.1 A Simple Case Study Using an Autoencoder

pθm(xm|S) in LELBO (5) is a Gaussian likelihood parameterised by a decoder Dθm(·), which can
be a permutation-invariant function that outputs the Gaussian mean, reconstructing a mixture given
a set of source-level representations. We opt for a simpler decoder here and discuss a transformer
in Section 4.2. In particular, we slightly deviate from LELBO (5) and reconstruct xm using em and
ssum during training and evaluation, respectively, as illustrated by the solid and dashed blue arrows
in Fig. 1a. This introduces an additional loss term which we detail and discuss in Appendix B.1.

MusicSlots The dataset [15] synthesises 3,131 unique chords from JSB Chorales [5] using sound
fonts of piano, violin, and flute. Each composite note of a chord is synthesised by a sound font
randomly sampled with replacement, whereby a sound font can play multiple notes (Ns ∈ {1,2,3}).
These notes together define a source, annotated by a multi-hot vector y(i) ∈ {0, 1}Np and Np = 52.
The note waveforms are summed to form the chord waveform which defines a mixture. There are
28,179 samples of mixtures divided into training, validation, and test sets with a ratio of 70/20/10.

Evaluation We encode pitch and timbre latents of each mixture from the test set and randomly
permute the latents across sources to obtain novel source-level latents. The sum of the source-level
latents is then decoded, indicated by the dashed blue arrow in Fig. 1a. We use pre-trained pitch and
instrument classifiers to verify if the decoder manifests the pitch and timbre after the permutation. We
detail the evaluation protocol and study the effect of pitch priors of different complexities (the second
term in LELBO (5)) in Appendix C.1. An ablation study of other loss terms is reported in Table 1.

Results Table 1 suggests that both the standard Gaussian prior and the SB layer are key components
for disentanglement. Minimising LBT prevents the standard Gaussian prior from over-regularising
the timbre latent, and dropping the loss term negatively affects pitch accuracy for mixture rendering.

4.2 A Latent Diffusion Framework

We implement an LDM framework [45], where pθm(xm|S) in LELBO (5) is parameterised by a
diffusion transformer (DiT) [42]. As illustrated by the red arrows in Fig. 1a, the DiT reconstructs

4

Table 1: AE: An ablation study for various loss
terms measured by classification accuracy (%).

Disentanglement Mix. Rendering

Pitch Inst. Pitch Inst.

DisMix 93.39 100.00 90.69 100.00
- LBT 93.18 99.92 87.92 100.00
- KLD 69.41 100.00 35.10 100.00
- SB 93.46 46.71 40.23 98.91

Table 2: LDM: Disentanglement and audio qual-
ity in terms of classification accuracy (%) and
Fréchet Audio Distance (FAD), respectively.

Instrument (↑) Pitch (↑) FAD (↓)

Set Single Set Single Set Single

M0 89.94 96.43 94.37 97.15 2.27 2.13
M1 97.49 96.05 97.15 97.02 2.10 2.14
M2 82.83 80.16 97.19 97.03 2.14 2.14

Figure 2: Left: PCA of the timbre space.
Right: Source swaps between two mixtures.

Figure 3: Instrument replacement of a refer-
ence mixture given a target mixture.

features {z(i)s }Ns
i=1 given {s(i)}Ns

i=1. z
(i)
s is a compact feature of the source x

(i)
s extracted by the

pre-trained VAE encoder in AudioLDM2 [29]. The sources can then be recovered by decoding the
compact features using Dvae(·), the AudioLDM2 decoder. Summing the recovered sources in the
audio domain yields the mixture. We leave the implementation details of the DiT in Appendix B.2.

CocoChorale The dataset [53] provides realistic four-part chorales (Ns = 4) in the style of Bach
Chorales [5], featuring 13 orchestral instruments. We use the random ensemble subset, which amounts
to 60,000 chorales, totalling 350 hours of audio. We sample four-second segments from the chorales,
and for each part the pitch annotation y(i) ∈ {0,1}Np×Tp , where Np = 129 and Tp = 400. The
dataset follows a split ratio of 80/10/10 for the training, validation, and test sets.

Evaluation Similar to Section 4.1, the evaluation involves pre-trained classifiers (see Appendix C.2).
In Table 2, M0 is trained to reconstruct a single source conditioned on a source-level latent; it iterates
Ns times to recover a mixture. This is a proxy for MSI-DIS [28] despite the difference between our
strategies for disentanglement and model architectures. M1 is the proposed set-conditioned model,
and M2 drops the pitch supervision. All models can output Ns sources (thus a mixture) in both
single-source (“Single”) and set-conditioned (“Set”) manners, regardless of how they were trained, as
the DiT accepts variable length input. We also report the average FAD [21] over 13 instruments by
comparing the VGG features of the reconstructed sources with that of the original data.

Results M1 yields the best overall performance with “Set”, the mode the model was trained, which
suggests the benefit of modelling the interdependencies over the sources [38, 39]. The superior
instrument accuracy is consistent with the descriminative timbre latent space shown on the left side of
Fig. 2. Surprisingly, M0 performs decently under “Set”, although it was not trained using the mode,
which could imply that our DiT adaptation is effective. M2 performs reasonably well even without
pitch supervision, indicating that SB imposes an effective bottleneck. Removing pitch supervision
leaks excessive information to the pitch latent and hurts the instrument classification accuracy.

Figs. 2 and 3 are examples of pitch and timbre latents acting as modular building blocks for the
composition of the mixture. The right side of Fig. 2 exemplifies how we can “exchange” sources
between two mixtures by swapping their source-level latents (i.e., both pitch and timbre), while Fig. 3
replaces constituent instruments (i.e., only timbre) of a reference with those in a target mixture.

5 Conclusion

We present DisMix to disentangle multi-instrument mixtures into modular building blocks of pitch
and timbre representations for compositional manipulations of mixtures. The requirement of queries
is a limitation that we plan to address in future work. We are also interested in “attribute inpainting”
where the conditional decoder is asked to complete missing pitch and timbre in its conditions.

5

References
[1] Y. Bengio, A. Courville, and P. Vincent. Representation Learning: A Review and New Perspec-

tives. In Trans. on Pattern Analysis and Machine Intelligence, 2013.

[2] Y. Bengio, N. Léonard, and A. Courville. Estimating or Propagating Gradients Through
Stochastic Neurons for Conditional Computation. arXiv preprint arXiv:1308.3432, 2013.

[3] A. Bitton, P. Esling, and A. Chemla-Romeu-Santos. Modulated Variational Auto-encoders for
Many-to-many Musical Timbre Transfer. arXiv preprint arXiv:1810.00222, 2018.

[4] J. K. Bizley and Y. E. Cohen. The What, Where and How of Auditory-object Perception. Nature
Reviews Neuroscience, 2013.

[5] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling Temporal Dependencies in
High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription.
In Int. Conf. on Machine Learning, 2012.

[6] R. T. Q. Chen, X. Li, R. B. Grosse, and D. K. Duvenaud. Isolating Sources of Disentanglement
in Variational Autoencoders. In Conf. on Neural Information Processing Systems, 2018.

[7] K. W. Cheuk, K. Choi, Q. Kong, B. Li, M. Won, J.-C. Wang, Y.-N. Hung, and D. Herremans.
Jointist: Simultaneous Improvement of Multi-Instrument Transcription and Music Source
Separation via Joint Training. arXiv preprint arXiv:2302.00286, 2023.

[8] F. Cwitkowitz, K. W. Cheuk, W. Choi, M. A. Martínez-Ramírez, K. Toyama, W.-H. Liao,
and Y. Mitsufuji. Timbre-trap: A Low-resource Framework for Instrument-agnostic Music
Transcription. In Int. Conf. on Acoustics, Speech and Signal Processing, 2024.

[9] O. Cífka, A. Ozerov, U. Şimşekli, and G. Richard. Self-Supervised VQ-VAE for One-Shot
Music Style Transfer. In Int. Conf. on Acoustics, Speech and Signal Processing, 2021.

[10] H.-W. Dong and Y.-H. Yang. Convolutional Generative Adversarial Networks with Binary
Neurons for Polyphonic Music Generation. In Int. Soc. for Music Information Retrieval, 2018.

[11] J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and K. Simonyan. Neural
Audio Synthesis of Musical Notes with WaveNet Autoencoders. In Int. Conf. on Machine
Learning, 2017.

[12] P. Esling, A. Chemla-Romeu-Santos, and A. Bitton. Generative Timbre Spaces with Variational
Audio Synthesis. In Int. Conf. on Digital Audio Effects, 2018.

[13] J. Fajtl, V. Argyriou, D. Monekosso, and P. Remagnino. Latent Bernoulli Autoencoder. In Int.
Conf. on Machine Learning, 2020.

[14] J. A. Fodor and Z. W. Pylyshyn. Connectionism and Cognitive Architecture: A Critical Analysis.
Cognition, 1988.

[15] J. Gha, V. Herrmann, B. Grewe, J. Schmidhuber, and A. Gopalakrishnan. Unsupervised Musical
Object Discovery from Audio. In Conf. on Neural Information Processing Systems, ML4Audio
Workshop, 2023.

[16] K. Greff, S. Van Steenkiste, and J. Schmidhuber. On the Binding Problem in Artificial Neural
Networks. arXiv preprint arXiv:2012.05208, 2020.

[17] I. Higgins, D. Amos, D. Pfau, S. Racaniere, L. Matthey, D. Rezende, and A. Lerchner. Towards
a Definition of Disentangled Representations. arXiv preprint arXiv:1812.02230, 2018.

[18] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerch-
ner. β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. In Int.
Conf. on Machine Learning, 2016.

[19] J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models. In Conf. on Neural
Information Processing Systems, 2020.

6

[20] Y.-N. Hung, I.-T. Chiang, Y.-A. Chen, and Y.-H. Yang. Musical Composition Style Transfer via
Disentangled Timbre Representations. In Int. Joint Conf. on Artificial Intelligence, 2019.

[21] K. Kilgour, M. Zuluaga, D. Roblek, and M. Sharifi. Fréchet Audio Distance: A Metric for
Evaluating Music Enhancement Algorithms. arXiv preprint arXiv:1812.08466, 2018.

[22] H. Kim and A. Mnih. Disentangling by Factorising. In Int. Conf. on Machine Learning, 2018.

[23] J. W. Kim, R. Bittner, A. Kumar, and J. P. Bello. Neural Music Synthesis for Flexible Timbre
Control. In Int. Conf. on Acoustics, Speech and Signal Processing, 2018.

[24] J. W. Kim, J. Salamon, P. Li, and J. P. Bello. Crepe: A Convolutional Representation for Pitch
Estimation. In Int. Conf. on Acoustics, Speech and Signal Processing, 2018.

[25] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Int. Conf. on
Learning Representations, 2015.

[26] D. P. Kingma and M. Welling. Auto-encoding Variational Bayes. In Int. Conf. on Learning
Representations, 2014.

[27] J. H. Lee, H.-S. Choi, and K. Lee. Audio Query-based Music Source Separation. In Int. Soc.
for Music Information Retrieval, 2019.

[28] L. Lin, Q. Kong, J. Jiang, and G. Xia. A Unified Model for Zero-shot Music Source Separation,
Transcription and Synthesis. In Int. Soc. for Music Information Retrieval, 2021.

[29] H. Liu, Y. Yuan, X. Liu, X. Mei, Q. Kong, Q. Tian, Y. Wang, W. Wang, Y. Wang, and M. D.
Plumbley. AudioLDM 2: Learning Holistic Audio Generation With Self-Supervised Pretraining.
Trans. on Audio, Speech, and Language Processing, 2024.

[30] X. Liu, D. Chin, Y. Huang, and G. Xia. Learning Interpretable Low-dimensional Representation
via Physical Symmetry. In Conf. on Neural Information Processing Systems, 2023.

[31] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Doso-
vitskiy, and T. Kipf. Object-Centric Learning with Slot Attention. In Conf. on Neural Information
Processing Systems, 2020.

[32] I. Loshchilov and F. Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In Int.
Conf. on Learning Representations, 2017.

[33] Y.-J. Luo, K. Agres, and D. Herremans. Learning Disentengled Representations of Timbre and
Pitch for Musical Instrument Sounds Using Gaussian Mixture Variational Autoencoders. In Int.
Soc. for Music Information Retrieval, 2019.

[34] Y.-J. Luo, K. W. Cheuk, T. Nakano, M. Goto, and D. Herremans. Unsupervised Disentanglement
of Pitch and Timbre for Isolated Musical Instrument Sounds. In Int. Soc. for Music Information
Retrieval, 2020.

[35] Y.-J. Luo, S. Ewert, and S. Dixon. Towards Robust Unsupervised Disentanglement of Sequential
Data — A Case Study Using Music Audio. In Int. Joint Conf. on Artificial Intelligence, 2022.

[36] Y.-J. Luo, S. Ewert, and S. Dixon. Unsupervised Pitch-Timbre Disentanglement of Musical
Instruments Using a Jacobian Disentangled Sequential Autoencoder. In Int. Conf. on Acoustics,
Speech and Signal Processing, 2024.

[37] M. Mancusi, E. Postolache, G. Mariani, M. Fumero, A. Santilli, L. Cosmo, and E. Rodolà.
Unsupervised Source Separation via Bayesian Inference in the Latent Domain. arXiv preprint
arXiv:2110.05313, 2021.

[38] E. Manilow, C. Hawthorne, C.-Z. A. Huang, B. Pardo, and J. Engel. Improving Source
Separation by Explicitly Modeling Dependencies Between Sources. In Int. Conf. on Acoustics,
Speech and Signal Processing, 2022.

7

[39] G. Mariani, I. Tallini, E. Postolache, M. Mancusi, L. Cosmo, and E. Rodolà. Multi-Source
Diffusion Models for Simultaneous Music Generation and Separation. In Int. Conf. on Learning
Representations, 2024.

[40] J. D. Parker, J. Spijkervet, K. Kosta, F. Yesiler, B. Kuznetsov, J.-C. Wang, M. Avent, J. Chen,
and D. Le. StemGen: A Music Generation Model That Listens. In Int. Conf. on Acoustics,
Speech and Signal Processing, 2024.

[41] M. Pasini, S. Lattner, and G. Fazekas. Self-Supervised Music Source Separation Using Vector-
Quantized Source Category Estimates. arXiv preprint arXiv:2311.13058, 2023.

[42] W. Peebles and S. Xie. Scalable Diffusion Models with Transformers. In Int. Conf. on Computer
Vision, 2023.

[43] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville. FiLM: Visual Reasoning With a
General Conditioning Layer. In AAAI Conf. on Artificial Intelligence, 2018.

[44] P. Reddy, S. Wisdom, K. Greff, J. R. Hershey, and T. Kipf. Audioslots: A Slot-Centric
Generative Model For Audio Separation. In Int. Conf. on Acoustics, Speech, and Signal
Processing Workshops, 2023.

[45] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-Resolution Image Syn-
thesis with Latent Diffusion Models. In Int. Conf. on Computer Vision and Pattern Recognition,
2022.

[46] G. Singh, Y. Kim, and S. Ahn. Neural Systematic Binder. In Int. Conf. on Learning Representa-
tions, 2022.

[47] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep Unsupervised Learning
Using Nonequilibrium Thermodynamics. In Int. Conf. on Machine Learning, 2015.

[48] K. Tanaka, Y. Bando, K. Yoshii, and S. Morishima. Unsupervised Disentanglement of Timbral,
Pitch, and Variation Features From Musical Instrument Sounds With Random Perturbation. In
Asia-Pacific Signal and Information Processing Association Annual Summit and Conference,
2022.

[49] K. Tanaka, R. Nishikimi, Y. Bando, K. Yoshii, and S. Morishima. Pitch-Timbre Disentanglement
Of Musical Instrument Sounds Based On Vae-Based Metric Learning. In Int. Conf. on Acoustics,
Speech and Signal Processing, 2021.

[50] M. Tschannen, O. Bachem, and M. Lucic. Recent Advances in Autoencoder-Based Representa-
tion Learning. arXiv preprint arXiv:1812.05069, 2018.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is All you Need. In Conf. on Neural Information Processing Systems,
2017.

[52] Y. Wang, D. Stoller, R. Bittner, and J. Bello. Few-Shot Musical Source Separation. In Int. Conf.
on Acoustics, Speech and Signal Processing, 2022.

[53] Y. Wu, J. Gardner, E. Manilow, I. Simon, C. Hawthorne, and J. Engel. The Chamber Ensem-
ble Generator: Limitless High-Quality MIR Data via Generative Modeling. arXiv preprint
arXiv:2209.14458, 2022.

[54] Y. Wu, Y. He, X. Liu, Y. Wang, and R. B. Dannenberg. Transplayer: Timbre Style Transfer with
Flexible Timbre Control. In Int. Conf. on Acoustics, Speech and Signal Processing, 2023.

[55] Y. Wu, Z. Wang, B. Raj, and G. Xia. Emergent Interpretable Symbols and Content-Style
Disentanglement via Variance-Invariance Constraints. arXiv preprint arXiv:2407.03824, 2024.

[56] Y.-F. Wu, M. Lee, and S. Ahn. Neural Language of Thought Models. In Int. Conf. on Learning
Representations, 2023.

8

[57] Z. Wu, Y. Rubanova, R. Kabra, D. A. Hudson, I. Gilitschenski, Y. Aytar, S. van Steenkiste,
K. R. Allen, and T. Kipf. Neural Assets: 3D-Aware Multi-Object Scene Synthesis with Image
Diffusion Models. arXiv preprint arXiv:2406.09292, 2024.

[58] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. Barlow Twins: Self-Supervised Learning
via Redundancy Reduction. In Int. Conf. on Machine Learning, 2021.

9

A Derivation of the ELBO

For a multi-instrument mixture containing Ns sources, we define its corresponding sets of the
pitch annotations, the timbre latents, and the pitch latents as Y = {y(i)}Ns

i=1, T = {τ (i)}Ns
i=1, and

V = {ν(i)}Ns
i=1, respectively. An instrument can be represented by a source-level representation

s(i) = fθs(τ
(i), ν(i)), where fθs(·) is a deterministic function, the diamond node that precedes xm

illustrated on the left side of Fig. 1b. Similarly, the set of source-level representations is denoted as
S = {s(i)}Ns

i=1 and can be expressed in terms of T and V by fθs(T ,V).
In the following derivation of the objective function LELBO (5), we begin with the defined set
notations, expand and simplify the equations with the factorised form of the posteriors, and recover
LELBO based on the deterministic posterior over the pitch latent.

log p(xm|Y) ≥ LELBO (6)

= Eqϕτ (T |xm,Xq)qϕν (V|xm,Xq)

[
log pθm(xm|S = fθs(T ,V))

]
(7)

−DKL

(
qϕτ

(T |xm,Xq)∥p(T)
)
−DKL

(
qϕν

(V|xm,Xq)∥pθν (V|Y)
)

(8)

= E∏Ns
i=1 qϕτ (τ

(i)|xm,x
(i)
q)qϕν (ν

(i)|xm,x
(i)
q)

[
log pθm(xm|S = {fθs(τ (i), ν(i))}

Ns
i=1)

]
(9)

−
∫ Ns∏

i=1

qϕτ
(τ (i)|xm, x(i)

q) log

∏Ns

i=1 qϕτ
(τ (i)|xm, x

(i)
q)∏Ns

i=1 p(τ
(i))

dτ (1) . . . dτ (Ns) (10)

−
∫ Ns∏

i=1

qϕν
(ν(i)|xm, x(i)

q) log

∏Ns

i=1 qϕν (ν
(i)|xm, x

(i)
q)∏Ns

i=1 pθν (ν
(i)|y(i))

dν(1) . . . dν(Ns) (11)

= E∏Ns
i=1 qϕτ (τ

(i)|xm,x
(i)
q)qϕν (ν

(i)|xm,x
(i)
q)

[
log pθm(xm|S = {fθs(τ (i), ν(i))}

Ns
i=1)

]
(12)

−
∫ Ns∏

i=1

qϕτ
(τ (i)|xm, x(i)

q)
∑Ns

i=1
log

qϕτ
(τ (i)|xm, x

(i)
q)

p(τ (i))
dτ (1) . . . dτ (Ns) (13)

−
∫ Ns∏

i=1

qϕν (ν
(i)|xm, x(i)

q)
∑Ns

i=1
log

qϕν
(ν(i)|xm, x

(i)
q)

pθν (ν
(i)|y(i))

dν(1) . . . dν(Ns) (14)

= E∏Ns
i=1 qϕτ (τ

(i)|xm,x
(i)
q)qϕν (ν

(i)|xm,x
(i)
q)

[
log pθm(xm|S = {fθs(τ (i), ν(i))}

Ns
i=1)

]
(15)

−
∑Ns

i=1

∫
qϕτ

(τ (i)|xm, x(i)
q) log

qϕτ
(τ (i)|xm, x

(i)
q)

p(τ (i))
dτ (i) (16)

−
∑Ns

i=1

∫
qϕν (ν

(i)|xm, x(i)
q) log

qϕν
(ν(i)|xm, x

(i)
q)

pθν (ν
(i)|y(i))

dν(i) (17)

= E∏Ns
i=1 qϕτ (τ

(i)|xm,x
(i)
q)δ(ν(i)−fϕν (ŷ

(i)
bin))

[
log pθm(xm|S = {fθs(τ (i), ν(i))}

Ns
i=1)

]
(18)

−
∑Ns

i=1
DKL

(
qϕτ

(τ (i)|xm, x(i)
q)∥p(τ (i))

)
(19)

+H(δ(ν(i) − fϕν
(ŷ

(i)
bin))) +

∑Ns

i=1

∫
δ(ν(i) − fϕν

(ŷ
(i)
bin)) log pθν (ν

(i)|y(i)))dν(i) (20)

= E∏Ns
i=1 qϕτ (τ

(i)|xm,x
(i)
q)

[
log pθm(xm|S = {fθs(τ (i), ν̂(i))}

Ns
i=1)

]
(21)

−
∑Ns

i=1
DKL

(
qϕτ

(τ (i)|xm, x(i)
q)∥p(τ (i))

)
+
∑Ns

i=1
log pθν (ν̂

(i)|y(i)). (22)

Starting with the standard form of the evidence lower bound (ELBO), we first assume that the
posteriors over T and V are factorised in term (7), and thus the two terms of the Kullback–Leibler
divergence (KLD) corresponding to T and V are written as in term (8). In terms (9) to (11), we
further assume and factorise each posterior into a product over Ns sources. Note that the two KLD
terms are expanded by the definition of KLD. Based on the configuration of a deterministic posterior
over ν(i), we rewrite qϕν

(ν(i)|xm, x
(i)
q) as the Dirac delta function in terms (18) and (20). Finally,

by replacing ν(i) with ν̂(i) = fϕν
(ŷ

(i)
bin), we recover LELBO (5).

10

B Implementation Details

B.1 The Simple Case Study Using an Autoencoder

Mixture Reconstruction pθm(xm|S) in LELBO (5) is a Gaussian likelihood parameterised by a
decoder Dθm(·), which can be a permutation invariant function such as a transformer [51] without
positional embeddings that outputs the Gaussian mean, reconstructing a mixture given a set of
source-level representations S . We opt for the simple implementation for this case study and discuss
a transformer in Section 4.2 and Appendix B.2.

In particular, we slightly deviate from LELBO (5) and reconstruct xm using em as illustrated in
Fig. 1a, instead of S , whereby the likelihood becomes pθm(xm|em), and we maximise an additional
likelihood:

E∏
i qϕτ (τ

(i))

[
log p(em|{τ (i), ν̂(i)}Ns

i=1

]
. (23)

Recall that S = {s(i)}Ns
i=1; s(i) = fθs(τ

(i), ν̂(i)), and thus the original conditions S and xm are
“bridged” by em via the objective (23) and the fact that em is used to reconstruct xm. We let the
likelihood p(em|{τ (i), ν̂(i)}Ns

i=1) = N (em;
∑Ns

i=1 s
(i), σ2

mI) and σm = 0.25 is a hyperparameter.
Intuitively speaking, by maximising the objective (23), the summation of the source-level latents
ssum =

∑
i s

(i) and em are pulled together, with the distance measured in terms of a mean square
error weighed by σ−2

m . We can also interpret the likelihood p(em|{τ (i), ν̂(i)}Ns
i=1) as a conditional

prior that constrains em.

It is important to note that during evaluation, we instead use ssum to reconstruct the mixture xm

or render a novel one by manipulating {s(i)}Ns
i=1 before the summation, indicated by the dashed

blue arrow in Fig. 1a. The underlying assumption is that both em and ssum can reconstruct xm

comparably well as a result of maximising the objective (23) (so that em and ssum are pulled together)
and reconstructing xm by em during training.

This approach of mixture reconstruction deviates from Eq. (1) and avoids implementing a (potentially
expensive and complicated) permutation invariant decoder. Although we could have parameterised
the original likelihood as pθm(xm|S) = N (xm; Dθm(

∑Ns

i=1 s
(i)), σ2

mI), which does not require
introducing additional loss terms, we opted for our approach and introduced the objective (23) which
imposes a linearity between em and ssum in the latent space [37].

This linearity could potentially allow for manipulating specific sources without extracting the entire
set of source-level representations. To elaborate, we can manipulate a specific source i and sample a
novel mixture by first computing a residual r = em − s(i), where em is computed from the given
mixture and s(i) is inferred conditioned on the mixture and a single query. Then, we manipulate s(i)

to obtain ŝ(i) that contains the desired pitch and timbre, and finally use êm = r + ŝ(i) to render a
novel mixture. We only require a single query to manipulate the attributes of a target source and
render a new mixture, unlike the alternative approach, where Ns queries are required even if we are
only interested in manipulating a single source. Studying the linearity is left for future work.

Pitch and Timbre Combination We employ FiLM [43, 23] and derive the source-level repre-
sentation as s(i) = fθs(τ

(i), ν(i)) = αθs(τ
(i)) ⊙ ν(i) + βθs(τ

(i)), where ν(i) is scaled and shifted
element-wise by factors αθs(·) and βθs(·) determined by τ (i).

Dataset The authors of MusicSlots [15] compiled a synthetic audio dataset using 3,131 unique
chords from JSB Chorales [5], rendered by sound fonts of piano, violin, and flute via FluidSynth.

Given a chord, each composite note is synthesised to an audio waveform at 16kHz with a sound
font randomly sampled with replacement, whereby a sound font i can play multiple notes in a chord.
These notes together define a source x(i)

s whose pitch annotation is a mutli-hot vector y(i) ∈ {0, 1}Np

and Np = 52. The note waveforms are summed to form the chord waveform which defines a mixture.

There are 28,179 samples of mixtures split into the train, validation, and test sets with a ratio of
70/20/10. The waveforms are converted into mel spectrograms using 128 mel-filter bands, a window
size of 1,024, and a hop length of 512. We use a segment of 320ms that is cropped from the sustain
phase of each sample, which amounts to 10 spectral frames per data for both training and evaluation.

11

Table 3: The Conv1D layers used to implement Eϕm
(·) and Eϕq

(·) for the simple model in Sec-
tion 4.1.

Inp. channel Out. channel Kernel size Stride Padding Normalization Activation

128 768 3 1 0 Layer ReLU
768 768 3 1 1 Layer ReLU
768 768 4 2 1 Layer ReLU
768 768 3 1 1 Layer ReLU
768 768 3 1 1 Layer ReLU
768 64 1 1 1 None None

Table 4: The three modules of the pitch encoder for the simple model in Section 4.1: The transcriber
Eϕν

(·), the SB layer, and the projector fϕν
(·).

Module Input size Output size Normalization Activation

Eϕν (·)

128 256 Layer ReLU
256 256 Layer ReLU
256 256 Layer ReLU
256 256 Layer ReLU
256 256 Layer ReLU
256 256 Layer ReLU
256 52 None Sigmoid

Stochastic Binarisation (SB)

fϕν (·)
52 64 None ReLU
64 64 None ReLU
64 64 None None

Architecture The mixture encoder Eϕm
(·) and the query encoder Eϕq

(·), mentioned in Section 3.1,
share an architecture which is a stack of Conv1D layers that take as input the mel spectrograms of xm

and x
(i)
q and output em, e

(i)
q ∈ R64, respectively. Table 3 outlines the architecture. The encoders are

followed by a mean pooling along the temporal dimension such that a mel spectrogram of R128×10 is
projected to em, e

(i)
q ∈ R64. The two are concatenated as a 128-dimensional vector used to extract

the pitch and timbre latents.

Given the concatenation of em and e
(i)
q , the pitch encoder first transcribes ŷ(i) ∈ RNp using Eϕν

:

R128 → RNp , where Np = 52. ν(i) ∈ R64 is then extracted by applying fϕν : RNp → R64 to
ŷ
(i)
bin. Table 4 shows the complete architecture. The timbre encoder shares the same architecture as
Eϕν (·), except for that the last layer is replaced by a Gaussian parameterisation layer which consists
of two linear layers that project the 256-dimensional hidden state to the mean and log-variance of the
posterior, from which the timbre latent τ (i) ∈ R64 is sampled.

The FiLM layer fθs(·) obtains the source-level latent s(i) by combining the pitch and the timbre
latent. In particular, the timbre latent is linearly transformed to compute the scaling and shifting
factors, and the pitch latent is modulated by the factors.

To reconstruct the mel spectrograms, the source-level latent s(i) is then temporally broadcast to match
the number of time frames 10 of the mel spectrograms. A two-layer bi-directrional gated recurrent
unit (GRU) then transforms the broadcast s(i) to an output of R128×10 which is then processed by a
linear layer to reconstruct the input mel spectrograms.

Pitch Priors We study pitch priors at different levels of capacity. The first follows Eq. (1) and
defines pθν (ν

(i)|y(i)) = N (ν(i);µfac
θν

(y(i)), σ2
νI), a Gaussian parameterised by a neural network

µfac
θν

(·) given the ground-truth pitch y(i). σν = 0.5 is a hyperparameter.

The prior network first projects y(i) ∈ RNp by reusing fϕν
: RNp → R64. The rest of the network

shares the same architecture as Eϕν
(·) in Table 4, except for that the input size is 64 instead of

12

Input Multi-head Attention + Layer Norm Feed Forward + Layer Norm Output

Figure 4: A regular post-norm transformer block.

128 and the last layer is replaced by two linear layers representing the mean and log-variance of a
64-dimensional Gaussian distribution.

We also consider a more expressive counterpart to capture the source interaction: pθν (ν
(i)|Y\i) =∑K

k=1 πkN
(
ν(i);µrich

θν ,k
(Y\i), σ

2
νI
)
, where Y\i denotes a set of pitch annotations excluding that of

the i-th source, and µrich
θν ,k

(·) specifies the mean of the k-th component in a Gaussian mixture. The
rationale is that ŷ(i) is conditionally dependent on pitch of other sources in a mixture to confer
musical harmony.

The expressive prior network first transforms each element from the set of pitch annotations Y\i by
fϕν (·). To handle a set of inputs, we implement a transformer. The architecture consists of three
blocks of a regular post-norm transformer, as shown in Fig. 4. We use a four-head attention and an
embedding size of 64. The feed-forward block is a two-layer MLP with a ReLU and a size of 64.

The elements in the set Y\i are treated as a sequence of tokens and fed to the transformer without
adding positional encodings to preserve permutation invariance. A max pooling is applied to
collapse the Ns − 1 tokens in the set Y\i to an output hidden state, followed by one of the K
Gaussian parameterisation layers to map the hidden state to the mean and log-variance of a Gaussian
component. The Gaussian layers consists of 2×K linear layers to specify the mean and logvariance
of K components in the Gaussian mixture.

Optimisation We use Adam [25] and a batch size of 32, a learning rate of 0.0004, and a gradient
clipping value of 0.5. Training is terminated if the loss function stops improving on the validation set
for 260k steps.

B.2 The Latent Diffusion Model

We also implement DisMix using an LDM framework [45], where the likelihood pθm(xm|S) is
implemented by a diffusion transformer (DiT) [42] that directly reconstructs a mixture given a set of
source-level latents, and no additional objective such as (23) is introduced.

Data Representation The LDM framework [45] improves the compute efficiency of diffusion models
(DMs) [47, 19] by first projecting data to a low-dimensional latent space. We leverage the pre-trained
VAE from AudioLDM2 [29], which is trained using multiple music and audio datasets, to extract
z
(i)
s = Evae(x

(i)
s), where Evae(·) is the VAE encoder. The reconstruction is by x

(i)
s = Dvae(z

(i)
s),

where Dvae(·) is the pre-trained VAE decoder.

Latent Diffusion Models To facilitate understanding of our DiT implementation, we briefly
review DMs. LDMs operate DMs in a latent space and sample z0, a latent feature of data,
from a Markov chain: p(zT)

∏T
t=1 pθ(zt−1|zt), with p(zT) = N (zT ; 0,I) and pθ(zt−1|zt) =

N (zt−1;µθ(zt, t),Σθ(zt, t)) parameterised by neural networks µθ(·) and Σθ(·). In other words,
a DM samples z0 through an iterative process of T de-noising steps (otherwise known as the reverse
process), starting from the standard Gaussian distribution.

The posterior is a linear Gaussian q(zt|zt−1) = N (zt;
√
αtzt−1,(1− αt)I), where αt is a hyperpa-

rameter evolving over the diffusing step t, specified by a noise schedule. Given that the posterior
is known and fixed, DDPM [19] employs specific forms of µθ(·) and Σθ(·) based on the posterior
and simplifies the training to essentially minimising ∥fθ(zt, t)− z0∥22, which boils down to training a
decoder fθ(·) to predict the clean z0 given its corrupted counterpart zt.

Mixture Reconstruction As illustrated by the red arrows in Fig. 1a, the mixture xm is reconstructed
by summing the constituent sources {x(i)

s }Ns
i=1 which are recovered by Dvae(·) from {z(i)s }Ns

i=1. To
this end, we implement a DiT to reconstruct {z(i)s }Ns

i=1 given S = {s(i)}Ns
i=1. That is, the likelihood

pθm(xm|S) in LELBO (5) is re-written as follows:

pθm({z(i)s,0:T }
Ns
i=1|S) = p({z(i)s,T }

Ns
i=1)

∏T

t=1
pθm({z(i)s,t−1}

Ns
i=1|{z

(i)
s,t}

Ns
i=1,S). (24)

13

Table 5: The Conv1D layers used to implement the timbre encoder for the LDM in Section 4.2. The
last row refers to a Gaussian layer where the 256-dimensional output is split to represent the mean
and log-variance of the posterior. The number in the parenthesis indicates the number of groups
divided for normalisation.

Inp. channel Out. channel Kernel size Stride Padding Normalization Activation

128 128 5 2 0 Group(1) ReLU
128 128 5 2 0 Group(1) ReLU
128 128 5 2 0 Group(1) ReLU
128 256 1 1 0 None None

z
(i)
s,t denotes the noised latent feature z(i)s = Evae(x

(i)
s) at the diffusing step t and z

(i)
s,0 = z

(i)
s . In other

words, the DiT is trained to predict the clean z
(i)
s given its noisy counterpart z(i)s,t and the source-level

pitch and timbre representations s(i). Note that we condition the DiT on a set of Ns noisy features and
ask it to predict the corresponding set of clean features in one pass of the model during training (while
there are T iterations during evaluation). Therefore, the model is able to capture interdependencies
across the Ns sources. We have shown that this setup (M1 with “Set” mode) outperforms its single
source-conditioned counterpart (M0 with “Single” mode) in Table 2.

Dataset The CococChorale dataset [53] provides realistic generative music in the style of Bach
Chorales [5], featuring 13 orchestral instruments played at the pitch ranges of a standard four-part
chorale (i.e., Soprano, Alto, Tensor, Bass, or SATB), and Ns = 4.

We use the random ensemble subset of 60,000 four-part chorales, totalling 350 hours of audio. Each
part of an example is played by an instrument randomly sampled from a pool of instruments belonging
to the part. The pitch annotation y(i) ∈ {0,1}Np×Tp is a time sequence of one-hot vectors, where
Np = 129. The dataset follows a split ratio of 80/10/10 for the training, validation, and test sets.

Each audio file is sampled at 16kHz and is converted into mel spectrograms using 64 mel-filter bands,
a window size of 1,024, and a hop length of 160. We randomly sample a four-second segment for
each example and Tp = 400.

Encoders We extract mel spectrograms of R64×400, where the dimensions correspond to the
frequency and time axes, respectively. The mixture encoder Eϕm

(·) processes the mel spectrograms
of xm and outputs em ∈ R8×100×16, with the dimensions corresponding to the channels, time frames,
and feature size, respectively. We use and freeze Evae(·), the pre-trained encoder of the VAE in
AudioLDM2 [29] as the mixture encoder. Similarly, we reuse the architecture of Evae(·) for the
query encoder Eϕq

(·) but train it from scratch and append a temporal pooling layer, which outputs
e
(i)
q ∈ R8×1×16. To combine the information of e(i)q and em for extracting the pitch and timbre latents,
e
(i)
q is broadcast along the time dimension and concatenated with em along the feature dimension.

The outcome is then transformed back to the original feature dimension of 16 by a 1× 1 Conv2D
filter and passed for pitch and timbre extraction.

Given the concatenation of em and e
(i)
q , the pitch encoder first transcribes with Eϕν : R8×100×16 →

R129×400 whose architecture is based on the decoder Dvae(·) from the pre-trained VAE in Audi-
oLDM2. We modify the output dimension from 64 to 129 to accommodate the number of classes
of pitch and train Eϕν

(·) from scratch. The output of Eϕν
(·) is then binarised by the SB layer and

passed through fϕν
: R129×400 → R8×100×16 to derive the pitch latent ν(i), where fϕν

(·) is based on
the architecture of Evae(·) and is trained from scratch.

The timbre encoder converts an input of R8×100×16, or the concatenation of em and e
(i)
q , to the

timbre latent τ (i) ∈ R8×1×16. Table 5 specifies the architecture which is followed by a temporal
pooling. The timbre latent is then broadcast over the time axis and concatenated with the pitch latent
to construct the source-level latent s(i) ∈ R8×100×32.

Partition DiTs are transformers that take as inputs sequences of patches [42] . We describe how
input sequences are constructed from {z(i)s }Ns

i=1 and {s(i)}Ns
i=1. We first apply a sinusoidal positional

embedding to z
(i)
s to preserve the temporal order and partition it by Par(z

(i)
s) : RTz×(Dz×C) →

14

RL×D′
z , where Tz = 100, Dz = 16, C = 8, and L = 25 are the numbers of time frames, feature

dimensions, channels, and patches, respectively. That is, we partition along the time axis and flatten
each patch whose size becomes D′

z = Tz

L × Dz × C. We repeat the process for all Ns elements
in {z(i)s }Ns

i=1. The outcome is a feature zm ∈ R(Ns×L)×D′
z , where we define zm as the aggregated

representation of {z(i)s }Ns
i=1 as the result of the partition. We can consider zm as a sequence of Ns×L

patches, with the size of each patch being D′
z .

Similarly, we partition the set of source-level representations S = {s(i)}Ns
i=1 and obtain a aggregated

representation sc ∈ R(Ns×L)×D′
s , where D′

s = Tz

L × Ds × C and we define sc as the result of
the partition. Ds = 32 as we have concatenated the pitch and the timbre latents. Therefore, the
aggregated representations, zm and sc, of {z(i)s }Ns

i=1 and {s(i)}Ns
i=1, respectively, share common

dimensions except for their patch sizes D′
z and D′

s.

At this point, we can re-write Eq. (24) as:

pθm(zm,0:T |S) = p(zm,T)
∏T

t=1
pθm(zm,t−1|zm,t, sc). (25)

We do not add another positional embedding to zm and sc to ensure the permutation invariance with
respect to the Ns sources.

Conditioning We describe how we condition the reconstruction of zm,t−1 on zm,t and sc (Eq. (25)).
A transformer block consists of the multi-head self-attention mechanism and a feedforward net-
work, as depicted in Fig. 4. Each of these modules is followed by a skip connection and a layer
normalisation (LN) [51]. We replace the standard LN with its adaptive variant (adaLN) for the
conditioning [42].

To inform the DiT about the level of noise used to corrupt zm,t, an embedding of the diffusing step t
is first added to sc to form the condition. The condition is then used to regress the scaling and shifting
factors of the adaLN layers. Then, passing zm,t through the transformer blocks modulates zm,t by
the factors which carry the source-level pitch and timbre information provided by sc.

Decoder The DiT consists of three regular transformer blocks illustrated in Fig. 4 and we set the
number of heads to four for the multi-head self-attention mechanism. The embedding size is the
same as the input size D′

z . As previously described, we replace the layer normalisation layers with its
adaptive counterparts to condition the input zm,t with sc.

Optimisation We use Adam [25] with a batch size of eight and a gradient clipping value of 0.5.
The learning rate warms up linearly to 0.0001 over 308k steps and decreases following the cosine
wave [32] for a maximum of 4,092k steps.

C Additional Results

C.1 The Simple Case Study Using an Autoencoder

Evaluation Protocol Given a mixture xm and a set of queries {x(i)
q }Ns

i=1 corresponding to the Ns

constituent instruments of the mixture, we first extract the timbre and pitch latents {τ (i), ν(i)}Ns
i=1. To

evaluate disentanglement, we conduct a random permutation so that the pitch latent of the source i
can be swapped for that of the source j, while the timbre remains unchanged, which yields a novel
source-level latent ŝ(i) = fθs(τ

(i), ν(j)). Then, we render a novel source x̂s
(i) by passing ŝ(i) to the

decoder Dθm(·). Note that we render sources instead of mixtures by using ŝ(i) as the input instead of
the summation of multiple source-level representations.

We pre-train a pitch and an instrument classifier using the training set. Successful disentanglement
entails the pre-trained classifiers of pitch and instrument classify x̂

(i)
s as the pitch of x(j)

s (as it was
swapped) and the instrument of x(i)

s (as it was preserved), respectively. The classification accuracy
has been reported under “Disentanglement” in Table 1.

To see if the model can render novel mixtures, we first produce a new set {ŝ(i)}Ns
i=1 after the

permutation and render a novel mixture x̂m by passing Dθm(·) the summation ŝsum =
∑

i ŝ
(i). To

check whether the constituent attributes of x̂m are indeed dictated by the manipulated {ŝ(i)}Ns
i=1, we

15

Table 6: Pitch classification accuracy (%) using different pitch priors.

DisMix +fac +rich (K = 1) +rich (K = 10)

Disentanglement 93.39 93.98 94.01 94.18
Mixture Rendering 90.69 91.15 91.39 92.04

once again extract its source-level representations with the original queries {x(i)
q }Ns

i=1 and reconstruct
the sources, which are again fed to the pre-trained classifiers. The performance has been reported
under “Mixture Rendering” in Table 1.

The instrument and pitch classifiers share the same architecture, except for their last layers corre-
sponding to the three classes of instrument and and the 52 classes of pitch, respectively. Both of the
classifiers start with the architecture outlined in Table 3 followed by a three-layer MLP. The input
and output sizes of the first two layers of the three-layer MLP are 64 with the ReLU activation, while
those of the last layer are 64 and the numbers of classes described above.

Pitch Priors Table 6 reports the performance of the model with different choices of pitch priors.
DisMix is the proposed autoencoder without a pitch prior, discarding the second term from LELBO (5).
fac and rich denote the factorised and expressive priors described in Section B.1. We also experiment
with the numbers of Gaussian components K = 1 and K = 10.

We can observe progressive improvement with a richer prior. The gain from fac to rich with K = 1
is rather marginal compared to the gain from fac to rich at K = 10. This is probably because the
pitch distribution conditioned on contextual pitch information is multimodal and the use of a single
Gaussian component would not provide much benefit compared to fac.

In addition to the improvement in disentanglement observed in Table 6, the rich variant of the
pitch prior provides the possibility of sampling pitch latents conditioned on a context of pitch
values [40, 39], which we leave for future work.

Examples The right side of Fig. 5 shows a example of attribute swapping within a mixture. The first
row includes the queries for the three constituent instruments of the mixture. The second row shows
the input mixture and the three underlying sources. The timbre characteristics are consistent across
rows for the last three columns. In the third row, the leftmost column is the reconstructed mixture
given ssum and the rest are the reconstructed sources given s(i).

Figure 5: Additional results for the simple case study. Left: PCA of the timbre space. Top: DisMix,
plot τ (i). Mid and bottom: Remove LBT, plot the mean of qϕτ

(τ (i)) and the sampling, respectively.
Right: Novel mixture rendering.

16

Table 7: The instrument classifier used to evaluate the disentanglement of the proposed LDM. The
number in the parenthesis indicates the number of groups divided for normalisation.

Inp. channel Out. channel Kernel size Stride Padding Normalization Activation

64 64 5 2 0 Group(1) ReLU
64 64 5 2 0 Group(1) ReLU
64 64 5 2 0 Group(1) ReLU
64 16 1 1 0 None None

In the last row, the first column refers to the manipulated mixture rendered by ŝsum, and the rest are
the sources extracted from the mixture using the original queries (that is, the evaluation protocol for
“Mixture Rendering” in Table 1). We can observe that the attributes are successfully manipulated.
The second column combines the first source’s timbre with the second’s pitch, and the third column
combines the second’s timbre with the first’s pitch. The third source is unchanged.

Furthermore, the left side of Fig. 5 shows that LBT counteracts the over-regularisation effect caused
by the standard Gaussian prior in the timbre latent space. Without the loss term, the sampling of the
timbre latent is excessively noisy due to the large variance σϕτ (·) of the Gaussian posterior.

C.2 The Latent Diffusion Model

Evaluation Given a reference mixture and its extracted set of pitch and timbre latents {τ (i), ν(i)}Ns
i=1,

we arbitrarily replace the timbre latents {τ (i)}Ns
i=1 with those from another target mixture. We expect

that the four instruments of the reference mixture are replaced by those of the target mixture and that
the target instruments play the original melodies of the reference instruments. We ensure that each
instrument is swapped for the instrument labelled as the same SATB part in the target mixture, so that
the target instruments play melodies that match their pitch range.

We sample {ẑ(i)s }Ns
i=1 from N

(
0, I

)
conditioned on the manipulated set of timbre and pitch la-

tents (Eq. (24)) in T = 1000 steps. We expect that feeding x̂
(i)
s to pre-trained instrument and pitch

classifiers produces the targeted instrument and the original reference melody, respectively. Because
the mixture is obtained by x̂m =

∑Ns

i=1 x̂
(i)
s in the audio domain, the evaluation of disentanglement

suggests the results of mixture rendering. The results have been reported in Table 2.

Table 7 outlines the architecture of the instrument classifier used for the evaluation of disentanglement.
The last layer is linearly projected to the logit of the 13 classes of the instruments. For the pitch
classification, we employ Crepe, the state-of-the-art monophonic pitch extractor [24].2 We use a
public repository 3 to measure the FAD.

D Limitations

The main limitation of DisMix is the requirement of the queries that have to match the timbre
characteristics or the instrument identity of constituent instruments of a mixture. This is a consequence
of relying on the query-based source separation framework [27, 28, 52]. Few-shot learning has been
shown to be a promising approach to relax the characteristics of the query example [52].

Based on the well defined instrument clusters in the left side of Fig. 2 and the minimisation of the
Barlow Twin loss LBT, it is likely that we can use a post-hoc approach to find similarly discriminative
clusters in the feature space of queries, e.g., using k-means clustering. We can then leverage the
cluster means in place of queries during test time.

For future work, we could explore combining with DisMix a promising self-supervised method for
source separation [41] to avoid the requirement of queries. We also consider unsupervised methods
such as MusicSlots [15]. However, the model has only been evaluated by the simplistic dataset that
we use for the simple case study.

2https://github.com/maxrmorrison/torchcrepe
3https://github.com/gudgud96/frechet-audio-distance/tree/main

17

	Introduction
	Related Work
	DisMix: The Proposed Framework
	Inference Network
	Training Objectives

	Experiments and Results
	A Simple Case Study Using an Autoencoder
	A Latent Diffusion Framework

	Conclusion
	Derivation of the ELBO
	Implementation Details
	The Simple Case Study Using an Autoencoder
	The Latent Diffusion Model

	Additional Results
	The Simple Case Study Using an Autoencoder
	The Latent Diffusion Model

	Limitations

